
IDRA (IDeal Resource Allocation): A Tool for
Computing Ideal Speedups

M. J. Fern�andez M. Carro M. Hermenegildo

fmjf, mcarro, hermeg@dia.fi.upm.es

Facultad de Inform�atica
Universidad Polit�ecnica de Madrid (UPM)
Boadilla del Monte, Madrid 28660|Spain

Abstract

Performance studies of actual parallel systems usually tend to concentrate on the e�ectiveness
of a given implementation. This is often done in the absolute, without quantitave reference to the
potential parallelism contained in the programs from the point of view of the execution paradigm. We
feel that studying the parallelism inherent to the programs is interesting, as it gives information about
the best possible behavior of any implementation and thus allows contrasting the results obtained.

We propose a method for obtaining ideal speedups for programs through a combination of sequen-
tial or parallel execution and simulation, and the algorithms that allow implementing the method.
Our approach is novel and, we argue, more accurate than previously proposed methods, in that a
crucial part of the data { the execution times of tasks { is obtained from actual executions, while
speedup is computed by simulation. This allows obtaining speedup (and other) data under controlled
and ideal assumptions regarding issues such as number of processor, scheduling algorithm and over-
heads, etc. The results obtained can be used for example to evaluate the ideal parallelism that a
program contains for a given model of execution and to compare such \perfect" parallelism to that
obtained by a given implementation of that model.

We also present a tool, IDRA, which implements the proposed method, and results obtained with
IDRA for benchmark programs, which are then compared with those obtained in actual executions
on real parallel systems.

1 Introduction

In recent years a number of parallel implementations of logic programming languages, and, in particular,
of Prolog, have been proposed (some examples are [HG90, AK90, SCWY90, She92, Lus90]). Relatively
extensive studies have been performed regarding the performance of these systems. However, these studies
generally report only the absolute data obtained in the experiments including at most a comparison with
other actual systems implementing the same paradigm. This is understandable and appropriate in that
usually what these studies try to asses is the e�ectiveness of a given implementation against state{of{
the{art sequential Prolog implementations or against similar parallel systems.

In this paper, and in line with [SH91], we pose and try to answer a di�erent question: given a (parallel)
execution paradigm, how large is the maximum bene�t that can be obtained from executing a program
in parallel in a system designed according to that paradigm? What are the resources (for example,
processors) needed to exploit all parallelism available in a program? (we will refer to this as \maximum
parallelism") How much parallelism can be ideally exploited for a given set of resources (e.g. a given
number of processors)? (we will refer to this as \ideal parallelism"). The answers to these questions
can be very useful in order to evaluate actual implementations, or even parts of them, such as, for
example, parallelizing compilers. However, it is clear that such answers cannot be obtained from actual
implementations, either because of limitations of the implementation itself or because of limitations of
the underlying machinery, such as, for example, the number of processors or the available memory. It
appears that any approach for obtaining such an answer has to resort to a greater or lesser extent to
simulations.

1

There has been some previous work in the area of ideal parallel performance determination through
simulation, in particular, the work of Shen [SH91] and Sehr [SK92]. These approaches are similar in spirit
and objective to ours, but di�er in the approach (and the results).

In [SH91] a method is proposed for the evaluation of potential parallelism. The program is �rst
executed by a high{level meta-interpreter/simulator which computes ideal speedups for independent
and{parallelism, or{parallelism, and combinations thereof. Such speedups can be obtained for di�erent
numbers of processors.

This work is interesting, �rstly in that it proposed the idea of obtaining ideal performance data
through simulations in order to be able to evaluate the performance of actual systems by contrasting
them with this ideal and, second, because it provides ideal speedup data for a good number of programs.
However, the simulator proposed does su�er from some drawbacks. The �rst one is that all calculations
are performed using as time unit a resolution step { i.e. all resolution steps are approximated as taking
the same amount of time. This approximation makes the simulation either conservative or optimistic in
programs with (respectively) small or large head uni�cations. To somewhat compensate for this, and to
simulate actual overheads in the machine, extra time can be added at the start and end of each task.
The second drawback is that the meta-interpretive method used for running the programs limits the size
of the executions which can be studied due to the time and memory consumption implied.

In [SK92] a di�erent approach was used, in order to overcome the limitations of the method presented
above. The Prolog program is instrumented to count the number of WAM instructions executed at
each point, assuming a constant cost for each WAM instruction. Only \maximal" speedup is provided.
Or{parallel execution is simulated by detecting the critical (longest) path and comparing the length
of this path with the sequential execution length. Independent and-parallel execution is handled in a
similar way by explicitly taking care of the dependencies in the program. Although this method can
be more accurate than that of [SH91] it also has some drawbacks. One is the fact mentioned above
that only maximal speedups are computed, although this could presumably be solved with a back-end
implementing scheduling algorithms such as the ones that we will present. Other is that the type of
instrumentation performed on the source code does not allow taking control instructions into account.
Also, a good knowledge of the particular compiler being used is needed in order to mimic its encoding of
clauses. Furthermore, many WAM instructions take di�erent amounts of time depending on the actual
variable bindings appearing at run-time, and this would be costly and complicated to take into account.
Finally, the problem of being able to simulate large problems is only solved in part by this approach,
since running the transformed programs involves non-trivial overheads over the original ones.

The approach that we propose tries to overcome the limitations of previous approaches by using
precise timing information, rather than approximations, and allowing gathering information for much
larger executions. We do that by placing the splitting point between actual execution and simulation
at a di�erent location: sequential tasks are not simulated or transformed but rather executed directly
in real systems. Timing data is gathered, only at the minimal number of points, by a modi�ed Prolog
implementation. The part that is simulated regards the possible (alternative) schedulings of those se-
quential tasks (while respecting the precedences among the tasks). We argue that this allows obtaining
more precise data when compared to previous methods. The modi�cation to the Prolog implementation
is minimal and also data gathering has negligible e�ects on execution time.

The paper is structured as follows: Section 2 describes more in depth our approach and the techniques
used in its implementation. Sections 3 and 4 show how the maximumand ideal parallelism are calculated.
In Section 5 an overview of IDRA, the actual tool, is given. Section 6 contains examples of simulations
made using IDRA and comparisons of actual implementations with the results of the simulation.

2 Parallelism and Trace Files

As we said before, we want to simulate alternative schedulings of parallel executions. To do this, we
use a description of the execution which contains the relationships and dependencies which hold among
the tasks (used to simulate new correct schedulings, i.e., executions where the precedence relationships
are met), and the length (in time) of each task. This description can be produced by executions in
actual implementations (not necessarily parallel ones: only the description of the concurrency in the
execution and each task's length must appear, the parallelism among tasks being introduced by means of

2

START_EXECUTION

FORK

START_GOAL

FINISH_GOAL

JOIN

END_EXECUTION

Figure 1: And{parallel execution

START_GOAL

START_EXECUTION

FORK

FINISH_GOAL

SUSPEND

RESTART

Figure 2: Or{parallel execution

Node Comment

start execution Start of the whole execution
end execution End of the whole execution
start goal The task (corresponding to a goal) starts
finish goal The task (corresponding to a goal) ends
fork Execution splits in several branches
join Di�erent branches join
suspend A task is suspended
restart A task is restarted

Table 1: Some common observables for parallel execution of logic programs

the simulation) or even using other high{level simulators able to produce information about dependencies
in the program and an estimation of the (relative) cost of executing each sequential task.

Among the information we can extract from these descriptions, the following may be of interest:

� Maximum parallelism: this corresponds to the parallelism obtained with an unbound number of
processors, assuming no scheduling overheads.

� Ideal parallelism: this corresponds to the speedup ideally attainable with a �xed number of proces-
sors. The tasks{processors mapping here decides the actual speedups attained. Optimal scheduling
algorithms and currently implemented algorithms are clear candidates to be studied.

Maximum parallelism is useful in order to �nd out the absolute maximumperformance of a program.
This would serve to compare di�erent programs: for example, di�erent parallelizations/sequentializations
of a given program (i.e., when di�erent annotators [MH90] for parallelism are being used) or di�erent
parallel algorithms proposed for a given problem. Ideal parallelism is useful in order to compare a given
implementation against its ideal behavior for a given number of processors. This will allow, for example,
checking how the performance evolves with an increasing number of processors.

In the following sections we will give a small review of or{ and restricted independent and{parallelism,
before we focus on the structure of the execution description and how it is used to create an execution
graph which describes the execution in a more tractable manner.

3

2.1 The Description of the Execution

The descriptions of the executions are stored in the form of traces, which are series of events. These
events are gathered at run{time by the system under study. The events reect observables (interesting
points in the execution), and allow the reconstruction of a skeleton of the parallel execution. The types of
events used, along with a brief description, are shown in Table 1. Each event has enough information to
establish the dependencies with other events from the same execution and to know details of the sequential
tasks in the computation. Figures 1 and 2 show, respectively, a representation of an and{parallel and an
or{parallel execution, with some events marked at point where they occur.

2.2 Restricted And{parallelism

Restricted and{parallelism (RAP) refers to the execution of independent goals in the body of a clause
using a fork and join paradigm.1 In this case dependencies exist among the goals before and after the
parallel execution and the goals executed in parallel. Consider the &{Prolog [HG90] program below,
where the \&" operator, in place of the comma operator, stands for and{parallel execution (a : : :g are
assumed to be sequential):

main:- a, c & b, g.

c:- d & e & f.

A (simpli�ed) dependency graph for this program is depicted in Figure 1. In the RAP model there is
a join corresponding to each fork (failures are not seen at this level of abstraction), and forks are
followed by start goals of the tasks originated. In turn, joins are preceded by finish goals. In the
case of nested forks, the corresponding joins will appear in reverse order to that of the forks. The
start goal and finish goal events (note that �nish can also be caused by ultimate goal failure) must
appear balanced by pairs. Under these conditions, a RAP execution can be depicted by a directed acyclic
planar graph, where and{parallel executions appear nested.

2.3 Or{parallelism

Or{parallelism corresponds to the parallel execution of di�erent alternatives of a given predicate. Since
each alternative belongs conceptually to a di�erent \universe" there are (in principle) no dependencies
among alternatives. However, each alternative does depend on the fork that creates it. In fact, additional
dependencies arise in real systems due to the particular way in which common parts of alternatives are
shared and due to side{e�ects. Consider for example the following program which has three alternatives
for predicates p and q:

main:- p.

main:- q.

p:- : : :

p:- : : :

p:- : : :

q:- : : :

q:- : : :

q:- : : :

A possible graph depicting an execution of this predicate is the one shown in Figure 2. Note that the
rightmost branch in the execution is suspended at some point and then restarted. In fact, this suspension
is probably caused by its sibling, because a side{e�ect predicate or a cut would impose a serialization
of the execution. One common important feature of the or{parallel execution is that branches do not
join. In terms of dependencies among events, forks do not need to be balanced by joins. The resulting
graph is thus a tree.2 We are assuming that p and q's alternatives are sequential. Otherwise a similar
representation would be recursively applied.

1Non{restrictedIndependentand{parallelismallows execution structureswhich cannotbe describedby fork{join events.
Such structures are generated, for example, by Conery's or Lin and Kumar's models [Con83, LK88] and by &{Prolog when
wait is used.

2Although all{solutions predicates can be depicted using this paradigm, the resulting representation is not natural. A

4

Figure 3: Execution graph, and{parallelism Figure 4: Execution graph, or{parallelism

2.4 The Execution Graph

Traces are converted into execution graphs, which are used by the simulator as its �rst structure. An
execution graph is a directed weighted graph G(X;U; T) where:

X = fx0; x1; : : : ; xn�1g is a set of nodes

U = fui;j; 0 � i < j < ng is the set of edges connecting node xi to node xj.

T = fti;j; 0 � i < j < ng is the set of weights corresponding to each ui;j.

In the execution graph each node corresponds to an event, and each edge to a dependency between
the events the nodes represent. Each node x 2 X has an associated type type of(x) and the point
in time in which the corresponding event has occured, time(x). The weight in each edge represents
the time elapsed between the events represented by the nodes that edge connects. Among these edges
we distinguish two types: those which represent sequential execution and those which represent delays
introduced by scheduling. The edges fall, thus, in one of the following two categories:

Scheduling: fork to start goal, finish goal to join.

Execution: start goal to finish goal, start goal to fork, join to finish goal, join to fork.

The events suspend and restart do not appear in the lists above; their treatment will be discussed
later, as they are handled in a special way. The join event, and its associated node, only appears in
and{parallel executions. In Figures 3 and 4 the execution graphs corresponding to the traces depicted in
Figures 1 and 2 are shown.

In the next section we will see how the execution graph can be used to �nd out the maximum
parallelism inherent in an execution.

3 Maximum Parallelism

As we said in Section 2, to calculate maximum parallelism we assume a null scheduling time and an
in�nite number of processors, so that newly generated parallel tasks can be started without any delay at
all. Two interesting results we can obtain from a simulation with these characteristics are the maximum
speedup attainable and the minimum number of processors needed to achieve it.

visualizationcloser to the user's intuition for these predicates needs structures similar to those of Restricted and{parallelism.
Furthermore, depictionof dependenciesdue to side{e�ects leads to arbitrary graphs. This is also the case for and{parallelism.

5

It is clear that these �gures are theoretical limits, only possible to obtain through simulation, but they
can serve as reference to compare alternative parallelizations of a program, without the possible biases
and limitations that actual executions can impose. Data about speedup and number of processors can
be obtained by building a new graph in which the labels of the edges are modi�ed as follows:

� The time of each fork{start goal edge is set to zero, to eliminate scheduling times.

� The time of each finish goal{join edge (for and{parallelism) is set to zero for the longest task
among a set of siblings, and the time for the finish{join edge of its siblings is changed so that all
of them perform the join at once.

Whit this rewriting, the length of every path from start execution to end execution will give
the shortest execution time. Let us assume that the node corresponding to the start execution is x0,
and that the node corresponding to the end execution is xn�1. The rewriting process is as follows:

Step 1 8xi; xj 2 X s:t: ti;j 2 T and type of(xi) = fork and type of(xj) = start goal, set ti;j = 0.

Step 2 (calculate labels):

Step 2.1 Set t0 = 0.

Step 2.2
8xi 2 X s:t: i > 1 and type of(xi) 6= join, set time(xi) = time(xj) + tj;i, where tj;i 2 T

8xi 2 X s:t: i > 1 and type of(xi) = join, set time(xi) = maxxj2X;uj;i2U (time(xj)).

Step 3 8xi; xj 2 X s:t: ui;j 2 U; type of(xi) = finish goal and type of(xj) = join, set ti;j =
time(xj) � time(xi).

The minimum time in which the program could be executed is time(xn�1). The minimum number
of processors needed to achieve this minimum execution time is the maximum number of tasks N (t)
simultaneously actives at a given time t, i.e., N (t) is the number of nodes xi 2 X such that type of(xi) =
start goal or type of(xi) = join and 8xj 2 X such that 9ui;j 2 U; time(xi) � t � time(xj). The
minimum number of processors needed to execute without delays is the maximum of N (t); 8t such that
time(x0) � t � time(xn�1).

This algorithm is suitable both for or{ and and{parallel execution graphs; for or{parallel execution
graphs an additional minor step has to be done, to consider the end execution event as a global join,
where the total time of the execution is stored.

The above tells us how much parallelism there is in a program and how many processors would be
necessary to exploit it. High speedups do not mean that the program is necessarily a good candidate for
parallel execution: it depends on the number of processors at which the maximumparallelism is achieved.
A high number of processors in a small problem usually indicates that the execution consists of a large
number of small tasks, thus requiring some sort of granularity control to obtain the best results in real
executions.

The suspend and restart events can be generated when a sequential task is temporarily suspended
and restarted afterwards. This happens, for example, when or{parallel systems wait for a branch to be
leftmost in order to execute side{e�ect predicates, and can also be generated by and{parallel systems if
dependencies appear among parallel branches which are being executed in parallel. A complete simulation
would take these events into account, but we decided not to do so for a single reason: in practical systems
the generation of these events depends completely on the actual execution, and may or may not be
present in a given execution, depending on how the scheduling has been performed. Thus, for a complete
simulation, all the possible dependencies in any possible correct scheduling would have to be provided.
The actual approach is to consider the suspend and restart events as non existent, so e�ectively
incorporating the time taken by them into the task execution time. This is also done for the ideal
(Section 4) parallelism as well.

6

4 Ideal Parallelism

When determining ideal parallelism, the possible di�erences come from the scheduling algorithm utilized,
since we only take into account the relationships among the tasks and their length. Scheduling algo-
rithms can be classi�ed depending on whether they are deterministic (used when all data pertaining the
execution is available [MC69, LL74, Hu61]) or non deterministic (in which random variables with known
characteristic function are used to model non available data [HB88]). Our case is the �rst one.

From a high level point of view, the ideal parallelism simulation takes:

� an execution graph G(X;U; T),

� a scheduling algorithm P , and

� a number of processors N ,

and returns the maximum speedup attainable using that algorithm with the execution description as
input data. The execution graph is internally transformed into a job graph, because job graphs are used
to formulate most of the existing scheduling algorithms. This is done in order to facilitate the addition
of other algorithms to the implementation. In the job graph each node represents a sequential task, and
the edges between them represent the dependencies in the execution.

4.1 The Job Graph

A job graph G(X;U) consists of a set of nodes X = fx0; : : : ; xn�1g and a set of edges U = fui;j : 0 � i <

j < ng, where each ui;j represents an edge from node xi to xj. The graph contains a node for each task
in the execution and an edge for each dependency between tasks. Each node has a unique identi�er (an
integer from 0 to n� 1) as well as information related to the task it represents, such as its length. There
is a partial ordering � among the tasks in X given by the the dependencies present in the execution. We
will say that xi � xj i� ui;j 2 U . The ideal parallelism problem for a �xed number of processors can be
stated as �nding the starting time of each task, i.e., a function � : X ! Z+ such that:

(a) No more than m tasks are active at a time:

8u � 0 jfx 2 X s:t: �(x) � u � �(x) + length(x)gj < m

(b) No task starts before its predecessors have �nished:

8x1; x2 2 X : x1 � x2 ! �(x1) + length(x1) � �(x2)

(c) � �nds the minimum overall time: let L = maxx2X (�
0(x)+ length(x)) for a given �0. Then � is such

that L is the minimum for all possible functions �0 that meet (a) and (b).

Such � gives the starting time for each task. From it, a processor{task mapping is straightforward,
since it is required that no more than m processors be active at a time. Each time a processor is freed,
the task with the nearest starting time can be assigned to it.3

The construction of the job graph is slightly di�erent for and{ and or{parallelism, because of the non
existence of join events in or{parallelism. Figures 5 and 6 show the two job graphs for the examples we
have been using throughout the paper.

4.2 Scheduling Algorithms

It is interesting to �nd out absolute upper bounds for speedups achievable with a perfect scheduling and a
given number of processors. Unfortunately, obtaining an optimal task/processor allocation is, in general,
an NP complete problem [GJ79]. Since we want to deal with sizeable, non trivial, programs, this option
is too computationally expensive to be used. Instead, we will employ a scheduling algorithm which does

3Under the implicit assumption that any processor is able to execute any task.

7

Figure 5: Job graph for and{parallelism Figure 6: Job graph for or{parallelism

not always �nd out the best task/processor allocation, but which is much more amenable to run and
which gives an adequate (able to compute a reasonable answer for a typical input), but not appropriate
(every processor is attached to a sequential task until this task is �nished) scheduling. The algorithm
we implemented to �nd out quasi{optimal schedulings is the so{called subsets algorithm. This algorithm
in fact gives optimal results under certain conditions (which are, however, not met in our more general
case). The reader is referred to [HB88] for more information on this issue.

Although a (quasi{)optimal scheduling gives an estimation of the maximum speedup for a given
execution and number of processors, this scheduling is not likely to be found in a real system. That
is why we also implemented an approximate version of the scheduling scheme found in the &{Prolog

system [HG91, Her87]. We expect the comparison of the actual &{Prolog system speedups and the
results obtained from IDRA to serve as an assessment of the accuracy of our technique, whereas the
comparison among a (quasi{)optimal scheduling and a real one would serve to estimate the performance
of the actual system.

The variation of the inherent parallelism with the size of the problem is also a topic of interest.
Frequently one wants more performance not only to solve existing problems faster, but also to be able
to tackle larger problems in a reasonable amount of time. In simple problems the number of parallel
tasks and the expected attainable speedups can be calculated, but in non{trivial examples it may not be
so easy to estimate that. A problem in which the number of parallel tasks generated does not increase
accordingly with the size of the problem would not bene�t from a larger machine. In Section 6 runs using
real traces to �nd out maximum performances are given.

4.2.1 The Subsets Algorithm

The subsets algorithm avoids performing a global scheduling by splitting the nodes in the job graph into
disjoint subsets. The nodes in each subset are independent among them, and so they are candidates for
parallel execution. The initial subset S0 is the starting node, and for each Si, Si+1 is the set of nodes
which can start once all the nodes in Si have �nished. Once the graph is split, each subset is scheduled
separately. In Figure 5 the subsets in an and{parallel job graph are shown inside dashed rectangles.

Once the graph has been partitioned into p subsets S0; : : : ; Sp�1, each subset is scheduled almost
independently. If the tasks in Si+1 started after the last task in Si �nish, the subsets could have been
scheduled independently. Since a given task in Si+1 may depend only on some of the tasks in Si, we
set the starting time of each task in Si+1 to be the time in which all their predecessor tasks in Si have
�nished. In each subset Si = ft1; : : : ; tkg, the scheduling algorithm assigns one tj to one processor from
P = fT0; : : : ; Tp�1g. Each processor j is modeled as a number Tj which represents the moment from
which it is free to execute new work. The �rst subset is S0 = fx0g, and for each subset S 6= S0, the
algorithm performs as follows:

8

For each task tj 2 S do:

Step 1 Let T imej = maxx2X;x�tj (x). This is the earliest time in which tj can start.

Step 2 If there is any processor Tp 2 P such that Tp � T imej , assign processor p to task tj and set
Tp = Tp + length(tj).

Step 3 Otherwise, �nd Tq = minTi2P (Ti). Assign task tj to processor q and set Tq = Tq + length(tj).

Tasks are assigned to free processors. If no free processor exists at a given moment, the �rst processor
to become idle is chosen. The non{determinism in Step 2 is one of the sources of the non optimality of
the algorithm, since it is possible that non optimal schedulings will be performed in a subset. In Step 3,
Tq is chosen using a heuristic that tries to increase the occupation time of the processors.

4.2.2 The Andp Algorithm

The andp scheduling algorithm tries to mimic the behavior of a &{Prolog scheduler. For each processor,
&{Prolog has the notion of local and non local work: local work is the work generated by a given processor,
and it is preferably assigned to it. The dependencies among tasks are used to �nd out which work is to
be considered as local by a processor. To keep track of the local work of each processor, the de�nition
of a processor is augmented to be the 2{tuple hTp; Lpi where Tp is as before, and Lp is the list of tasks
generated by processor p. Roughly speaking, the scheduling algorithm tries �rst to execute tasks locally;
if this is not possible, a task is stolen from another processor's stack.

The andp scheduling algorithm can be split into two di�erent parts: the �rst one takes care of obtaining
work available in the system, and the second one generates new work and stores it in the processor's local
stack. The part of the scheduling algorithm that is in charge of getting work is as follows:

Step 1 Set L0 = ft0g and assign x0 to processor 0.

Step 2 If 8hTi; Lii 2 P; Li = ;, �nish. Otherwise select the processor p such that Tp = minhTi;Lii2P (Ti)

Step 3 If Lp 6= ; assign the �rst task x 2 Lp to processor p and go to Step 2.

Step 4 If Lp = ;, let N = fhTi; Lii s:t: hTi; Lii 2 P; Li 6= ;g and �nd the processor q such that
Tq = minhTi;Lii2N (Ti). Assign the �rst task x 2 Lq to processor p and go to Step 2.

The generation of new work, after task xi from the list of tasks Lq is assigned to processor p, is the
following:

Step 1 Set Lq = Lq � fxig.

Step 2 Set Tp = Tp + length(xi).

Step 3 Set Lp = Lp [fxj 2 X s:t: xi � xjg.

5 Overview of the Tool

A tool, named IDRA (IDeal Resource Allocation) has been implemented using the ideas and algorithms
shown before. The traces used by IDRA are the same as those used by VisAndOr [CGH93], a tool to
visualize parallel execution of logic programs, and thus it can be used to calculate ideal and maximum
speedups for the systems VisAndOr can visualize (namely, the independent and{parallel system &{Prolog

and the or{parallel systems Muse and Aurora; the deterministic dependent and{parallel system Andorra{I
is not supported yet).

The tool itself has been completely implemented in Prolog. In addition to the generation of maximum
and ideal speedups, IDRA can generate a new trace �le for ideal parallelism, which can be visualized using
VisAndOr and compared with the original one. IDRA can also be instructed to generate automatically
speedup data for a range of processors. This data is dumped in a format suitable for a tool like xgraph
to read.

9

The traces used with IDRA, as those used with VisAndOr, need not be generated by a real parallel
system. Instead, it is possible to generate them with a sequential system augmented to dump information
about parallelism. The only requirement is that the dependencies among tasks be properly reected, and
that the timings be accurate.

Accuracy in the timings has not been straightforward to obtain. Usual UNIX environments have a
vague notion of what an accurate timing is. We found that calls to standard OS routines to �nd out the
current time either were not accurate enough for our purposes, or the time employed in such calls largely
exceeded the total execution time of the benchmark, thus leading to incorrect results (sequential tasks
being traced were much longer than without tracing). To obtain accurate timings we used the microsecond
resolution clock available in some Sequent multiprocessors [Seq87]. This clock is not only very precise,
but also memory mapped and can thus be accessed in the time corresponding to one memory access,
with negligible e�ect on performance. We have also developed a technique for dealing with clocks with
high but predictable access times, by subtracting the accumulated clock access time from the timings.

6 Using IDRA

In this section we will show examples of the use of IDRA on real execution traces. The traces we will
use have been generated by the &{Prolog system, both for or{ and and{parallelism. The ones corre-
sponding to and{parallelism were generated by &{Prolog running programs parallelized for independent
and{parallel execution. The generation of the traces corresponding to or{parallelism needed of a slight
modi�cation of &{Prolog to make it issue an event each time a choice-point is created. The reason to
generate or{parallel traces using &{Prolog was that or{parallel schedulers usually make work available to
parallel execution when they �nd it worth, and not in every choice-point. This, in our approach, would
not allow us to �nd out the maximum or ideal parallelism, since opportunities for performing work in
parallel would be lost.

The results of the simulations have been compared with actual executions in &{Prolog and MUSE,
to assess the accuracy and stability of our simulation.

6.1 Description of the Programs

In this section we briey describe the programs used to test the tool. This is included to help in
understanding their behavior both in simulation and in execution.

� Programs with and{parallelism

pderiv performs symbolic derivation.

occur counts occurrences in lists.

tak computes the Takeuchi function.

boyer is an adaptation of the Boyer{Moore theorem prover.

matrix performs square matrix multiplications.

quicksort is the standard quicksort program, here using append/3 instead of di�erence lists.

bpebpf calculates the number e, using the series e = 1
0!
+ 1

1!
+ 1

2!
+ � � � A divide{and{conquer

scheme is used both for the series and for each of the factorial calculations. This causes the
generation of a very large number of tasks.

bpesf is similar to above, but each factorial is computed sequentially. The number of tasks is much
smaller than above.

pesf also calculates e using the same series, but here each factor is computed in parallel with the
rest of the series, from left to right.

� Programs with or{parallelism:

domino calculates all the legal sequences of 7 dominoes.

jugs calculates all the solutions of 8 movements for the water jugs problem.

10

queens computes all the solutions to the 5 queens problem.

witt is a conceptual clustering program.

lanford1 this program �nds out some elements needed to complete a Lanford sequence.

lanford2 this program is similar to lanford1, but the data structures are completely di�erent.

Program Speedup Processors Performance

deriv 100.97 378 0.26
occur 31.65 49 0.64
tak 44.16 315 0.14
boyer 3.49 11 0.31
matrix (10) 26.86 80 0.33
matrix (15) 58.70 170 0.34
matrix (20) 101.91 286 0.35
matrix (25) 161.68 462 0.34
quicksort (400) 3.93 15 0.26
quicksort (600) 4.07 17 0.23
quicksort (750) 4.28 19 0.22
bpebpf (30) 23.21 260 0.08
bpesf (30) 10.11 31 0.32
pesf (30) 2.59 25 0.10

Table 2: Maximum and{parallelism

Program Speedup Processors Performance

domino 32.01 59 0.54
jugs 1.95 8 0.24
queens 18.14 40 0.45
witt 1.12 25 0.04
lanford1 19.72 44 0.44
lanford2 114.87 475 0.24

Table 3: Maximum or{parallelism

6.2 Maximum Parallelism Performance

The maximum parallelism performance for the programs above mentioned appears in Tables 2 and 3.
They show, for each of the benchmarks already referred to, the maximum speedup attainable according to
the simulation, the number of processors at which this speedup is achieved, and the relative performance
with respect to a linear speedup , i.e., performance = speedup

processors
.

The numbers that appear next to some of the benchmark names correspond to the size of the input
data: for matrix, the number of rows and columns of the matrix to be multiplied; for quicksort, the
length of the list to be sorted, and for bpebpf, bpesf and pesf, the number of factors in the series.

Programs which require a large number of processors despite the problem to be solved not being very
big are those where tasks are small. This would suggest that a parallel system would need of some sort of
granularity control to execute them e�ciently. This turns out not to be always the case for real executions
on shared memory multiprocessors with a small number of processors, as we will see in Section 6.3 and
Table 4, but will certainly be an issue in larger or distributed memory machines.

In programs with a regular structure, such as matrix, potential speedups grow accordingly with the
size of the problem, which in turn determines the number of tasks available. However, in programs where

11

p

bpebpf

Speedups

Processors

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

19.00

20.00

21.00

0.00 20.00 40.00 60.00 80.00 100.00

Figure 7: Computation of e

p

matrix 25

Speedups

Processors

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

105.00

110.00

0.00 50.00 100.00 150.00

Figure 8: 25�25 matrix multiplication

the length of the tasks is variable and the structure of the execution is not homogeneous, the maximum
speedup achievable grows very slowly with the size of the problem. This is the case of, for example,
quicksort, in which the sequential parts caused by the partitioning and the appending of the list to
be sorted �nally dominate the whole execution, preventing further speedups and con�rming once again
Amhdal's law.

6.3 Ideal Parallelism Performance

For each and{parallel and or{parallel benchmark we have found the ideal parallelism and the actual
speedups on one to nine processors. The results are shown in Tables 4 and 5. In each of those tables
there are three rows for each benchmark: the uppermost one is the predicted speedup obtained using the
subsets algorithm, the middle one is the speedup obtained using the andp algorithm, and the lower-most
one has been obtained using &{Prolog and Muse, i.e., the speedups there are actual ones.

The data obtained with &{Prolog was gathered using a version of the scheduler with reduced capa-
bilities (for example, no parallel backtracking was supported) and a very low overhead, so that the andp
simulation and the actual execution be as close as possible. In general the results from the simulation are
very close to those obtained from the actual execution, which seems to imply that the simulations results
are quite accurate and useful. Usually, the results with the subsets scheduling algorithm are slightly bet-
ter, but due to its non optimality, it is surpassed sometimes by the andp algorithm and by &{Prolog itself
(see, for example, the row corresponding to the quicksort benchmark). With respect to the relationship
between the speedups obtained by the andp algorithm and the actual &{Prolog speedups, sometimes the
actual speedups are slightly better than the simulation and sometimes they are not, but in general they
are quite close. This is understandable, given the heuristic nature of these algorithms.

Benchmarks that show good performance in Table 3 have good speedups here also. But the inverse
is not true: benchmarks with low performance in maximum parallelism can perform very well in actual
executions (see, for example, the data for bpebpf). Figure 7 shows the simulated speedups for the
benchmark bpebpf; Figure 8 shows a similar �gure for matrix multiplication. The speedup in the
�rst one, although showing a logarithmic behavior, is quite good for a reduced number of processors.
The second one has a larger granularity and shows almost linear speedups with respect to the number
of processors. When the number of processors increases beyond a limit, the expected sawtooth e�ect
appears due to the regularity of the tasks and their more or less homogeneous distribution among the
available processors.

Concerning the data for or{parallelism, Muse performs slightly worse than the prediction given by
the simulation. This is not surprising, since Muse has an overhead associated with task switching (due to
copying) that &{Prolog does not have. However, there is one case where Muse performs better than IDRA
prediction: the water jugs benchmark. In fact, in this case Muse beats even the maximum parallelism

12

Program Time (ms) Scheduling Processors
Algorithm 1 2 3 4 5 6 7 8 9

subsets 1.00 1.99 2.99 3.97 4.95 5.93 6.90 7.86 8.82
deriv 240 andp 1.00 1.99 2.97 3.94 4.86 5.77 6.79 7.56 8.40

real 1.00 2.00 3.00 4.00 4.80 4.80 6.00 8.00 8.00
subsets 1.00 1.99 2.97 3.97 4.49 5.14 5.96 7.10 8.73

occur 1750 andp 1.00 1.99 2.55 3.28 3.97 4.45 5.12 5.92 7.08
real 1.00 1.96 2.96 3.97 4.48 5.83 5.83 7.00 8.75
subsets 1.00 1.99 2.97 3.93 4.86 5.77 6.65 7.51 8.33

tak 610 andp 1.00 1.97 2.95 3.91 5.48 5.76 6.57 7.54 8.30
real 1.00 1.90 2.65 3.58 4.35 5.08 5.54 6.09 6.77

subsets 1.00 1.78 2.34 2.65 2.84 2.94 3.05 3.09 3.13
boyer 110 andp 1.00 1.79 2.37 2.76 3.02 3.15 3.25 3.30 3.31

real 1.00 1.57 1.83 2.20 2.20 2.20 2.20 2.20 2.20
subsets 1.00 1.98 2.91 3.86 4.74 5.57 6.41 7.26 8.02

matrix (10) 170 andp 1.00 1.97 2.70 3.59 4.59 5.21 6.09 6.86 7.54
real 1.00 1.88 2.83 3.39 4.25 5.66 5.66 8.50 8.50
subsets 1.00 1.99 2.96 3.94 4.91 5.84 6.76 7.71 8.62

matrix (15) 550 andp 1.00 1.97 2.85 3.51 4.40 5.36 6.37 7.15 7.84
real 1.00 1.96 2.89 3.92 4.58 5.50 6.87 7.85 7.85

subsets 1.00 1.99 2.98 3.97 4.94 5.92 6.88 7.85 8.80
matrix (20) 1270 andp 1.00 1.99 2.78 3.56 4.36 5.23 6.07 6.95 8.01

real 1.00 1.95 2.95 3.84 4.88 5.77 6.68 7.47 8.46
subsets 1.00 1.99 2.98 3.98 4.97 5.94 6.92 7.91 8.88

matrix (25) 2460 andp 1.00 1.97 2.73 3.51 4.44 5.54 6.41 7.34 7.98
real 1.00 1.98 2.96 3.96 4.91 5.85 6.83 7.93 8.78
subsets 1.00 1.76 2.32 2.69 2.95 3.15 3.28 3.35 3.40

quicksort (400) 590 andp 1.00 1.76 2.26 2.66 3.00 3.23 3.68 3.60 3.60
real 1.00 1.73 2.26 2.68 3.10 3.27 3.47 3.47 3.47

subsets 1.00 1.80 2.41 2.84 3.15 3.38 3.53 3.64 3.71
quicksort (600) 1070 andp 1.00 1.75 2.25 2.75 3.20 3.34 3.79 3.97 4.00

real 1.00 1.72 2.37 2.74 3.14 3.45 3.68 3.82 3.96
subsets 1.00 1.78 2.36 2.75 3.04 3.25 3.38 3.47 3.53

quicksort (750) 1500 andp 1.00 1.71 2.42 2.60 3.13 3.55 3.66 3.75 3.67
real 1.00 1.82 2.41 2.88 3.40 3.65 3.94 4.05 4.16
subsets 1.00 1.96 2.88 3.74 4.60 5.41 5.41 5.41 5.41

bpebpf (30) 220 andp 1.00 1.93 2.81 3.69 4.30 5.16 5.60 6.32 6.98
real 1.00 1.83 2.44 3.66 4.40 4.40 5.50 5.50 7.33
subsets 1.00 1.96 2.88 3.75 4.53 5.18 5.99 6.33 6.75

bpesf (30) 180 andp 1.00 1.88 2.59 3.27 3.67 4.23 4.56 5.08 5.12
real 1.00 1.80 2.57 3.60 4.50 4.50 4.50 6.00 6.00
subsets 1.00 1.47 1.74 1.92 2.05 2.14 2.20 2.26 2.31

pesf (30) 200 andp 1.00 1.41 1.65 1.83 1.95 2.02 2.10 2.18 2.26
real 1.00 1.33 1.66 1.81 1.81 1.81 2.00 2.00 2.22

Table 4: Ideal and{parallelism

prediction in Table 3, which would imply that something is wrong. We have traced the reason for that
behavior to an erroneous trace. This is because of the way in which &{Prolog dumps traces for or{
parallelism imposes a small overhead for each possible branch in the execution. This overhead is small
and thus it was not felt that it should be compensated for. However, the water jugs benchmark has a large
amount of very small tasks, so that the overhead associated with the creation of an event is a sizeable
part of the time reported for a task. This results, from the point of view of the simulation, in larger
tasks than in the actual implementation, and this produces misleading results. The timings could have
been adjusted easily (by subtracting the time taken in creating the event as mentioned previously) and
a correct trace generated. However, we felt that it was interesting to see how a small error in computing

13

Program Time (ms) Scheduling Processors
Algorithm 1 2 3 4 5 6 7 8 9

subsets 1.00 1.98 2.94 3.86 4.75 5.61 6.42 7.20 7.97
domino 130 andp 1.00 1.98 2.92 3.86 4.78 5.61 6.54 7.32 8.26

real 1.00 1.62 2.16 2.60 3.25 3.25 3.25 3.25 4.33
subsets 1.00 1.47 1.60 1.67 1.72 1.74 1.76 1.78 1.78

jugs 220 andp 1.00 1.43 1.61 1.71 1.70 1.70 1.70 1.70 1.70
real 1.00 2.00 2.75 3.66 3.66 4.40 5.50 5.50 5.50
subsets 1.00 1.97 2.92 3.82 4.70 5.48 6.22 6.93 7.55

queens 70 andp 1.00 1.95 2.77 3.77 4.72 5.33 5.89 6.30 6.48
real 1.00 1.75 2.33 2.33 3.50 3.50 3.50 3.50 3.50

subsets 1.00 1.05 1.07 1.08 1.09 1.09 1.09 1.09 1.09
witt 5090 andp 1.00 1.05 1.07 1.08 1.09 1.09 1.09 1.09 1.09

real 1.00 1.05 1.07 1.09 1.10 1.10 1.10 1.11 1.11
subsets 1.00 1.98 2.91 3.79 4.59 5.34 6.04 6.67 7.45

lanford1 160 andp 1.00 1.97 2.92 3.82 4.73 5.53 6.27 7.29 8.09
real 1.00 1.77 2.28 3.20 4.00 4.00 4.00 4.00 5.33

subsets 1.00 1.99 2.99 3.98 4.97 5.95 6.92 7.88 8.85
lanford2 2090 andp 1.00 1.99 2.98 3.97 4.96 5.91 6.88 7.87 8.85

real 1.00 1.97 2.86 3.66 4.54 5.35 6.33 6.96 7.74

Table 5: Ideal or{parallelism

the size of tasks can result in a large error in the computed speedups. We believe this further supports
one of the assumptions in our approach, that of performing simulations but based on accurate estimates
of task execution times.

7 Conclusions and Future Work

We have reported on a technique and a tool to compute ideal speedups using simulations which have
as input data information about executions gathered using real systems. We have applied it to or{ and
independent and{parallel benchmarks, and compared the results with those from actual executions. The
results show that the simulation is quite reliable and corresponds well with the results obtained from
actual systems. In particular, results are very close to those obtained from a the &{Prolog system.
This corresponds with expectations, since the particular version of the &{Prolog systems used has very
little overhead associated with parallel execution. The results for or{parallelism and Muse also o�er a
strong correspondence between simulation and actual system, being somewhat better in the simulation,
which is understandable when considering the slight task creation overhead incurred due to copying. The
technique can be extended for other classes of systems and execution models, provided that the data
which models the executions can be gathered with enough accuracy.

As far as the sizes of the executions that can be simulated, this is not limited by the trace generation
phase, which uses resources comparable to those of the actual execution, but rather by the simulation
phase. Our Prolog implementation of this phase is rather naive. In the future, optimizations would be
necessary in order to allow larger traces to be processed in a reasonable amount of time. We also plan
to modify the simulator in order to support other execution paradigms, such as Andorra{I [SCWY90],
ACE [GHPC94], AKL [JH91], IDIOM [GSCYH91] etc. and study other scheduling algorithms. Finally,
we believe the same approach can be used to study issues other than ideal speedup, such as memory
consumption, copying overhead, etc.

8 Acknowledgments

We would like to thank S. Debray and the members of the CLIP group at the CS department of the TU
Madrid for trusting IDRA and providing very valuable feedback on its use.

14

References

[AK90] K.A.M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model and its Performance. In
1990 North American Conference on Logic Programming. MIT Press, October 1990.

[CGH93] M. Carro, L. G�omez, and M. Hermenegildo. Some Paradigms for Visualizing Parallel Exe-
cution of Logic Programs. In 1993 International Conference on Logic Programming, pages
184{201. MIT Press, June 1993.

[Con83] J. S. Conery. The And/Or Process Model for Parallel Interpretation of Logic Programs. PhD
thesis, The University of California At Irvine, 1983. Technical Report 204.

[GHPC94] G. Gupta, M. Hermenegildo, Enrico Pontelli, and V��tor Santos Costa. ACE: And/Or-
parallel Copying-based Execution of Logic Programs. In International Conference on Logic
Programming. MIT Press, June 1994. to appear.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability. W.H. Freeman and
Company, 1979.

[GSCYH91] G. Gupta, V. Santos-Costa, R. Yang, and M. Hermenegildo. IDIOM: Integrating Depen-
dent and-, Independent and-, and Or-parallelism. In 1991 International Logic Programming
Symposium, pages 152{166. MIT Press, October 1991.

[HB88] Kai Hwang and Fay�e Briggs. Computer Architecture and Parallel Processing. McGraw-Hill,
1988.

[Her87] M. V. Hermenegildo. Relating Goal Scheduling, Precedence, and Memory Management in
AND-Parallel Execution of Logic Programs. In Fourth International Conference on Logic
Programming, pages 556{575. University of Melbourne, MIT Press, May 1987.

[HG90] M. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploiting Independent
And-Parallelism. In 1990 International Conference on Logic Programming, pages 253{268.
MIT Press, June 1990.

[HG91] M. Hermenegildo and K. Greene. The &-prolog System: Exploiting Independent And-
Parallelism. New Generation Computing, 9(3,4):233{257, 1991.

[Hu61] T.C. Hu. Parallel sequencing and assembly line problems. Operating Research, 9(6):841{848,
November 1961.

[JH91] S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language. In 1991
International Logic Programming Symposium, pages 167{183. MIT Press, 1991.

[LK88] Y. J. Lin and V. Kumar. AND-Parallel Execution of Logic Programs on a Shared Memory
Multiprocessor: A Summary of Results. In Fifth International Conference and Symposium
on Logic Programming, pages 1123{1141. University of Washington, MIT Press, August
1988.

[LL74] J.W. Liu and C. L. Liu. Bounds on scheduling algorithms for the heterogeneous computing
systems. In 1974 Proceedings IFIP Congress, pages 349{353, 1974.

[Lus90] E. Lusk et. al. The Aurora Or-Parallel Prolog System. New Generation Computing, 7(2,3),
1990.

[MC69] R.R. Muntz and E.G. Co�man. Optimal preemptive scheduling on two processor systems.
IEEE Transactions on Computers, pages 1014{1020, November 1969.

[MH90] K. Muthukumar and M. Hermenegildo. The CDG, UDG, and MEL Methods for Automatic
Compile-time Parallelization of Logic Programs for Independent And-parallelism. In 1990
International Conference on Logic Programming, pages 221{237. MIT Press, June 1990.

15

[SCWY90] V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel Prolog System that
Transparently Exploits both And- and Or-parallelism. In Proceedings of the 3rd. ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM, April
1990.

[Seq87] Sequent Computer Systems, Inc. Sequent Guide to Parallel Programming, 1987.

[SH91] K. Shen and M. Hermenegildo. A Simulation Study of Or- and Independent And-parallelism.
In 1991 International Logic Programming Symposium. MIT Press, October 1991.

[She92] K. Shen. Exploiting Dependent And-Parallelism in Prolog: The Dynamic, Dependent And-
Parallel Scheme. In Proc. Joint Int'l. Conf. and Symp. on Logic Prog. MIT Press, 1992.

[SK92] D.C. Sehr and L.V. Kal�e. Estimating the Inherent Parallelism in Logic Programs. In
Proceedings of the Fifth Generation Computer Systems, pages 783{790. Tokio, ICOT, June
1992.

16

