
&ACE: The And-parallel Component of ACE
(A Progress Report on ACE)

Enrico Pontelli Manuel Hermenegildo

Gopal Gupta

Laboratory for Logic and Databases Facultad de Inform�atica

Dept of Computer Science Universidad Polit�ecnica de Madrid

New Mexico State University 28660-Boadilla del Monte

Las Cruces NM USA Madrid, Spain

fepontell,guptag@cs.nmsu.edu herme@dia.�.upm.es

Abstract

ACE is a computational model for full Prolog ca-
pable of concurrently exploiting both Or and In-
dependent And-parallelism. In this paper we focus
on the speci�c implementation of the And-parallel
component of the system, describing its internal or-
ganization, some optimizations to the basic model,
and �nally presenting some performance �gures.
Keywords: Independent And-parallelism, Or-
parallelism, implementation issues.

1 Introduction

The ACE (And-Or/Parallel Copying-based Execu-
tion) model [6] uses stack-copying [1] and recompu-
tation [5] to e�ciently support combined Or- and
Independent And-parallel execution of logic pro-
grams. ACE represents an e�cient combination of
Or- and independent And-parallelism in the sense
that penalties for supporting either form of par-
allelism are paid only when that form of paral-
lelism is actually exploited. Thus, in the presence
of only Or-parallelism, execution in ACE is ex-
actly as in the MUSE [2] system|a stack-copying
based purely Or-parallel system. In the presence
of only independent And-parallelism, execution is
exactly like the &-Prolog [7] system - a recompu-
tation based purely And-parallel system. This ef-
�ciency in execution is accomplished by introduc-
ing the concept of teams of processors and extend-
ing the stack-copying techniques of MUSE to deal
with this new organization of processors. The pur-
pose of this report is to describe in full details the
independent and-parallel component of the ACE
system, as it has been developed in the last few

months in the Laboratory for Logic, Databases,
and Advanced Programming of the New Mexico
State University in collaboration with Universidad
Polit�ecnica de Madrid, Spain. The report is orga-
nized as follows. The �rst part gives a general in-
troduction to ACE, �rst describing separately the
techniques adopted for Or-parallelism and Inde-
pendent And-parallelism, and then showing how
they are merged in the ACE framework. Sec-
tion 2 introduces the model of independent and-
parallelism adopted, focusing on the structure of
the operational semantics (forward and backward
execution). Section 3 presents the details of the
and-parallel engine, describing its components and
how they interact with each other. Section 4
presents some advanced issues, such as manage-
ment of kill and redo signals, and some optimiza-
tions implemented in the system. Section 5 con-
cludes the report, presenting some results obtained
by executing a set of well-known benchmarks in
and-parallel.

1.1 Or-Parallelism in ACE

ACE exploits Or-parallelism by using a stack-
copying approach (like MUSE [2]). In this ap-
proach, a set of or-agents (workers in the case of
MUSE, teams in the case of ACE|as explained
later) maintain a separate but identical address
space (i.e. they allocate their data structures start-
ing at the same logical addresses). Whenever an
or-agent A is idle, it will start looking for unex-
plored alternatives generated by some other or-
agent B. Once a choice point p with unexplored
alternatives is detected in the computation tree TB
generated by B, then A creates a local copy of TB

1

and restarts computation by backtracking over p
and executing one of the unexplored alternatives.
The fact that all the or-agents maintain an identi-
cal logical address space allows to reduce the cre-
ation of a local copy of TB to a simple memory
copying operation (as shown in �gure 1). This
whole operation of obtaining work from another
agent is named sharing of or-parallel work.

B A

p p

Figure 1: Stack-copying based Or-parallelism

In order to reduce the number of sharing opera-
tions performed (since each sharing operation may
involve a considerable amount of overhead), un-
explored alternatives are always searched starting
from the bottommost part of the tree; during the
sharing operation all the choice points in between
are shared between the two agents (i.e. at each
sharing operation we try to maximize the amount
of work shared between the two agents).

Furthermore, in order to reduce the amount of
information transferred during the sharing opera-
tion, copying is done incrementally, i.e., only the
di�erence between TA and TB is actually copied.

1.2 And-Parallelism in ACE

ACE exploits Independent And-parallelism using
a recomputation based scheme [3], no sharing of
solutions is performed (at the and-parallel level).
This means that for a query like ?- a,b, where
a and b are nondeterministic, b is completely re-
computed for every solution of a (as in Prolog).
Figure 2 sketches the structure of the computation
tree created in the presence of and-parallel compu-
tation: a parbegin-parend structure is introduced,
and the di�erent branches are assigned to di�erent
agents. Since we are exploiting only Independent
And-parallelism, only independent subgoals are al-
lowed to be executed concurrently by di�erent and-
agents. Dependencies are detected at the run-time
by executing some simple tests introduced by the
parallelizing compiler. In ACE we have adopted

the technique originally designed by DeGroot [4]
and re�ned by Hermenegildo [8] (adopted also by
&-Prolog [7]) of annotating the program at compile
time with Conditional Graph Expressions (CGEs).
This will be explained in details in a later section.

agent 1

agent 1

agent i agent j

A
nd

-P
ar

al
le

l B
ra

nc
he

s

Figure 2: Computation Tree with Recomputation-
based And-parallelism

Since the and-agents are computing just di�er-
ent parts of the same computation (i.e. they are
cooperating in building one solution o the initial
query) they need to have di�erent but mutually
accessible logical address spaces.

1.3 And-Or Parallelism in ACE

In ACE parallelism is exploited at two di�erent
levels. At the higher level we mapped the notion
of or-agent to the notion of team of processors (i.e.
an or-agent is a set of processors) and the di�erent
or-agents interact to exploit or-parallelism. At the
lower level we mapped the notion of and-agent to
the notion of processor inside a team (i.e. each pro-
cessor is an and-agent) and the various and-agents
inside the same team interact to exploit the and-
parallelism present along the or-branch computed
by the whole team. This is illustrated in �gure 3.

This organization allows us to:

1. minimize the amount of changes to be done to
the basic and-parallel engine;

2. clearly draw the boundaries between the dif-
ferent components of the system.

Each processor in the ACE system is basically
an and-parallel engine, capable of carrying on its
own computation and interacting with a certain
number of other processors (those belonging to the
same team). The only new features that need to
be added are the followings:

2

Teams

Workers

Or Alternative

And Alternative

Figure 3: Workers Organization in the ACE system

� a mechanism to keep track of the amount of
or-parallel work produced by the computation
of a team;

� a mechanism to allow interaction of one team
with another in order to guarantee synchro-
nization and execution of sharing operations;

� extended backtracking, allowing calls to the
or-scheduler whenever a team backtracks over
a shared choice point.

A sharing operation involves copying (part of)
the computation tree generated by a team to an-
other team. The operation is not straightforward
since the computation tree is spread over the ad-
dress spaces of the di�erent processors belonging
to the team. Furthermore, we want to perform
copying incrementally, i.e., transfer only what is
strictly necessary, and this selective operation is
complicated by the arbitrary ordering of the dif-
ferent sections of computation on the stacks of the
various team members. To make the whole process
more e�ective, we have introduced in ACE some
sharing conditions that a choice point should sat-
isfy in order to allow its sharing with other teams
(i.e., giving away its untried alternatives for or-
parallel processing to other teams) . A choice point
p satis�es the sharing conditions i� the whole com-
putation on its left (in the and-tree exploited by
the team) has already been completed. Figure 4
shows an example of this: choice point p satis�es
the conditions, while the choice point q does not,
since there is a branch on its left which has not
completed yet.

In ACE, during a sharing operation, only the
choice points satisfying the sharing condition are

p

q

uncompleted branch

Figure 4: Sharing assumptions in ACE

actually taken into consideration. This simpli�es
both the copying operation (it is easier to detect
which parts of the computation need to be trans-
fered), the scheduling activity (we are guaranteed
that everything on the left is terminated and suc-
cessful and we do not have arbitrary intermix-
ing of shared and private parts in the computa-
tion tree), and the management of side-e�ects and
extra-logical predicates.

Di�erent approaches to incremental copying
have been studied and heuristics to choose the most
appropriate in each situation have been developed.
The interested reader is referred to [6] for a detailed
discussion of this topic.

2 Independent
And-parallelism

The main purpose of this report is to illustrate the
structure and the features of the And-parallel en-
gine developed for the ACE system. ACE exploits
independent and-parallelism (i.e. only subgoals
that do not share any variables are executed in and-
parallel), following the model designed by DeGroot
[3] and successively re�ned by Hermenegildo in his
&-Prolog system [7]. This section explains the ba-
sic principles behind this computationalmodel; the
�rst section illustrates the notion and the meaning
of Conditional Graph Expressions (CGEs), while
the second and third section illustrates the com-
putational behaviour of an engine capable of exe-
cuting programs annotated with CGEs. It should
be pointed out at the outset that our design of
the and-parallel component of ACE is very heavily
inuenced by RAP-WAM and its implementation
in &-Prolog. In fact, much of the machinery is
the same except for a few minor modi�cations and
some optimizations.

3

2.1 Conditional Graph Expressions

A conditional graph expression (CGE for simplic-
ity) is an expression of the form:

(h conditions i) B1; � � � ; Bn)
where

h conditions i - is a conjunction of simple tests on
variables appearing in the clause (typical tests
are ground, that veri�es whether the argument
is instantiated to a ground term, and inde-
pendent, that veri�es whether the arguments
share any variables with arguments of other
goals);

& - denotes parallel conjunction.

The intuitive meaning of a CGE is quite
straightforward: if, at runtime, the tests present in
conditions succeed, then the subgoals B1; � � � ; Bn
can be executed in and-parallel, otherwise they
should be executed sequentially. The notion of
CGE can be further extended in di�erent ways [7]:

1. Bi can actually represent an arbitrary sequen-
tial conjunction of subgoals (and the system
should deal with its execution in the appro-
priate way);

2. we can explicitly add an else part to the CGE,
specifying eventually actions di�erent from
the plain sequential execution of the subgoals.

A standard Prolog program need to be anno-
tated with CGEs in order to take advantage of the
and-parallel engines available. This process can
be done manually by the programmer or by using
some specialized compile-time analysis tools (like
the &-Prolog parallelizing compiler [9]).

2.2 Forward Execution

Forward execution of a program annotated with
CGEs is quite straightforward. Whenever a CGE
is encountered, the conditions are evaluated and,
if the evaluation is successful, the various subgoals
in the CGE are made available for and-parallel ex-
ecution. Idle and-agents are allowed to pick up
available subgoals and executed them. Only when
the execution of those subgoals is terminated the
continuation of the CGE (i.e. whatever comes af-
ter the CGE) is taken into consideration. Forward
execution of a CGE resembles the parbegin-parend
construct introduced in various concurrent imper-
ative programming languages.

2.3 Backward Execution

Backward execution denotes the series of steps
that are performed following a failure|due to uni-
�cation or lack of matching clauses. Since an
And-parallel system explores only one or-branch
at a time, backward execution involves backtrack-
ing and searching for new alternatives in previous
choice points. In ACE, where both Or- and And-
parallelism are exploited, backtracking should also
avoid taking alternatives already taken by other
or-agents.

In presence of CGEs, standard backtracking
should be upgraded in order to deal with compu-
tations which are spread across processors. &ACE
has a complete implementation of such a back-
tracking scheme.

As long as backtracking occurs over the sequen-
tial part of the computation no particular prob-
lems occur|we just use plain Prolog-like back-
tracking. Problem occurs when backtracking in-
volves a CGE. Two cases are possible:

� backtracking occurs inside one of the
branches Bi of the CGE, and no solutions are
found inside Bi. In this case we can observe
that the whole CGE does not have any solu-
tion (since the subgoals are known to be in-
dependent). This allows the removal of the
whole CGE and propagation of backtracking
to the computation preceding the CGE itself.
Figure 5 depicts this case.

Point of Failure

Choice Point

Removed Computations

Figure 5: Inside backtracking

� backtracking occurs in the continuation of the
CGE (or, anyway, outside a CGE), and there
are no alternatives between the point of fail-
ure and the parallel call. This situation is il-
lustrated in �gure 6. In this case backtracking
should try to mimic Prolog backtracking, by
searching for a new alternative moving from

4

the rightmost branch of the CGE to the left-
most one. If a new successful alternative is
found in the branch Bi, then all the subgoals
Bj (with i < j � n) are re-executed in paral-
lel. This is called recomputation-based and-
parallelism, as mentioned earlier, since the
subgoals on the right are completely recom-
puted for each new solution found on the left.
If no successful alternatives are found in any of
the subgoals of the CGE, then the whole CGE
is removed and backtracking is propagated to
the preceding computation.

point of failure

choice point

goal1
goal2

goal3

CGE Opening

Figure 6: Outside Backtracking

This scheme permits us to obtain all the solu-
tions of a CGE in the same order in which they are
produced in a corresponding sequential execution
(of course we are not considering the case in which
some of the or-alternatives inside the CGE have
been taken by some other or-agent for execution).

3 System Organization

The purpose of this section is to describe in detail
the internal organization and the activity of the
and-parallel engine of ACE (named &ACE for the
sake of simplicity). ACE has been implemented on
the top of SICStus Prolog ans as such it inherits the
basic structure of the SICStus WAM architecture
[10] together with most of its features and opti-
mizations.

The following section is organized as follows.
In subsection 3.1 the internal memory layout of
&ACE and the data structures allocated during the
execution are analyzed. Subsection 3.2 presents a
brief overview of the few new instructions added to

the SICStus instruction set. Subsection 3.3 deals
with the issue of scheduling and-parallel work be-
tween the various and-agents. Finally, subsection
3.4 gives an overview of a typical &ACE execution.

3.1 Data Structures

3.1.1 Memory Layout

An and-agent in &ACE keeps a memory organiza-
tion similar to the one used by a SICStus WAM.
Figure 7 presents the memorymap of a &ACE and-
agent.

Private Area

Local Stack

Global Stack (Heap)

Goal Stack

Descriptors Area

Trail

ChoicePoint Stack

Public Area

A
ux

ili
ar

y

Figure 7: Memory Organization of an and-agent

Focusing on the new areas:

Auxiliary Area: it is used to store various infor-
mation required during the execution. It is
subdivided into two subareas:

� Public Area: this is accessible by all
the members of the team, and it is used
to store information used to perform and-
scheduling (pointers to the top of the goal
stack, amount of and-parallel work avail-
able, etc.);

5

� Private Area: this is accessible only by
the speci�c and-agent and it contains es-
sentially the various registers of the ab-
stract machine (current choice point, cur-
rent environment, program counter, etc.)
and any additional information required
by the local execution of the and-agent.

Goal Stack: whenever a CGE is encountered dur-
ing the execution and the conditions are suc-
cessfully evaluated, parallel execution is acti-
vated. The and-agent executing the CGE cre-
ates a record (called goal frame) for each sub-
goal of the CGE and stores it in its goal stack.
Idle and-agents looking for work will extract
a goal frame from the goal stack of a remote
agent and use the information stored in it to
start the local execution of the subgoal1.

Descriptors Area: this area, managed as an
heap, is used to allocated descriptors of the
subgoals executed by the considered and-
agent. This is required, as explained in section
4.1.2, to properly manage out-of-sequence kill
signals.

The other areas are unchanged in their structure
w.r.t. SICStus WAM. Note that the architecture of
an &ACE agent is very similar to that of an agent
in &-Prolog.

3.1.2 Data Areas

Execution in the WAM is characterized by alloca-
tion and deallocation of certain data structures on
the stacks of the abstract machine. SICStus WAM
uses:

� the heap to allocate complex terms;

� the local stack to allocate environments;

� the choice point stack to allocate choice points;

� the trail to save the addresses relative to con-
ditional bindings.

&ACE makes use of some additional data struc-
tures (also present in RAP-WAM), required to sup-
port the and-parallel execution of subgoals.

Parcall Frame: parcall frames are allocated on
the choice point stack and are used to iden-
tify the execution of a CGE. A parcall frame
contains, in addition to other information:

1the structure of a goal frame is illustrated in a later
section

� pointer to the environment existing at
the time of execution of the CGE (re-
quired to allow a proper evaluation of the
arguments of each subgoal);

� various counters to keep track of the sub-
goals of the CGE that have been exe-
cuted, that are still executing, or that are
still waiting in the goal stack;

� the lock required to guarantee mutual ex-
clusion in the access of common areas
(e.g. the parcall frame itself);

� a slot for each subgoal of the CGE is allo-
cated in the parcall frame, collecting in-
formation regarding the execution of the
corresponding subgoal (id of the proces-
sor which started the subgoal, current
status of the execution, id of the proces-
sor which completed the execution, etc.).

Goal Frame: goal frames are allocated on the
goal stack and are used to maintain the ba-
sic information required to start remotely the
execution of such subgoal. Typical informa-
tion stored in a goal frame are:

� a pointer to the code of the subgoal;

� pointer to the parcall frame relative to
the CGE from which the subgoal has
been taken.

On the goal stack the goal frames are or-
ganized in a double-linked list. This is re-
quired since it may be necessary to remove
goal frames that are not lying on the \phys-
ical" top of the goal stack (e.g. during a kill
operation).

Input Marker: input markers are allocated on
the choice point stack and they are used to
denote the beginning of the execution of a sub-
goal on a remote processor. An input marker
is allocated by the processor that steals the
subgoal and it indicates the beginning of a new
\section" of the choice point stack. Typical
information stored in an input marker are:

� a reference to the parcall frame and to
the slot relative to the subgoal;

� a pointer to the environment in which the
arguments of the subgoal are to be eval-
uated (i.e. the environment existing at
the time in which the parcall frame has
been allocated);

6

� a time stamp (used for killing purposes,
as explained in section 4.1.2);

� a continuation pointer indicating the
piece of code to be executed when the
subgoal successfully terminates.

End Marker: end markers are allocated on the
choice point stack and are used to identify the
completion of a subgoal part of a parallel ex-
ecution. It is used to denote the \logical" end
of a stack section and to save the value of some
registers which are needed in case of back-
tracking (like the registers pointing to the cur-
rent active parcall frame). Since most of the
information stored in an end marker is analo-
gous to that required in an input marker (at
least the part necessary for register manage-
ment) and since an input marker can be allo-
cated only after an end-marker, the two struc-
tures can be partially merged|in &ACE im-
plementation the actual input marker alloca-
tion phase consists only of �lling some empty
�elds of the previous end marker. This allows
a considerable reduction in terms of space and
time.

Trail Marker: trail markers are allocated on the
choice point stack. To properly understand
the role of the trail markers we need to analyze
the two views of the choice points stacks in
the &ACE system. Operations on the choice
point stack may access the stack following two
paths:

1. the logical path, in which the data struc-
tures relative to the current execution ap-
pear to be contiguous on the stack;

2. the physical path, in which the data
structures relative to the current execu-
tion are spread in di�erent parts of the
stack, intermixed with (parts of) sections
relative to execution of other subgoals.

For example, allocation of a new data struc-
ture (e.g. a new choice point) needs to use
the physical path (new structures can be al-
located only on the real top of the stack),
while backtracking should follow the logical
path. Intermixing of di�erent computations
may occur because of backtracking on trapped
subgoals|when the trapped subgoal is reacti-
vated, the new data structures are allocated
on the top of the stack|as shown in �gure 8:
backtracking on the trapped subgoal Y lead to
the allocation of a new choice point on the top

of the stack; at this point physical and logical
paths are di�erent.

Subgoal X

Subgoal Y

Backtracking

New Choice Point of Y

P
hy

si
ca

l P
at

h

Lo
gi

ca
l P

at
h

Figure 8: Backtracking on a trapped subgoal

Keeping track of the two paths is quite sim-
ple, since each data structure allocated on the
choice point stacks contains

� a pointer to the previous structure along
the logical path;

� a pointer to the previous structure along
the physical path2.

A trail marker is needed in order to keep track
of the logical path in some special cases of
backtracking. Speci�cally, a trail marker is
required when both the following conditions
are satis�ed:

1. we are currently backtracking on a
trapped subgoal (i.e. a subgoal which is
not lying on the top of the choice point
stack);

2. during backtracking on the trapped sub-
goal we take the last alternative from a
choice point and its execution leads to
allocation of new data structures.

In this situation a link between the old struc-
tures and the new ones is required (mainly for

2actually this pointer is unnecessary if we know the size
of the structure, but keeping it explicitly allows to save time
during the various operations

7

trail management purposes); this link is rep-
resented by the trail marker. As the name
suggests, the most relevant pieces of informa-
tion stored in a trail marker are the current
trail pointers.

Section 3.4 illustrates how these data structures
are used during an actual execution.

Every structure allocated on the choice point
stack includes also some additional information re-
quired for

� trail management: because of the lack of a
unique view of the choice point stack (as men-
tioned before, we have two di�erent views of
it, the logical and the physical one), trail man-
agement becomes slightly more complicated.
It is not anymore su�cient to associate with
each choice point structure the current top of
the stack but we need to associate an iden-
ti�cation of the trail section that need to be
unwound during backtracking. A trail section
is identi�ed by a pair of pointers (top and bot-
tom of the section).

� garbage collection: garbage collection over the
choice point stack is complicated by the ar-
bitrary intermixing of computations that may
occur due to backtracking over trapped sub-
goals. Whenever traditional garbage collec-
tion is not possible (i.e. we are backtracking
on a trapped subgoal) an explicit call to a
garbage collection routine is performed (and
only if there is evidence that garbage collec-
tion will be useful). A bit tag has been added
to each data structure on the choice point
stack to help this explicit garbage collection
activity.

3.2 Instructions Set

A limited amount of changes have been done to the
original SICStus WAM instruction set. Some new
instructions have been added and some of the old
ones have been appropriately updated. In general,
all the old instructions are unchanged except for:

� some additional storing/restoring of the heap
pointer;

� update of the neck instruction3 to deal with
some of the new �elds present in the choice
point structure.

3used in SICStus Prolog to switch from shallow to deep
backtracking

The new instructions introduced are required to
support the execution of the CGEs and the syn-
chronization between parallel executions. These
new instructions are as follows:

1. pcall: a certain number of instructions have
been added to allow creation of a new parallel
call (pcall), allocation of a parcall frame, and
activation of a parallel execution.

2. check goals: this instruction typically fol-
lows a pcall and is used to support reactivation
of parallel execution during outside backtrack-
ing;

3. pop wait: this instruction is used to allow the
creator of the parallel call to locally execute
some of the subgoals of the CGE;

4. hook: this instruction represents the \join" of
the parallel call. It is executed at the end
of a subgoal and allows the and-agent to up-
date the status of the subgoal, allocate the end
marker and switch to a di�erent execution.

5. sch: this instruction represents the entry-
point to the and-scheduler.

The pcall and pop wait instructions are inherited
from RAP-WAM [8], while the others have been
added speci�cally to support ACE features.

3.3 Scheduling

The and-scheduler is quite simple in its structure.
The scheduling algorithm is activated by an idle
and-agent and it looks for and-parallel work as fol-
lows:

1. if any subgoal is available on the local goal
stack, then it will be preferred to any remote
work;

2. otherwise other processors are scanned. Pri-
ority is given to the processor that signals the
highest amount of and-parallel work available.

No restrictions on the subgoal to be selected are im-
posed. In the future we plan to extend the schedul-
ing algorithm in order to choose work in a \bet-
ter" way|e.g. selecting subgoals that will allow
an `easier' backtracking and a reduced intermixing
of executions.

3.4 System Activity

This section briey illustrates the steps followed by
&ACE during a typical execution.

8

3.4.1 Forward Execution

As long as CGEs are not encountered (i.e. pcall

instruction is not executed) forward execution is
exactly the same as in SICStus WAM. When a
pcall is met, a new parcall frame is allocated, ini-
tialized, and all the subgoals but the leftmost one
are loaded on the goal stack (the leftmost subgoal is
directly executed by the same and-agent that cre-
ated the parcall frame). Once the lock on the goal
stack has been released, all the subgoals become
available for parallel execution. At the end of the
execution of the leftmost subgoal, the and-agent
which started the parcall execution will perform a
pop wait, executing locally any further subgoal of
the same parcall still available on the local goal
stack. Whenever a subgoal is picked up for exe-
cution from a goal stack, an input marker is al-
located and execution is started. At the end of
the execution an end marker is allocated and the
information in the parcall frame is appropriately
updated. The last and-agent reporting termina-
tion of a subgoal of a parcall frame automatically
becomes in charge of carrying on the continuation
of the CGE. This clearly means that the agent that
will complete the execution may be di�erent from
the one which started it. An and-agent completing
a subgoal while there are still other subgoals run-
ning for the same parcall will automatically enter
and-scheduling and start searching for new work.
Subgoals executed by the various and-agents are
uniquely time-stamped (by using a global counter
shared between the various and-agents).

3.4.2 Backward Execution

In addition to being able to perform the stan-
dard sequential backtracking, backward execution
involves:

� being able to perform inside and outside back-
tracking, as mentioned in section 2.3;

� being able to perform killing of a computation;

� being able to perform communication between
and-agents, in order to report situations in
which a subgoal should be killed or back-
tracked over.

Backtracking is performed in the usual way, by
moving downwards in the choice point stack and
analyzing the data structures encountered. In the
case of &ACE this moving downwards is performed
following the logical path (not the physical one).
The following situations may occur:

1. a choice point is encountered: in this case a
new alternative is taken and explored. If the
new alternative is the last one, the choice point
is removed; furthermore if the current subgoal
is trapped (i.e. the current point on the log-
ical path does not match the current top of
the physical choice point stack), and the new
alternative is the last one of the choice point,
then a trail marker needs to be allocated to
keep track of the new section of trail that we
are opening.

2. an end marker is encountered: we are entering
an outside backtracking situation. If the sub-
goal below the end marker is the rightmost of
the CGE then the end marker is skipped and
we keep going down on the same logical path.
Otherwise the rightmost subgoal of the CGE
is detected and backtracking is transferred to
it.

3. an input marker is encountered: if the par-
call frame referred by the input marker is still
in inside status (i.e. we are still looking for
the �rst solution to the CGE) then kill sig-
nals are propagated to the other subgoals of
the CGE. Immediately after this the agent
quits backtracking and moves to the schedul-
ing phase (the agent which created the parcall
will carry on the backtracking). If the par-
call frame is in outside mode, then reaching
an input marker simply means that we have
completely explored a subgoal without �nding
further solutions|backtracking is transferred
on the subgoal on its left (using a redo signal
to the agent which completed such subgoal).

4. a parcall frame is encountered: the situation
is exactly as in the previous case (encounter-
ing an input marker) since the parcall frame is
used as \input marker" for the leftmost sub-
goal of the CGE.

4 Advanced Issues and Opti-
mizations

4.1 Signal Management

As mentioned in the previous sections, during exe-
cution the and-agents need to exchange messages.
Each message implies a request sent to the destina-
tion agent for execution of a certain activity. The
system supports two kinds of messages:

9

1. redomessages|used to request a remote back-
tracking activity. This is necessary whenever
the logical path of the computation continues
on the stack of a di�erent agent.

2. killmessages|used to request a remote killing
activity.

Some of the messages could be avoided by allow-
ing an agent to freely perform backtracking on the
stack of another agent4. We decided to disallow
this for the following reasons:

� this would make the integration with Or-
parallelism unnecessarily complex;

� the use of explicit messages makes the current
status of the execution more \evident", which
allows an or-agent looking for work to decide
which kind of actions are to be performed in
order to appropriately install the stolen alter-
native;

� we desire to keep the overall design simple and
clean;

� it is not clear whether this would provide a real
advantage, since locking and/or synchroniza-
tion may become necessary on certain areas of
the stack.

Messages are sent and received asynchronously
(i.e. a message can be received and served some
time after it has been sent but the sender is free to
continue its execution immediately after sending
the message). The frequency at which an agent
checks for the presence of messages can be tuned
up by modifying a system de�ned constant. The
examples presented in the last section of this report
have been executed allowing the maximum delay
between successive message checks (i.e. checks for
the presence of messages have been performed only
during critical phases of the execution, like opening
of new parallel calls, termination of a branch, etc.).

4.1.1 Redo Signals

A redo signal is generated exclusively during out-
side backtracking and it is used to transfer the cur-
rent backtracking activity to a subgoal located on
the stack of a di�erent agent. To be more precise,
the message is sent to the agent which completed
the execution of the subgoal on which backtrack-
ing has to be performed. Once received, the agent

4in some situation this kind of activity is performed in
&ACE

will locate the end marker relative to that sub-
goal, remove it and start backtracking from that
point (following the logical path relative to such
subgoal). Figure 9 illustrates this process.

Agent 1

Input Marker

Agent 2

End Marker

S U B G O A L

backtracking

Redo Message

backtracking

Figure 9: Transferring backtracking activity using
Redo Messages

4.1.2 Kill Signals

The management of kill signals is more involved
than redo signals. A kill can be generated in two
occasions:

1. during inside backtracking a kill message for
each subgoal of the CGE to be removed;

2. during outside backtracking a kill message is
(or, should be5) sent to those subgoals which
have shown a deterministic behaviour|since
they don't have alternatives there is no sense
in trying to search for other solutions.

The second case is the simpler one to handle, since
we are guaranteed that the branch that we are
killing has already been completed. The message
can be directed to the agent which completed the
computation, which in turn will take care of re-
moving the computation and unwind the relevant
part of the trail. The �rst case is more complex.
A kill can be generated for computations that are
still active and we may desire to have it propagated
as fast as possible (a kill prunes computation that
have turned speculative). Clearly, if the branch
to be killed has already been completed there are
no problems, since we have a pointer to the end
of the computation and this o�ers a starting point
to unroll and unwind the computation. It is, in
fact, important to observe that the organization of

5see section 4.2

10

the computation in aWAM-like architecture allows
traversing the computation tree from the bottom
to the top (by following the logical paths of the var-
ious subgoals) but not vice-versa|we do not have
any way of traversing the tree going from the top
towards the leaves.

Two approaches [11] have been considered:

1. a lazy approach, in which the killing of a
branch is delayed until certain checking points
are reached (like termination of a branch).
Clearly this approach is far from optimal, but
it is easy to implement and limits the amount
of overhead.

2. a direct approach in which the kill signal is
progressively propagated inside the branch to-
wards the lower levels of the tree. This is ap-
proach guarantees a faster propagation of the
killing, but

(a) requires a minimal support to allow mov-
ing top-down in the tree (like pointers
linking nested parcall frames);

(b) requires locking of the parcall frames to
allow a correct propagation;

(c) requires a level of synchronization during
the kill action.

The current implementation makes use of the lazy
approach (slightly optimized to allow a more fre-
quent detection of kills). We are planning to intro-
duce the direct method in near future, since it will
o�er better performance. The kind of approach
adopted for handling kills seems to a�ect the in-
teraction with the Or-parallel components of ACE
only marginally. A complete treatment of the more
advanced algorithm for killing can be found in [11].

4.2 Shallow Parallelism

Innumerable optimizations can be done to
a recomputation-based and-parallel system like
&ACE. In this framework we have avoided many of
them trying to keep the design of the and-parallel
engine su�ciently simple, necessary condition for
the later introduction of the or-parallel features.

One optimization that has been implemented
in the current version of the system deals with
taking advantage of deterministic computations.
Many of the classical benchmarks proposed for
and-parallelism involve the development of deep
nestings of parallel calls, while the sequential sub-
goals (those which do not contain a further par-
allel call) are deterministic computations. The

main idea is that once one of those determinis-
tic computations has been completed, there is no
need of keeping any data structure alive (since
on backtracking there will not be any alterna-
tives available). For this reason the allocation of
the input marker is delayed until the �rst choice
point/parcall frame is allocated (in a fashion sim-
ilar to the shallow backtracking technique); if we
reach the end of the computation without allocat-
ing any input marker, then the end marker itself
is not allocated and we simply record the bound-
aries of the current trail section in the slot of the
parcall frame relative to the current subgoal. On
backtracking no kill message needs to be generated
for this kind of subgoals (we just need to unwind
the trail section indicated in the slot of the parcall
frame). This simple optimization allows to save
time and space since

� some input and end markers will not be allo-
cated at all on the stack;

� allocation and initialization of data structures
on the choice point stack is expensive;

� during backtracking certain kill messages will
be avoided.

Figure 10 shows the results of adopting the op-
timization on the Takeuchi benchmark. Even on a
relative small computation time the di�erence be-
tween the unoptimized and the optimized version
is signi�cant (on a single processor we have ob-
served an improvement of around 25% for certain
benchmarks).

5 Performance Results

The purpose of this section is to present the results
obtained by executing some well-known bench-
marks on &ACE. The results for the following
benchmarks are initially reported:

Matrix Multiplication: a classical program for
multiplying a N �N matrix by its transposed
matrix;

Quicksort: quicksort of a N�50 elements vector;

Takeuchi: a well-known benchmark developed at
ICOT;

Hanoi: a tower of hanoi solver collecting the
moves in a list;

Boyer: a reduced version of the Boyer-Moore the-
orem prover.

11

Takeuchi Benchmark

unoptimized

optimized

Time (ms) x 103

No. of Agents0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

2.30

2.40

2.00 4.00 6.00 8.00 10.00

Figure 10: Improvement on execution time using the determinate execution optimization

Compiler: The Aquarius Prolog compiler (ap-
proximately 2,200 lines of Prolog code).

Poccur: A list processing program.

BT cluster: A clustering program from British
Telecom.

Annotator: The &-Prolog annotator (1,000
lines).

Table 1 indicates, for each benchmark, the ex-
ecution time (in ms.) and the speed-up obtained.
The execution times are given in the format �=�,
where � is the time obtained without the shallow-
parallelism optimization and � is the time obtained
using the optimized version. The speed-up �gures
are with respect to the optimized execution.

Table 1 illustrate the speedups obtained for the
various benchmarks. The �gures clearly indicates
that the current implementation, even though not
completely optimized, is quite e�ective. On many
benchmarks, containing a su�cient amount of
parallelism, the system manages to obtain linear
speedups (like matrix multiplication and hanoi).
The fact that certain benchmarks shows higher
speedups is due to the amount of and-parallel work
available in the benchmark and the granularity of
the and-parallel work exploited.

Speedups for some benchmarks are shown in Ta-
ble 1 and plotted in Figure 11. The largest bench-
mark is the Aquarius Prolog Compiler (approxi-
mately 2,200 lines of Prolog code). Note that for
the compiler, quicksort, and boyer benchmarks, the
speedup curve attens out because at some point
all available parallelism is exhausted.(e.g., in the

case of compiler, the speed-up was measured while
the compiler was compiling a program of 8 clauses,
thus the maximum speedup that can be obtained
will be 8; if a larger program was compiled higher
speedups will be obtained). Our implementation
incurs an average parallel overhead of about 10%
over Sicstus Prolog. Some of this parallel overhead
is avoided by triggering optimizations mentioned
earlier that are based on recognizing determinacy
of goals. These optimizations yield, depending on
the program, an improvement of 5% to 25% over
the unoptimized version. Some improvement data
is shown in Table 1 (each entry in Table 1 shows
the time in millisecond before the optimization and
after the optimization; the number in parenthesis
gives the speed-up obtained; for compiler bench-
mark the unoptimized �gure is not shown). As is
obvious, improvements due to optimization can be
substantial; in some cases superlinear speedup is
obtained.

6 Conclusions

This report describes some of the most important
features of the independent and-parallel compo-
nent of the ACE system|a system which implicitly
exploits both independent and- and or-parallelism
from Prolog programs. We discussed the structure
of the machine and the organization of the execu-
tion, putting emphasis on new ideas and optimiza-
tion introduced in the design. The results obtained
show good performance and good speedups. The
results, if compared to those reported for &-Prolog
[7], present some slow-downs which are due to the

12

Speedups

m
atr

ix
-m

ul
t

quicksort

ha
no

i

Compilertak
eu

ch
i

boyer

No. of Agents

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

2.00 4.00 6.00 8.00 10.00

Sp
ee

du
p

No. of Agents

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

2.00 4.00 6.00 8.00 10.00

Sp
ee

du
p

Fig (i) Fig (ii)

Figure 11: Speedups Curves for Selected Benchmarks

Goals &ACE agents
executed 1 3 5 10

matrix mult(30) 5598/5214 1954/1768 (2.95) 1145/1059 (4.92) 573/534 (9.76)
quick sort(10) 1882/1536 778/632 (2.43) 548/455 (3.38) 442/373 (4.12)
takeuchi(14) 2366/1811 832/586 (3.09) 521/368 (4.92) 252/200 (9.06)
hanoi(11) 2183/1671 766/550 (3.04) 471/336 (4.97) 231/180 (9.28)
boyer(0) 9655/9290 5329/3829 (2.43) 3816/3199 (2.90) 2887/2687 (3.46)
compiler |/29902 |/12522 (2.39) |/6437 (4.65) |/4801 (6.23)
poccur(5) 3651/3197 1255/1079 (2.96) 759/662 (4.83) 430/371 (8.62)
bt cluster 1461/1343 528/480 (2.8) 345/312 (4.30) /189 (7.11)
annotator(5) 1615/1422 556/475 (2.99) 392/322 (4.42) 213/187 (7.60)

Table 1: Unoptimized/Optimized Execution times in msec (Speedups are shown in parenthesis)

fact that &ACE contains a complete implementa-
tion of signal management and full backtracking6.
However, with various optimizations &ACE per-
formance is the same as or better than &-Prolog's
(note, however, that these optimizations, such as
shallow parallelism, can also be incorporated in &-
Prolog). Of course, not all benchmarks that can
be run on &ACE can be run on &-Prolog because
of absence of a complete implementation of back-
tracking in the latter. The benchmarks we have
chosen above do not involve outside backtracking
and can be run on both systems.

6Themain reasonwhy &-Prolog did not implementback-
tracking is that its designers hoped that they will be able
to optimize away the non-determinism present in parallel
conjunctions at compile-time. However, because ACE ex-
ploits or-parallelism inside and-parallel goals, in absence of
enough processing resources it should be able to try other al-
ternatives inside and-parallel goals via backtracking. Hence
support for backtracking over parallel conjunctions is essen-
tial for ACE.

References

[1] K.A.M. Ali and R. Karlsson. The muse or-
parallel prolog model and its performance. In
1990 N. American Conf. on Logic Prog. MIT
Press, 1990.

[2] K.A.M. Ali and R. Karlsson. Full Prolog and
Scheduling Or-parallelism in Muse. Interna-
tional Journal of Parallel Programming, 1991.
19(6):445{475.

[3] D. DeGroot. Restricted AND-Parallelism. In
Int'l Conf. on 5th Generation Computer Sys-
tems, pages 471{478. Tokyo, Nov. 1984.

[4] D. DeGroot. Restricted AND-Parallelism and
Side-E�ects. In International Symposium on
Logic Programming, pages 80{89. San Fran-
cisco, IEEE Computer Society, August 1987.

[5] G. Gupta and M. Hermenegildo. Recomputa-
tion based Implementation of And-Or Parallel
Prolog. In Int'l Conf. on 5th Generation Com-
puter Sys. '92, pages 770{782, 1992.

13

[6] G. Gupta, M. Hermenegildo, E. Pontelli,
and V. Santos Costa. ACE: And/Or-parallel
Copying-based Execution of Logic Programs.
in 1994 Int'l Conf. on Logic Progr., MIT
Press, June 1994.

[7] M. Hermenegildo and K. Greene. &-Prolog
and its Performance: Exploiting Independent
And-Parallelism. In 1990 Int'l Conf. on Logic
Prog., pages 253{268. MIT Press, June 1990.

[8] M. V. Hermenegildo. An Abstract Machine
Based Execution Model for Computer Archi-
tecture Design and E�cient Implementation
of Logic Programs in Parallel. PhD thesis,
Dept. of Electrical and Computer Engineer-
ing (Dept. of Computer Science TR-86-20),
University of Texas at Austin, Austin, Texas
78712, August 1986.

[9] K. Muthukumar and M. Hermenegildo. Com-
bined Determination of Sharing and Freeness
of Program Variables Through Abstract In-
terpretation. In 1991 International Confer-
ence on Logic Programming. MIT Press, June
1991.

[10] Swedish Institute of Computer Science. Indus-
trial Sicstus Prolog Internals Manual, 1989.

[11] T. DongXing, E. Pontelli, G. Gupta, and
M. Carro. Last Parallel Call Optimization and
Fast Backtracking in And-parallel Logic Pro-
gramming Systems Technical Report NMSU-
CSTR-9403, Dept. of Computer Science, New
Mexico State University, March 1994.

14

