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Abstract

In this paper we present a novel optimization called
Last Parallel Call Optimization. The last parallel call
optimization can be regarded as an extension of last
call optimization, found in sequential systems, to and-
parallel systems. The last parallel call optimization
leads to improved time and space performance for a
majority of and-parallel programs. The last parallel
call optimization is presented in detail in this paper
and its advantages discussed at length. The last par-
allel call optimization can be incorporated in a par-
allel system (such as RAPWAM) through relatively
minor modi�cations to the runtime machinery. We
also present some experimental results from a limited
implementation of last parallel call operation done on
the DDAS System. These experimental results prove
that last parallel call optimization is indeed e�ective
and produces better speed-ups with respect to an un-
optimized implementation. We also discuss the prob-
lem of e�ciently performing the kill operation in and-
parallel systems. We present two approaches for ef-
�ciently propagating the kill signal to other parallel
calls subsumed by the subgoal that received the kill
signal. The �rst approach, implemented in the and-
parallel component of the ACE system, propagates the
kill lazily while the second one propagates the kill sig-
nal eagerly. The advantages and disadvantages of both
these approaches are presented. The implementation
and optimization techniques presented in this paper
are very pragmatic and we believe that they will be
of considerable utility to implementors of and-parallel
systems.

1 Introduction

A distinguishing feature of logic programming lan-
guages is that they allow considerable freedom in the
way programs are executed. This latitude permits one
to exploit parallelism implicitly (without the need for
programmer intervention) during program execution.
Indeed, two main types of control parallelism have
been identi�ed and successfully exploited in logic pro-
grams:

(i). Or-parallelism: arises when more than a single
rule de�ne some relation and a procedure call
uni�es with more than one rule head|the cor-
responding bodies can then be executed in or-
parallel fashion. Or-parallelism is thus a way of
e�ciently searching for solution(s) to the top-level
query.

(ii). And-parallelism: arises when a set of conjunctive
goals in the current resolvent are executed in par-
allel. The conjunctive goals could either be in-
dependent, i.e., the arguments of the conjunctive
goals are bound to ground terms or have non-
intersecting set of unbound variables (indepen-
dent and-parallelism), or they could be dependent
in which case they will be executed in parallel un-
til they access the common variable (dependent
and-parallelism).

In this paper we will focus on independent and-
parallelism although our results are also applicable
to dependent and-parallel systems and and-or paral-
lel systems. A major problem in implementation of
and-parallel systems is that of e�cient implementa-
tion of backtracking. Because of and-parallelism not
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only a new backtracking semantics is needed for such
systems, but also its implementation becomes very
tricky. We consider the backtracking semantics given
by Hermenegildo and Nasr for and-parallel systems
[6] and its e�cient implementation in RAPWAM [5].
The backtracking semantics as given by Hermenegildo
and Nasr attempts to emulate the backward execution
control of Prolog as much as possible. In this paper,
we present some optimizations over this backtracking
scheme that permit faster backward execution. In par-
ticular, we propose the Last Parallel Call Optimiza-
tion that saves both time and space when the last call
in a clause is itself a parallel conjunction ( from now
on a parallel conjunction will also be referred to as a
parcall for brevity)1. Last Parallel Call Optimization
(LPCO), when applicable, simpli�es backtracking and
allows failures and kills to be propagated faster. We
present some experimental results to demonstrate the
advantages of Parallel Last Call Optimization. We
also discuss how the kill operation can be e�ciently
implemented in an and-parallel system. The kill oper-
ation needs to be performed to terminate computation
in subgoals that constitute a parallel conjunction when
one of the subgoals fails to produce a solution. Its im-
plementation is complicated by the fact that a parallel
conjunction may have other nested conjunctions inside
that need to be recursively traversed and the compu-
tation in their and-parallel subgoals terminated. Be-
cause the kill operation involves a number of proces-
sors that simultaneously prune and modify a shared
tree, a naive implementation may result in race condi-
tions and non-terminating situations, as well as in in-
e�ciency. In this paper we present two approaches for
implementing a kill in an and-parallel system. One of
the approach is lazy while the other is eager depending
on the way in which killing information is propagated
along the branches of the computation tree.

The rest of the paper is organized as follows:
Section 2 describes the backtracking scheme of
Hermenegildo and Nasr for independent and-parallel
system and its realization in Hermenegildo's RAP-
WAM [5]. Section 3 introduces Last Parallel Call Op-
timization. Section 4 brie
y describes an implementa-
tion scheme for the LPCO, while Section 5 describes
our experiments to test the applicability of LPCO to
existing systems. Section 6 describes in detail the kill
operation, the problems in implementing it, and the
various solutions that we have proposed. The imple-
mentation of kill as reported in this paper has been in-
corporated in the and-parallel component of ACE [9],

1The LPCO was �rst considered in conjunctionwith the AO-
WAM System [3].

an and-or parallel system. Section 7 presents our con-
clusions. We assume that the user has some familiarity
with and-parallelism and and-parallel systems such as
&-Prolog. We will illustrate our ideas and concepts in
the context of independent and-parallelism with goal
recomputation (goal recomputation means that sub-
goals to the right of another subgoal g in a parallel
conjunction are computed in their entirety for every
solution found for subgoal g), although our results are
also applicable to dependent and-parallel systems such
as DDAS [13] and to and-or parallel systems such as
ACE [4].

2 Backtracking in And-parallel

Systems

An and-parallel system works by executing a program
that has been annotated with parallel conjunctions.
These parallel conjunction annotations are either in-
serted by a parallelizing compiler [7, 8] or by the pro-
grammer. Execution of all goals in a parallel conjunc-
tion is started in parallel when control reaches that
parallel conjunction. Parallel conjunctions may also
be conditional, which means that the goals in the con-
junction are executed in parallel only if the condition,
i.e., the expression upon which the conjunction is con-
ditioned, evaluates to true (e.g., Conditional Graph
Expressions [2, 6]).

Backtracking becomes complicated in and-parallel
system because more than one goal may be executing
in parallel, one or more of which may encounter fail-
ure and backtrack at the same time. Unlike a sequen-
tial system, there is no unique backtracking point. In
an and-parallel system we must ensure that the back-
tracking semantics is such that all solutions are re-
ported. One such backtracking semantics has been
proposed by Hermenegildo and Nasr: consider the
subgoals shown below, where `,' is used between se-
quential subgoals (because of data-dependencies) and
`&' for parallel subgoals (no data-dependencies):

a, b, (c & d & e), g, h

Assuming that all subgoals can unify with more than
one rule, there are several possible cases depending
upon which subgoal fails: If subgoal a or b fails, se-
quential backtracking occurs, as usual. Since c, d,
and e are mutually independent, if either one of them
fails, backtracking must proceed to b|but see further
below. If g fails, backtracking must proceed to the
right-most choice point within the parallel subgoals c
& d & e, and re-compute all goals to the right of this
choice point. If e were the rightmost choice point and
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e should subsequently fail, backtracking would pro-
ceed to d, and, if necessary, to c. Thus, backtracking
within a set of and-parallel subgoals occurs only if ini-
tiated by a failure from outside these goals, i.e., \from
the right" (also known as outside backtracking). If ini-
tiated from within, backtracking proceeds outside all
these goals, i.e., \to the left" (also known as inside
backtracking). This latter behavior is a form of \intel-
ligent" backtracking. When backtracking is initiated
from outside, once a choicepoint is found in a subgoal
g, an untried alternative is picked from it and then all
the subgoals to the right of g in the parallel conjunc-
tion are restarted.

Independent and-parallelism with the backtrack-
ing semantics described above has been implemented
quite e�ciently in RAPWAM [5]. RAPWAM is an
extension to the sequential WAM for and-parallel ex-
ecution of Prolog programs with and-parallel anno-
tation (such as CGEs [6]). In order to execute all
goals in a parallel conjunction in parallel, RAPWAM
has a scheduling mechanism to assign parallel goals to
available processors and some extra data structures
to keep track of the current state of execution. The
two main additional data structures are the goal stack
and the parcall frame. Details of the structure of a
Parcall frame are shown in Figure 1 (more details can
be found in [5, 6]). In addition to parcall frames and
goal stacks, an input marker node and an end marker
node is used to mark the beginning and the end re-
spectively of the segment in the stack corresponding
to an and-parallel goal.
During execution of and-parallel Prolog programs,
when a parallel conjunction is reached that is to be
executed in parallel (recall that a conditional parallel
conjunction may be executed sequentially if the con-
ditional test fails), a parcall frame is created in the
local stack2. The parcall frame contains: (i) a slot for
each goal in the parallel conjunction where informa-
tion regarding the state of execution of that goal will
be recorded, (ii) necessary information about the state
of the execution of the parallel conjunction. After the
parcall frame is created for a parallel conjunction, all
the goals in the parallel conjunction are pushed into
the goal stack. Each entry in the goal stack contains
all the information required to allow a remote exe-
cution of the corresponding subgoal. Each processors
can pick up a goal for execution from the goal stacks of
other processors as well as their own goal stack, once
they become idle.

The execution of a parallel conjunction can be divided
into two phases. The �rst phase, called inside phase,

2or in the choice point stack, as in ACE and DDAS.

starts with the creation of the parcall frame and ends
when the execution of the continuation of the parallel
conjunction is �rst begun (i.e. each goal in the con-
junction has found its �rst solution; we will say that
the parallel conjunction has been completed). Once
the execution of continuation is begun for the �rst
time, outside phase is entered. If failure occurs in the
inside phase, inside backtracking is used, while if fail-
ure occurs in the outside phase outside backtracking
will be used for backtracking on the parallel conjunc-
tion. In the inside phase, if a goal fails, the whole
parcall should fail since all goals in the parcall are as-
sumed independent. Therefore, when a goal fails in a
parcall during the inside phase, the failing processor
should send a kill signal to all processors that have
stolen a goal from that parcall to undo any execution
for the stolen goal. After all processors �nish undoing
the work, the goal before the CGE will be backtracked
over as in standard WAM.

On the other hand, after a parallel conjunction com-
pletes, if a goal in the continuation of the CGE fails,
then backtracking proceeds into the conjunction in
outside mode. Outside backtracking is from right to
left in the CGE similar to the backtracking in sequen-
tial WAM. The only di�erence is that a goal to be
backtracked over may have been executed by a remote
processor if another processor stole the goal. Thus the
redo signal has to be sent to the remote processor. If a
new solution is found during backtracking, the goals to
the right of this goal in the parallel conjunction have
to be reexecuted. If outside backtracking fails to pro-
duce any more answers, the goal before the CGE will
be backtracked over as in normal sequential execution.

3 Last Parallel Call Optimiza-

tion

Last Parallel Call Optimization produces the following
advantages in an and-parallel system:

(i). It speeds up forward execution by avoiding allo-
cation of certain parcall frames;

(ii). It speeds up the process of killing computations
during an inside backtracking;

(iii). It speeds up the process of backtracking, in gen-
eral;

(iv). It saves space on the stacks and allows earlier re-
covering of space on backtracking.

3



GOAL

STACK

STACK

(A)

PF

E

EPF

B

Goal Frame

GS

B

Choice PointTR’
BP’

PF

SLOT # 

# OF PARAMETERS

....

P(1) reg

P(2) reg

P(arity)  reg

Procedure name

Parcall Frame

PF

CEPF (continuation frame)

BPF

GS’
Status

PIP
# of slots
# of goals to wait on
# of goals still to schedule

process id. comp. status ready

process id. comp. status ready

entries for other goals

Figure 1: Additional data structures and related registers in RAPWAM

The advantages of LPCO are very similar to those
for last call optimization [14] in the WAM. The con-
ditions under which the LPCO applies are also very
similar to those under which last call optimization is
applicable in sequential systems.

Consider �rst an example that covers a special case
of LPCO: ?- (p & q). where

p :- (r & s).

q :- (t & u).

The and-tree constructed is shown in Figure 2(i).
One can reduce the number of parcall nodes, at least
for this example, by rewriting this example as ?- (r

& s & t & u). Figure 2(ii) shows the and-tree that
will be created if we apply this optimization. Note
that executing the and-tree shown in Figure 2.(ii) on
RAPWAM will require less space because the parcall
frames for (r & s) and (t & u) will not be allocated.
The single parcall frame allocated will have two extra
goal slots compared to the parcall frame allocated for
(p & q) in Figure 2(i). It is possible to detect cases
such as above at compile time. However, our aim is to
accomplish this saving in time and space at runtime.
Thus, for the example above, our scheme will work
as follows. When the parallel calls (r & s) and (t &

u) are made, the runtime system will recognize that
the parallel call (p & q) is immediately above and
instead of allocating a new parcall frame some extra
information will be added to the parcall frame of (p
& q) and allocation of a new parcall frame avoided.
The extra information added will consist of adding
slots for the goals r, s, etc. Note that no new control
information need be recorded in the parcall frame of
(p & q) (however, some control information, such as
the number of slots, etc., need to be modi�ed in the
parcall frame of (p & q)).

p & q

r & s t & u

p q

r s t u

fig (i)

r & s & t & u
r s t u

fig(ii)

f1

f2 f3

Figure 2: Reusing Parcall Frames

Note also that if the goal r was to fail in inside
mode, then in case (ii) (Figure 2(ii)) killing of com-
putation in sibling and-branches will be considerably
simpli�ed. In case (i) the failure will have to be propa-
gated from parcall frame f2 to parcall frame f1. From
f1 a kill message will have to be sent out to parcall
frame f3.

One could argue that the improved scheme de-
scribed above can be accomplished simply through
compile time transformations. However, in case p and
q were dynamic predicates this would not be possi-
ble. Also, for many programs the number of parallel
conjunctions that can be combined into one will only
be determined at run-time. For example, consider the
following program:

process_list([H|T], [Hout | Tout]) :-

(process(H, Hout) & process_list(T, Tout)).

process_list([], []).

?-process_list([1,2,3,4], Out).

In such a case, compile time transformations can-
not unfold the program to eliminate nesting of parcall
frames because it will depend on the length of the in-
put list. However, using our runtime technique, given
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that the goal process is determinate, nesting of par-
call frames can be completely eliminated (Figure 3).
As a result of the absence of nesting of parcall frames,
if the process goal fails for some element of the list,
then the whole conjunction will fail in one single step.

E�orts have been made by other researchers to
make execution of recursive program such as above
more e�cient. Heremenegildo and others have sug-
gested partially unfolding the program so that instead
of allocating one parcall frame per recursive call, one
is allocated per n calls, where n is the degree of un-
folding as illustrated in the code below (n = 3).

process_list([X,Y,Z|T],[Xo,Yo,Zo|Tout]):-

(process(X,Xo) & process(Y,Yo)

& process(Z,Zo) & process_list(T,Tout)).

process_list([X,Y], [Xo,Yo]):-

(process(X, Xo) & process(Y, Yo)).

process_list([X], [Xo]):-

process(X, Xo).

process_list([], []).

Barklund et al have suggested new language con-
structs (the language augmented with these con-
structs is termed Reform Prolog [1]) based on
Bounded Quanti�cation that encapsulate a call such
as process list(Lin, Lout) in such a way that it is
executed in parallel in one (parallel) step.

Compared to Bounded Quanti�cation and program
unfolding, our technique based on last parallel call op-
timization does not require any programmer interven-
tion or pre-processing by a compiler and achieves op-
timal saving in space and time.

Next we present the most general case of LPCO.
The most general case of LPCO arises when there are
goals preceding the parallel conjunction in a clause
that matches a subgoal that is itself in a parallel con-
junction. Thus, given a CGE of the form: (p & q)

where

p :- e, f, g, (r & s).

q :- i, j, k, (t & u).

LPCO will apply to p (resp. q) if

� There is only one matching clause for p (resp. q),
i.e., p (resp. q) is determinate.

� All goals preceding the parallel conjunction in the
clause for p (resp. q) are determinate.

If these conditions are satis�ed then a new parcall
frame is not needed for the parallel conjunction in the

clause. Rather the parcall frame for (p & q) can be
extended with an appropriate number of slots and ex-
ecution continues as if clause for p was de�ned as p
:- ((e,f,g,r) & s). Thus, if we determine at the
time of the parallel call (r & s) that e, f, and g are
determinate then we pretend as if the clause for p is de-
�ned as p :- ((e,f,g,r) & s). This is illustrated
in Figure 4.

p & q

r & s t & u

p q

r s t u

(e,f,g,r) & s & (i,j,k,t) & u
r s t u

fig(ii)

e

f

g

i

j

k

i

j

k

e

f

g

fig(i)

Figure 4: Last Parallel Call Optimization

Note that the two determinacy conditions above
require that when the parallel conjunction is encoun-
tered at the end of clause for p then there are no inter-
vening choicepoints between the parcall frame for (p
& q) and the current point on the stack. Thus even
though goal p is not determinate in the beginning, the
determinacy conditions will be satis�ed when the last
clause for p (resp. q) is tried. LPCO can be applied
at that point. This is akin to last call optimization
in sequential systems when even though a goal is not
determinate, last call optimization is triggered when
the last clause for that goal is tried. Note also that
the conditions for LPCO do not place any restrictions
on the nature of goals in the clause for p (resp. q).
The goals r, s, etc. can be non-deterministic. Note
that when outside backtracking takes place in the tree
in Figure 4(ii), then because of the organization of the
parcall frame, backtracking will directly proceed into
goal s from goals t and u. Backtracking over goals i,
j, k will be missed. Suppose now an untried alterna-
tive is found within s, then the execution of goals t
and u has to be restarted. At this point because goals
i, j, k were never backtracked over, their existing
computation can be reused, thanks to their determi-
nacy. However, when we completely backtrack out of
the parcall frame, then care has to be taken that trail
sections corresponding to i, j and k (as well as e,
f, and g) are unwound.

Finally, note that LPCO can be generalized further.
Given a parallel conjunct (p & q) and the clause p

:- e, f, g, (r & s), h, then it is still possible to
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process(1) & process_list([2,3,4])
process process_list

?-process_list([1,2,3,4], Out).

process(2) & process_list([3,4])

process(3) & process_list([4])

process(4) & process_list([])

process

process

process

process_list

process_list

process_list

process(1) & process(2) & process(3) & process(4) & process_list([]) 

?-process_list([1,2,3,4], Out).

Without the last parallel call optimization
the execution tree will appear as in the left.
With LPCO, it will appear as above. Note that
the second (output) argument is not shown.

Figure 3: Reuse of Parcall Frames for Recursive Programs

avoid allocation of the parcall frame for (r & s), aug-
menting the parcall frame of (p & q) instead, if goals
in the continuation of (r & s), i.e., h in this example,
are determinate. However, determinacy of the contin-
uation of the parallel conjunct will have to be known in
advance, hence some kind of static analysis will have
to be used to collect this information. In this paper
we do not consider this optimization any further.

4 Implementation of LPCO

To implement LPCO, the compiler will generate a dif-
ferent instruction when it sees a parallel conjunct at
the end of a clause. This instruction behaves the same
as alloc parcall instruction of the RAPWAM, ex-
cept that if the conditions for LPCO are ful�lled last
parallel call optimization will be applied.

Thus, �rst the code for this instruction will check if
there are any choicepoints below the immediate ances-
tor parcall frame (pointed to by PF register of RAP-
WAM). If there are no choicepoints, then the determi-
nacy condition is satis�ed and LPCO can be applied.

To apply LPCO, the immediate ancestor parcall
frame (or immediately enclosing parcall frame) will be
accessed and if the current parallel conjunction has n
and-parallel goals, then n new slots corresponding to
these n goals will be added to it. The number of slots
should be incremented by n in the enclosing parcall
frame (this operation should be done atomically).

Recall that in traditional RAPWAM the slots for
goals are part of the parcall frame that resides on the
stack. Given that the enclosing parcall may be al-
located somewhere below in the stack, adding more
slots to it may not be feasible. To enable more slots
to be added later, the slots will have to be allocated

on the heap and pointer to the beginning of the slot
list stored in the parcall frame (Figure 5). The slot list
can be maintained as a double linked list. Also, each
input marker of an and-parallel goal has a pointer to
its slot in the slot list for quick access. With the linked
list organization, adding new slots becomes quite sim-
ple as shown in Figure 5. Note that modi�cation of
the slot list will have to be an atomic operation. The
enclosing parcall frame becomes the parcall frame for
the last parallel call, and rest of the execution will be
similar to that in standard RAPWAM.

Note that changing the representation of slots from
an array recorded on the stack (inside a parcall frame)
to a linked list on the heap will not add any ine�ciency
because an and-parallel goal can access its correspond-
ing slot in constant time via its input marker.

It is obvious that LPCO indeed leads to saving in
space as well as time during parallel execution. Space
(as well as time) is saved because allocation of par-
call frames can be avoided. Time is also saved be-
cause backtracking and kill become faster: there are
fewer parallel control structures (parcall frames) on
the stack simplifying backward and forward control.

5 Experimental Results

We implemented our ideas described above on the em-
ulator of the DDAS [13] system. In fact because the
implementation was unfamiliar to us, we implemented
a diluted form of LPCO (described below). Even with
this restricted implementation of LPCO we obtained
improved speed-ups for all examples that we tried.
Essentially, the deeper the nesting of a CGE in the
benchmark the more improvement we obtained. Deep
levels of nesting are not uncommon in and-parallel
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Note that the goal q is being executed
on control stack of some other processor.
Also note that input markers have a direct
pointer to their corresponding goal slot in
the heap. 
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Figure 5: Allocating Goal Slots on the Heap

programs (e.g., in matrixmultiplication, levels of nest-
ing of the order of thousand parcalls can be created).

Our diluted implementation of LPCO was as fol-
lows: When a goal in a CGE C is stolen from the
goal stack of another processor, and the execution
of this stolen goal deterministically reaches another
CGE C0, then we chain the parcall frame for the cur-
rent CGE C0 to the parcall frame corresponding to
the CGE C (In a more faithful implementation of
LPCO the parcall frame for C0 would not have been
allocated; the parcall frame for C would have been
partially expanded). Having maintained such parcall
frame chain(s), when the execution of a CGE corre-
sponding to some parcall frame in the chain fails, we
send a kill signal to all the processors which are execut-
ing or have executed a goal taken from a parcall frame
that is in this chain. In this way the kill signals reach
the processor in the minimum amount of time possi-
ble. In the standard RAPWAM, the kill signals will
be sent gradually as the failing processor backtracks
over the search tree. As a result, not only processors
do less useless work that will be eventually killed, they
undo the work that needs to be undone and execute
other goals that may lead to useful solutions sooner.
This results in execution speed-ups.

Consider the following program.

?- g. a.

g :- (a & b & c & d). d.

b :- (x & y). x.

c :- (u & v). u.

y :- (e & f). v.

Assume there are four processors (say P1, P2, P3, and
P4), all parallel conjunctions can be executed in par-
allel, and the top-level query ?- g is executed by P1.
When P1 reaches the parallel conjunction (a & b & c

& d), a parcall frame will be created in its local stack
S1 and then all goals in the CGE will be pushed into its
goal stack G1. Assume that P1 executes the �rst goal
a locally (indicated by * in Figure 6), P2 steals the goal
b from G1 for (remote) execution, and P3 steals the
goal c for (remote) execution. During the execution of
P2, a parcall frame will be created in the local stack
S2 when it reaches the CGE (x & y). Since the ex-
ecution leading to this parcall frame is deterministic,
pointers are created linking the parcall frame for (a &

b & c & d) and the parcall frame currently created
for (x & y). Similar situation occurs with respect to
execution of goal c by processor P3 (Figure 6).

During the execution of (x & y), assume that P2 con-
tinues to execute the �rst goal x and P4 steals goal y
for remote execution. Execution of goal y will determi-
nately lead to CGE (e & f). Thus, a parcall frame is
created for this CGE in stack S4 of P4 and chained to
the parcall frame for the CGE (x & y) in S2. Finally,
when P4 executes the goal e, execution fails. There-
fore, a kill signal will be sent by P4 to processors P1
and P2 (note that P4 could also send a kill signal di-
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rectly to processor P3 as well but because of lack of
complete understanding of code for DDAS system we
could not implement it in our modi�cation; P3 will re-
ceive a kill signal from P1 via standard kill mechanism
employed by DDAS), since they have executed goals
taken from the parcall frame chain, to undo all work
done corresponding to the chained parcall frames. Af-
ter P1, P2, and P4 �nish killing, they can �nd other
work that may be useful.

S1 S2

S3 S4

processor 1 processor 2

processor 4processor 3

PF

B11

PF

PF

PF

B31

B21

B41

a
b
c

d

(*)
(p2)
(p3)

(*)

u

v

(*)

(*)

input
marker

input marker

x

y

(*)

(p4)

e
f

(*)

The dashed arrows
represent links in
the parcall chain

Figure 6: The parcall frame chain
.

In standard DDAS (or RAPWAM) implementation
P4 will kill the computation corresponding to goals e
and f. It will then backtrack to the parcall frame of (x
& y) communicating the failure of that parcall frame
to processor P2. P2 will then kill the computations for
x and y and backtrack further up eventually commu-
nicating the failure of (a & b & c & d) to processor
P1. As is apparent, the kill gets processed in a some-
what sequential manner in the RAPWAM, whereas
due to LPCO it is propagated faster in the RAPWAM
with our modi�cation.

Our experimental results for three programs are
shown in Figure 7 in which the dashed curves rep-
resent normal DDAS execution while the solid curves
represents speed-ups on DDAS that includes our ap-
proximation of LPCO.

Figure 7(I) shows the speed-up in the execution of a
program that tests if an element is non-zero in a 250-
element list, if yes, some processing is done, otherwise
the computation fails (thus the program is similar to
process list program given in Section 3). Figure
7(II) is the speed-up of the execution of a program

which checks if a given element is absent in a sorted
binary tree. If the element is found, execution fails.
Figure 7(III) is the speed-up graph of quicksort using
di�erence list where both arguments of quicksort are
ground. From the speed-up curves one can see that
DDAS augmented with our approximation of LPCO
performs consistently better than simple DDAS exe-
cution. In fact, we believe that if LPCO was imple-
mented more faithfully, speed-up improvements will
be even more dramatic (this is because in our diluted
implementation we still incur the cost of allocating full
parcall frames while in a more faithful implementation
of LPCO this cost will be considerably reduced). The
fact that LPCO leads to considerable improvement in
execution speed-up is not all that surprising since Last
Call Optimization also results in dramatic improve-
ment in execution performance of sequential systems.
Note that in Figure 7(III) the fact that the dashed
curve and dotted curves meet is because all avail-
able parallelism has been exploited when that point
is reached in which case LPCO cannot produce any
performance improvement.

6 Implementing KILL in And-

parallel Systems

In this section we discuss two methods for implement-
ing the kill operation. As mentioned earlier, perform-
ing the kill is not easy since it is a global operation
on the execution tree that may involve more than one
processor.

The killing of a subgoal G involves complete re-
moval of all the information allocated on stacks of
processor(s) during the execution of G. It consists
of two actions:

� garbage collection: recovery of the stack space
occupied by the killed computation;

� trail unwinding: removal of all the bindings gen-
erated during the killed computation.

Both the actions do not impose any sort of con-
straint on the order in which they must be per-
formed (i.e. the various parts of the computation
may be deallocated and unwound in any order). How-
ever, care must be taken while mixing forward and
backward execution. For instance, Consider a goal:

:- .... a, (b & c & d) ...

in which the processor P1 that executed goal a also
picks up goal b. Goals c and d are picked up by other
processors. Suppose goal b fails, then processor P1
will send a kill to processors executing c and d. While
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Figure 7: Experimental Results

the kill of c and d is in progress, P1 cannot back-
track over a, unwind the trail, and restart some other
computation. In other words the processor executing
the goal preceding the parallel conjunction should not
restart computation elsewhere because unless c and d

are completely killed the correct state would not have
been restored to begin this new computation.

A kill phase is always started by a failing worker
that reaches a parcall frame during backtracking. This
covers two cases:

� the parcall frame is reached while there are other
and-parallel subgoals of this parcall that are still
active (i.e. the parcall frame is in inside status).
In this case all the other subgoals of the parcall
need to be killed.

� the parcall frame is reached after all the subgoals
have detected at least one solution (i.e. the par-
call frame is in outside status). In this case
the traditional &-Prolog point-backtracking is ap-
plied and kill messages are sent to those and-
parallel subgoals whose computation was deter-
ministic (i.e., these determinate goals do not of-
fer any further alternatives, and hence such goals
should be killed immediately rather than back-
tracked over).

In the second case, all the processors involved in the
kill operation are free to return to their normal pre-
vious operation once the kill is completed (since the
worker generating the kills is itself taking care of con-
tinuing the execution by sending redo messages to the
non-deterministic subgoals). In the �rst case, instead,
once the kill is completed, one of the workers who was
executing the parcall's subgoals needs to continue the
main execution by continuing backtracking over the
computation preceding the parcall frame.

A kill can be serviced lazily or eagerly. Both ap-
proaches require di�erent kind of support from the

underlying runtime system. The only data structures
that are common to both the lazy approach and the
eager approach described in this paper are those that
are required to support the sending/receiving of kill
messages. Kill messages are realized by associating a
kill-message queue with each worker. The kill-message
queue of a processor is accessible to all other proces-
sors. Access operations on these queue must be atomic
since these queues are shared.

6.1 Kill Steps

The process of killing a computation can be further
subdivided into two distinct phases:

(i). Propagation phase: in which the kill signal is
propagated to all the and-parallel branches nested
inside the and-branch of the subgoal being killed;

(ii). Cleaning phase: in which the space from killed
computation is removed (garbage collection and
trail unwinding).

The execution of the cleaning phase is relatively easy
but it requires the knowledge of the physical bound-
aries of the computation to be removed. The stack
structure adopted to store the computation by any
Prolog Inference Engine allows exclusively a bottom-
up traversal of the computation tree (i.e. we can only
visit the computation tree starting from the leaves
and moving upwards, towards the root), which cor-
responds to scanning the stack from the top towards
the bottom3. Thus to scan the tree, we at least require
pointers to the bottommost leaf nodes that represent
the point from which the upward traversal to clean
up should begin. Once this starting point is known,

3a scan in the opposite direction would be very expensive,
due to the variable size of the structures allocated on the choice
point stack.
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cleaning is a straightforward operation, which resem-
bles in many aspects a backtracking process. As in
backtracking, the worker performing the kill scans the
stack, removing each encountered data structure and
unwinding the part of trail associated with that part
of the computation. The main di�erences with the
backtracking process are:

� alternatives in the choice points are ignored|and
the choice points are removed;

� parcall frames are treated as if they are in inside
status, i.e. kills towards all the subgoals of the
parcall frame are generated.

It is important to observe that the cleaning activ-
ity can be performed quite e�ciently since parallel
branches enclosed in a killed subgoal can be cleaned in
parallel. Once the bottommost extreme of the com-
putation to be killed has been detected, the clean-
ing step can be immediately applied. Figure 8 shows
this process. The main issue|and the most di�cult
problem|is the actual detection of the location of the
leaves from which cleaning activity can be started.
This is the purpose of the propagation step mentioned
earlier and the rest of the section will deal with di�er-
ent approaches to tackling this problem.

In the following text we present two approaches for
propagating kills (with possible variations). These ap-
proaches are parameterized by:

(i). direction of the propagation: two possible di-
rections can be considered

(a) top-down: kill signals are actively propa-
gated from the root of the killed subgoal to
the leaves;

(b) bottom-up: kill is started from the leaves and
pushed towards the root of the subgoal.

Note that a top-down element is always present in
any kill propagation mechanism since, after all, a
kill is received by a subgoal and has to be propa-
gated to its descendent parcall frames.

(ii). mode of propagation: the propagation of the
kill signals in the tree can be realized in two al-
ternative ways:

(a) active: the various workers are actively re-
ceiving and propagating the kill signals;

(b) passive: workers lazily wait to receive a kill
directed to them.

6.2 Lazy Propagation of Kill Message

The main idea behind this propagation technique is
to avoid sending kill messages (unless they are strictly
necessary). This is realized by leaving to each proces-
sor the task of realizing when the computation that it
is currently performing has been killed.

The only data structures that are required in order
to implement lazy propagation of kill messages are the
following:

(i). the generic support for the sending/receiving of
kill messages such as kill-message queues, locks,
shadow registers, etc.;

(ii). a unique global queue in which suspended kills
are recorded;

(iii). a 
ag in each slot of the parcall frame which will
be used to indicate that the corresponding sub-
goal should be killed;

(iv). a representation of the computation tree that will
help determine e�ciently whether a given subgoal
is contained in another subgoal4.

In the lazy approach to killing, a kill message is sent
to a worker only when the bounds of the computation
are known (i.e. the computation to be killed has al-
ready been completed). In this case the cleaning step
can be immediately applied.

Failing Subgoal

CGE

End of Subgoal
1

2

3

4

5

1: failing subgoal

2: kill message to end of subgoal

3: unwind+garbage collection on local branch
4: kill propagated to other subgoals

5: continuation above the CGE

Figure 8: Cleaning Operation during a Kill

If the kill is issued when the branch to be killed
is still computing, then a suspended kill is generated.
The suspended kill is represented by

� setting the failing 
ag in the slot corresponding to
the killed subgoal (i.e. subgoal corresponding to
the killed branch);

4It is an open question whether it is possible to obtain this
information in constant time for a dynamically growing tree.
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� storing the information relative to the kill in a new
entry of the global queue for suspended kills.

The e�ects of this operation are:

(i). since the worker which completes the execution of
the subgoal will access the slot for updating the
various �eld of the slot (like recording its id for
backtracking purposes), it will immediately real-
ize that the computation that it has just com-
pleted has been previously killed and automati-
cally it will start performing the cleaning opera-
tion (as explained above).

(ii). if the and-scheduler selects an and-parallel sub-
goal that is subsumed by another subgoal with
a suspended kill then it will immediately discard
the goal and look for a new work. Key to this
step is the presence of a representation of the
computation tree which allows us to e�ciently
determine whether one subgoal is subsumed by
another (i.e. one is a descendent of the other in
the search tree).

(iii). periodically each worker checks whether its cur-
rent computation is subsumed by one of the goals
killed by a suspended subgoal. If this condition
is satis�ed then the worker will immediately in-
terrupt the computation and start the cleaning
phase.

The beauty of this approach lies in its simplicity.
The scheme can also take advantage of many of the
algorithms that have been developed for e�cient back-
tracking (lazy kill is almost identical to backtracking).
Furthermore, a worker is never distracted by kill mes-
sages during a useful computation, since the checks
performed will a�ect its execution only if the worker is
positioned on a killed branch of the tree. In this way
the kill operation is postponed and performed only
when no useful work is available.

The main disadvantages that we can identify in this
approach are the following:

(i). the implementation of this scheme relies on the
availability of a representation of the computation
tree which allows to determine e�ciently whether
a given subgoal is a descendent of another. It
is an open problem whether this can be done in
constant time.

(ii). the execution of the kill may be slower than in
other schemes; this is due to the fact that cleaning
is started by one processor from the bottommost
end of a branch, making it an inherently sequen-
tial operation. Other approaches may o�er an

higher degree of parallelism during the cleaning
up of execution.

6.3 Eager Kill

The disadvantages mentioned above seems to make
the Lazy Kill approach not too easily implementable.
For this reason we propose a di�erent approach, called
eager kill, which is mainly (but not exclusively) a top-
down approach (see Fig. 9).

Failing Subgoal

Direction of Kill
Propagation

Failing Subgoal

Direction of Kill
Propagation

Lazy Kill Eager Kill

Figure 9: Comparison of Lazy and Eager Kill

The main problem in this approach is the lack of
information that will allow us to perform a top-down
traversal of the tree (starting from a given node to-
wards the leaves). As we will see later on, the amount
of information required to accomplish this for our pur-
pose is quite limited.

6.3.1 Support for Eager Kill

In terms of data structures required to support eager
kill, the following elements need to be added in the
design:

� each slot is extended in order to contain a pointer
either to (i) the �rst parcall frame (if any) cre-
ated during the execution of the subgoal, (ii) or to
the marker indicating the end of the computation,
if this computation completes without creating a
parcall frame.

� a return id �eld is introduced in each parcall frame.
This �eld will be used to indicate which worker is
assumed to continue the kill/backtracking above
the parcall frame in the execution tree once the
whole computation originating from the parcall
has been removed.

Note that the pointer to the �rst parcall frame created
during the execution of a subgoal is indeed the same
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pointer needed to maintain the parcall chain described
in Section 5

We now present an example to illustrate our tech-
nique for eager propagation of a kill.

6.3.2 An Example

Let us consider the computation described in Figure
10.

a & b & c

d & f

g

h & i

j

b

d f

h i

Failing Subgoal

1

2

3

4

5

6

7

6

7

Figure 10: An Example of Eager Kill

Assuming that processor Pi is the one which started
the execution of b, then the initial kill message will be
sent to Pi from the worker which failed in the com-
putation of c. If Pi was looking for work by invoking
the and-scheduler, then it will simply leave the and-
scheduler and start serving the kill. Otherwise, at the
next check for kill it will suspend the current execu-
tion, set the shadow registers and move to service the
kill. Let's assume the second case.

As mentioned in section 6.3.1, Pi has access to the
�rst parcall frame generated during the computation
of b. It positions itself on that parcall frame and, since
this has already completed (i.e. it is in outside status),
it starts the killing activity by sending a kill to the con-
tinuation of the parcall frame (step 2). The continu-
ation itself contains another parcall frame (pointed to
by the endmarker of the previous parcall frame), so
the worker receiving this kill message will access the
parcall frame (step 3) and send another kill message
to its continuation (since even this parcall frame is in
outside status). The worker executing j will receive

the kill and serve it, removing the whole computa-
tion of j and setting the appropriate bit in the parcall
frame (h&i). At this point the worker that is busy
waiting on such parcall frame (busy waiting until the
continuation has been killed) will kill all the subgoals
of the parallel call (h and i, step 6) and then continue
further and kill g. Once g has been removed, a bit
in the parcall frame (d&f) is set and Pi, which was
in the meantime busy waiting on that parcall frame
(busy waiting until the continuation has been killed),
may proceed to send the kill messages to the subgoals
of the parallel call (d and f, step 7) and, once all of
them have reported the end of the kill, it may proceed
with the killing of b.

Once the whole branch has been removed and also
a has reported the end of the kill, the worker Pi is free
to restart the computation previously interrupted.

Note that both the Lazy and Eager schemes for
propagating kill can be optimized further, however,
we do not describe these possible improvements due
to lack of space. More details can be found elsewhere
[10]. The Lazy scheme has been incorporated in the
and-parallel component of the ACE system [9, 4].

6.4 Experimental Results

The two approaches for performing the kill operation
during and-parallel computation originated during the
design of the and-parallel component of ACE [4], an
And/Or-parallel Prolog system. The current imple-
mentation supports the lazy approach for killing sub-
goals.

Figure 11 shows the execution time obtained for a
program that involves massive amount of killing. This
program is for computing Fibonacci(16). However, af-
ter the computation is �nished a failure is forced at
the end. As a result, the whole tree created during
the Fibonacci computation needs to be unwound and
removed. We expect that the time to kill, i.e., to un-
wind and remove the tree, should be approximately
the same as the time it takes to construct the tree.
Hence, the expected time for executing this program
that fails at the end should be twice the time for suc-
cessfully computing Fibonacci(16). The two curves
(labeled \Actual time" and \Expected time" respec-
tively) in Figure 11 show the actual execution time
and the expected execution time obtained for di�er-
ent number of agents.

A third curve (labeled Optimized Time) shows the
slight improvement obtained by introducing an opti-
mization in the sequential engine (which sequential-
izes consecutive and-parallel subgoals executed by the
same agent thus reducing the number of input markers
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allocated and the number of parallel threads). The �g-
ure illustrates that with fewer processing agents (� 2)
the actual time to process a parallel conjunction and
then kill it is smaller than the expected time for this
computation (in other words the time it takes to un-
wind and kill the tree is less than the time it takes to
create it). This is because of the fact that with fewer
processors each processor ends up sending signals to
itself which can be handled faster. With larger number
of processors the time to communicate kill messages
becomes quite signi�cant; as a result, the actual time
exceeds the expected time. This is what one would ex-
pect anyway, so it was not a surprise. The �gure also
shows that reducing the number of parallel threads re-
sults in improved performance. This is also expected
since by reducing the number of threads we e�ectively
reduce the number of kill messages that will be ex-
changed.

The discussion so far suggests that killing adds a
signi�cant overhead to computation. However, killing
leads to some advantages as well|in some cases failure
of a computation can be detected quite a bit earlier,
resulting in superlinear speedups. Figure 12 illustrates
this other extreme of the lazy approach to killing. The
program, whose execution time is plotted against the
number of processors, consists of activating two paral-
lel threads. The �rst thread contains a huge amount
of computation, while the second encounters an early
failure. The early failure will not be immediately de-
tected in sequential execution (it will be detected after
the huge �rst thread is �nished and the second thread
is started), while in any parallel computation it will
be immediately detected and propagated to the �rst
thread avoiding the huge computation. This results in
superlinear speedups as shown in Figure 12.

7 Conclusion and Related

Work

In this paper we presented a novel optimization called
Last Parallel Call Optimization. The Last Parallel
Call optimization can be regarded as an extension of
last call optimization, found in sequential systems, to
and-parallel systems. We are not aware of any work
that attempts to optimize last parallel call. The only
work that one could think of as coming close is that
of Ramkumar [12] on what he terms \distributed last
call optimization" for his and Kale's ROPM system
[11]. The distributed last call optimization is speci�c
to process based systems such as ROPM and attempts
to reduce the message 
ow between goals during par-
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Figure 11: Fibonacci with Failure

allel execution. Essentially, if goal g calls goal a which
in turn calls goal b then the solutions produced by b

can be directly communicated to g if b is the last call
in a and a is the last call in g. In this way send-
ing of solutions �rst to goal a and then from a to
g can be avoided. The last call need not be deter-
minate for distributed LCO of ROPM since ROPM
is a rather non-traditional model (i.e., based on pro-
cesses and message passing rather than on stack-based
execution). The sole aim of the last distributed call
optimization is to reduce message tra�c in the multi-
processor system so that its aim, scope, as well as its
results are quite di�erent from the traditional last call
optimization or from our last parallel call optimiza-
tion.

We also presented some experimental results that
demonstrate the e�ectiveness of the last parallel call
optimization. Not only the LPCO saves space, it also
leads to reduced runtime for a majority of and-parallel
programs. The modi�cations needed to incorporate
the LPCO in an and-parallel system are quite minor
and only require some changes to the way the parcall
frame (of RAPWAM) is implemented. We plan to in-
clude LPCO in the and-parallel component of ACE,
an and-or parallel system being collaboratively devel-
oped by New Mexico State University and University
of Madrid. We also discussed the problem of e�ciently
supporting the kill operation in an and-parallel sys-
tem. We presented two approaches, one lazy and the
other eager, of which the former has been currently
incorporated in the and-or parallel system ACE. The
techniques discussed in this paper, we believe, are very
pragmatic and will be immensely useful to implemen-
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tors of parallel systems.
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