A comparison of some schemes for translating logic to C.

Bart Demoen Greet Maris
Department of Computer Science, K.U.Leuven
Celestijnenlaan 200 A
B-3001 Leuven
Belgium
{bimbart, greet}@cs.kuleuven.ac.be

Abstract

The general improvement of C compilers, and some new non standard features of gcc
have made it more attractive to compile (logic) to C: it is no longer unthinkable that the speed
of a native code optimizer can be matched and even beaten by a scheme that compiles to C and
lets most of the hard work be done by the C compiler. The new features, especially gcc's
treatment of labels as first class types, are a clear invitation to abandon native code generators.
Also, the possibility to assign hardware registers to global variables looks attractive at first
sight. Three schemes for exploiting a C compiler in the compilation of different languages, are
examined and their effectiveness is measured. The conclusion is that it is probably better not
to make use of all the features gcc offers. We also show that if C compilers were a bit smarter
about compiling the C switch statement, compliance to standard C would become even more
attractive. The measurements were done on different risc platforms and the conclusions seem
to hold generally.

1. Introduction

Writing a native code generator is a big task, which requires intimate knowledge of the target
machine. It is also a moving target since machines succeed each other quickly and even within
the same line of machines or processors, the characteristics can change dramatically. On the
other hand, parts of a native code compiler are just tedious work, like the register allocator, the
peep hole optimizer etc. It is appealing to have all this work done by someone else and reuse
that work. Compiling to C instead of to native code, is such an attempt to reuse the effort by
others. This approach is worth considering for any language, as C leaves lots of possibilities
for abusing the type system and because it has in general the flavor of a low level language.
The advantages that compiling to C offers, are otherwise clear: portability, less knowledge
about low level machine required and linking with other C programs becomes quite easily. The
same argument could apply to other languages instead of C (be it ADA or ALGOL), if efficient
implementations were widely available.

Although compiling to C is attractive, a straightforward mapping of a logic language to
C will give bad performance. This is due the differences in control and data characteristics
between logic and C. A logic program consists mainly of small recursive predicates because
recursion is the only way to express iteration in logic. Moreover, global data is used to represent
bindings, terms and pass arguments to procedures.

In the recent past, three languages have been implemented by compiling them to C first:
Janus [3], Erlang [2] and KL1 [4]. They all three belong to the class of logic languages -

1o0f13

although Erlang could as well be thought of as a functional language, but it does share some
characteristics with logic.

These three languages use a different basic compilation scheme and each is based on
different characteristics of the C compiler. We will not go into the details of these languages,
but since all three compilation schemes can be applied to (deterministic) Prolog easily, we will
use Prolog as a vehicle to explain the compilation schemes and to describe the benchmarks that
were used for testing and comparing these schemes.

Since 1983, Prolog has often been implemented starting from the WAM [10] for which
either an emulator, threaded code interpreter or a native code generator has been written. Even
implementations that do not adhere directly to the WAM instruction set, should often be
classified as belonging to the WAM family, like [11, 12] and many implementations of
languages that differ substantially from Prolog, are based on WAM [1]. So, the choice of
Prolog as the red thread through the paper is by no means an unfortunate accident or a serious
limitation, as the implementation of Prolog has modelled the implementation of many other
languages.

In gcc [6] there are two features that are of particular interest to compiler writers, but
which have the disadvantage (at the moment) of being non-standard [7]: in gcc, there is a label
type and a goto statement can refer to a variable of the label type; secondly, a register
declaration can be given for global variables, i.e. variables that are visible over function
boundaries. For the compiler writer to C, both look attractive. And both have been exploited
by the Erlang system. On the other hand, the Janus and KL1 scheme for translating to C, does
not necessarily use non-standard features. Our measurements show that a certain amount of
non-standardness is good for efficiency, but too much is bad. As a matter of fact, it turns out
that the compilation scheme adopted in Erlang performs worse than the Janus schema;
moreover, it restricts the possibilities of the C compiler, so that it seems counterproductive to
use global labels.

We started this comparison because we were at the point of implementing AKL [5] using
the compilation to C technique: since the three schemes presented here existed already, we
wanted to make a conscious choice. We have also deliberately chosen goal stacking, because
we believe that this offers more implementation freedom when implementing a parallel system.
Still, we have also done a test with environment stacking as in WAM and found that the same
conclusions hold.

In the next section, the three compilation schemes are presented in their pure and extreme
form and exemplified on the Prolog predicate naive reverse: this predicate has been used a lot
in the past for assessing the speed of Prolog systems. However, as for Prolog, naive reverse is
a bad benchmark and we will make some slight changes to it, in order to show the point more
clearly.

Section 2 describes the three compilation schemes. Section 3 describes the benchmarks
at the Prolog level. Section 4 discusses the results of the measurements and the conclusions to
be drawn from them. Section 5 goes into some detail about the compilation of the C switch
statement. Section 6 reviews shortly other compilation to C schemes for Prolog. General
conclusions are given in section 7. The appendices contain the results of some additional
measurements and the full C code for a representative sample of the benchmark set.

2. The three compilation schemes

We introduce the three compilation schemes mainly by an example: C code for the clause
a - b,c,d . is given and if necessary also for the fact b. The full C code for some of the
benchmarks as used for the timings, can be found in the appendices. The complete benchmark

2 of 13

set is obtainable from the authors.
We will not go into the details of the languages Janus [3], Erlang [2] and KL1 [4]: the
reader is referred to the appropriate literature.

2. 1. Janus

The basic approach in Janus [3] is to compile a complete program to one C function
which is essentially one switch statement of which the case labels represent entries of
predicates and to which jump labels are added so that the call to the first goal in a body, doesn’t
have to pass by the switch: the switch is used when the program is activated through its top
guery, and by the proceed instruction which pops a case label from the goal stack and goes to
the top of the switch statement. Then the one function for Janus is essentially:

jump_switch:
switch(*--goalstacktop)
{case a:
jump_a:
*goalstacktop++ =d ;
*goalstacktop++ = ;
goto jump_b ;
caseb:
jump_b:
goto jump_switch;
}

The above code is ANSI C. One can use the gcc jump label variables so that jump labels
are pushed on the goal stack. The resulting code is then:

jump_a:
*goalstacktop++ = &&jump_d ;
*goalstacktop++ = &&jump_c ;
goto jump_b ;

jump_b: goto *(*(--goalstacktop));
The switch statement has disappeared. The two versions of this scheme - without and
with jump labels on the goal stack - will be referred tgcamdjclab. Note however that the
use of jump labels ijtlab, concerndocal labels.
2. 2. Erlang
Erlang [2] uses both global labels and global registers. The basic scheme consists in

translating each module to one C function, which has a prologue that fills in a global jump table
(gjt) with the jump label needed for calling a predicate:

30f 13

void *f_a()

{I*prologue*/
gjtfa] = &&jump_a ;
return ;

jump_a:

*goalstacktop++ = gjt[d] ;
*goalstacktop++ = gjt[c] ;
goto *gjt[b] ;

} ¥ _a*/

The idea is that when the system is initialized, every function corresponding to a module
is called in the usual way, so that the global jump table (gjt) is filled in. An Erlang predicate is
called by directly jumping into the C function. The aim is to avoid subroutine calls: as such, a
subroutine call is not more expensive than a goto on most modern architectures, but one must
avoid register window overflows which are rather costly. (see also section 6) We have two
versions of this scheme: one which uses only the global labels and one which also uses global
registers for the top of the goal stack, the argument stack and the begin address of the global
jump table. We refer to these two versiongsnderlreg. Neither is ANSI C.

2. 3. KLIC

The C implementation of KL1 [4] is called KLIC: a single module is compiled to a C
function exactly like in the Janus scheme. Switching between modules requires the help of a
driver which dispatches between modules. If there is only one module, the schema reduces to
the Janus schema, so we have taken the extreme position that every predicate belongs to a
different module so that the effect of the driver becomes more clear. Again for the same
example, we obtain:

void *f_a()

{*goalstacktop++ =
*goalstacktop++ =
*goalstacktop++ =
return ;

} I+ _a*/

fd;

fc
fb;

and the driver essentially becomes:

void *driver()

{ while (1)
(*--goalstacktop)() ;

} I*driver*/

The KLIC scheme is ANSI C compliant. We have used 3 variants in the benchmarks: one
which uses local registers to keep the goal stack top, argument stack top and the cached goal
stack top contents (see 2.4 for more explanation on this); this version is still ANSI C compliant
and is namedliclocreg the same items can be assigned to global regigteneg; or these
three items can be kept in plain global variabiés:

4 of 13

2. 4. Some remarks about the final C code

Since we wanted to squeeze as much out of each compilation scheme as reasonable, we
have performed a number of optimizations that are sometimes scheme specific:

« for KLIC, it pays to keep the contents of the goal stack top in a separate variable (be
it a register or not): we refer to this as the cached goal stack top contents

« for KLIC and Erlang: if the first call in the clause is to the same predicate (like in
a:-a,b.) then alocal jump is performed instead of through the driver or the
global jump table (note that Janus can always perform such a local jump)

* in Janus, it makes no sense to assign registers to some of the data structures, as they
are local to the one function and the compiler assigns them to registers anyway

» we wanted to make sure that the switch statement was compiled to a computed goto,
instead of to a cascade of if-then-else: this was achieved by adding enough
meaningless cases to the switches whenever necessary

3. The benchmarks measured

Naive reverse has often been used to measure the performance of Prolog systems:

nrev([].[) .
nrev([X|R],0) :- nrev(R,A) , append(A,[X],0) .

append([],L,L) .
append([X|L1],L2,[X]|L3]) :- append(L1,L2,L3) .

Although it is a rather perverted benchmark, it was the first program we used as a
benchmark for the 3 compilation schemes. Since we were interested in measuring the effect on
the flow of control only (as the data representation is an orthogonal issue), the actually used
version of nrev, where N is assumed to be greater or equal to zero, was

nrev(N) :- N =0 -> true ; nrev(N-1) , append(N-1) .
append(N) :- N = 0 -> true ; append(N-1) .

and the initial query was ?- nrev(1000) . and the arithmetic expressions as arguments of
body goals should be understood as being evaluated. In this way, the same number of logical
inferences (or successful predicate calls) is achieved.

Since the nrev benchmark is dominated completely by append, we decided that a goal
should be added in the body of append: a call to a predicate that - in terms of the WAM -
performs only a proceed:

append(N) :- N = 0 -> true ; append(N-1) , dummy .
dummy.

Since we used goal stacking for the implementation of the continuation, the different
compilation schemes benefit to different extents from this left recursion; in decreasing order of
benefit:

* in KLIC, it makes returning to the driver unnecessary

50f 13

* in Erlang, it allows for a direct (local) goto, instead of an indirect one
* in Janus, only the (code) cache comes into play (as they do with the other schemes!)

So, we thought it was only fair to measure both a left recursive and a tail recursive version
of append, i.e., one with the dummy call added as above, and one as in:

append(N) :- N = 0 -> true ; dummy , append(N-1) .

We will refer to the benchmarks by LEFT and RIGHT - depending on whether the
dummy was added to the left or the right of the append goal.

4. The timings and the conclusions.

program LEFT RIGHT
klic 2130 1120
kliclocreg 2060 890
klicreg 990 500
erl 1650 910
erlreg 840 480
jc 980 690
jclab 720 460

Table 1: timings in ms on SPARC1

Table | shows the timings for the left and right versions of the benchmarks on a SPARC
station 1. All programs were compiled with gcc -O2 (version 2.5.7). The time was measured
with getrusage. The horizontal difference between left and right is not relevant; vertically, they
show the same patterje:is faster thamrlang anderlangis faster tharklic. Moreover, being
less standard within a scheme, improves efficiency. There is however a small surprise in the
table: sinceerlreg uses global labels and global registers, whegodals uses only local labels
in variablesgerlregis less standard thagelab. Still, jclab performs better thagrlreg. It shows
that if one is willing to leave ANSI Gglab is the best choicgclab has two more advantages
overerlreg which are not shown in our benchmarks, but it is clear that:

* the use of non local labels, prevents the safe use of local variables in the functions:
this means that in the Erlang schema, other items (like heap pointer,
intermediate variables for construction of arguments ...) must be global; most
probably, there will be more such items than available registers, so that Erlang
ends up with some data structures that cannot be kept in registers, while in
Janus, they can be local to a case entry and be in registers

» the assignment of some items to global registers, removes these registers from the pool
of available registers to assign to other variables; this is potentially harmful for
runtime procedures as well (e.g. general unify)

6 of 13

In the appendix, similar tables for other architectures are given: they lead to the same
conclusions.

As mentioned in the introduction, we have also done tests on environment stacking. The
main difference in execution speed between goal stacking and environment stacking depends
on the amount of module switching. When two consecutive goals in the same clause body,
belong to different modules, like in:

module_0:a :- module_1:b , module_2:c , module_0:d .
then for environment stacking four returns to the driver are needed: to module_1 for b, to
module_0 for the continuation, to module_2 for ¢, to module_0 for the continuation. For goal
stacking only three returns to the driver are executed. And if module_1 = module_2 goal
stacking only needs two returns, where environment stacking still needs four. Even when there
is only one module (i.e. one C function), environment stacking is slightly slower, for two
reasons: argument manipulation for permanent variables and the fact that a proceed cannot
directly go to the next predicate, since it has to pass by the environment of its parent goal.

5. Improving on the compilation of the switch statement

Both gcc and the SUN C compiler could do better in the compilation of a switch
statement that is compiled to an indirect jump with a switch table.

* a register can be assigned to the starting address of the switch table;
gain : 2 instructions
* range checking is most often unnecessary; gain: 2 instructions (*)
» shifting the switch variable can be avoided: 1 instruction (**)
(*) range checking is clearly unnecessary in code like:

switch (0x3 & i)

{caseO: ... ; break;
case 1:...; break;
case 2 : ... ; break;
case 3: ... ; break;

}

but C compilers don’t see this. Moreover, it still costs the masking operation to make
clear that range checking could be ommitted safely; instead, it would be nice to have a range
check omission option.

(**) The switch value cannot be used directly as an index in the switch table because the
size of a switch table entry is 4 bytes. This is unnecessary if the values of the labels are all
multiples of 4 and starting with 0. Of course, this can only work if the range check is provably
(or declared) redundant.

To summarize: the usual code generated for a switch statement is:

cmp %01,7 %01 contains the switch value in the range [0,7]
bgu L2 I L2 = default label

sethi %hi(L11),%00 I %00 will contain the starting address

or %00,%Ilo(L11),%00 I of the switch table

7 of 13

sll %01,2,%01
Id [%01+%00],%00
jmp %00

while the following is achievable:

Id [%01+%00],%00
jmp %00

The above optimizations were performed by hand on the code generatedddetie
On averagejc with optimized switch, gives the same resuledszg. Since C compilers will
certainly become better, the optimizations might be included in the future, so that the
preference for the (ANSI C) Janus compilation scheme, becomes stronger.

LEFT RIGHT
jc ordinary switch 980/190 690/160
jc hand optimized switch| 810/165 500/135
jclab 720/140 460/120

Table 2: comparing jc with and without optimized switch (Sparcl/Sparc10)

6. Other schemes

There have been other attempts to compile Prolog to C; we mention only the recent [8]
which differs mainly fronjc in that it starts from a binarized program (see [11]).

In [9], the Prolog to C compiler is built on top of a traditional WAM compiler. The WAM
instructions are expanded in-line or they become function calls. The call sequence of the
predicates is controlled by a dispatching loop.

One of the main decisions one has to make when compiling Prolog to C, is how to map
the execution of Prolog to the runtime stack of C: it is tempting to map e.g. the WAM
environment stack to the C stack. This is however a mistake for several reasons:

» the WAM environment stack is not a proper stack as soon as backtracking comes into
the picture: this imposes some painful and inefficient work arounds

« it is difficult for a garbage collector to find active environment variables in older
register windows

* most important however: the penalty of window overflows is very high; in [12], it is
reported that Aquarius is faster for the tak benchmark than C; this is due to the
fact that in Aquarius no register window overflows occur during execution of
the benchmark: Aquarius does indeed not map the environments to the C stack

So without provisions to avoid register window overflows, mapping the environment

stack to the C stack is a bad idea.

Also the choicepoint stack could be mapped to the C stack: this will pose problems for

implementing a garbage collector and cut.

8 of 13

7. General conclusions

As C compilers become always better, compiling a new language to C seems a fast and
portable way to arrive at an implementation with a high efficiency. One must however choose
carefully the translation scheme, not only from the point of view of efficiency, but also taking
portability into account. Thereby, one might be inclined to give up some portability (after all,
gcc compliance is almost as good as portable) for speed, but it turns out that staying ANSI
compliant gives almost optimal performance and that for sure, some of the newest features of
gcc are damaging performance. From the above measurements, we can conclude that the Janus
scheme, is to be preferred over any other scheme, whether one wants to remain ANSI
compliant or not. The disadvantage of Janus is that large programs, when translated to a single
C function, cannot be compiled in reasonable time by an optimizing C compiler: a program can
be divided arbitrarily into pieces similar to the modules of KLIC. Program analysis - in fact a
call dependency analysis seems enough - can decide how to divide the program in an optimal
way. So, as a conclusion, the KLIC approach seems to be the optimal one when the Janus
function is made as large as possible.

Acknowledgments

Greet Maris thanks SICS for hospitality during a one month stay there, and in particular
Sverker Janson, Ralph Haygood, Per Brand and Johan Montelius. She also thanks Bogdan
Hausman of Ellemtel Telecommunications Systems Laboratories, Sweden for explanations on
the implementation of Erlang. This work was sponsored by DPWB contract IT/4 and Esprit
contract ACCLAIM. We also thank Patrick Weemeeuw and Philippe Bekaert for help with
some of the gcc compilers.

References

[1] S. Janson and S. Haridi, ‘Programming Paradigms of the Andorra Kernel Language’, in
Proceedings of The International Logic Programming SympqgsaginV. Saraswat,
The MIT Press, Cambridge, Massachusetts, 1991.

[2] B. Hausman. ‘Turbo Erlang: approaching the Speed of Amplementations of Logic
Programming Systemed. Evan Tick, Kluwer 1994 (to appear)

[3] D. Gudeman, K. De Bosschere and S. Debray, ‘jc: An Efficient and Portable Sequential
Implementation of Janus’, ifroceedings of the Joint International Conference on and
Symposium on Logic Programming 198p 399 - 413, MIT Press, 1992.

[4] T. Chikayama, T. Fujise and D. Sekita, ‘A Portable and Efficient Implementation of KL1’,
in ICOT/NSF Workshop on Parallell Logic Programming and its Programming
Environments CIS-TR-94-04, Department of Computer and Information Science,
University of Oregon, March 1994.

[5] R. Moolenaar and B. Demoen, ‘A parallell implementation for AKL’Arogramming
Language Implementation and Logic Programming: PLILP, 'Jallinn, Estonia,
1993.

9 of 13

[6] R. M. Stallman, Using and Porting GNU CC, manual.

[7] B.W. Kernighan and D.M. Ritchie, ‘The C Programming Language -2nd Edition’, Prentice
Hall, 1988, ISBN 0-13-110632-8.

[8] K. De Bosschere and P. Tarau, ‘A continuation based Prolog-to-C mapping’, in
Proceedings of the ACM Symposium on Applied Computing (SACPBdgnix,
Arizona, March, 1994

[9] M.R. Levy and R.N. Horspool, ‘Translating Prolog to C: a WAM-based approach’, in
Proceedings of the Second Compulog Network Area Meeting on Programming
Languages, and the workshop on Logic Languagé&ssa, Italy, May 1993.

[10] D. H. D. Warren, ‘An abstract Prolog instruction set’, Technical Report no 309, p.30, SRI
International, Menlo Park, 1983.

[11] P. Tarau and M. Boyer, ‘Elementary Logic ProgramsRrioceedings of PLILP’90pp.
159-173, (eds) P. Deransart & J. Maluszynski, Springer-Verlag 1990

[12] P. Van Roy, ‘Can Logic Programming Execute as Fast as Imperative Programming ?’
Report No. UCB/CSD 90/600 Dec 1990, Berkeley, California 94720

Appendix A: more RISC architectures

SPARC| SPARC| MIPS MIPS DEC DEC HP HP

10 10 3000 3000 | Alpha | Alpha

left right left right left right left right
klic 410 230 632 367 256 148 1070 560
kllocreg | 420 200 621 316 232 122 1010 510
klicreg | 260 130 343 207 148 76 820 380
erl 260 160 437 285 155 94 410 230
erlreg 190 120 210 164 116 67 220 100
ic 190 160 281 242 117 79 190 150
jclab 140 120 203 167 85 62 170 110

The above figures show clearly that the conclusion holds on a wide range of risc
processors. It should be stressed that only comparisons within one column are intended to be

Table 3: some other RISC architectures

meaningfull: comparison of processors should not be based on the above table.

10 of 13

Appendix B: klic.c: left

void *rev()
{inti;

I =*-argp ;
label_rev:

if (i--) { *argp++ =i ; *goalstacktop++ = ap ;

goto label_rev ;

}

else cachedgoal = *--goalstacktop ;
} Frev*/

void *dummy()

{

cachedgoal = *--goalstacktop ;
} Fdummy*/

void *ap()
{inti;
i =*-argp;
label_ap:
if (i--) { *argp++ =i ; *goalstacktop++ = ap ;
cachedgoal = dummy ;
return ;
}

else cachedgoal = *--goalstacktop ;
} I*ap*/

void *ex()
{ exit(0) ; }

main()

{
goalstacktop = goalstack ;
argp = args ;
*goalstacktop++ = ex ;
cachedgoal =rev ;
*argp++ = 1000 ;

label:
(cachedgoal)() ;
goto label ;

} Fmain*/

11 of 13

Appendix C: jclab: left

static one_funct()
{inti;

void * goalstack[100000] ;
void * *goalstacktop ;

int args[100000] ;
int *argp ;

goalstacktop = goalstack ;

argp = args ;

*argp++ = 1000 ;
*goalstacktop++ = &&label_ex ;
*goalstacktop++ = &&label _rev ;

label_pred :

goto *(*(--goalstacktop)) ;
label_ap :
i =*-argp;
label_apl:
if (i--) { *argp++ =i ; *goalstacktop++ = &&label_ap ;
goto label _dum ;

}
goto label_pred ;

label_rev :
i =*-argp ;
label_revl :
if (i--) { *argp++ =i ; *goalstacktop++ = &&label_ap ;
goto label_revl ;
}
goto label_pred ;
label _dum:
goto label_pred ;
label_ex :exit(0) ;

} I*one_funct*/

12 of 13

Appendix D: erlreg.c: left

typedef void * function;
static function goalstack[100000] ;

register function *goalstacktop asm("%g3") ;

static function jct[1000] ;

register function *jctreg asm("%g5") ;
static int args[100000] ;

register int *argp asm("%g4") ;

void *rev()
{
jctreg[revi] = &&L_rev ;
return ;
L_rev:
{inti;
i =*-argp ;
label_rev:
if (i--) { *argp++ =1i;

*goalstacktop++ = jctreg[api] ;

goto label_rev ;

}
else { goto *(*(--goalstacktop)) ; }

}

} Frev*/

void *ap()
{
jctreg[api] = &&L_ap ;
return ;
L_ap:
{inti;
I =*-argp ;
label_ap:
if (i--) { *argp++ =1 ;
*goalstacktop++ = jctreg[api] ;
goto *(jctreg[dumi]) ;
}
else { goto *(*(--goalstacktop)) ; }

} I*ap*/

void *dummy/()
{
jctreg[dumi] = &&L_dummy ;
return ;
L_dummy:
goto *(*(--goalstacktop)) ;
}

void *ex()

{
jctreg[exi] = &&L_ex ;
return ;

L_ex:

exit(0) ;
} I*ex*/

main()

{
jctreg =jct ;
ex();
rev();
dummy();

ap();

goalstacktop = goalstack ;
argp = args ;

*goalstacktop++ = jctreg[exi] ;
*goalstacktop++ = jctreg[revi] ;
*argp++ = 1000 ;

goto *(*(--goalstacktop)) ;
} Fmain*/

13 of 13

