
UPMAIL Technical Report No. 87
August 1994

ISSN 1100{0686

A Simple and E�cient Copying Garbage

Collector for Prolog

Johan Bevemyr Thomas Lindgren

Box 311, S-751 05 Uppsala, Sweden

Phone: +48�18�18 25 00

Fax: +46�18�51 19 25

Abstract

We show how to implement e�cient copying garbage collection for

Prolog. We measure the e�ciency of the collector compared to a standard

mark-sweep algorithm on several programs. We then show how to acco-

modate generational garbage collection and Prolog primitives that make

the implementation more di�cult.

The resulting algorithms are simpler and more e�cient than the stan-

dard mark-sweep method on a range of benchmarks. The total execution

times of the benchmark programs are reduced by 4 to 11 percent.

INTRODUCTION

Automated storage reclamation for Prolog based on Warren's Abstract Machine
(WAM) [14] has several di�culties. Let us consider the architecture of a typical
WAM: most data are stored on a global stack (also called the heap), while
choice points and environments are stored on a local stack (also referred to as
the stack). A trail stack records bindings to be undone on backtracking. We will
not consider garbage collection of code space in this paper, atom tables or other
miscellaneous areas. There are no pointers from such tables into the garbage
collected areas.

The WAM saves the state of the machine whenever a choice point is cre-
ated. Using this information, stacks can be reset and storage reclaimed cheaply.
We can view the global stack as composed of several segments, delimited by
the choice point stack. Creating a new choice point creates a new segment;
backtracking removes segments, while performing a cut merges segments. Data
are allocated in the topmost segment, while variable bindings, which are imple-
mented as assigning a cell representing the variable, are recorded on the trail
stack whenever the variable cell is not in the topmost segment. When two vari-
ables are uni�ed, a pointer from one cell to the other cell is created. In general,
pointer chains may arise which require dereferencing.

A garbage collector for Prolog might thus retain the segment ordering to en-
able fast storage reclamation on failure by deallocating a segment allocated after
the topmost choice point was created. Furthermore, since there are primitives
(such as @</2) that compare variables, e.g., by creation time, most systems elect
to preserve the heap ordering of data after garbage collection.

Garbage collection is done by starting at a set of root pointers, such as registers
and the local stack, and discovering what data are reachable from these pointers,
or live. Memory is reclaimed by compacting the live data [9], copying them to
a new area [6] or putting the dead data on a free list. Memory allocation can
then be resumed.

RELATED WORK

Prolog implementations such as SICStus Prolog use a mark-sweep algorithm that
�rst marks the live data, then compacts the heap. We take the implementation
of Appleby et al. [1] as typical. This algorithm works in four steps and is
based on the Deutsch-Schorr-Waite [12, 7] algorithm for marking and on Morris'
algorithm [9, 7] for compacting.

1. All live data are marked through roots found in registers, choice points,
environments, and value trail entries (entries in the trail where the old
value have been recorded, e.g., as a result of using setarg/3). A live tree
is marked using a nonrecursive pointer-reversing algorithm that does not
require any extra space to operate.

2. The registers, choice points, environments, and the trail are examined
for references into the heap. All such references are put into reallocation
chains, with the heap cell as root, to be updated when the heap cell is
moved.

3. The heap is scanned upwards and all upward references are put into re-
allocation chains in order to be updated when the cell they refer to is
moved.

4. The heap is scanned downwards and all marked data are moved to their
new locations. All references to a moved object are found through the
reallocation chains and updated. All references downward are also put
into reallocation chains so that they may be updated when the object
further down the heap is moved.

Touati and Hama [13] developed a generational copying garbage collector. The
heap is split into an old and a new generation. Their algorithm uses copying
when the new generation consists of the top most heap segment, i.e., no choice
point is present in the new generation, and no troublesome primitives have been
used (primitives that rely on a �xed heap ordering of variables). For the older
generation they use a mark-sweep algorithm. The technique is similar to that
described by Barklund and Millroth [4] and later by Older and Rummell [10].

We show how a simpler copying collector can be implemented, how the trou-
blesome primitives can be accomodated better and how generational collection
can be done in a simple and intuitive way. However, our view is also more rad-
ical than theirs. Where Touati and Hama still wish to retain properties such
as memory recovery on backtracking, we take a more radical approach: ease
of garbage collection is more important than recovering memory on backtrack-
ing. We show below that memory recovery by backtracking is still possible, and
that the new approach in practice recovers approximately as much garbage by
backtracking as the conventional approach.

Bekkers, Ridoux and Ungaro [5] describe an algorithm for copying garbage
collector for Prolog. They observe that it is possible to reclaim garbage collected
data on backtracking if copying starts at the oldest choice point (bottom-to-top).
However, their method has several di�erences to ours.

� Their algorithm does not preserve the heap order, which means primitives
such as @</2 will work incorrectly. They do not indicate how this problem
should be solved.

� Their algorithm (the version that incorporates early reset) copies data
twice, while our algorithm visits data once and then copies the visited
data. We think our approach leads to better locality of reference. However,
we have not found any published measurements of the e�ciency of the
Bekkers-Ridoux-Ungaro algorithm.

� Variable shunting is used to avoid duplication of variables inside structures.
This may introduce new variable chains, as shown in Appendix A. We want
to avoid this situation.

Their algorithm does preserve the segment-structure of the heap (but not the
ordering within a segment). Hence, they can reclaim all memory by backtrack-
ing. In contrast, our algorithm only supports partial reclamation of memory
by backtracking. Our measurements indicate that this is su�cient: the copying
algorithms we describe do not reclaim appreciably less memory on backtracking
than the standard mark-sweep algorithm on the measured benchmarks.

Appel [2, 3] describes a simple generational garbage collector for Standard
ML. The collector uses Cheney's garbage collection algorithm, which is the basis
of our algorithm as well. However, his collector relies on assignments being
infrequent. In Prolog, variable binding is assignment in this sense. Our algorithm
handles frequent assignments e�ciently.

Sahlin [11] has developed a method that makes the execution time of the Ap-
pleby et al. [1] algorithm proportional to the size of the live data. The main
drawback of Sahlin's algorithm is that implementing the mark-sweep algorithm
becomes more di�cult, not to mention guaranteeing that there are no program-
ming errors in its implementation. To our knowledge it has never been imple-
mented. We also believe that Sahlin's algorithm is not as e�cient as ours since
it requires an extra pass over the live data, beyond the passes in the Appleby
algorithm. Since our algorithm is almost 70 % faster than the Appleby algorithm
even when the heap is �lled with live data, it is unlikely that Sahlin's algorithm
will be more e�cient than ours.

ALGORITHM

We assume the standard term representation of WAM [14]. Our algorithm re-
quires the existence of two tag bits for each cell on the heap, reserved for the use
of the garbage collector. These tag bits may either be stored in each cell or in
some separate area. One of the bits is used for marking copied cells as forwarded,
the other is used for indicating that a cell appears inside a live structure.

Avoiding the heap ordering

Variables in the WAM are represented as self-referring heap cells. The WAM
uses the location of a variable for deciding if trailing is required when binding
the variable. Hence, variables should not move out of their heap segments. Since
our algorithm does not preserve heap segments we must �nd another solution.

Our solution is simply to trail bindings of variables copied during the last
garbage collection. The method to do this e�ciently is described in Section
\Recovering memory on backtracking". Bindings to the surviving variables from
the topmost heap segment will be trailed unnecessarily (as compared to the

compacting approach), but other bindings will not be a�ected. The unnecessary
trail entries are deleted by the next collection.

Mark-and-copy

The copying collector is a straightforward adaption of Cheney's algorithm [6]
and works in three phases. The algorithm allows the standard optimizations of
early reset. The old data reside in fromspace and are evacuated into tospace.

1. Mark the live data. When a structure is encountered, mark the functor
cell and all internal cells. When a simple object is found, mark that cell
only.

2. Copy the data using Cheney's breadth-�rst algorithm. When a marked
cell is visited in fromspace, do the following:

(a) Scan backward (towards lower addresses) until an unmarked cell is
found.

(b) Scan forward and evacuate marked cells into tospace until an un-
marked cell is found. Overwrite the old cells with forwarding pointers
to the corresponding cells in the copy.

Thus, interior pointers are handled correctly. Several adjacent live objects
may be evacuated at once. Continue until no cells remain to be evacuated.

3. Update the trail. If a trail entry does not refer to a copied cell (i.e., does
not point at a forwarding pointer), it can be deleted. Implementing early
reset is done by incorporating this step into the procedure that copies live
data from the chain of choice points.

The collector thus visits (and writes) the data once, then writes the copy in
tospace. We believe locality of reference to be quite good: in the second pass,
the marked data will already reside in the cache if the data are su�ciently small.

If we do not mark all cells that occur inside live data structures then dupli-
cation of cells could occur. Suppose we have both a reference to a variable in a
structure and a reference to the structure, e.g., see Figure 1. Suppose we copy
the variable before the structure; then we would introduce an extra reference,
e.g., see Figure 2. This is undesirable since the result of doing garbage collec-
tion might then be that more space is required! To solve this, we mark all cells
that occur in live data structures. When a marked cell is copied the enclosing
structure is also copied by step 2.

Recovering memory on backtracking

A compacting collector preserves the heap segments (see Figure 3) and entire
segments can be deallocated on backtracking. In general, a copying algorithm
cannot recover memory on backtracking since the heap no longer preserves the

struct

f
r
o
m
s
p
a
c
e

t
o
s
p
a
c
e

foo/1

ref

ref

F
ig
u
re

1
:
A
n
in
te
rn
a
l
ce
ll
is
re
fe
rr
ed

to
tw
ic
e,

b
o
th

d
ir
ec
tl
y
b
y
a
va
ri
a
b
le

a
n
d

in
d
ir
ec
ly

th
ro
u
g
h
a
st
ru
ct
u
re
.

forward

f
r
o
m
s
p
a
c
e

t
o
s
p
a
c
e

ref

struct

ref

ref

foo/1

forward

F
ig
u
re

2
:
A
s
a
re
su
lt
o
f
co
p
y
in
g
w
it
h
o
u
t
m
a
rk
in
g
in
te
rn
a
l
ce
ll
s
so
m
e
ce
ll
s
m
ig
h
t

b
e
d
u
p
li
ca
te
d
.

re
q
u
ir
ed

st
a
ck

o
rd
er
in
g
.
H
ow

ev
er
,
o
u
r
a
lg
o
ri
th
m

ca
n
st
il
l
re
co
v
er

so
m
e
g
a
rb
a
g
e

b
y
re
se
tt
in
g
th
e
h
ea
p
p
o
in
te
r,
ju
st

a
s
in

a
st
a
n
d
a
rd

W
A
M

im
p
le
m
en
ta
ti
o
n
.

W
e
n
o
te

th
a
t
be
tw
ee
n
co
ll
ec
ti
o
n
s,
m
em

o
ry

is
a
ll
o
ca
te
d
ju
st

a
s
in

a
W
A
M
.
U
s-

in
g
th
is
o
b
se
rv
a
ti
o
n
,
w
e
ca
n
a
rr
a
n
g
e
to

re
co
v
er

m
em

o
ry

a
ll
o
ca
te
d
a
ft
er

th
e
la
st

co
ll
ec
ti
o
n
o
n
b
a
ck
tr
a
ck
in
g
.
A
ft
er

a
co
ll
ec
ti
o
n
,
w
e
se
t
th
e
sa
v
ed

h
ea
p
to
p
o
f
a
ll

ch
o
ic
e
p
o
in
ts

to
th
e
to
p
o
f
th
e
h
ea
p
sp
a
ce
,
m
a
k
in
g
th
is
o
n
e
se
g
m
en
t
(s
ee

F
ig
u
re

4
).

T
er
m
s
a
ll
o
ca
te
d
a
ft
er

th
is
se
g
m
en
t
ca
n
b
e
re
cl
a
im

ed
u
p
o
n
b
a
ck
tr
a
ck
in
g
.
In

th
is
w
ay
,
w
e
re
ta
in

m
o
st
o
f
th
e
a
d
va
n
ta
g
es

o
f
re
se
tt
in
g
th
e
h
ea
p
u
p
o
n
b
a
ck
tr
a
ck
-

in
g
w
it
h
o
u
t
h
av
in
g
to

ta
il
o
r
o
u
r
ru
n
ti
m
e
sy
st
em

a
n
d
g
a
rb
a
g
e
co
ll
ec
to
r
to

en
su
re

th
is
p
ro
p
er
ty

a
t
ev
er
y
p
o
in
t.
P
re
ci
se
ly
th
e
sa
m
e
te
st
fo
r
tr
a
il
in
g
a
b
in
d
in
g
ca
n
b
e

u
se
d
a
s
in

a
st
a
n
d
a
rd

W
A
M
.
C
o
ll
ec
ti
o
n
m
ay

a
ls
o
sp
li
t
a
si
n
g
le
se
g
m
en
t
in
to

tw
o
,

w
h
ic
h
le
a
d
s
to

ex
tr
a
tr
a
il
in
g
.
W
e
m
ea
su
re

th
e
e�

ci
en
cy

o
f
o
u
r
sy
st
em

b
el
ow

.

direction
of growth

Stack

...

...
H

...

...
H

...

...
H

Stack

...

...
H

...

...
H

...

...
H

HeapHeap

CP1

CP2

CP3

CP1

CP2

CP3

H

H

After garbage collectionBefore garbage collection

Figure 3: Saved heap top pointers (H) in choice points before and after com-

pacting garbage collection. Heap segments are preserved.

Handling troublesome primitives

Touati and Hama recognized that the generic comparison operators, such as
@</2, required that variables preserve their relative ordering (since variable
ordering is usually the comparison criterion when two unbound variables are
compared). Their method was either to disable copying collection when these
primitives were used and revert to using a compacting collector, or to generate
identi�ers for variables when needed. The identi�ers were to be kept in a hash
table to be updated when variables were relocated.

Others have proposed to associate a creation time with each variable. Our
experience is that timestamps add a runtime overhead of approximately 5% in
an emulator-based WAM implementation.

Our solution retains the use of copying collection, while requiring a small
modi�cation to the runtime system. When variables are compared, we arbitrarily
order them if unordered. This is done by binding unordered variable cells to new
variable cells on a small compared-variable stack (cv-stack), see Figure 5. Once
this is done, we can just compare addresses. The binding is not trailed. (An
unbound variable is unordered if it does not reside on the cv-stack and ordered
if it is on the cv-stack.)

Once a variable is ordered it resides on the cv-stack. Subsequent unordered
variables will be `greater' than ordered variables when compared, since they
are pushed on the cv-stack (where the ordering is kept) when the comparison
occurs. Using compacting collection on the cv-stack retains the variable ordering
(though the copying collector must take care not to migrate variables residing
on the cv-stack), while dead variables disappear.

Stack

...

...
H

...

...
H

...

...
H

Stack

...

...
H

...

...
H

...

...
H

HeapHeap

CP1

CP2

CP3

CP1

CP2

CP3direction
of growth

H

H

Before garbage collection After garbage collection

Figure 4: Saved heap top pointers (H) in choice points before and after copying
garbage collection. After garbage collection all segments have been merged into
one single segment. Note that only the active heap is shown here|the live data
have been copied from the old heap to the new heap.

The space cost is proportional to the number of unbound variables compared
by generic comparison operations. Naturally, if most of the live unbound vari-
ables have been compared in this way, the collector will have to spend more time
in compacting the cv-stack. We believe this situation to be rare.

INTRODUCING GENERATIONAL GARBAGE COLLECTION

Generational garbage collection [8, 3] relies on the observation that newly cre-
ated objects tend to be short-lived. Thus, garbage collection should concentrate
on recently created data. The heap is split into two or more generations, and the
most recent generation is collected most frequently. When the youngest gener-
ation �lls up, a collection spanning more generations is done, and the survivors
move to the oldest of these generations. Frequently, implementations have two
generations, and we will assume so from now on.

The di�erence from standard copying collection is that the collection roots
also include the pointers from the older to the younger generation. In languages
such as SML, most objects are immutable, and assignments that may cause
cross-generational pointers can be compiled to special code that registers such a
pointer if it appears.

In Prolog, there is a high incidence of assigning already created objects, so
such a solution is likely to be expensive. Variable bindings involve assignment.
In fact, we can arrange so that only trailed bindings may be cross-generational,
by setting the limit where trailing occurs appropriately, see Figure 6. Usually,
this limit is the start of the topmost heap segment, but this is not required: we
can set it in the interior of the topmost segment at the cost of doing unnecessary

Ref

Ref

Ref

Compared-variable
Stack

Compared-variable
Stack

Ref Ref

Ref

Heap Heap

After comparisonBefore comparison

Figure 5: Compared variables are bound to variables on a compared-variable
stack. This way their relative order is preserved.

trailings. This may be useful if the computation is deterministic but still has a
large amount of live data.

We assume that objects are tenured (moved to the old generation) if they
survive a collection of the new generation. Now, we can �nd cross-generation
pointers by examining all new trail entries since the last garbage collection.
These pointers point out root pointers from the older generation. Since the
tenuring threshold is one, the old part of the trail need not be scanned; it can
refer only to the old generation. If we were to allow several minor collections
before tenuring, the cross generation pointers must be recorded for subsequent
use, to avoid scanning the trail repeatedly.

In other languages it is usually necessary to add a write barrier, code that
detects cross generational bindings and record them on a stack. This result in a
runtime cost for using generational garbage collection. In Prolog this overhead
is already present in the form of trail tests and there is no extra runtime penalty
for using generational collection.

EVALUATION

We have implemented a standard mark-sweep algorithm [1] and compared it
to our copying algorithms. All garbage collection algorithms have been imple-
mented in the same system, a sequential version of Reform Prolog. All algorithms
implement early reset.

The TSP program implements an approximation algorithm for the Travel-

Trail limit and
start of new
generation

Direction
of growth

Top of trail
at last gc

Heap

Ref

Ref

old generation Trail

Ref

Ref

Figure 6: The limit for trailing is set in such a way that all cross-generational
references are recorded on the trail. In the presence of a choice point in the new
generation the trail limit is set as usual.

ling Salesman Problem. A tour of 60 cities was computed. The MATCH pro-
gram implements a dynamic programming algorithm for comparing, e.g., DNA-
sequences. One sequence of length 32 was compared to 100 other sequences.
BOYER is the Boyer-Moore theorem prover adapted by Evan Tick to Prolog.
This program is part of the Berkeley benchmark suite.

BIG is a program that allocates a large data structure and then forces garbage
collection 1000 times while the data structure is still live. The program is in-
tended to compare the copying collectors with mark-sweep when the heap is
�lled with live data, i.e., when copying and compaction are working on a similar
amount of memory and data.

When executing the TSP, MATCH, and BOYER programs we gave each ver-
sion of the emulator (mark-sweep and copy) an equal amount of memory. This
meant that the emulator using copying garbage collection used a heap that was
half the size of the mark-sweep heap. One might argue that since modern com-
puters have virtual memory it is reasonable to let the copy version temporarily
allocate twice as much space as the mark-sweep version. However, we have found
that even the size of the virtual memory (actually the size of the swap space)
can be a limiting factor.

In our measurements of the generational collector, the new generation is given
half the remaining free memory in the semi-space, after a minor collection. When
the size of the new generation is less than 20K, a major collection is done.

When we executed the BIG program we gave the copying collectors twice the
memory of the mark-sweep collector so that the collected data structures could
have the same size. The from-space and mark-sweep heap thus were of the same
size. This was done in order to compare the timing of a single collection, rather

than the entire execution.

All times are in seconds user time.

Program Heap Mark-Sweep Copy Gen. Copy
size gc run time gc run time gc run time

MATCH 750K 12.0% 22.02 2.6% 20.01 0.6% 19.82
1500K 11.2% 21.89 1.4% 19.70 0.3% 19.64
2250K 10.4% 21.43 0.7% 19.96 0.1% 19.87
3000K 10.0% 21.64 0.6% 19.89 0.05% 19.61

TSP 750K 5.3% 54.73 0.9% 51.99 0.1% 51.11
1500K 4.8% 54.62 0.4% 52.12 0.1% 51.81
2250K 4.7% 53.75 0.3% 51.96 0.08% 51.48
3000K 4.6% 55.38 0.2% 51.77 0.07% 51.65

BOYER 750K 15.8% 4.61 15.7% 4.51 8.4% 4.38
1500K 8.7% 4.25 7.1% 4.23 5.6% 4.09
2250K 12.4% 4.58 5.9% 4.04 4.9% 4.06
3000K 0% 4.04 3.0% 3.98 4.9% 4.02

BIG 1500K 100% 11.22 100% 6.34 | |

The next table shows the di�erence in execution times for the three algorithms
(using 1500K memory). The improvement of the total execution time when
using a copying collector ranges from 4 to 11 percent.

We also measured how many times the di�erent garbage collectors were in-
voked.

Program Heap Number of garbage collections performed
size Mark-Sweep Copy Gen. Copy

MATCH 750K 25 51 130
1500K 12 25 48
2250K 8 16 30
3000K 6 12 22

TSP 750K 22 46 113
1500K 11 22 51
2250K 7 14 33
3000K 5 11 25

BOYER 750K 3 8 30
1500K 1 3 7
2250K 1 2 4
3000K 0 0 3

All times are in milliseconds user time.

GC time/run time
Program Mark-Sweep Copy Generational Copy
MATCH 2460/21890 280/19700 50/19640
TSP 2600/54620 220/52120 50/51810
BOYER 370/4250 300/4230 230/4090

Note that the total execution times are sometimes shorter when garbage collec-
tion is performed. We believe this to be due to improved data locality due to
copying.

Program Memory allocated Memory reclaimed on backtracking
Mark-Sweep Copy Generational

MATCH 17770K 793 (4%) 793 (4%) 793 (4%)
TSP 18895K 0 (0%) 0 (0%) 0 (0%)
BOYER 4187K 1798 (43%) 1798 (43%) 1798 (43%)

Approximately the same amount of data is reclaimed on backtracking with all
three algorithms. We believe the reason for this is that most of the memory is
reclaimed during shallow backtracking.

We also measured the amount of extra trailing imposed by the copying col-
lectors.

Program Number of trail entries Ratio
Mark-Sweep Copy Gen. Copy/Mark Gen/Mark

MATCH 112582 112767 112864 1.0016 1.0025
TSP 10560 10568 10568 1.0008 1.0008
BOYER 108352 108450 108441 1.0009 1.0008

Clearly, the extra trailing performed by the copying algorithms is insigni�cant
compared with the total amount of trailing in our benchmark programs. The
above measurements were made using a heap size of 750K bytes.

CONCLUSION

We have described a method for adapting conventional copying garbage collec-
tion to Prolog and how to add generational collection to this algorithm. Three
problems have been solved, leading to e�cient copying and generational copying
collectors.

The �rst problem is interior pointers, which can lead to duplication of data
if copied naively. Our method correctly handles interior pointers by marking,
then copying data.

The second problem is that copying collection does not preserve the heap or-
dering. In theory, this means memory cannot be reclaimed by backtracking, and
that bindings in the copied area must always be trailed (rather than occasion-
ally).

Our collector exploits that data allocated since the last collection still retain
the desired heap ordering. Hence, memory allocated after the last collection can
still be reclaimed by backtracking. Our measurements show that our copying al-
gorithm recovers as much memory by backtracking as a conventional (\perfect")
mark-sweep algorithm on a range of realistic benchmarks.

We have also measured the amount of extra trailing due to losing the order
of the heap. This was negligible: less than one-quarter of a percent of the total
number of trailings at most. We conclude that copying collection is a viable
alternative to the conventional mark-sweep algorithm for Prolog.

Finally, we also showed how to extend the copying algorithm to generational
collection. The crucial insight is that pointers from the old generation (in a
two-generation system) can be found by scanning the trail. By adapting the
trailing mechanism, we get an almost-free write-barrier. The only extra cost is
some unnecessary trailings in certain situations. This cost is again negligible for
our benchmarks.

ACKNOWLEDGMENT

We thank Ulrich Neumerkel for his comments on this paper, in particular on
whether our method to deal with troublesome primitives was correct. We also
thank Mikael Pettersson and the anonymous referees for their comments.

REFERENCES

1. K. Appleby, M. Carlsson, S. Haridi, and D. Sahlin, Garbage Collection for
Prolog Based on WAM, Communications of the ACM, 31(6):719{741, June
1988.

2. A.W. Appel, A runtime system, Lisp and Symbolic Computation, 3(4),
1990.

3. A.W. Appel, Simple generational garbage collection and fast allocation,
Software|Practice and Experience,19(2):171{183, 1989.

4. J. Barklund, H. Millroth, Garbage cut for garbage collection of iterative
Prolog programs, 3rd Symposium on Logic Programming, Salt Lake City,
September 1986, IEEE.

5. Y. Bekkers, O. Ridoux and L. Ungaro, Dynamic Memory Management for
Sequential Logic Programming Languages, Proceedings of the International
Workshop on Memory Management 92, LNCS 637, Springer-Verlag, Berlin,
1992.

6. C.J. Cheney, A nonrecursive list compacting algorithm, Communications
of the ACM, 13(11):677{678, November 1970.

7. J. Cohen, Garbage Collection of Linked Data Structure, Computing Sur-

veys, 13(3):341{367, September 1981.

8. H. Lieberman, C. Hewitt, A real-time garbage collector based on the life-
times of objects, Communications of the ACM, 26(6):419{429, June 1983.

9. F. Morris, A Time- and Space- E�cient Compaction Algorithm, Commu-
nications of the ACM, 12(9):662{665, August 1978.

10. W.J. Older and J.A. Rummell, An Incremental Garbage Collector for
WAM-Based Prolog, Proceedings of the Joint International Conference and
Symposium on Logic Programming, MIT Press, Cambridge, Mass., 1992.

11. D. Sahlin, Making garbage collection independent of the amount of garbage,
Research Report R87008, Swedish Institute of Computer Science, 1987.

12. H. Schorr and W.M. Waite, An E�cient Machine-Independent Procedure
for Garbage Collection in Various List Structures, Communications of the
ACM, 10(8):501{506, August 1967.

13. H. Touati, T. Hama, A light-weight prolog garbage collector, Proceedings
of the International Conference on Fifth Generation Computing Systems,
1988.

14. D.H.D. Warren, An Abstract Prolog Instruction Set, SRI Tech. Note 309,
SRI International, Menlo Park, Calif., USA, 1983.

APPENDIX A

Ref Ref

After copying

f/1

Ref

Before copying

f/1

Ref

* *

1

2

Variable shunting collapses a chain of pointers into a single cell when they are all
in the same segment. Assume that pointer (1) in the �gure is copied �rst. The
chain of two pointers is collapsed into a single cell � due to variable shunting.
Subsequently, reference (2) copies the structure, which yields the situation shown
after copying. The number of cells remains constant, but a new reference chain
has appeared.

