A note on Data-Parallelism and
(And-Parallel) Prolog

Manuel V. Hermenegildo
Manuel Carro

Universidad Politécnica de Madrid (UPM)
Facultad de Informatica
28660-Boadilla del Monte, Madrid — Spain

{herme,mcarro}@fi.upm.es

(Extended abstract)

1 Introduction

The term data parallelism is generally used to refer to a parallel semantics for (definite) iteration in a
programming language such that all iterations are performed simultaneously, synchronizing before any
event that directly or indirectly involves communication among iterations. It is often also allowed that
the results of the iterations be combined by reduction with an associative operator. In this context a
definite iteration as an iteration where the number of repetitions is known before the iteration is initiated.

Data parallelism has been exploited in many languages, including Fortran-90 [33], C* [42], Data
Parallel C [20], *LISP [41], etc. Recently, much progress has been reported in the application of concepts
from data-parallelism to logic programming, both from the theoretical and practical points of view,
including the design of programming constructs and the development of many implementation techniques
[43, 37,5, 8, 28,47, 34,4, 6, 7].

On the other hand, much progress has also been made (and continues to be made) in the exploitation of
parallelism in logic programs based on control-derived notions such as and-parallelism and or-parallelism
[11, 13, 14,27, 21, 30, 31, 44, 32, 1, 2, 18, 19, 17, 16, 29, 40, 45, 38]. It appears interesting to explore, even
if only informally, the relation between these two at first sight different approaches to the exploitation
of parallelism in logic programs. This informal exploration is one of the purposes of this note (the other
being to explore the related issue of fast task startup).

1.1 Data Parallelism and And-Parallelism

It is generally accepted that data parallelism is a restricted form of and-parallelism: ! the threads being
parallelized in data-parallelism are usually the iterations of a recursion, a type of parallelism which
is obviously also supported in and-parallel systems. The particular restrictions imposed over general
purpose and-parallelism vary slightly from one proposal to another. In general, only recursions of a
certain type are allowed to be executed in parallel. Also, limitations are posed on the level of nesting
of these recursions (e.g. sometimes no nesting is allowed). Often, a priori knowledge of the sizes of the
lists (or arrays) being operated on is required (but this data is also obtained dynamically in other cases).
Furthermore, other “safeness”-related restrictions are imposed among the iterations being parallelized,
such as requiring them to be deterministic, to have only one alternative, and/or to be independent.

It is interesting to note that the restrictions that general purpose systems impose on the goals which
can be executed in parallel (such as independence and/or determinacy applied at different granularity
levels [23, 36, 38, 12, 24] are generally the minimal ones needed in order to ensure vital desired properties
such as correctness of results or “no-slowdown” | i.e. that parallel execution be guaranteed to take no more
time than sequential execution. Data-parallel programs, since they are after all and-parallel programs,

INote, however, that data parallelism can also be exploited as or parallelism.

have to meet the same restrictions from this point of view and this is the motivation for the “safeness”
conditions mentioned before.

One of the central ideas in data-parallelism, as presented in many proposals, 1s to impose additional
restrictions to the parallelism allowed, in order to make possible further optimizations in some important
cases, in return for a certain loss of parallelism due to not being able to deal with the general case. l.e.,
the additional restrictions imposed have the obvious drawback that they limit the amount of parallelism
which can be obtained with respect to a more general purpose and-parallel implementation. On the
other hand, when the restrictions are met, many optimizations can be performed with respect to an
unoptimized general purpose and-parallel model, in which the implementation perhaps has to deal with
backtracking, synchronization, dynamic scheduling, locking, etc. A number of implementations have been
built which are capable of exploiting such special cases in an efficient way (e.g. [6, 7]).

In a way, one would like to have the best of both worlds: an implementation capable of supporting
general forms of and (and also or!) parallelism, so that speedups can be exploited in as many programs
as possible, and at the same time have the implementation be able to take advantage of the optimizations
present in data-parallel implementations when the conditions are met.

1.2 Compile-time and Run-time Techniques

In order to achieve the above mentioned goal of a “best of both worlds” system, there are two classes of
techniques which have to studied. The first class is related to detecting when the particular properties to
be used to perform the optimizations hold. However, this problem is common to both control- and data-
parallel systems. The concept of “data parallelism” does not in any way make the task of the compiler
or the implementation simpler in this regard. Note that the solution of allowing the programmer to
explicitly declare such properties or use special constructs which have built-in syntactic restrictions can
be applied indistinctly in both of the approaches under consideration. Thus, we will not deal herein with
how the special cases are detected.

The second class of techniques are those related to the actual optimizations in the abstract machine.
Given, as we have argued before, that data-parallelism constitutes a special case of and-parallelism, one
would in principle expect the abstract machine used in data-parallelism to be a “pared down” version
of the more general machines. We believe that this is in general the case, but it is also true that the
data-parallel machines also bring some new and interesting techniques.

For the sake of discussion, we will concentrate on the abstract machine of Reform Prolog [6, 7]. In
many aspects, the Reform Prolog abstract machine can in fact be viewed as a “pared-down” version of
a general-purpose and-parallel abstract machine such as the RAP-WAM/PWAM]26, 21], the DASWAM
[40], or the Andorra-T engine [39]. For example, there are a number of agents or workers which are each
essentially a WAM. Also, the dynamic scheduling techniques are very similar to the goal stealing method
used in the RAP-WAM.

Understandably, there are also some major differences. A first class of such differences is related to
the special case of and-parallelism being dealt with. For example, because of the restrictions posed on
backtracking among parallel goals, structures like the “markers” of the RAP-WAM are gone. However,
it should be noted that the same optimizations can also be done in machines such as the RAP-WAM if
the particular case is identified, and without losing the general case [25, 10, 15]. This is also the case
with some other optimizations.

On the other hand, a number of optimizations, generally related to the “Reform Compilation” done in
Reform Prolog [35] are more fundamental. We find these optimizations particularly interesting because
they bring attention upon a very interesting issue the performance of and-parallel systems: that of the
speed in the creation and joining of tasks. Because of the special interest of this subject, we will essentially
devote to it the rest of this note.

2 The Task Startup and Synchronization Time Problems

The problem in hand can be illustrated with the following simple program:

vproc([1,[]1).

vproc([HIT], [HR|TR]) :-
process_element (H,HR),
vproc(T,TR).

which relates all the elements of two lists. Throughout the discussion we will assume that the vproc/2
predicate is going to be used in the “forwards” way, i.e. a ground list of values and a free variable will be
supplied as arguments (in that order), expecting as a result a ground list.

2.1 The Naive Approach

This program can be naively parallelized as follows using “control-parallelism” (we will use throughout
&-Prolog [22] syntax, where the “&” operator represents a potentially parallel conjunction):

vproc([1,[]1).

vproc([HIT], [HR|TR]) :-
process_element(H,HR) &
vproc(T,TR).

This will allow the parallel execution of all iterations. Note that the parallelization is safe, since all
iterations are independent. The program can be parallelized using “data-parallelism” in a similar way.

However, it is interesting to study the differences in how the tasks are started in both approaches. In a
system like &-Prolog, using one of the the standard schedulers (we will assume this scheduler throughout
the examples), the initial agent, running the call to vproc/2 would create a process corresponding to
the recursion, i.e. vproc(T,TR), make it available on its goal stack, and then take on the execution of
process_element (H,HR). Another agent might pick the created process, creating in turn another process
for the recursion and taking on a new iteration of process_element (H,HR), and so on. In the end, parallel
processes are created for each iteration. Note that all process creation has been a simple consequence of
the application of the parallel conjunction operator semantics. This is very attractive in that the same
operator which allows parallelism among two goals in any general case, also yields in this particular case
the desired result of parallelizing all the iterations of a “loop”. However, the approach or, at least, the
naive program presented above, also has some drawbacks.

In order to illustrate this, we perform the experiment of running the previous program in the fol-
lowing context. We assume a query “?- makevector(10,V), main(V,VR).”, where makevector(N,L)
simply instantiates L to a list of integers from 1 to N. Thus, we have a list of 10 elements. We use as
process_element/2 a relatively small-grained numerical operation, which serves to illustrate the issue:

process_element (H,HR) :-
HR is ((((H * 2) / 5)"2)+(((H * 6) / 2)73))/2.

Finally, in order to observe the phenomenon, we run the program in &-Prolog on 8 processors on a
Sequent Symmetry and generate a trace file, using the following commands:

main(V,VR) :-
start_event_trace,
vproc(V,VR),
stop_event_trace,
save_trace(’Eventfile’).

The trace is then visualized with VisAndOr [9]. The result is depicted in Figure 1 (In VisAndOr graphs,
time goes from top to bottom. Vertical solid lines denote actual execution, whereas vertical dashed lines
represent waits due to scheduling or dependencies. Horizontal dashed lines represent forks and joins.) As
can be seen, the initial task forks into two. One is performed locally whereas the other one, corresponding
to the recursion, is taken by another agent and split again into two. In the end, the process is inverted to
perform the joins. A certain amount of speedup is obtained. This can be observed by comparing to figure

Figure 1: Vector operation, giving away recursion (10 el./8 proc.)

Figure 2: Vector operation (10 el./1 proc.)

2 which corresponds to the execution of the same program on only one processor — the total amount of
time is less. However, the speedup obtained is in fact quite small for a program such as this with obvious
parallelism. This low speedup is in part due to the small granularity of the parallel tasks, and also to the
slow generation of the tasks which results from giving out the recursion [9].

2.2 Keeping the Recursion Local

One simple transformation can greatly alleviate the problem mentioned above — reversing the order of
the goals in the parallel conjunction:

vproc([1,[]1).

vproc([HIT], [HR|TR]) :-
vproc(T,TR) &
process_element (H,HR).

Figure 3: Vector operation, keeping recursion (10 el./8 proc.)

The result of running this program is depicted in Figures 3 (which uses the same scale as Figures 1 and
2) and 4 (which uses full scale to show more detail). The first process can now be observed to keep the
recursion local and thus create the tasks much faster; resulting in substantially more speedup. Note that
this transformation is in fact in most cases done automatically by the &-Prolog parallelizing compiler.
However, the compiler leaves hand-parallelized code as is and this has allowed us before to write and run
the program that hands out the goals in the “wrong” way.

Keeping recursions local can speed up the process of task creation, and in most applications, which
in general show much larger granularity than this example, task creation speed is not a problem. On the
other hand, in numerical applications such as those targeted in data-parallelism, task creation using linear
recursion will still be a problem: the speed of the process creating the tasks will become a bottleneck.

2.3 The “Data-Paralle]” Approach

At this point it is interesting to return to the data-parallel approach and, in particular, to Reform Prolog.
The way this system tackles the problem (we assume that it has already been identified that the recursion

Figure 4: Vector operation, keeping recursion (10 el./8 proc.) (full scale)

is suitable for this technique) is by first converting the list into a vector (and noting the length on the
way) and then creating in a tight, low level loop the corresponding tasks, which are simply represented
by a pointer to the element of the vector which the task should operate on. The following program allows
us to both illustrate this process without resorting to low level instructions and measure inside &-Prolog
the benefit that this type of task creation can bring (once the parallel conjunction is set up, each task
creation in and-prolog in fact corresponds to pushing two pointers on to a goal stack — the overhead in
the previous cases was coming from the recursion and the setup time for each parallel conjunction):

main(V,VR) :-
% Only valid for a 10 element vector!!
length(V,10),
start_event_trace,
vproc(V,VR),
stop_event_trace,
save_trace(’Eventfile’).

vproc([H1,H2,H3,H4,H5,H6,H7 ,H8,H9,H10] ,

[HR1,HR2,HR3,HR4,HR5,HR6,HR7 ,HRS,HRO,HR10]) :-
process_element (H1,HR1) &
process_element (H2,HR2)
process_element (H3,HR3)
process_element (H4,HR4)
process_element (H5,HR5)
process_element (H6,HR6)
process_element (H7,HR7)
process_element (H8,HR8)
process_element (H9,HR9)
process_element (H10,HR10).

&
&
&
&
&
&
&
&

Figure 5: Vector operation, flattened for 10 elements (10 el./8 proc.)

The result is depicted in Figure 5, which uses the same scale as Figure 4. The improvement is clear and
due to the much faster task creation and joining (and also to having only one synchronization structure
for all tasks). Note, however, that the creation of the first task is slightly delayed due to the need
for traversing the whole list before creating any tasks and for setting up the tasks themselves. This
small delay is compensated by the faster task creation, but can eventually be a bottleneck for very large
vectors. However it must be noted that the combined length of all the segments starting a recursion
step in Figure 4 is less than the large segment corresponding to the head unification in Figure 5. This is
because in the last case the overheads corresponding to the recursive calls are not present. Eventually, in
a big computation with a large enough number of processors, the head unification will tend to dominate
the whole computation (c.f. Amdahl’s law).

In our quest for merging the techniques of the data-parallel and and-parallel approaches, one obvious
solution would be to incorporate the techniques of the Reform Prolog engine into the PWAM abstract
machine for the cases when it is applicable.? This may indeed be useful and is something we are cur-
rently collaboratively exploring. In fact, we believe that very little modification to the PWAM would be
necessary. On the other hand, it is also interesting to study how far one can go with no modifications (or
minimal modifications) to the machinery.

The last program studied is in fact a straightforward unfolding of the original recursion. Note that,
interestingly, such unfoldings can always be performed at compile-time, provided that the depth of the
recursion is known. In fact, knowing recursion bounds may actually be frequent in traditional data-
parallel applications, (and is often the case when parallelizing bounded quantifications [3]). On the other
hand it is not really the case in general and thus some other solution must be explored.

2.4 A More Dynamic Unfolding

The following program is an attempt at making the unfolding more dynamic, while still staying within
the source-to-source program transformation approach:

?In fact, a “map” builtin was indeed tried at some point in time [46] and showed substantial improvements for some
benchmarks.

vproc([H1,H2,H3,H4|T], [HR1,HR2,HR3,HR4|TR]) :-
!
vproc(T,TR) &
process_element (H1,HR1) &
process_element (H2,HR2) &
process_element (H3,HR3) &
process_element (H4,HR4) .

vproc([H1,H2,H3|T], [HR1,HR2,HR3|TR]) :-
',
vproc(T,TR) &
process_element (H1,HR1) &
process_element (H2,HR2) &
process_element (H3,HR3).

vproc([H1,H2|T], [HR1,HR2|TR]) :-
',
vproc(T,TR) &
process_element (H1,HR1) &
process_element (H2,HR2).
vproc([HIT], [HR|TR]) :-
',
vproc(T,TR) &
process_element (H,HR).

vproc([1,[]1).

Figure 6: Vector operation, flattening (10 el./8 proc.)

The results are shown in Figure 6, which has the same scale as Figures 5 and 4. Two groups of four tasks
are created one after the other, and the the two remaining tasks are created after a slight delay. The
speed is not quite as good as when the 10 tasks are created at the same time, but the results are close.
This “flattening” approach, which has been used in &-Prolog compilation informally (see e.g. [46] and
some of the standard &-Prolog benchmarks), has been studied formally Millroth [34], which has given

sufficient conditions for performing these transformations for particular cases such as linear recursion.

There are still two problems with this approach, however. The first one is how to chose the “reformant
level” | i.e. the maximum degree of unfolding used, which with this technique is fixed at compile-time. In
the previous example the unfolding was stopped at level 4, but could have gone on to a higher level. The
ideal unfolding level depends both on the number of processors and the size of lists. For large lists a large
unfolding may be desirable. However, the program size also grows, as well as the chain of intermediate
unifications made by the last iterations. The other problem, which was pointed out before, is the fact
that the initial matching of the list (or the conversion to a vector) is a sequential step which can become
a bottleneck for large data sets. A solution is to increase the speed of creation of tasks, but that has a
limit. In fact, 1t will also eventually become a bottleneck, even if low level instructions are used. Another
solution is to use from the start, and instead of lists, more parallel data structures, such as vectors (we
will return to this later).

2.5 Dynamic Unfolding In Parallel

HEalEEE e e e E L EE B
4 L

HELEE L EE L EE L EE L EE L EE T I B o

Figure 7: “Skip” operation, 10 elements in 4

We now propose a different solution which tries to address at the same time the two problems above.
We give the solution for lists. The transformation has two objectives: speeding up the creation of tasks
by performing it in parallel, and allowing a form of “flexible flattening”. The basic idea 1s depicted in
Figure 7. Instead of simply performing a unification of a fixed length as encoded at compile-time, a
builtin, skip/4, is used which will allow performing unifications of different lengths.

The predicate skip(L,N,LS,NS) relates a list L and an “unfolding increment” N with a sublist LS of L
which is placed at most at N positions from the starting of L. NS contains the actual number of elements
in LS, in case that N is less than the length of L (in which case LS = [1). The utility of skip(L,N,LS,NS)
is that several calls to it using the output list LS as input list L in each call will return pointers to
equally—spaced sublists of L, until no sufficient elements remain. Figure 7 depicts the pointers returned
by skip(L,N,LS,NS) to a 10 elements list, with an “unfolding level” N = 4. This builtin is assumed for
efficiency to be implemented at a low level, but it can be defined in Prolog as follows:

skip(L,N,LS,NS) :-
skip(L,N,LS,NS,0).

skip(LS,0,LS,NS,NS) :— !.
skip([1,_,[1,NS,NS).
skip([_ILs],N,LRs,Ns0,Ns) :-

N1 is N-1,

Nsi1 is Ns+1,

skip(Ls,N1,LRs,NsO,Ns1).

We now return to our original program and make use of the proposed builtin (note that the “flattening
parameter” N can be now chosen dynamically):

% Query: makevector(10,V), N=4, main(V,N,VR).

main(V,N,VR) :-
start_event_trace,
vproc_opt(V,VR,N),
stop_event_trace,
save_trace(’Eventfile’).

vproc_opt([1,[],0).
vproc_opt(L,LR,N) :-
skip(L,N,LS,NS),
skip(LR,N,LRS,NS),
(vproc_opt(LS,LRS,NS) & vproc_opt_n(L,LR,NS)).

vproc_opt_n(_,_,0).

vproc_opt_n([L|Ls], [LRILRs],N) :-
(N1 is N-1, vproc_opt_n(Ls,LRs,N1)) &
process_element (L,LR).

Figure 8: Vector operation, flexible flattening (10 el./8 proc.)

The result is shown in Figure 8. The large delays are due to the fact that skip/4 is defined in Prolog
in this experiment, but, as mentioned before, it could be made much faster as a builtin. Note, however,
how the tasks are created in groups of four corresponding to the dynamically selected increment, which
can now be made arbitrarily large. We believe that this idea would also be useful even at a lower level.

It is worth noting that, in this case, the predicate skip/4 not only returns pointers to sublists of a
given list, but also is able to construct a new list composed with free variables. This allows spawning

10

independent parallel processes, each one of them working in separate segments of a list. This, in some
sense, mimics the so—called poslist and neglist identified in the Reform Compilation at run—time. Though
this solution gives, obviously, poorer performance than a compile—time approach, we feel that a low—level
implementation could give good results.

Note also that other builtins similar to skip could be proposed for other types of data structures and
for each type of traversal allowed by each of those data structures.

As an example, we may want the splitting of the list to be used afterwards (for example, because it
is needed in some further similar processing). We can use the skip/4 predicate to build a skiplist/3
predicate as follows:

skiplist([], _N, [1):- !'.

skiplist(L, N, [L|LSs]):-
skip(L, N, LS, _M),
skiplist(LS, N, LSs).

HELEE L EE L EE L EE L EE L B EE o B

- L

L= [= [Hﬁﬁ% I e S T e B S e S 4

M

[3

S e 4

Figure 9: “Skiplist” operation, 10 elements in 4

A typical call to skiplist/3 would be done with the two first arguments instantiated; the third
argument would return pointers to subslists of the first argument or, under a more logical point of view,
the third argument describes a set of sublists of the first argument by means of difference lists. Figure 9

depicts this situation.

3 Constant Time Access Arrays in Prolog?

Finally, and for the sake of argument, we propose a simple-minded approach to the original problem
using the real “arrays” in standard Prolog, i.e. terms. Of course the use of this technique is limited by
the fact that term arity is limited in many Prolog implementations, but this could be cured. In the query
we create a vector of length N using functor/3, initialize it, and then pass it on to a “vector” version of
vproc (we could, of course, also start with a list, as in previous examples, and convert it into a vector
before calling the “vector” version of vproc):

%Query: N=10, functor(V,a,N), functor(VR,a,N), fillvector(N,V), main(V,VR,N).

main(V,VR,N) :-
start_event_trace,
vproc(V,VR,N),

11

Figure 10: Vector operation, constant access arrays (10 el./8 proc.)

stop_event_trace,
save_trace(’Eventfile’).

Where the parallelized “vector” version of vproc would be as follows:

vproc(_,_,0).
vproc(V,VR,I) :-
(I>0,
process_element(V,VR,I)
)
&
(I1 is I-1,
vproc(V,VR,I1)
).

Element access is done in constant time using arg/3:

process_element(V,VR,I) :-
arg(I,V,H),
HR is ((((H * 2) / 5)"2)+(((H * 6) / 2)73))/2,
arg(I,VR,HR).

The results are presented in Figure 10. In this example we are using a simple minded loop which creates
tasks recursively, but the same techniques illustrated in previous examples could be applied to this “real
array” version: it is easy now to modify the above program as in the previous examples in order create
the tasks in groups of N, but now without having to previously traverse the data structure, as was the
case when using the skip builtin!

Finally, following on on this idea, we illustrate how one could even build a quite general purpose
“FORTRAN-like” constant access array library without ever departing from standard Prolog or, elim-
inating the use of “setarg”, even from “clean” Prolog. It is not that we are supporting the use of
these data structures, but rather we are simply trying to make the point that if one really, really, wants
them, then the arrays are there. The solution we propose is related to the standard “logarithmic access

12

time” extensible array library written by D.H.D.Warren. In this case, we obtain constant (rather than
logarithmic) access time, with the drawback that arrays are, at least in principle, fixed size.

We begin by defining the “type” array. Essentially, an array is a term of arity two which contains as
its first argument a list of integers which correspond to the dimensions of the array (thus we can have
arrays of arbitrary dimensions) and as its second argument a term whose arity is the total number of
cells in the array (and thus represents the total amount of storage needed by the array):

% Type definition

is_array(matrix(D,S)) :-
functor(S,storage,L),
multiply_list(D,L).

multiply_list([],1).

multiply_list([I|Is],N) :-
multiply_list(Is,N1),
N is N1 * I.

Arrays can be created, in full FORTRAN tradition, by performing a call to dimension/2, where the
first argument is a list with the dimensions of the array and the second argument returns the array:

dimension(D,matrix(D,S)) :-
multiply_list(D,Nelements),
functor(S,storage,Nelements).

Note, however, that with judicious use of delays one can also create arrays a call to the type definition
predicate.
All elements of the “storage” part are accessible in constant time (as arguments of a structure):

% Element access

access(matrix(D,S),I,X) :-
compute_offset(I,D,0ffset),
arg(0ffset,S,X).

compute_offset([I],[D],I) :-

1>0,

I=<D,

N
compute_offset([I|Is],[D|Ds],0ffset) :-

1>0,

I=<D,

N

compute_offset(Is,Ds,0ffsetl),

I1 is I-1,

Offset is D * I1 + Offsetl.
compute_offset(_,_,_) :-—

format ("Warning: access out of bounds in array.",[]).

Finally, if one really, really wants to have everything one has in FORTRAN, then even destructive
assignment 1s available:

setel(matrix(D,S),I,X) :-
compute_offset(I,D,0ffset),
setarg(0Offset,S,X).

13

However, one would hope that compilation technology would make the need for resorting to these extremes
unnecessary.

Note that the definitions should at least be changed to compute with an accumulating parameter, but
they have been left as is for clarity. Also, use of delay can make them fully reversible. Realistically, all
these operations should be builtins for performance reasons. Note that calls to dimension, access, set,
etc. could in any case often be very efficiently compiled in-line to a specialized call to functor, arg, etc.

4 Acknowledgments

We would like to thank Jonas Barklund, Johan Bevemyr, and Hakan Millroth for discussions regarding
Reform Prolog and Bounded Quantifications.

References

[1] K.A.M. Ali. Or-parallel Execution of Prolog on the BC-Machine. In Fifth International Conference
and Symposium on Logic Programmaing, pages 253-268, Seattle, Washington, 1988. MIT Press.

[2] K.A.M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model and its Performance. In 7990
North American Conference on Logic Programming. MIT Press, October 1990.

[3] Henrik Arro, Jonas Barklund, and Johan Bevemyr. Parallel bounded quantification—preliminary

results. ACM SIGPLAN Notices, 28:117-124, 1993.
[4] Jonas Barklund. Parallel Unification. PhD thesis, Comp. Sci. Dept., Uppsala Univ., Uppsala, 1990.

[5] Jonas Barklund and Hakan Millroth. Nova Prolog. UPMAIL Tech. Rep. 52, Comp. Sci. Dept.,
Uppsala Univ., Uppsala, 1988.

[6] J. Bevemyr, T. Lindgren, and H. Millroth. Exploiting recursion-parallelism in Prolog. In Proc.
PARLE’93, Berlin, 1993. Springer-Verlag.

[7] J. Bevemyr, T. Lindgren, and H. Millroth. Reform Prolog: the language and its implementation. In
Proc. 10th Intl. Conf. Logic Programming, Cambridge, Mass., 1993. MIT Press.

[8] Jens Blanck. Abstrakt maskin for Nova Prolog. Internal report, Comp. Sci. Dept., Uppsala Univ.,
Uppsala, 1992.

[9] M. Carro, L. Gémez, and M. Hermenegildo. Some Paradigms for Visualizing Parallel Execution
of Logic Programs. In 1993 International Conference on Logic Programming, pages 184-201. MIT
Press, June 1993.

[10] M. Carro, E. Pontelli, G. Gupta, and M. Hermenegildo. Improving Execution of And—parallel Prolog
Programs by Means of Determinism Analysis. Technical Report TR CLIP 5/94.0, Computer Science
Faculty, Technical University of Madrid, July 1994.

[11] J. S. Conery. The And/Or Process Model for Parallel Interpretation of Logic Programs. PhD thesis,
The University of California At Irvine, 1983. Technical Report 204.

[12] M.J.Garcia de la Banda, M. Hermenegildo, and K. Marriott. Independence in Constraint Logic
Programs. In 1993 International Logic Programmang Symposium, pages 130-146. MIT Press, Cam-
bridge, MA, October 1993.

[13] D. DeGroot. Restricted AND-Parallelism. In International Conference on Fifth Generation Com-
puter Systems, pages 471-478. Tokyo, November 1984.

14

[14]

[15]

[16]

[17]

D. DeGroot. Restricted AND-Parallelism and Side-Effects. In International Symposium on Logic
Programmang, pages 80-89. San Francisco, IEEE Computer Society, August 1987.

T. DongXing, E. Pontelli, G. Gupta, and M. Carro. Last Parallel Call Optimization and Fast
Backtracking in And-parallel Logic Programming Systems. 1994. Presented at ICLP’94 Workshop
on Parallel and Data Parallel Execution of Logic Programs.

B. S. Fagin. A Parallel Execution Model for Prolog. PhD thesis; The University of California at
Berkeley, November 1987. Technical Report UCB/CSD 87/380.

G. Gupta, M. Hermenegildo, Enrico Pontelli, and Vitor Santos Costa. ACE: And/Or-parallel
Copying-based Execution of Logic Programs. In International Conference on Logic Programming.
MIT Press, June 1994. to appear.

G. Gupta and B. Jayaraman. Compiled And-Or Parallelism on Shared Memory Multiprocessors. In
1989 North American Conference on Logic Programmang, pages 332-349. MIT Press, October 1989.

G. Gupta, V. Santos-Costa, R. Yang, and M. Hermenegildo. IDIOM: Integrating Dependent and-,
Independent and-, and Or-parallelism. In 1991 International Logic Programming Symposium, pages

152-166. MIT Press, October 1991.

Philip J. Hatcher and Michael J. Quinn. Data-parallel Programming on MIMD Computers. MIT
Press, Cambridge, Mass., 1991.

M. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploiting Independent And-
Parallelism. In 71990 International Conference on Logic Programming, pages 253-268. MIT Press,
June 1990.

M. Hermenegildo and K. Greene. The &-prolog System: Exploiting Independent And-Parallelism.
New Generation Computing, 9(3,4):233-257, 1991.

M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-Parallelism in Logic Pro-
grams: Correctness, Efficiency, and Compile-Time Conditions. Journal of Logic Programmaing, 1994.
To appear.

M. Hermenegildo and the CLIP group. First steps towards a ciao-prolog system. In Proc. of the
Compulog Net Area Workshop on Parallelism and Implementation Technologies. Technical University
of Madrid, June 1993.

M. V. Hermenegildo. An Abstract Machine Based Execution Model for Computer Architecture Design
and Efficient Implementation of Logic Programs in Parallel. PhD thesis, Dept. of Electrical and
Computer Engineering (Dept. of Computer Science TR-86-20), University of Texas at Austin, Austin,
Texas 78712, August 1986.

M. V. Hermenegildo. An Abstract Machine for Restricted AND-parallel Execution of Logic Pro-
grams. In Third International Conference on Logic Programmaing, number 225 in Lecture Notes in
Computer Science, pages 25-40. Imperial College, Springer-Verlag, July 1986.

M. V. Hermenegildo. [Independent AND-Parallel Prolog and its Architecture. Kluwer Academic
Publishers, Norwell, MA 02061, 1989.

Péter Kacsuk. Fzecution Models of Prolog for Parallel Computers. Pitman, London, 1990.

L. Kale. Parallel Execution of Logic Programs: the REDUCE-OR Process Model. In Fourth Inter-
national Conference on Logic Programming, pages 616-632. Melbourne, Australia, May 1987.

V. Kumar and L.N. Kanal. Parallel branch-and-bound formulations for and/or tree search. IEEE
transactions on pattern analysis and machine intelligence, 6:768-778, November 1984.

15

[31]

[40]

[41]
[42]
[43]

[44]

[45]

[46]

[47]

Y. J. Lin and V. Kumar. AND-Parallel Execution of Logic Programs on a Shared Memory Mul-
tiprocessor: A Summary of Results. In Fifth International Conference and Symposium on Logic
Programmang, pages 1123-1141. University of Washington, MIT Press, August 1988.

E. Lusk et. al. The Aurora Or-Parallel Prolog System. New Generation Computing, 7(2,3), 1990.
Michael Metcalf and John Reid. Fortran 90 Explained. Oxford Univ. Press, Oxford, 1990.

Hakan Millroth. Reforming Compilation of Logic Programs. PhD thesis, Comp. Sci. Dept., Uppsala
Univ., Uppsala, 1990.

Hakan Millroth. Reforming compilation of logic programs. In Vijay Saraswat and Kazunori Ueda,
editors, Logic Programming, Proceedings of the 1991 International Symposium, pages 485-502, San
Diego, USA, 1991. The MIT Press.

L. Naish. Parallelizing NU-Prolog. In Fifth International Conference and Symposium on Logic
Programmang, pages 1546-1564. University of Washington, MIT Press, August 1988.

Martin Nilsson and Hidehiko Tanaka. A Flat GHC implementation for supercomputers. In R. A.
Kowalski and K. A. Bowen, editors, Proc. Fifth Intl. Conf. Symp. on Logic Programming, pages
1337-1350, Cambridge, Mass., 1988. MIT Press.

V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel Prolog System that Transpar-
ently Exploits both And- and Or-parallelism. In Proceedings of the 3rd. ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. ACM, April 1990.

V. Santos-Costa, D.H.D. Warren, and R. Yang. The Andorra-1 Engine: A Parallel Implementation of
the Basic Andorra Model. In 1991 International Conference on Logic Programmaing, pages 825-839.
MIT Press, June 1991.

K. Shen. Exploiting Dependent And-Parallelism in Prolog: The Dynamic, Dependent And-Parallel
Scheme. In Proc. Joint Int’l. Conf. and Symp. on Logic Prog. MIT Press; 1992.

Thinking Machines Corp., Cambridge, Mass. The Fssential *LISP Manual, 1986.
Thinking Machines Corp., Cambridge, Mass. C'* Programming Guide, 1990.

Andrei Voronkov. Logic programming with bounded quantifiers. In Andrei Voronkov, editor,
Logic Programmang— Proc. Second Russian Conf. on Logic Programming, LNCS 592, Berlin, 1992.
Springer-Verlag.

D.H.D. Warren. The SRI Model for OR-Parallel Execution of Prolog—Abstract Design and Imple-
mentation. In International Symposium on Logic Programming, pages 92-102. San Francisco, IEEE
Computer Society, August 1987.

D.H.D. Warren. The Andorra Model. Presented at Gigalips Project workshop. U. of Manchester,
March 1988.

R. Warren and M. Hermenegildo. Experimenting with Prolog: An Overview. Technical Report 43,
MCC, March 1987.

M. J. Wise. Experimenting with epilog: Some results and preliminary conclusions. In 13th Annual
International Symposium on Computer Architecture, pages 130-139. IEEE Computer Society, June
1986.

16

