[SM91a]
[SM1b]

[SM2]

G. Succi and G A. Marino. Abstract Analyzers for Data Parallel Declarative Languages.
Techni cal report, DIST- Uni versita di Genova, 1991.

G Succi and G A;, Marino. Data Parallelism in Logic Progranmng. In Proceedings of the
ILES’91 Pre Conference Workshop, Paris, France, June 1991. Springer- Verlag — LNCS.

G Succi and G A Murino. The Design of an Abstract Machine for Subset Equational Lan-

guages. In Proceedings of the 1992 European Wrkshop on Farallel Computing, Barcellona,
Spain, Mirch 1992.

[SMC*91] G Succi, G A Mrino, G Colla, D Co, S. Novella, A Pata, A Regoli, and L. Vigano. SEL

[Suc91]
[Suc92]
[Ti c89]

[Tur 79]

Comnpiler and Abstract Anal yzers. In Proceedings of the ALPUK’92. Springer- Verlag — LNCS,
1991.

G Succi. Set Representations ina Subset-Equational Language, February 1991. State Univer-
sity of New York at Buffal o — Master Thesis.

G Succi. ExploitingInplicit Parallelismof Logic Languages with the SAM In Proceedings of
the 1992 Synposiumon Applied Conputing, Kansas (ity, Kansas, March 1992.

E. Tick. APerformance Conparison of AND and OR- Parallel Logic Progranmng architec-
tures. In Levi and Martelli [LM9], pages 452-467.

D A Turner. Anewinplenentatioontechnique for applicative languages. Software Practice

and Frperience, (9), 1979.

12

9 Conclusions

Several are the issues still openinthis research. Abstract anal yzers and garbage collectors are under
and devel oprment. A different way of mapping the Active Mnory on the hypercube by neans of hash
tables 1s alnost conpleted. Network optimzations and conpilation enhancenents are also hot points.

Acknowl edgments

This work has been partly supported by the italian mnistery of university and scientific research (40
foundings). Mpst of the ideas presentedinthis paper has been discussed with B. Jayaranan. The authors
thank researchers of XTI /Parna for their support in the usage of the Connection Mhichine.

References

[AK9O] H. At-Kaci. The VAM: A (Real) Tatorial. Digital - Paris Research Laboratory, January
1990.

[BR®9I] R Bahgat and S. Gregory. Pandora: Non-determmnistic Parallel Logic Programmng. In Levi
and Mirtelli [LMRO], pages 471-486.

[BP92] A K Bansal and Potter. An Associative Mbdel to Mnimze Myt ching and Backtracking Over-
head in Logic Programs with Large Knowl edge Bases. Eagineering Applications in Artificial
Intelligence, 5(3), 1992.

[BPW2] A K Bansal, J. L. Potter, and Prasad L. V. Data-parallel Conpilation and Query Power
Extension of Large Kowl edge Bases. In Proceedings of the 1992 I FFE Int ernational Conference
on Tools wth Al, 1992.

[Bru82] M Bruynooghe. The nenory nmanagenent of Prolog inplenentation. In Logic Brogrammng,
pages 83-98. ACMPress, 1982.

[DGL*79] R B K Ikwar, A Gand, S. Liu, J. T Schwartz, and E. Schonberg. Progranm ng by
Refinenent , as Exenplified by the SEIL Representation Subl anguage. A(MTransactions on
Programiing Languages and Systens, 1(1):28-49, July 1979.

[DOPRIL] A Dovier, E. G Owdeo, E Pontelli, and G Rossi. {log}: ALogic Programmng Language
with Finite Sets. In Proceedings of the 8th International Conference of Logic Programmng,
Paris, France, 1991. MTPress.

[Hi185] D W. Hllis. The Connection Michine. MTPress, Canbridge, Mass., 1985.

[Jay90a] B Jayaranan. Broader Forns of Logic Programm ng. In Proceedings of the Joint US-Japanese
Wrkshop on Faral lel Foul edge Systens and Logi ¢ Frogrammng, 1990.

[Jay90b] B. Jayaraman. Subset-Equational Programmng in Intelligent Decision Systens. Journal of
Comput ers and Mithenatics wth Applications, 17:133-146, 1990.

[Jay91] B. Jayaraman. Inplenentation of Subset-Equational Programs. The Journal Of Logic Pro-
grammng, 1991.

[IN88] B. Jayaraman and A Nair. Subset-logic Programmng: Application and Inplenentation. In
th International Logic Progranming Conference, Seattle, August 1988.

[LMBO] GorgioLevi and Maurizio Martelli, editors. Proceedings of the Siazth International Conference
on Logi ¢ Progranmng, 1isbon, 1989. The M T Press.

[M182] C S. Mllish. Analternativetostructure sharinginthe inplenentationof a Prologinterpret.
In Logic Programmng, pages 99-106. ACMPress, 1982.

[M589] G Mirinoand G Succi. Data Structure for the Parallel Execution of Functional Languages. In
G Gies and J. Hartmanis, editors, PARLE’89, pages 346-356, Eindhoven, The Netherl ands,
June 1989. Springer- Verl ag.

[Nai 88] A Nair. Conpilationof Subset-Logic Prograns, Decenber 1988. University of North Carolina
at Chapel Hill — Mister Thesis.

[SCY2] G Succi and G (blla. Checkingfor Duplicatesinthe CM. Technical report, DIST- Universita
di Genova, March 1992.

11

Michine 2 with 8Kprocessors witha Sun4 front-end. Two kinds of results are reported for the CMSAM
one taking into account also the tine for checking for duplicates and one wi thout considering it. Th
reason for such choice is that the structure of the CM SAMoften nake easy the process of detecting when
checking for duplicates can be avoided.

The SEL version of the tests is:
incrMap({X|_}) contains {X+1}.
evenFilter ({X|_}) contains if (even(X)) {X} else {}.

sumFold({}) = 0.
sumFold ({X|T}) = X + sumFold(T).

Wiile the PROLOGone is:

incrMap([1,[]).
incrMap([X[T],[YIW]) :- Y is X+1, incrMap(T,W).

evenFilter ([XI|T],[XIW]) :- even(X),!, evenFilter(T,W).
evenFilter([_|T],W) :- evenFilter(T,W).

sumFold([]1,0).
sumFold([X|T],W) :- sumFold(T,Z), W is X + Z.

The follow ng table summarizes the resul ts.

Program Size | SICStus | SAM CM SAM
with DC | w/o DC
incrMap 10 10 12 7 0.22
incrMap 100 180 180 50 0.22
incrMap 1000 1620 3300 600 0.22
incrMap 10000 15000 | 405017 5800 0.22
evenFilter 10 10 11 8 0.27
evenFilter 100 169 175 56 0.27
evenFilter 1000 1740 3280 620 0.27
evenFilter | 10000 17300 | 406034 6 0.27
sumFold 10 21 14 1.22 1.22
sumFold 100 131 40 1.22 1.22
sumFold 1000 1010 450 1.22 1.22
sumFold 10000 11360 3900 1.22 1.22

This results are pretty encouraging. First of all it the SAMbehaves pretty well in conparison wtl
SICStus, whichis one of the best and fastest PROLOGcurrently available: the SAMchallenges SICStus
in incrSet and evenFilter for small and nediumsized sets (up to 1000 el enents) and outperforns it

in sumFold for any size. The problemconnected withlarge sized sets is checking for duplicates; abstrad
anal yzers are under devel opment to determ ne when this operationis necessary[JN88, S(92]. Note that
these perfornances are obtained wi thout any ad hoc optimzation, whereas SICStus is inplenented with
many peephole optimzations: there is mich space left for going faster also in the sequential case.

On the Connection Machine checking for duplicates carries alinear cost. This explains the linear incre
of tine for the execution of incrSet and evenFilter, while no duplicate checkis required for sumFold.
However, as 1t 1s nentioned above, quite often duplicate check can be avoi ded, or at least deferred till
end of the conputation. Consider the definition of severalMaps:

severalMaps({X|_}) contains {f(g(h(i(j(k(1(m(X))))))N}.

Here there is no need of performng the duplicate check operation until after the call of f; a deep
anal ysis of this topicis describedin[SC92]. For these reasons also the time required without checki n
duplicates 1s presented. Note that 1t 1s al nost constant for any assertion. This neans that the struct
of this machine exploit pretty well the SIMDarchitecture of the Connection Michine. No checking for
duplicates is required for the sumFold assertion, since it produces asingle element, rather than a set

10

[1] allProducts/3: oneProducts/3:

[2] allocate allocate

[3] get_set A1 Y1 get_variable A1l Y1
[4] get_variable A2 Y2 get_set A2 Y2

[5] get_variable A3 Y3 get_variable A3 Y3
[6] map_over Y1 Y4 Y5 map_over Y2 Y4 Y5
[7] begin: put_value Al Y5 begin: put_value Al Y1
[8] put_value A2 Y2 put_value A2 Y5
[9] put_variable A3 Y6 put_variable A3 Y6
[10] call oneProducts/3 call */3

[11] insert Y3 Y6 insert Y3 Y6

[12] end_map_over Y4 Y5 begin end_map_over Y4 Y5 begin
[13] end: deallocate end: deallocate

[14] proceed proceed

Figure 11: SAMCode for oneProducts and allProducts.

care of 1t. Figure 10 presents a situation where such parallel environment is used. The SAMcode for
the cl auses oneProducts and allProductsis in figure 11. The allProduct execution cannot be parallel,
because a nested parallel assertion exists (the oneProduct assertion).

There is therefore the need of sequentializingthe data parallelismon the first set and exploitingit onl
the second set. The end map over of line [12] will restart the data parallelismon {1,2,3}. Consequently

there 1s the need of providing a nechani smfor stopping a data parallel execution on a set to resune
it later. Since this situation can be nested (e.g. , if oneProduct called an assertion with data parz:
execution on another set) astack of suchinformationmst be saved. The parallel environnent is used fo
this purpose: a frane containinginformation about the set in use and which elenents of 1t has al ready
been anal yzedis stored on the stack each tine a mapping occurs i1nside the execution of another nmapping

and 1t i1s popped at the end of the mapping.

So at line [68] aparallel environnent for {1,2,3}is placedonthe stack, anelenent of itisselectedinorc
tostart the sequenzialization (for instance 1) andit is nmarked as “already anal yzed” in the environner
Any reference to Y1is nowareference to 1. Therefore line [7] put alinregister Al. Then the standard
flowis followedinlines from[8] throu [11]. Inline [12] there is the end of the mapping. At this point
the parallel environment i1s popped fromthe stack and it is anal yzed to see if the processing has bee
conpleted. This is not the case here, since elenents 2 and 3 of {1,2,3} has not yet been processed. A
newelenent is then picked out fromthe parallel environment, for instance 3, and the environnent is savec
back on the stack. Any reference to Y1is nowreference to the nunber 3. Againlines [8] throu [11] are
executed and li1ne [12] is reached. The parallel environnment is again popped fromthe stack, el enent 2
is selected and then the environnent is placed back on the stack. The execution junps back to line 7,
where 21s placedin Al. Thenlines [8] throu [11] are executed andline [12] 1s reached. Nowall the set
{1,2,3} has been processed therefore the environment can be popped fromthe stack, the original data
parallelismon {1,2,3} can be resuned and lines [13] and [14] are executed. Then the execution goes
back to allProduct whichis then conpleted in the nornal way.

The need for parallel environnent is present not only whenthere are nestedcalls toclauses inside nappin
but any tine there is a nested mapping, therefore also in situation like the one of cartProduct which
conputed the cartesian product of two sets.

cartProduct ({X|_},{Y|_}) contains {pair(X,Y)}.

8 Experinental Results

Sone benchnarks have been perforned. It is interesting to conpare it wth SIC5tus PRALAG, one of the
best PROLOGinplenentations, based on the VAM The SI(Stus tests as well as the sequential SAM
ones are executed ona RISCSun 4 runni ng SunCh4. 0. 3, while the parallel SAMtests run on a Connection

[1] doubleIncrSet/2:

[2] allocate

[31] get_set A1 Y1

[4] get_variable A2 Y2
[5] map_over Y1 Y3 Y4 end
[6] start: put_value Al Y4

[7] put_variable A2 Y5
[8] call incr/2

[9] put_value A1 Y5
[10] put_variable A2 Y6
[11] call incr/2
[12] insert Y2 Y6
[13] end_map_over Y3 Y4 start
[14] end: deallocate
[15] proceed

Figure 9: SAMcode for doubleIncrSet.

toentries inthis table which provides all the infornation that are needed to conpletelyidentify ase
the Active Mnory. Eachentry of the CM Ihta- Array contains the foll ow ng fiel ds:

e type, which specifies whether a set is a pernanent set, PER, or is an internediate result, DDT ('The
reason for this nane is explainedin the section about mapping);

e tag, whichis the tagusedinthe tagregister of the cells of the set inthe Active Mmory toidenti fi
which cells belong to a set;

e register nunber, which determmnes 1n whichregister of the cells the elenent of an internedi ate set
are stored, it 1s 0 for permanent sets.

The use of the CM Iata- Array has many advantages with respect to a straight usage of the tag nunber

(and of the register nunber for tenporarysets). First of all the designis muchcleaner andit is possibl
have a hi gher degree of nodul arization. Then there is a hi gher degree of flexibility of the whole structt
since the code never addresses directly objects in the hypercube. Furthernore, there nay be differen
entriesinthe table pointingtothe sane set inthe AM this canbe achieved when ad hocabstract anal yzers
-which are under devel opnent now[SM1la]- determ ne that two sets are identical: thenit is possible t
allocate the set just once in the Active Mnory and to refer toi1t by neans of two different entries of th
table. There is one nore reason for the usage of the CM Data- Array whichincludes all the previous ones:
1t 1s the way in which the nmapping operations are perforned. The next section is about this problem

7 The Parallel Environnent

The Connection Machine is a SIMDnachine, therefore only one instruction at a tine can be executed on
all the processors. This peculiarity needs some special care, since there are data parallel flows requ
MMstructures. If asingle operation mist be perforned on two sets whose elenents are allocated in
different active cells, thenthe execution nay be parallel only on one set while a sequential execution m
be performed on the other. Anechanism called parallel environent, has been devised in order to take

oneProducts (X,{Y|_}) contains {X#*Y}.
allProducts({X|_},S) contains oneProducts(X,S).

Figure 10: The Need of Parallel Environnents.

....... . A single Cell

The Tag register
Thefirst register . _ e
. UUUUU@Q
. gaaeaaid
; NOoooood I
Other registers DDDDDDEQHQI
and the other /’,DDDDDDEUGH
components EII:II:II:II:II:II:UQ
oooooody!
. OoOoOood
fmmmmma- \ Active Memory

Figure 7: APortionof the Active Mnory.

Figure 7illustrates the structure of the AM it is the usual array of cells; inthis inplenentationareg
of each cell, the tag register, is usedtoidentifya permanent set. (ther sets’elenents can be storedint]
cell, but they belong to tenporary sets. The el enent of the permanent set i1s stored in the first register of
the cell, therefore a permanent set inthe AMis represented as a collection containing what is 1n the fis
registers of the cells that have the sane value inthe tag register. Therefore a permanent set is 1dent:
just by a tag.

The el enents of tenporary sets are placed in the other registers of the cells, inthe second, inthe th
and so on. Therefore a tenporary set is identified by two nuners: a tag plus a nunber, specifying in
whichregisters of the cells pertaining to that tenporary set its elenents are stored.

Wiile set does not contain duplicated el enents, tenporary set nmay contain them because the duplicate
check is perforned only when the final set is created. Such design is due to the fact that the extra
conputation perforned here are in data, a conplete description of the problemcan be found in [S(92].

6 'The CQM-Data- Array as an Interface betwen t he Front- End
and t he OME

The CM Data- Array is a data structure stored in the front-end that 1s used by the main processor to
address the sets stored in the Active Mnory. It is a table (figure 8) and (in the present version of t!
CM SAM eachentry of it identifies a set. Therefore any reference tosets inthe front end are referenc

Type Tag Register number

Figure 8: Structure of the CM Data- Array.

[1] map_over

[2] put_value
[3] put_variable
[4] call incr/2
[5] put_value
[6] put_variable
[7] call incr/2
[8] end_map_over

Figure 6: Schene of the SAMcode for doubleIncrSet

2. torebuildentirely the nechani smof virtualization, tailoringit tothis problem

3. touse a mxture of the first two. The first approachis classical in sequential inplenmentations, howev
here the 1ssue is nore critical since the commnication overhead is not under control and could lead t
inefficiencies. The second is really hard to handle, since everything has to be taken care of , and there
the risk (somehowparadoxical) that the diffeulty of this task lead to a sl owand buggy inpl enentation.
The best solution appears to be the third one whichis a kind of conpromse between (1) and (2)and it
has been taken here. V¥ have taken note that the operations on a set produce sonme internedi ate data
(on whicha data parallel executionis possible). However migratingthese newelenents toward other cell
1s auseless operation because they are only transitory data. Therefore they are stored intothe cells
whi ch they have origin. This handling mnimzes the inter-processors commnicationinto the CM. Only
the final set elenents are copied into newcells leaving the routing mechani smup to the machine. As a
matter of fact the elenents belonging to sets nmay be separated intwo classes:

(a) those generated as internediate results of a computation,

(b) those produced as a final result of an assertion.

To have a better understanding of this problem consider the follow ng assertions, where doubleIncrSet
increments the el ements of the argunent set by 2.

doubleIncrSet ({X|_}) contains {incr(incr(X))}.
incr(X) = X+1.

Figure 6 1llustrates the lines of the SAMcode generated for this assertion that executes the increnent
Xinparallel onall the processors on which the set! iBesédvetdh [4] and [7] act on a whole set:

they increment the val ue of each elenent stored inside the set. However there is a difference between the
twosituations, viz. while the result of [4] 1s needed onlylocally, the result of [7]1is aglobal result s
mist be kept for further conputation. In other words, the result of [4] pertains to class (a) while t!
result of [7] to class (b). The choice of this designis tostore aset of class (a) inthe sane cells a
original set and to store aset of class (b) inanewcluster of cells. Since the abstract design of the
associates to each set element 1ts own cell, this kind of inplenentation ampunts to handling explicite
the virtualizationfor sets of class (a) and leavingthis task to the underlying systemfor sets of clas

Such a choice yields anefftient and fast way of generatinginternedi ate sets, which are needed onlylocall
and not globally, therefore they do not need to be burdened by commnications. Furthernore this choice
keeps a sinple structure for global sets: their elenents naintain the one to one correspondance with a
AMcell | possibly a virtual one, naking easy the task of bookkeeping the system identifying global set
dereferencing their elenents and so on, as it is explainedin the next section.

The inplenentation of the AMon the Connection Machine (GWAW is built upon two najor entities:

(a) the Active Mnoryitself, which contains the sets elenents inits cells,
(b) the (MData Array, whichis used toidentify the various sets inthe Active Mnory.

1 This is just a sclemeof tlered ade nd dl the SAM irstnatias restd ae plasdadtle agusts ae ldt over inadr
to keptle pesataimsirger.

Registers

CodeArea

-
~
h~~<

A /292972
PHE P P,
] =1 = 2727
e s
! = P 2 127
] ey
P = = i
HHEH T
i b=y =)
h U U
K A HH
(azasan H
(i e 1
lanaian HH
& agas o

Figure 4: General Structure of the SAM

The stack handl es the conputation. Two different el enents are stored ontoit: enviromments and choice
poirts [Bru82]. An environnent is saved onto the stack when an assertionis called by another. Tt contains
the infornations (global registers, continuationpointer, environnent address) needed to continue the exect
when the called SAMsubroutine is finished. Achoice point is used to save the SAMstatus when a nultiple
defined subset assertionis evaluated.

The PushDown List is used to performmatching over the elenents bel onging to sets (such as
{functor(X,a) | -}). The structured data skeletonis built onto the PDL by sone dedicated SALinstructions
(store_pdl).

The heapcontains functors and lists; figure 5 shows howthese el ements are stored into the heap. Alist is
characterized by asequence of cell couples: the first contains the current el enent, while the second addresse
remai nder of the list. Afunctor having nrarityis characterized by e sequence of n+1 cells. The first conta
the functor identifier and its arity, the last ncells store its terms. Obviously these structured data na

nested each other.

5 Mdelling the V2 as an Active nenory

The active nanory is a collection of nenory cells that have a conputing power, i.e. they not onlystore data,

but al so performa data parallel execution. Therefore, as be seenin figure 4, the active nenoryis inpl enented
on the CM where a physical parallel executionis possible (while other nachine nodules, e.g. the stack, th
heap and so on, resides on the front-end because their executing nodel is intrinsicallysequential). Every si
set datais bound to a single active nenory cell that has a conputing capability. The version of the CM that

we use here has 16Kprocessors and the set dinension of sone source code may exceed this nunber. Therefore,
1t i1s necessary binding nore cells to a single physical processors. This operation may be perforned foll os
three different approaches:

1. toleave everything up to the nachine,

'
i
i
i 127 g 2
; 128 Const b
; 129 Const c

! : 130 f 2
i
| 131 Const a
; 132 STR 127
i
]
i

[1.2,3,4,5] f(a,g(b.c))

Figure 5: The Physical Inplenentationof lists and functors

[1] allocate % An environment is
% allocated onto the stack.
[2] get_set Al Y1 % It verifies if Al contains
% a set reference.
[3] start_set_match Y2

[4] store_pdl_functor func/2 % The set matching is
[5] store_pdl_const a % prepared by store_pdl
[6] store_pdl_value Y3 % instructions.

[7] get_variable A2 Y4 % Y4 addresses where writing

% the solution.

[8] map_over_matching Y1 Y5 Y2 end % Iteration and matching on
% set elements starts

[9] start: put_value Al Y3 % Put instructions handle
[10] put_variable A2 Y6 % value passing to the g/2
[11] call g/2 % assertion.
[12] union Y4 Y6 % The new solution is
% collected to the preceding
% ones.
[13] end_map_over_matching Y5 Y2 start
[14] end: deallocate % The environment is deallocated

% from the stack.
[15] proceed

Figure 3: An exanple of SEL assenbly code

a RshIdwn List,
a Code Area,
an Emmlator,

an Active Menary.

The figure puts into evidence that the abstract nachine software acts partially on the CM front-end (in our

1 npl

ementationit is a SUM) and partially on the data-parallel processors. The stack, the registers, the h

the PDL and the code area handle the nenory in the front-end, while the active menory handl es nenory

and processors of the CM. In fact the nane active nenory has been chosen because 1t changes the CM into

a nenory that is able to performconputation. In the last part of this section the principal elenents of tl
SAMare outlined.

The registers used during an execution of a SEL programare:

FC programcounter: it addresses the next instruction to be executed.
CPcontinuation pointer: the PCvalue is saved into CP when a newnested assertionis called.
CE current environnent: i1t addresses the top environnent onto the stack.

ICPl ast choice point: it addresses the top choice point ontothe stack (it is used when mul tiple definitio
of a subset assertion exist).

Hit addresses the top of the heap.
S structure pointer: the Sregister is used to performnatching operations onstructured data.

A1,A2,. . . ,Anargunent registers: they are used to performargunent passing between called and calling
assertion.

X1,X2,. .. ,Xntenporary registers: they are used tostore local vaariables.

SEL
Source Code

Subset

Abstract Machine

Figure 2: The SEL execution phases

The SEL conpiler doesn’t translate directly the SEL source code into CM nachine code or, for exanple, into
CF, because this approachis excessively difftult. Qur conpiler translates SELinto a sequence of instructi
that are processed by an underlying software layer (the subset abstract machine); its goal is to approach
CM to the conputing nodel of SEL (the next section presents the principal features of our abstract machine).

Figure 2 puts into evidence that a subphase of conpilation nay be nanaged by sone abstract anal yzers
[Nai 88] . Their goal is toevidence relevant properties of the program sinply throughout its anal ysis and nof
execution. Wth the hel p of these infornations the conpiler may write more fast and concise code speeding up
the execution of the program For exanple the conpiler perforns sone optinizations, such as ICO (i.e. Last
Call Optimization) and Envivorment Trimming ([AK90]). Besides, using a persistency analysis, it can have
a neasurenent of the lifetine of objects at conpile-tine. Adetailed description of abstract anal yzers can
found in [SM¥91].

Figure 3 presents the SAL code of the assertion

Chk({func(a, X) | _}) contains g(X) :

This assertion first locates all the el enents belonging to the set that are functors with identifier func/2) a
first termliteral a then executes the g/2assertion on every nmatching second term(X). Inline [1] of figure
an environnent is allocated onto the stack (the environnent contains permanent variables and sone abstract
nachine registers that are overwritten executing nested assertions). The get_sef instruction of line [2] ve
if the first argunent of (hk (that is put intoregister Al) is aset. At this point the set natching operation
prepared by storing sone i nformations intothe RshIdw Tist. The register Y2 contains the address of first
cell of the PDL where the matchingskeletonis saved. Line [3], [4], [5] write respectivelythe functor identif
first ground termand the variable to which the second termof the functor must be bound. Tine [7] writes into
register Y4 where writing the solution. Fromline [9] toline [13] the napover instructions performthe iter:
over the el enents bel onging to the set. The matching operationis executed at the sane tine over the el enents
belonging to the set (that are distributedintothe local nenories of CM data-parallel processors) and produ
anewcollection of data. Inline [9] and [10] the arguments of the g/2assertion are prepared; the register
addresses the collection of data generated by the set matching and A2 points the environnent cell where the
solutionmst be put. Wien the assertion g/2is executed, the abstract machine verifies that its first argunen
contains areference todata distributed over CM processors and, therefore, preforns a parallel conputatior
them The unioninstructionat line [12] collects the newsolutionto the preceding ones (collect-all assunptior

4 'The Subset Abstract Mchi ne

The SAM bel ongs tothe WAM [AKI0] fanily, sinceits general structure resenbles that of the VMM However
there are nunerous differences. Wiile the core of the WAMi s the handling of unification capabilties, the SAM
core 1s the handling of sets.

The Subset Abstract Mhichine is a software layer that adjusts the machine architecture to execute SEL
assertions. In the introduction we have written that only programers that knowthe architecture details
parallel conputers are able to achive their best performance. In our inplenentation the architectural det:
are handled by the abstract machine: the SAMdistributes data into the different processors of the CM, the
SAMperforns parallel conputationandtransfers newdataintofree processors. Inthis way the the conputing
model of CM2is conpletely hidden to the programer.

Figure4 outlines the general structure of the SAM the nost significant el enents are:

e a collection of machine registers,

e a Stack,

f(terns) O expression.

Their execution may be divided into two parts. In the first the natching of the arguments in the assertion
head are verified. The operation replaces variables by ground terns. In the second part of the execution tl
expression side (see above) is solved. At this point the assertion fis equal or contains (in the case of suk
assertion) the ground i nstances of expression

The follow ng exanpl e describes howwe can define the permutation of the elenents bel onging to a set.

perms({}) = {[I}.
perms({x|t}) contains distr(x,perms(t)).
distr(x,{t|_}) contains {[x[tl}.

Wien a query (e.g. ?-perms{A,B,C}) must be executed, the matching between the calling function and the
argunents of the assertion headis verified. The behavi our of the set matchingis rather peculiar. Inthe exam
the mat ching between the ground term{4,B,C} and the set defini tion {x|t} produces diflerent results.

ex «— A, T «— {B,C}
ex — B, T « {A,C}
ex «— C, T «— {B,A}

This behaviour 1s what we call inplecit iteration, viz., selecting the elenents of a set one at a tine. For ever
possible matching the distr assertionis executed; 1ts first argunent is the ground termbound to the & vari abl
and the second is the collection of every possible permmtation applied on subset ¢ (they are obtained by t
recursively execution of perm). For every different matching the distr assertion produces a newresult (figu
1), these results are collected together and they becone the final result of the assertion.

The inplicit iteration on the el enents bel onging to aset is very useful toinplenent SEL on a data paralle
architecture. In fact we can notice that the sane operations are applied on different data. This inplicit d
parallelismnay be exploited by distributing el ements bel onging to sets on the processors of a SIMDnachine
and performng parallel execution. 'The next exanples performsone sinple operations: the product, the
instersection and the square of every elenent into the set.

setproduct ({X|_},{Y|_}) contains {pair(X,Y)}.
intersect ({X|_},{X|_}) contains {X}.
setsquare({X|_}) contains {X*X}.

setproduct produces every possible pairs of the el enents bel onging to the first andsecond set, while intersect
produces the intersection between the twosets. setsquare conputes a newset that is created fromthe square
of the elements belonging to the starting set.

3 'The SEL Gonpiler

This section describes the compiler. Like for Prolog, we canlocate two different phases in SELexecution [JNS
(see figure 2):

e conpilationfromSEL to SEL assenbl er | anguage (defined SAY),
e executionof SAL code on the Subset Abstract Machine (defined SAY.

Matching

’—>x<-A;t<-{B,C} — Distr(A,perms(B,C)) — {[AB.C],[A,CB]}

{I[C.,A,B],[C,B,A]}

| |
| |

: :
Distr(x,perms(t)) —> x<-Bjt<-{AC} — Distr(Bpermg(AC)) ~ — | UBACHB.CAl :
| |

L> x<-C;t<-{A,B} —Distr((CpermsAB) — | :

Figure 1: Askeleton of perms execution.

Modelling the Connection Machine 2 as an Emulator of Subset-Based
Declarative Languages

Giancarlo Succi, Giuseppe A. Marino, Giancarlo Colla

DIST-Universita di Genova
via Opera Pia 11a, [-16145 Genova, [talia

Abstract

This paper describes a data-parallel implementation of the Subset equational language on the Connection
Machine 2, the Subset Abstract Machine. In the first part the difficulty of writing programs that really
exploit the parallelism of the Connection Machine 2 is put into evidence. First of all, the programmer must
know the architecture details of the parallel machine, besides he must chose an algorithm that is suited to
data-parallelism (in the case of the CM2). The use of imperative languages is difficult because they greatly
feel the effect of the above-mentioned problems. They lay complitely upon the programmer the responsibility
of chosing the proper algorithm and of implementing it. A programmer that uses a declarative language
describes what the problem really is and not the operation sequence needed to solve it. It is up to compiler
and executor to divide the job into different processes and to distribute both them and data on machine
processors. The SEL abstract machine implementation, that is described in the paper, hides to the user the
architecture of the CM2 using the Connection Machine as an Active Memory. The last sections of the
paper describe the principal modules that constitute the SAM.

1 Introduction

Nowadays we witness the devel opnent of data parallel and process parallel architectures. They have a grea
conput ational power, but it 1s diffeult writing prograns that really exploit it. The reasons that explain t
situationare the followmng. First of all, only programers that knowarchitecture details of parallel conpute
able to achieve the best perfornmance fromthem As anatter of fact it 1s veryinportant howdata and processes
are devel oped and assigned to processors. A good programer mnimzes the execution overhead that inter-

process communi cation and shared variables access nay cause. Besides a goodinplementationis not suffeient

to use at best a parallel architecture, because chosinge the al gorithns that exploit the nachine paralleli
very inportant too. Unfortunately the progranmmng]l anguages that are widely used are the inperative ones,

they greatly feel the effect of the above-nentioned problens. These l anguages declare explicitly the operati
that the processors have to do to reach the solution (i.e. it is defined the control of the program. Evider
this approach lays conpletely upon the programmer the responsibility of chosing the proper al gorithmand
of inplenenting it. W think that declarative languages are nost suited to be used on parallel architectur
because they define explicitly the logic of the program leaving the control inplicit. The “only” worry of t
programmer is to describe what the problemreally is and not the operation sequence needed to solveit. It i
up to conpiler and executor to devide the job into different processes and to distribute both themand data
on machine processors. The nunber of 1ogic and functional |l anguages inplenented on parallel architecture 1
growing. However most of themonly exploit either data-parallelismor process-parallelism W have chosent
inplenent a logical language based on the set data structure, the Subset FEquational Language (called SEH).
It is suited to be inplemnented both on a data parallel nachine and on a process-parallel one. Inthis paper w
describe the data-parallel inplenentation of SEL on a Connection Maichine 2.

2 'The SEL Language

The Subset FEquational Language was devel oped by Jayaranan et al. [JN88] at UNC/Chapel Hill at STUN
Y/Buffal o. In this section we give only anoverviewof the | anguage throught sone exanples, a nore exhaustive
description of it can be foundin [Suc91].

ASFEL programis a collection of equational and subset assertions:

f(terns) = expression.

