
Towards a Formal Computation Model of Associative Logic Programming

Arvind K. Bansal
Department of Mathematics and Computer Science
Kent State University, Kent, OH 44242 - 0001, USA

E-mail: arvind@mcs.kent.edu

1 Introduction

Associative computation is characterized by seamless intertwining of search by content and data
parallel computation. This intertwining facilitates integration of knowledge retrieval and data par-
allel computations independent of number of elements. This work is an e�ort to generalize the
associative computation model which started with our earlier work to exploit associative computa-
tion on SIMD architectures.

In this paper, we describe an architecture independent rules for associative computation, the
advantages achieved by intertwining search by content, data parallel computation and alignment
of abstract data,and an abstract instruction set which exploits associative computation and data
alignment e�ectively. The major signi�cance of the associative model is that it supports a large
class of queries to derive unspeci�ed relations based on incomplete information about attributes,
knowledge discovery, reasoning about meta-relations - relations about relations, and queries which
integrate search by content, inequality, and data parallel scienti�c computation.

The compiler and emulator for the current model have been implemented. The compiler has
been written in C++ [18] and the emulator has been written using ANSI C [7] on HP 730. The
emulator supports both scalar and data-parallel computations, and is portable to any architec-
ture which supports a data parallel version of C. The benchmark results show that overhead of
shallow backtracking and deep backtracking has been signi�cantly reduced which allows seamless
integration of knowledge retrieval, rule based reasoning, and data parallel scienti�c computation.
Associative representation of data reduces the overhead of sequentiality caused by pointer based
data representations [17].

Implications of these results are that the model can be successfully applied to data inten-
sive problems such as geographical information systems, image understanding systems, statistical
knowledge bases, and genome sequencing. For example, in geographical information systems, spa-
tial data structures such as quad-trees and oct-trees can be represented associatively. Di�erent
regions having the same values can be identi�ed using associative search on value. and integrated
with intelligent rule based reasoning. In large knowledge bases, statistical queries can directly
bene�t from associative search by content, associative representation of structures, data parallel
arithmetic computations, and data parallel aggregate functions. Genome sequencing schemes which
need knowledge retrieval, e�cient insertion and deletion from a sequence, and e�cient manipulation
of matrices for heuristic matching of sequences can directly bene�t from this scheme.

2 Associative Computation Model

The basis of associative computation model is to represent the data as bags or association of bags,
and perform data parallel computation with little data movement. We use two types of bags,
namely, a D-bag and a F-bag. A bag is a collection of items such that there can be multiple
occurrences of an element. A D-bag, denoted by D, is de�ned as an ordered bag which also contains

1

null elements ?. For example, f 2, ?, 3 g is a D-bag. However, f 2, ?, 3 g 6= f ?, 2, 3 g since
D-bags are ordered. ? � every element in the D-bag. A D-bag D1 = f d11, ..., d1Ng is D-included
in another D-bag D2 = fd21, ..., d2N g if 8I(1�I�N) d1I � d2I . For example, f 4, ?, 5, 6 g is a
D-subbag of f 4, 3, 5, 6 g since ? � 3. D-union of two D-subbags of a D-bag derives a new D-bag
f d31, ..., d3N g such that 8I(1�I�N) d3I = d1I if d2I � d1I , d3I = d2I if d1I � d2I , or d3I = d1I if
d1I = d2I . For example, D-union of the D-subbags f ?, b, c g and f a, b, ? g derives the D-bag f
a, b, c g. D-intersection of two D-subbags of a D-bag derives a new D-bag such that 8I(1�I�N) d3I
= d1I if d1I � d2I , d3I = d2I if d2I � d1I , or d3I = d1I if d1I = d2I . For example, D-intersection
of D-subbags f 2, 3,, ? g and f ?, 3, 4 g derives the D-subbag f ?, 3, ? g.

Note that D-inclusion, D-union, and D-intersection of two D-subbags are di�erent than usual
de�nitions of union and intersection since D-inclusion, D-union, and D-intersection are based on
pairwise comparison of elements in two D-bags. The truth values true and false are treated syn-
onymously with the values \1" and \0" respectively. An F-bag is a D-bag which has either true
and false. We treat false (or \0") � true (or \1"). A F-bag of 1s is denoted by F1, a F-bag of 0s
is denoted by F0, and a F-bag containing both 1s and 0s is denoted by F . F-bags are realized by
logical bit-vectors. Under the assumption false � true, D-union of F-bags and logical-OR of the
corresponding logical bit-vectors are equivalent, and D-intersection of F-bags and logical-AND of
the corresponding logical bit-vectors are equivalent.

A D-bag of M-tuples of the form f < d11, ..., d1M >, ..., < dN1, ..., dNM > g is stored as M
D-bags aligned to each other such that accessing Ith element of one bag also gives access to Ith
element of other D-bags. We denote the physical aligned D-bags as D1

L
D2
L
...,
L

DM where
L

represents the association of two D-bags such that corresponding elements are aligned. We
also denote application of an F-bag on a D-bag to select a D-subbag by D

N
F . We also denote

selection of a D-bag from an association as �. For example, �2(D1
L
D2) gives D2.

An architecture is a sequence of processing cells. Each cell is a quadruple < Ci, Ri, Si, Mi >

where Ci denotes a processing element (PE), Ri denotes a set of local registers, Si denotes local
storage, and Mi denotes a mask-bit. The D-bag of mask bits is set selectively to �lter instructions.
An instruction is broadcast to each cell simultaneously. The
ow of control is e�ected by generating,
saving, and restoring the mask bits based on the results of tests on local data. An associative search
of a �eld for a speci�c value sets up the corresponding mask bit which is stored and manipulated
during computations. SIMD architecture with content addressable memory satis�es this criteria.
However, we do not limit the scope of the associative computation to SIMD architectures.

Our model is based upon following sixteen rules of associative computation. There are �ve types
of laws of associative computation: laws for data association, laws for associative search, laws for
selection, laws for data parallel computations and laws for data parallel updation. The �rst rule
states that a D-bag of M-tuples is given by the association of M D-bags such that corresponding
elements are physically aligned. For example, f a, 2, 3, 4 g

L
f b, 5, 6, 7 g is equivalent to f < a, b

>, < 2, 5 >, < 3, 6 >, < 4 , 7 > g. The second rule states that resulting association is independent
of level of sub-associations formed by individual D-bags. For example, f 1, 2 g

L
(f 3, 4 g

L
f

5, 6 g) is equivalent to (f 1, 2 g
L
f 3, 4 g)

L
f 5, 6 g, and both are equivalent to f < 1, 3, 5

>, < 2, 4, 6 > g. The third rule states that associations of D-bags are not symmetric. However,
the associations are isomorphic: a pair (x, y) 2 D1

L
D2 (such that x 2 D1 and y 2 D2) has a

bijective mapping to (y, x) 2 D2
L
D1. The implication of this rule is that the same information

can be represented equivalently by permuting the order of association. The fourth rule states that
associative search of a data element d in a D-bag D1 (of the form < d1, ..., dN > derives an F-bag
F such that if dj = d then the corresponding element in F is "1" otherwise "0". For example,
associative search of an element 4 in the D-bag f 3, 5, 4, 7, 4, 9 g gives an F-bag f0, 0, 1, 0, 1, 0 g.
The �fth rule states the law of selection. The rule states that association of an F-bag with a D-bag

2

selects the data elements whenever the corresponding element in F-bag is 1. For example, f 3, 5, 6
g
N
f0, 1, 0g gives f ?, 5, ? g. The sixth rule states that by associatively searching in one �eld,

the associated data elements in the other �eld can be extracted. For example, associative search for
a tuple f4, , g from the tuple f < 4, 5, 6 >, < 3, 7, 9 >, ..., < 4, 9, 10 > g gives an F-bag f 1, 0,
..., 1 g which gives the selected D-subbag as f < 4, 5, 6 >, ?, ..., < 4, 9, 10 > g. The seventh rule
states that selecting data elements from two associated D-bags is same as selecting data elements
from individual bags and then associating them. For example, (f 4, 5, 6 g

N
f 1, 0, 1 g)

L
(f a,

b, c g
N
f 1, 0, 1 g) is equivalent to f < 4, a >, < 5, b >, < 6, c > g

N
f 1, 0, 1 g which gives the

D-bag f < 4, a >, ?, < 6, c > g. For example, f(2, 3), (4, 5), (6, 7)g
N
f 1, 1, 0 g is equivalent to

(f2, 4, 6g
N
f 1, 1, 0 g)

L
(f3, 5, 7g

N
f 1, 1, 0 g). The computation derives f2, 4, ?g

L
f3, 5,

? g which is equivalent to f < 2, 3>, <4, 5>, ?g. The eight rule states monotonicity in selection.
The rule states that data elements of a D-bag selected using an F-bag F1 includes the data elements
selected using another F-bag F2 if F1 v F2. For example, f 5, 6, 7 g

N
f 1, 0, 1 g gives the D-bag

f 5, ?, 6 g. While f 5, 6, 7 g
N
f 1, 0, 0 g gives the D-bag f 5, ?, ? g. The ninth rule states that

data elements of a D-bag selected by D-union of two di�erent F-bags is same as results of selecting
the data elements by applying individual F-bag on the D-bag and then performing D-union on the
resulting D-subbags. For example, f2, 3, 4g

N
(f1, 0, 0g

F
f0, 1, 0 g) gives f2, 3, 4g

N
f1, 1,

0g which is equivalent to 2, 3, ?. The tenth rule states that data elements of a D-bag selected by
D-intersection of two di�erent F-bags is same as results of selecting the data elements by applying
individual F-bag on the D-bag and then performing D-intersection on the resulting D-subbags of
data elements. For example, f2, 3, 4g

N
(f1, 1, 0g u f0, 1, 1 g) gives f2, 3, 4g

N
f0, 1, 0g which

is equivalent to f ?, 3, ? g. The eleventh rule states that Cartesian product of a bag D with true is
equivalent to the set obtained by associating F1 with any D-bag, and is equivalent to D itself. For
example, f2, 3, 4g � f true g is equivalent to f2, 3, 4g

N
f1, 1, 1g which results into the D-bag

f2, 3, 4g. The twelfth rule states Cartesian product of a D-bag D1 with false is equivalent to the
set obtained by associating F with an D-bag, and is equivalent to a null set. A null set � is also
represented as a D-bag with every element as ?. The thirteenth rule states that if any two D-bags
are associated and a data parallel computation is performed on the data elements of each bag then
the operation is equivalent to performing the same operation on every element of the associated
�elds. Any computation involving ? maps onto ?. For example, f2, 3, ?g �D f3, 4, ?g gives f6,
12, ?g. The fourteenth rule states that if a scalar value Val is operated on a D-bag using a data
parallel computation, then the data parallel computation is equivalent to taking Cartesian product
of the singleton set f Val g with F1, and performing data parallel computation on the association
(f Val g � F1)

L
D1. For example, 4 * f2, 3, 4g is equivalent to f4, 4, 4g �D f2, 3, 4g which

gives the D-bag f8, 12, 16g. The �fteenth rule concerns associative update. The rule states that if
a tuple of the form < d1, ..., dN > is inserted in an association of bags D1

L
, ...,

L
DN , then the

association is updated in a unit time to (DU
1

L
, ...,

L
DU
N) where D

U
I denotes the updated bag.

Each DU
I = DI

S
fdIg. The sixteenth rule states that by associatively searching in one �eld, the

associated data elements in the other �eld can be released in a unit computation. For example,
associative search for a tuple f4, , g from the tuple f < 4, 5, 6 >, < 3, 7, 9 >, ..., 4, 9, 10 > g
gives an F-bag f 1, 0, ..., 1 g. Complement of f 1, 0, ..., 1 g gives f 0, 1, ..., 0g. Application of f
0, 1, ..., 0g gives the D-subbag as f < ?, < 3, 7, 9 >, ..., ? > g deleting all the tuples which have
value 4.

3

3 The Abstract Machine and Its Behavior

The compilation model maps the program as a pair of associations of the form< L
L
P
L
A1
L
,...,

L
AN , L

L
C >. The �rst element of the pair represents D-bag of clause-head tuples, and second

element of the pair represents the clause-body tuples. L is the D-bag of labels connecting clause-
heads to low level code of the corresponding clause-body, P is the D-bag of procedure-names, AI is
the D-bag of Ith argument in set of the clause-heads in a program, C is the D-bag of a sequence of
compiled instructions corresponding to set of clause-bodies in the program such that each element
ci 2 C is a sequence of instructions corresponding to one clause-body.

The computation model has following components:

1. an associative data parallel abstract instruction set,

2. an associative representation of clause-heads,

3. an associative heap to store the bindings of the output variables, shared variables, and scalar
bindings.

4. a data parallel binding environment which is physically aligned to the association of parallel
�eld representing clause-heads. The data parallel environment is used to store the F-bags
derived during compile-time analysis, F-bags to mark uni�able clauses, and D-bags to store
bindings for a variable.

5. an associative scheme to handle the aliased variables,

6. an associative control stack to store a control-thread,

7. a sequence of global registers - an associative equivalent of scalar registers in WAM to store
the bindings of arguments of a subgoal.

A detailed scheme for the computation model for SIMD computers is given in [3].
Alignment of D-bags plays a major role in reduction of the overhead of data movement and

associative retrieval of information from aligned �elds. Data movement is reduced by using a F-bag
to select a subbag from the original D-bag or association of D-bags. Physical alignment of the
arguments of the same clause facilitates

(i) data parallel pruning of those clauses which do not share same values for multiple occurrence
goal variables: arguments of the same clauses are pairwise compared in a data parallel manner.
For example, for the given goal a(X, X, Y) and a set of clauses f a(5, 6, 4), ..., a(4, 4, 2), ...,
a(6, 7, 9)g data parallel equality test between �rst two D-bags gives an F-bag f0, ..., 1, ...,
0 g which indicates non-uni�ability of the clause-heads.

(ii) data parallel computation on two arguments of the same clause. For example, arithmetic
comparison to identify whether second argument is greater than the third argument for the
given goal a(X, X, Z)

V
X > Z and a set of clauses f a(5, 6, 4), ..., a(4, 4, 2), ..., a(6, 7, 9)g,

a unit data parallel inequality test will return the F-bag f1, ..., 1, .., 0 g.

(iii) data parallel derivation of clauses satisfying conjunction, disjunction, negation of complex
conditions. For example, �nding out the set of clauses which satisfy both the conditions
given above will need D-intersection of two subsets selected by F-bags f0, ..., 1, ..., 0 g and
f 1, ..., 1, ..., 0 g. D-intersection of two F-bags derives the F-bag f 0, ..., 1, ..., 0 g marking
the uni�able clause-heads.

4

In conjunction with physical alignment of the program association with data parallel environ-
ment, the physical alignment of argument of the same clause also facilitates

(iv) selection of a subset of data from the program arguments without actual movement of data
(associative computation rules 6 and 7). For example, given a set of clauses f a(5, 6, 4), ...,
a(4, 4, 2), ..., a(6, 7, 9)g, and an F-bag f 1, ..., 1, ..., 0 g, the arguments the clauses a(5, 6,
4) and a(4, 4, 2) are selected for data parallel operation without data movement.

(v) Selected data from the program association can be moved to data parallel binding environment
in a constant number of data parallel operations. For example, given a set of clauses S = f
a(5, 6, 4), ..., a(4, 4, 2), ..., a(6, 7, 9) and a F-bag F = f1, ..., 1, ..., 0g, the operation �3(SN
F) gives the D-bag f 4, 2, ? g.

One of the concerns in logic programs is to e�ciently access and manipulate the aliased variables
such that binding of one variable is also seen by the other aliased variable. Traditional systems
use chain of references to access the bindings. In contrast, associative logic programming system
can be bene�ted by associative search to derive and update the bindings of aliased variables. The
associative computing paradigm handles aliasing very e�ectively due to physical alignment of F-
bag selecting a subset of variables and data parallel D-union of two F-bags to derive a new F-bag
which gives D-union of two D-bags. The major advantage of associative scheme over conventional
scheme is that accessing bindings for aliased variables needs constant number of operations, and
is independent of number of variables in the aliased set. A detailed implementation mechanism is
given in [3, 4].

3.1 The Model Behavior

The model exploits run time execution e�ciency both at the data level during data parallel goal
reduction by treating the clause-heads as data for e�cient pattern-matching, and control level
during the execution of the code of the corresponding subgoals in the selected clause. The forward
control
ow is divided into three parts: pre-call processing, pre-clause processing, and clause-
processing. Pre-call processing is used to perform data parallel goal reduction, and setting up the
potential bindings for goal variables. Pre-call processing has four components, namely, matching
constant arguments in a goal to corresponding D-bags AI , data parallel equality of corresponding

D-bags AI and AJ to handle multiple-occurrence variables, and D-intersection of F-bags, derived
by matching each goal arguments with the corresponding D-bag of clause arguments, to derive F-bag

of uni�able clauses. Pre-clause processing is used to test the presence of uni�able clauses using the
F-bag of uni�able clauses, and passing control to the right clause nondeterministically using shared
label. Clause processing is used to handle aliasing of variables, setting up the global registers,
handling alternate bindings of shared variables during backtracking, and storing the current state
into control stack, before starting next cycle. If at any time the F-bag representing uni�able clauses
is empty then backtracking occurs, information is retrived from the control stack, and the previous
environment is restored.

There are four rules for associative goal reduction. The �rst rule is the rule of matching con-

stants. The rule states if goal argument is a constant then matching the goal argument ArgGI with
the corresponding �eld AI gives an F-bag FI . The rule is used to prune those clauses which do
not match for a particular argument. The second rule is the rule of data parallel equality-test.
The rule states that if two goal arguments ArgGI and ArgGJ have occurrence of same variable then
F-bag is derived by performing equality test on both the D-bags AI and AJ . The third rule is
the conjunctive rule of non-uni�able clauses which takes the D-intersection of F-bags derived by

5

matching individual goal arguments with corresponding D-bags in the program. The fourth rule is
rule of uni�cation, and is generally used for handling aliased variables.

4 Implementation and Performance Evaluation

The Abstract instruction set of the Dprolog compiler has been divided into �ve classes, namely,
pattern matching instructions for goal reduction, data selection and data movement instructions,
control instructions, and data-parallel computation. Pattern matching instructions are mainly used
during data parallel goal reduction, handling aliasing, and uni�cation. Data movement instructions
are used to transfer data between registers, transfer data between between D-bags in the data
parallel binding environment, and between heap and registers. Control instructions test the F-
bag of uni�able clauses and backtrack to select another binding for a producer. Logical parallel
instructions are used to �nd the uni�able clauses to derive D-intersection of F-bags obtained by
individual matches, �nding the D-union of aliased sets, and handling negation by complementing
the F-bag. Arithmetic computation instructions are of three types, namely, scalar-scalar! scalar,
vector-vector ! vector, and scalar-vector! vector. In this section, we explain the most commonly
used abstract instructions through a compiled program.

Example 1:

The program has three procedures, namely, p/2, q/2, r/2. The procedure p/2 illustrates the
intertwining of simple ground facts and complex facts caused by presence of aliasing. The procedure
q/2 is a D-bag of simple facts. The procedure r/2 is a mixture of ground fact and a non-unit clause.
The right hand side of non-unit clause r/2 exhibits producer-consumer relationship.

p(1,2). p(2, 3). p(3, 4).

p(X, X). * Complex fact due to aliasing *

q(2, 1). q(3, 2). q(4, 3). q(5, 4).

r(2, 2).

r(X, Y) :- p(X, Y), q(2, Y).

The Compiled Code: We give the compiled code for the above program, and the correspond-
ing operational semantics of the abstract instructions. We will denote Ith argument of a goal by
ArgGI and the corresponding D-bag in the program by AI . ArgI denotes both ArgGI and AI , U
denotes F-bag of uni�able clauses, F denotes F-bag of simple facts without aliased variables, B de-
notes F-bag of complex clauses (facts with aliased variables or clauses with non-empty clause-body),
C indicates uni�able complex clauses, and TI denotes temporary F-bag.

% Pre-call processing instructions for procedure p/2.

DP p/2: Match Register Arg Arg1, U0

This instruction matches the goal argument ArgGI with the D-bag AI and �nds out D-intersection
of resulting F-bag with old value of U0 to derive new value of U0.

Test And Backtrack U0

This instruction restores the previous environment if U0 = � and backtracks.

Match Register Arg Arg1, U0

Test And Backtrack U0

6

And Bit Vectors F0, U0, B0

This instructions derives the D-intersection of two F-bags F0 and U0 and stores the result in a new
F-bag B0.

Store Vector Id B0, Arg1

This instruction stores the index of F-
ag B0 and the index of D-bag AI into the heap as a reference
to bindings for the variable ArgGI .

Store Vector Id B0, Arg2

% Pre-clause processing instructions for procedure p/2

Compliment Bit Vector F0, T1
And Bit Vectors T1, U0, C0

Test And Return B0, L10

This instruction picks up another simple fact if F-
ag B0 is not empty otherwise it passes control
to label L10.

L10: Try Me Else C0

This instruction restores the previous environment if C0 = � otherwise it picks up next complex
clause, and passes the control to the corresponding label.

% Clause Processing for procedure p/2

CF3 p/2: Unify Arg1, Arg2

This instruction is used to alias two arguments having same variable name.

Return

This instruction returns the control to calling Procedure.

% Instructions for procedure q/2

DP q/2: Match Register Arg Arg2, U0

Test And Backtrack U0

Match Register Arg Arg2, U0

Test And Backtrack U0

And Bit Vectors F0, U0, B0

Store Vector Id B0, Arg1
Store Vector Id B0, Arg2
Compliment Bit Vector F0, T1
And Bit Vectors T1, U0 , C0

Test And Return B0, L23

L23: Try Me Else C0

% Instructions for procedure r/2

7

DP r/2: Match Register Arg Arg1, U0

Test And Backtrack U0

Match Register Arg Arg2, U0

Test And Backtrack U0

And Bit Vectors F0, U0, B0

Store Vector Id B0, Arg1
Store Vector Id B0, Arg2
Compliment Bit Vector F0, T1
And Bit Vectors T1, U0, C0

Test And Return B0, L34

L34: Try Me Else C0

P 2 R1: Copy Logical Register Arg1, Arg1
This instruction copies the reference to the actual value from Arg1 of the clause-head to the

register representing Arg1 of the �rst subgoal. The advantage of storing reference is that data
movement is avoided.

Copy Logical Register Arg2, Arg2
Call DP p/2
Continue L39

L39: Load Register Arg1, T1, 2
This instruction loads value 2 in a physical register T1 and sets up a reference in another register
representing Arg1.

Copy Logical Register Arg2, Arg2

Repeat Else Backtrack L42

This instruction stores the label L42 into the control stack, and passes control to the next
instruction. Upon backtracking, if the F-
ag of uni�able clauses is empty then backtracking takes
place. This instruction simulates failure driven iteration until all the uni�able clauses have been
tested.

L42: Load Next Vector Value Arg2
This instruction gets the index of the D-bag for the variable in Arg2 from the heap, and retrieves

the next value from the D-bag.

Call DP q/2

Return

4.1 Performance Evaluation

The prototype emulator has been implemented on an HP 730 using ANSI C. The emulator is
portable to any architecture which supports data parallel version of C. The results demonstrate
that the number of operations needed for associative lookup is independent of number of ground
facts. Thirty operations are needed to match a ground fact with two arguments. The number
of operations is linearly dependent upon the number of arguments in a query. For each extra

8

argument, nine extra operations are needed to load the value in registers, perform data parallel
match, and perform logical ANDing of the previous bit-vector with the new bit-vector obtained
during data parallel match.

For a 20 ns clock supported by current technology, and three clock cycles (load-execute-store
cycle), the associative look up speed is six hundred thousands � number of facts for a set of facts
with two arguments. In the presence of data parallel scienti�c computations intertwined with
associative lookup, the peek execution speed is limited by the associative look-up speed which will
be sixty MCPS (million computations per second) for thousand facts.

When two subgoals of a rule share variables, the data elements in vector bindings for shared
variables are processed one at a time. This scenario is the worst case for execution, and the execution
speed reduces to two hundred thousand logical inferences per second (LIPS) for one shared variable.
The slow down is caused primarily due to the overhead of storing the control thread during forward
control
ow, register set up, and retrieving the control thread during backtracking. Our results
show that the overhead of data parallel matching is less than the overhead of storing the control
thread during forward control
ow which makes the model suitable for handling
at programs with
relations having a large number of arguments.

Note: Following References are limited due to space limitation.

References

[1] A. K. Bansal and J. Potter, \Exploiting Data Parallelism for E�cient Execution of Logic
Programs with Large Knowledge Bases", Proceedings of the Tools for Arti�cial Intelligence
1990, Herndon, USA, (Nov. 1990), pp. 674 - 681.

[2] A. K. Bansal and J. L. Potter, \An Associative Model to Minimize Matching and Backtracking
Overhead in Logic Programs with Large Knowledge Bases", The International Journal of
Engineering Applications of Arti�cial Intelligence, Permagon Press, Volume 5, Number 3,
(1992), pp. 247 - 262.

[3] A. K. Bansal, J. Potter, and L. V. Prasad, \ Data Parallel Compilation and Extending Query
Power of Large Knowledge Bases," In the Proceedings of the International Conference of Tools
for Arti�cial Intelligence 1992, pp. 276 - 283.

[4] A. Bansal, \An Associative Compilation Model for Tight Integration of High Performance
Knowledge Retrieval and Computing", International Journal on Arti�cial Intelligence Tools,
World Scienti�c Publishers, in press.

[5] J. A. Feldman and D. Rovner, \An Algol Based Associative Language," Communications of

the ACM, Volume 12, No. 8, August 1969, pp. 439 - 449.

[6] C. C. Foster, Content Addressable Parallel Processors, Van Nostrand Reinhold Co., New York,
(1976).

[7] M. Ghandikota, \Implementing Abstract Instruction Set for Logic Programs on Associative
Supercomputers", MS Thesis, Department of Mathematics and Computer Science, Kent State
University, Kent, OH 44242, USA, December 1993.

[8] D. Gries, \The Science of Programming", Monograph, Springer Verlag, Newyork, 1987.

9

[9] T. Higuchi, T. Furuya, K. Handa, and A. Kokubu, \ \IXM2: A Parallel Associative Processor
for Semantic Net Processing", in Proc. of Tools for Arti�cial Intelligence, Herndon, USA, (Nov.
1990).

[10] K. Hwang and F. A. Briggs, Computer Architecture and Parallel Processing, Mcgraw Hill Book
Company, New york, USA, (1984).

[11] P. Kacsuk, and A. Bale, \DAP Prolog: A Set Oriented Approach to Prolog," The Computer

Journal, Vol. 30, No. 5, 1987, pp. 393-403.

[12] P. Kacksuk, \DAP Prolog," in Execution Models of Prolog for Parallel Computers, Research
Monograph, MIT Press, 1990.

[13] K. Knobe, J. D. Lukas, G. L. Steele, \Massively Data Parallel Optimization", The 2nd Sym-
posium of Massively Parallel Computation, Fairfax, Virginia, 1988, pp. 551 - 558.

[14] Kowalski, R., Logic for Problem Solving, Elsevier-North Holland, (1979).

[15] Z. Manna and R. Waldinger, \The Logical Basis for Computer Programming", Volume1:
Deductive Reasoning, Addison Wesley, 1985.

[16] J. L. Potter, \Data Structures for Associative Supercomputers", Proceedings of the 2nd Sym-

posium on the Frontiers of Massively Parallel Processors, Fairfax, USA, (Oct. 1988), pp. 77 -
84.

[17] J. L. Potter, Associative Computing, Plenum Publishers, Newyork, (1992).

[18] L. V. Prasad,\Compiling Logic Programs to Incorporate Data-parallelism on Associative Su-
percomputers", MS Thesis, Department of Mathematics and Computer Science, Kent State
University, Kent, OH 44242, USA, December 1993.

[19] L. Sterling and E. Shapiro, The Art of Prolog, MIT Press, (1986).

[20] A. Takeuchi and K. Furukawa, \Parallel Logic Programming Languages", Lecture Notes In

Computer Science, Vol. 225, Springer Verlag, Newyork, (July 1986), pp. 242 - 254.

[21] D. H. D. Warren, \An Abstract Prolog Instruction Set", Technical Report 309, SRI Interna-
tional, (October 1983).

10

