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goals from multiple recursion levels appear as conjuncts in a single clause body. In
this way, the successive computations corresponding to di�erent levels of recursion
can be performed using and-parallelism.

[3] describes an extension to Prolog in which there is an explicit syntax for
expressing various quanti�ers or quanti�er-like constructs, including and, sum, and
product. The authors extend the operational semantics to allow computation of
the quanti�ed formula on a data parallel machine. The result is thus (in our termi-
nology) a form of data and-parallelism. [5] considers bounded quanti�cation where
the quanti�er is existential. In this case, the result is a form of data or-parallelism.

7 Conclusion

We presented a series of concise logic programming interpreters written in the
programming language Scheme. The novel features of the interpreters are, �rst, the
fact that the binding environment contains, in the simplest case, a disjunction (list)
of substitutions, rather than a single substitution as in standard Prolog; second,
the presence of code for collecting solutions to a goal and turning the solutions
into a disjunctive constraint; third, the generalization to (n-) streams rather than
lists for representing disjunctive constraints; and fourth, the implementation of the
engine/multi distinction and top-down dereferencing in Section 4, based on the
form of the environment tree described in Sections 2.1 and 2.2.

The interpreters demonstrate how disjunctive constraints are an alternative to
standard (control) backtracking as a means of implementing disjunction in logic
programming. Furthermore, the distinction between eager and lazy evaluation of
disjunctive constraints leads to the notions of data or-parallelism and data back-
tracking, respectively, in much the same way that the distinction between eager
and lazy evaluation of non-deterministic choice leads to the notions of control or-
parallelism and control backtracking.
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solutions to some prior goals. Constraint backtracking results from sequential, lazy
evaluation of the constraints, so that there is e�ectively only a single substitution.

Lazy evaluation limits concurrency. The concurrency can be either actual con-
currency or concurrency simulated by a uniprocessor (using iteration over a list
or array). Indeed, the interpreters make clear the possible sorts of parallelism in
MultiLog. Control or-parallelism corresponds to the concurrent solving of G1 and
G2 in the body of the code for ';'. Data or-parallelism corresponds to concurrent
uni�cation in multiple substitutions of the Substs parameter, subsequent to the
collection of solutions of a disj goal. Control and-parallelism corresponds to the
concurrent solving of G1 and G2 in the body of the code for ','.

Scheme is essentially a sequential programming language, and it cannot di-
rectly express concurrency (be it actual concurrency or just virtual concurrency
on a uniprocessor). We distinguished between data backtracking and data or-
parallelism indirectly, by using streams and lists, respectively, to represent dis-
junctive constraints. Scheme cannot express the distinction between control back-
tracking and control or-parallelism, since there is no way to represent multiple
threads of control (say, by a data structure). However, it would be possible to ex-
press control or-parallelism if we wrote our interpreters in one of those dialects of
Scheme with the future construct [12], [13]. (For example, in Figure 4 replacing
the code for disjunctions with (combine-streams (solve G1 Substs) (future

(solve G2 Substs))) would result in control or-parallelism.) The table above
would then be twice the size, with entries cop for control or-parallelism. Note that
an interpreter could have both control or-parallelism and data or-parallelism.

The reader may be wondering what data and-parallelism refers to. This label
can be applied to the systems Reform [4] [19] and Parallel Bounded Quanti�ers [3]
[5], which we describe in the next section, along with other related work.

6 Related Work

There is little work directly related to that described here. See [23] for a contrast
with previous work in parallel and constraint logic programming: [30], [10], [15],
[18], [6], [17], [8], [9], [28], [21], [16]. Since the publication of [23] a more closely re-
lated work has emerged. Firebird [29] is a concurrent, committed-choice constraint
logic programming language [20] whose execution model involves two components:
an and-parallel inference engine (the front-end) and a massively parallel constraint
solver (the back-end). \In a non-deterministic derivation step, if there is any un-
bound domain variable X in the system with domain fa1; : : : ; ang, Firebird will
create n or-parallel branches, each of which executes with an additional constraint
X = ai, 1 � i � n." In principle these n partitions are independent computations,
but in practice data parallelism is achieved by restricting computation so that \the
same goal is evaluated in all partitions, but with di�erent sets of arguments", rep-
resented by a vector. Since Firebird is a committed-choice language, backtracking
is not available, and completeness would, it seems, be lost. However, the author of
[29] reports (in private correspondence) that in more recent work he has extended
the model.

S.- _A T�arnlund and his students have introduced the Reform model of logic
programming [4] [19]. The basic idea is to unfold recursive program clauses so that
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solve:: Goal -> Envs -> SuccessContinuation ->

FailureContinuation -> Answer.

The Envs argument contains both an engine environment and an environment
tree; bindings of engine variables are stored in the former, while bindings of multi-
variables are stored in the latter. Uni�cation of t1 and t2 is performed by travers-
ing the terms and dereferencing engine variables; if the terms are not identical, if
uni�cation hasn't already failed, and if the terms contain multi-variables, then the
environment tree is traversed top-down. If t1 and t2 become identical at some node,
then uni�cation succeeds in all descendant nodes. If t1 and t2 become non-uni�able
at some node, then uni�cation fails in all descendant nodes. Bindings are stored at
the leaves.

5 Categorizing Prolog and MultiLog Interpreters

The interpreters in Section 3 illuminate the roles of control backtracking, disjunc-
tive constraints (data or-parallelism), and lazy evaluation as control structures that
can express disjunction. Looking back, we can now categorize the interpreters ac-
cording to which subset of these three methods they implement.Using cb for control
backtracking, db for data backtracking (lazy evaluation of disjunctive constraints),
and dop for data or-parallelism, the table below identi�es for each nonempty subset
of fcb db, dopg, the corresponding interpreter.

Subset Name Section(s) How Substitutions are Represented

cb Prolog 3.1 (single substitution)
cb,dop Eager MultiLog 3.2, 3.3 1-streams (lists)
cb,db Lazy MultiLog 3.4 1-streams
cb,db,dop Mixed MultiLog 3.4 n-streams
dop Eager Direct Style 3.5 1-streams (lists)
db Lazy Direct Style 3.5 1�streams
db,dop Mixed Direct Style 3.5 n-streams

The pure Prolog interpreter in Section 3.2 uses only control backtracking to
express disjunction. The basic MultiLog interpreter in Section 3.2 uses control
backtracking and eager disjunctive constraints, as does the interpreter in Section
3.3. (The two di�er on whether all solutions to disj goals are obtained at once.)
The interpreters in Section 3.4 potentially use all three of control backtracking,
constraint backtracking, and eager disjunctive constraints. The direct style inter-
preter in Section 3.5 uses (lazy or eager) constraint backtracking, but no control
backtracking.

Control and data backtracking are both forms of lazy evaluation. Control or-
parallelism, a restriction of breadth-�rst search, arises from concurrent exploration
of multiple backtrack points. Conversely, control backtracking arises from lazy
evaluation of alternative choice points (failure continuations). Similarly, data or-
parallelism results from concurrent uni�cation in multiple substitutions (disjunc-
tive constraints); this occurs by virtue of a data structure representing multiple
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(define (solve Goal Substs)

(if (eq? Substs '()) '()

(match Goal

(true Substs)

((G1 ',' G2) ; conjunction

(solve G2 (solve G1 Substs)))

((G1 ';' G2) ; disjunction

(combine-streams (solve G1 Substs) (solve G2 Substs)))

((X = Y) (multi-unify X Y Substs))

(Pred(Args) ; Procedure call.

(let* ( (Definition (rename (definition-of-predicate Pred)))

(Formals (formals-of-definition Definition)))

(solve (body-of-definition Definition)

(multi-unify Formals Args Substs)))))))

Fig. 4. MultiLog Interpreter in Direct Style

environment disjunction. In the code, we have replaced the call to append-streams
by a call to combine-streams: we do not wish to specify how many solutions to a
disj goal are to be computed at once; nor do we wish to specify in what order the
solutions should be combined.

Note that if lists instead of streams are used for the Substs argument, then the
interpreter utilizes data or-parallelism alone to express disjunction. However, since
the interpreter then lacks all backtracking, excessive non-termination would occur.

4 Implementing Top-Down Dereferencing and the

Engine-Multi Distinction

We now outline a Scheme implementation of the Environment-Tree Model with
top-down dereferencing of Section 2.1, and of the distinction between engine and
multi-variables of Section 2.2. The main datatype declarations for environment
trees are as follows. Again, for readability we use Prolog-like pattern matching
syntax.

{ EngineVariable = engineVariable(String)
{ MultiVariable = multiVariable(String)
{ Term= EngineVariable + MultiVariable + Constant + Constant '(' Terms ')'
{ EngineBinding = (EngineVariable,Term) | an association
{ MultiBinding = (MultiVariable,Term) | an association
{ EngineEnv = List of EngineBinding | for bindings of engine variables
{ MultiBindings = List of MultiBinding | for bindings of Multi variables
{ EnvTree = internal(MultiBindings,List of EnvTree) + leaf(MultiBindings)
{ Envs = (EngineEnv,EnvTree) { a pair

The solve interpreter is of type
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that for a disjunction of equations E1_E2_ : : : to be satis�able, it is su�cient that
just one Ei is satis�able.

In fact, the repercussions of this change are far-reaching, since it leads to a
form of two-dimensional backtracking in which backtracking occurs both in the
control component (Prolog's standard form of backtracking) and in the constraint
component (the computation of uni�cations accumulated by previous goals). In
the above interpreter, backtracking occurs �rst in the constraint component, in the
sense that the unprocessed tail of the stream is expanded further. Only if the tail
of the stream expands to the empty list does control backtracking occur.

We use the terms constraint backtracking and data backtracking to refer to
the lazy evaluation that occurs in the Substs argument to the interpreter. Two-
dimensional backtracking, then, results from the combination of (standard) control
backtracking and constraint backtracking.

Even Lazier Generation of Constraints The notion of two-dimensional back-
tracking can be generalized further. In the de�nition of solutions in Section 3.2,
replace (append Substs1 (FC1)) with (append-streams Substs1 FC1), where
append-streams is de�ned as follows:

(define (append-streams Str Closure)

(if (null? Str)

(Closure)

(cons-stream (head Str) (append-streams (tail Str) Closure))))

Then not all solutions to a disj goal are obtained at once. Instead, solutions are
obtained on demand, just as substitutions satisfying multi-uni�cations are obtained
on demand by the change of Section 3.3. In this way, the interpreter is even `lazier'
than the one of the previous section, where solutions forced the eager collection
of solutions to a disj goal.

And by using an n-stream, one gets something similar to the e�ect of dynamic
reversion to backtracking of Section 3.3 | even without rede�ning solutions

to return subsets of solutions at once. As many substitutions can be computed
concurrently as there are resources to compute them.

In fact, using streams, one can eliminate backtracking in the control part alto-
gether, as we show in the next section.

3.5 Back to Direct Style Using Streams

The role of the failure continuation argument to the solve interpreter of Figure
3 is to process answers to \;" goals one at a time, postponing subsequent choices
until they are demanded by the user or by backtracking. In e�ect, solve returns a
stream of sets of answer substitutions, and we can rewrite solve into direct style
using streams so that solve has type Goal � (Stream of Substs) ! (Stream of
Substs). The resulting interpreter, shown in Figure 3.5, resembles the stream-based
logic programming interpreter in Chapter 4 of [1].

For this interpreter (Figure 4), the SC and FC parameters to solve have been
eliminated. Furthermore, there is only one form of disjunction: MultiLog's multiple
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a disj goal to the success continuation, along with a revised failure continuation
that, when called, re-invokes the goal to get further solutions.

Let us alter the type of Answer from Answer: SetofSubsts to Answer: SetofSubsts
! SetofSubsts, and replace the code for solutions with the new code below. The
extra SetofSubsts argument to Answer is used for holding the collected solutions
to a disj goal. No other changes to the interpreter are needed, because only the
de�nition of solutions constrains the type of Answer. The top level call to solve

should pass in a SetofSubsts argument, but thanks to `eta-reduction', this argu-
ment to Answer need not appear in the code for solve. In this sense, Answer is a
type parameter, and solve is polymorphic in the type of Answer, which determines
the type of Solve, SC, and FC.

(define (solutions Goal Substs SC FC)

(solve Goal Substs

(lambda (NewSolns FC1) (lambda (OldSolns)

(let ((CombinedSolns (append NewSolns OldSolns)))

(choose CombinedSolns

(lambda () ((FC1) CombinedSolns)) ; collect more solutions

(lambda () ; that's enough for now

((SC CombinedSolns FC1) '()))))))

(lambda () (lambda (solns)

((SC solns FC) '())))))

Each time Goal succeeds, the third argument to the call to solve is invoked.
If Goal fails, the last argument is invoked. The function choose decides, based
on the size of CombinedSolns, whether to collect more solutions or to pass the
already collected solutions to the success continuation. In the latter case, the failure
continuation FC1 passed to SC will, if called, continue the search for solutions to
Goal.

3.4 Lazy MultiLog: Streams and Constraint Backtracking

A signi�cant modi�cation of the solve interpreter of Section 3.2 is to remove the
requirement that the call (multi-unify T1 T2 Substs) perform uni�cation in all

the substitutions in Substs. Instead, it is su�cient for uni�cation to succeed for
at least one substitution. The needed modi�cations are simple: alter the type of
Substs from List of Substs to Stream of Substs and replace in the code for
multi-unify cons with cons-stream and cdr with tail.

With a bit more work the code can be rewritten to process an n-stream of
substitutions, for some �nite n � 1. In an n-stream, up to n elements are computed
eagerly; the nth cdr being a closure. Standard streams are 1-streams and standard
lists are1-streams, in an obvious sense. This change would preserve the possibility
of a data-parallel implementation but would allow the system to better constrain
the available concurrency.

From an operational point of view, the change from lists to streams has the con-
sequence that the substitutions will be created lazily, on demand; not all substitu-
tions in the constraint component will be reduced to solved form at each resolution
step. From a logical point of view, the change from sets to streams re
ects the fact

9



(define (solve Goal Substs SC FC)

(if (null? Substs) (FC)

(match Goal

(true (SC Substs FC)) ; The empty goal

(G1 ',' G2 ; Conjunction

(solve G1 Substs

(lambda (Substs2 FC2) (solve G2 Substs2 SC FC2))

FC))

(G1 ';' G2 ; Regular, backtracking disjunction

(solve G1 Substs SC (lambda () (solve G2 Substs SC FC))))

((disj G1) ; MultiLog, multi environment disjunction

(solutions G1 Substs SC FC))

(X = Y ; Multi-unification

(SC (multi-unify X Y Substs) FC))

(Pred(Args) ; Procedure call.

(let* ( (Definition (rename (definition-of-predicate Pred)))

(Formals (formals-of-definition Definition)))

(solve (body-of-definition Definition)

(multi-unify Formals Args Substs)

SC FC))))))

Fig. 3. Scheme Code for MultiLog Interpreter

(multi-unify T1 T2 (cdr Substs))))))

We omit the code for unify-single, which returns either '#f, indicating failure
of uni�cation, or a representation of the substitution resulting from uni�cation.

The code for solutions, used to implement disjunctive goals disj G, is par-
ticularly concise:

(define (solutions Goal Substs SC FC)

(SC (solve Goal Substs

(lambda (Substs1 FC1) ; success continuation

(append Substs1 (FC1)))

(lambda () '())) ; failure continuation

FC))

The procedure collects all solutions to Goal that extend some substitution in
Substs; it does this by calling Solve with a success continuation that appends
the returned list with the list returned by invoking the failure continuation. The
�nal failure continuation returns the empty list.

3.3 Returning Subsets of Solutions to disj Goals

The MultiLog interpreter of the previous section collects all solutions to each disj

goal. In this section we modify the interpreter to pass subsets of the solutions to
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(define (solve Goal Subst SC FC)

(if (failed-substitution? Subst) (FC).

(match Goal

(true (SC Subst FC)) ; The empty goal

(G1 ',' G2 ; Conjunction

(solve G1 Substs

(lambda (Subst2 FC2) (solve G2 Subst2 SC FC2))

FC))

(G1 ';' G2 ; Regular, backtracking disjunction

(solve G1 Subst SC (lambda () (solve G2 Subst SC FC))))

(X = Y ; unification

(SC (unify X Y Subst) FC))

(Pred(Args) ; Procedure call.

(let* ( (Definition (rename (definition-of-predicate Pred)))

(Formals (formals-of-definition Definition)))

(solve (body-of-definition Definition)

(unify Formals Args Subst)

SC FC))))))

Fig. 2. Scheme Code for Prolog Interpreter

tive constraints. The code is almost identical to the code of the previous section,
the only di�erences being the presence of the line for disj goals, and the presence
of multiple substitutions in second argument to solve.

For this interpreter assume types

{ SetofSubsts= List of Subst
{ SuccessContinuation= SetofSubsts � FailureContinuation ! Answer

and let the type variable Answer be SetofSubsts. The function solve, shown in Fig-
ure 3, is of type (Goal � SetofSubsts � SuccessContinuation � FailureContinuation)
! Answer. A call (solve Goal Substs SC FC) executes Goal in each environment
in Substs. If Goal fails in each environment, then solve invokes FC. Otherwise, it
invokes SC with the set of consistent extended environments and with an updated
failure continuation.

The function multi-unify is of type Term � Term � SetofSubsts! SetofSubsts.
For each substitution �i in Substs, (multi-unify T1 T2 Substs) performs the
uni�cation T1�i =T2�i; the uni�cation either fails or results in a substitution �i.
multi-unify returns the set of all substitutions �i�i such that the uni�cation
succeeds.

(define (multi-unify T1 T2 Substs)

(if (null? Substs)

'()

(let ((first-res (unify-single T1 T2 (car Substs))))

(if first-res

(cons first-res (multi-unify T1 T2 (cdr Substs)))

7



Assume that there are primitive types Variable, Constant, and PredicateSymbol,
and type constructors ! (function) � (product), + (union), and List of. Also as-
sume that ',' (comma), ';' (semi-colon), and = (equals) are in�x constructors and
that disj is a pre�x constructor. Figure 1 de�nes various types used to indicate the
types of the interpreters' functions. The variable Answer is a type variable whose
value (a type) varies among the various interpreters.

{ Term= Variable + Constant + Constant '(' Terms ')'
{ Subst= Variable ! Term
{ Terms= Term + (Term ',' Terms)
{ Goal= true + (Goal ',' Goal) + (Goal ';' Goal) + (disj Goal) + (Term = Term) +

PredicateSymbol(Terms)
{ SuccessContinuation= Subst � FailureContinuation! Answer
{ FailureContinuation=! Answer

Fig. 1. Types Used in the Interpreters

3.1 A Standard Prolog Interpreter: Control Backtracking

Figure 2 displays a standard Prolog interpreter utilizing control backtracking (fail-
ure continuations) to express disjunction. The use of continuations to model the
operations of the control and choice stacks of Prolog is a well-known technique (e.g.,
[14], [7]). The Prolog interpreter in Figure 2 is displayed for comparison purposes
only.

The function solve is of type (Goal � Subst � SuccessContinuation � Fail-
ureContinuation) ! Answer, where the type Answer is arbitrary and depends on
the instantiation of SC and FC in the top-level call to solve. A call (solve Goal

Subst SC FC) executes Goal in the context of the single substitution Subst. If
Goal fails in this environment, then solve invokes FC. Otherwise, it invokes SC

with an extended environment Subst and with an updated failure continuation.
For readability, the code uses Prolog-style in�x operators for data of type Goal. It
assumes the existence of a global database of clauses for user predicates, accessible
by the call definition-of-predicate.

The code for (G1 ';' G2) tries solving G1 �rst, with a failure continuation that
tries G2. So the interpreter implements a depth-�rst search strategy. Similarly, in
a conjunction (G1 ',' G2), G1 is done �rst, with a success continuation that does
G2. The function unify is of type Term � Term � Subst ! Subst. We omit the
listings of unify and other support code whose functionality should be obvious.

3.2 A Scheme Interpreter of MultiLog: Backtracking and Disjunctive

Constraints

In this section we exhibit Scheme code for an interpreter of MultiLog's multiple
environment model of logic programming using control backtracking and disjunc-
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component share equations resulting from normal multi-resolution steps appearing
in the multi-derivation up to that point.

The signi�cance of this fact is that disjuncts appearing together in a constraint
component share many of the same bindings; only bindings dependent on disj goals
can di�er between substitutions appearing together in the constraint component.
This fact is the basis for the distinction between `engine' (sequential) and `multi'
(parallel) variables.

Our implementation represents the abstract constraint component C in the
concrete form � ^ �, where � is a conjunction (a substitution) representing the
shared, common bindings, and � is a disjunction representing the bindings that
di�er among substitutions. Variables bound in � are called engine (sequential)
variables; variables bound in � are called multi (parallel) variables [23], [27]. Uni�-
cations involving engine variables are faster than uni�cations involving multi vari-
ables, since the disjuncts in � need not play a role. Engine uni�cations are done
globally, once per subset of solutions to the generator goals, rather than once per
solution.

Consider, for example, the following program and query, which binds L to lists
of binary digits.

bit(0). bit(1).

bits([]). bits([H|T]):- disj bit(H),bit(T).

| ?- bits(L).

Yes L = []. More? y

Yes L = [A], (A=0 or A=1). More? y

Yes L = [A,B], (A=0,B=0 or A=0,B=1 or A=1,B=0 or A=1,B=1). More? y

....

The disj-independent variable L and each cdr of L (the variable T in the body of
the second clause for bit/1) get bound either to [] or to a cons cell. (Ai = H

corresponds to bits(L)=bits([]) or to bits(L)=bits([H|T]).) It is reasonable
to store the bindings of L and T once, globally. This representation is re
ected in
the format of the output in the example query above.

3 The Interpreters

In this section we present a series of logic programming interpreters written in
the programming language Scheme [1], with which we assume the reader is famil-
iar. By writing the interpreters in Scheme we can make explicit things that would
likely be hidden (or awkward) in a Prolog implementation: binding environments
(substitutions), success continuations (the control stack), and failure continuations
(the choice stack).5 We note, by the way, that as is often the case with logic pro-
gramming meta-interpreters, a MultiLog meta-interpreter has just one new clause:
solve(disj G):- disj G.

5 The continuation arguments SC and FC are represented by higher order functions (clo-
sures), not by Scheme continuations generated by call-with-current-continuation.
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tiple binding environments, with uni�cation performed `in parallel' on the multiple
substitutions.

In a depth-�rst implementation of multi-SLD resolution, when control back-
tracks into the atom a, another, non-empty, �nite subset of solutions is collected,
and so on. In this way, the solutions to a generator in a generate-and-test program
are enumerated subset by subset, instead of one at a time.

The various substitutions in the constraint component of the abstract machine
state share much structure, and the uni�cations in the various substitutions are
not, after all, independent. The redundancy among substitutions is the basis for
powerful optimizations that are described in the next two subsections.

2.1 Sharing from disj Multi-resolution Steps: Environment Trees

After a multi-resolution step, each of the substitutions in the constraint compo-
nent extends some unique input substitution from before the step. Moreover, for
disj multi-resolution steps, any given input substitution can have multiple output
substitutions extending it; if the argument goal succeeds m times then each input
substitution can have up to m child substitutions.

As multiple disj goals are encountered, execution results in an implicit tree of
substitutions, organized according to the parent-child relationship. Each surviving
disjunct in the constraint component extends some ancestor disjunct in each pre-
vious constraint component of the multi-derivation. These ideas are formalized in
the notion of environment tree, which refers to the tree of surviving substitutions
organized according to the parent-child relationship [27].

The structure of the environment tree motivates the representation called the
Environment-Tree Model in which environments are stored in the form of a tree
with shared ancestor bindings.The alternative representation in which each envi-
ronment is a vector requires the copying of input environments during the collection
of solutions to disj goals.

The use of an environment tree enables an important optimization called top-

down dereferencing [24], whereby dereferencing is performed by a downward in-
order traversal of the environment tree, instead of by searching upward in each
association list. Top-down dereferencing leads to a savings of O(logn) time (n is
the number of environments), compared to the naive model in which dereferencing
occurs independently from each leaf [24]. Top-down dereferencing also allows early
detection of success or failure of entire branches of the tree. Section 4 outlines a
Scheme implementation of top-down dereferencing.

2.2 The Distinction between Engine and Multi Variables

Consider that a multi-SLD derivation consists of a sequence of normal multi-
resolution steps interspersed with (occasional) disj multi-resolution steps. Each
surviving disjunct after a normal step is consistent with the head uni�cation as-
sociated with that step. And each disjunct contains, where appropriate, equations
(bindings) resulting from the head uni�cation associated with the step. Conse-
quently, at any step of a multi-derivation, the various disjuncts of the constraint
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The plan of the paper is as follows. Section 2 informally describes multi-SLD
resolution and summarizes some of its properties. In Section 3 we present a series
of working MultiLog interpreters written in typed, almost3 pure, Scheme [1]. The
basic multi-SLD interpreter of Section 3.2 collects all solutions to a disj goal;
its code di�ers only slightly from the code for an SLD interpreter in Section 3.1.
Section 3.3 exploits parametric polymorphism in the interpreter of Section 3.2 to
implement dynamic reversion to backtracking: the collection of subsets of solutions
to disj goals; the code for this interpreter di�ers from the code for the previous
interpreter in only one subroutine. Section 3.4 uses lazy evaluation (streams) in the
representation of environments, so that the disjunction of substitutions comprising
the constraint component of the abstract machine state is processed incrementally,
on demand; again, the change needed to implement this variation is small and local-
ized. Section 3.5 uses lazy evaluation to eliminate control backtracking altogether.
Section 4 sketches an implementation of top-down dereferencing, an optimization
whose logical justi�cation is sketched in Section 2.1. Section 5 categorizes the inter-
preters of Section 3 according to their use of backtracking, disjunctive constraints,
and lazy evaluation. It then interprets control backtracking as arising from lazy
evaluation of breadth-�rst search, just as constraint backtracking arises from lazy
evaluation of disjunctive constraints. Section 6 covers related work. Section 7 con-
cludes.

2 Overview of Multi-SLD

The abstract machine state of a multi-SLD interpreter consists of two components:
a list of goals, and a disjunction (set) of substitutions.4 There are two sorts of
multi-SLD resolution steps. In a normal multi-SLD resolution step, some atom is
selected from the goal list and resolved against some clause in the program; since
there are multiple substitutions in the constraint component, uni�cation of the
atom with the head of the clause occurs independently in the various substitutions.
If any substitutions survive the resolution step, then the surviving substitutions,
extended with the bindings resulting from head uni�cation, become the constraint
component of the next abstract machine state, whose goal list is found by replacing
the selected atom with the body of the clause.

In a disjmulti-SLD resolution step, a subcomputation is begun on the selected
atom a (which in practice is annotated by the unary control operator disj) and
some �nite, nonempty subset of the solutions to a is collected and installed as the
new constraint component. The new goal component consists of the previous goal
list minus the selected atom. Subsequent goals execute in the context of these mul-

3 The one non-functional exception is the use of a global counter to implement clause
renaming. Functionality can be restored by passing around a counter, as we did in
Haskell interpreters of MultiLog that have been type checked and run using Mark
Johnson's Gofer system. The use of a global counter leads, we think, to clearer code.
Also, the use of Scheme instead of Haskell allows us to more perspicuously model lazy
evaluation, which is the default mode of evaluation in Haskell.

4 More generally and from the viewpoint of CLP, the second component consists of a
disjunction of allowed constraints.
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1 Introduction

In this paper we present a series of logic programming interpreters that illustrate
alternative implementations of disjunction. The implementation of disjunction in
top-down logic programming languages like Prolog typically relies on backtracking
and depth-�rst search, or on the provision of multiple threads of control (control
or-parallelism1). However, both backtracking and control or-parallelism have disad-
vantages: backtracking returns answers one at a time, often causing similar work to
be repeated when a choice turns out to be the wrong one; and control or-parallelism
(an approximation to breadth-�rst search) is expensive in implementation complex-
ity.

An alternative implementation strategy called multi-SLD resolution has been
described in several publications [23],[26]. The essential idea is to extend the SLD
inference rule to permit multiple substitution environments and to provide a mech-
anism for collecting the solutions to a goal and turning these solutions into a set
of substitutions (a disjunctive constraint). The canonical example that illustrates
multi-SLD resolution and the resulting data or-parallelism is the query2

| ?- generate(X),test(X).

To solve this query, standard Prolog enumerates the solutions to generate/1 one by
one via backtracking and tests each solution separately with test/1. A control or-
parallel implementation (such as Aurora [11] or Muse [2]) starts up multiple Prolog
search engines to explore branches of the SLD tree in parallel. In contrast, if we
pre�x the goal generate(X)with the operator disj, then an implementation based
on multi-SLD resolution enumerates the solutions to generate/1 subset by subset
and creates from each subset a set of binding environments which are tested en mass
(in parallel) by test/1. As a result, test/1 is executed once per subset rather than
once per solution and fewer instructions are executed overall. In addition, for many
programs, the same or similar computation is performed for each invocation of
test (e.g., the creation of a list), and using the engine/multi distinction (Section
2.2) this shared computation can be `factored out' and performed only once.

Previous papers [23] [22] informally introduced MultiLog and multi-SLD reso-
lution; described a machine architecture (the Multi-WAM) for executing MultiLog
programs; and presented benchmark results for sequential and parallel implemen-
tations of the language. Even on a uniprocessor computer, multi-SLD was shown
to be as fast as or faster than SLD for many combinatorial search problems. [25]
presents a model that explains the observed speedups. [26] formalizes multi-SLD
resolution, examines some of its properties, and proves its soundness and complete-
ness. [24] presents an analysis of environment representation schemes for MultiLog.
The author's dissertation [27] discusses all of these issues in more detail.

Here our aim is to clarify the operational semantics of multi-SLD resolution
and to expose the relations amongst control backtracking, control or-parallelism,
disjunctive constraints, and streams as alternative and complimentary methods for
expressing disjunction in top-down logic programming languages.

1 The threads of control can be managed by multiple processors or even by one processor.
2 In general, multiple variables can get bound by a disj goal.
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Abstract

We present a series of concise Scheme interpreters of logic programming lan-
guages. Our main aim is to illuminate the roles of backtracking, disjunctive con-
straints, or-parallelism, and lazy evaluation as control structures for managing dis-
junction in logic programming. A further aim is to demonstrate, by means of an
elegant and concise formalism, the simplicity of multi-SLD resolution as a general-
ization of SLD resolution.

Multi-SLD resolution is a variant of SLD resolution based on a simple idea: Let
the allowed constraints be closed under disjunction, and provide a mechanism for

collecting the solutions to a goal and turning these solutions into a disjunctive con-

straint. This idea leads to a novel execution model for logic programming, called
data or-parallelism, in which multiple constraint environments partially replace
backtracking as the operational embodiment of disjunction. The model has a natu-
ral implementation on data-parallel computers since each disjunct of a disjunctive
constraint can be handled by a single (virtual) processor.

Starting from a basic SLD interpreter, small, localized changes express signi�-
cant variations. The most important of these is the use of disjunctive constraints as
a replacement for standard (control) backtracking. Another variation is constraint

backtracking, whereby lazy evaluation is used during the computation of the con-
straint component of the abstract machine state. Two-dimensional backtracking is
the combination of control and constraint backtracking. We describe a classi�cation
of logic programming interpreters according to whether and how they implement
backtracking and disjunctive constraints. Control or-parallelism results from ea-
ger evaluation of non-deterministic choice. Standard control backtracking results
from lazy evaluation of non-deterministic choice, using a failure continuation. Data
or-parallelism results from eager evaluation of disjunctive constraints. Constraint
backtracking arises from lazy evaluation of disjunctive constraints.
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