
CHAPTER 1
Introduction

The traditional method to construct a computer program when faced with a task to

automate or a problem to solve is to write it at source code level. The intended user

of the program rarely writes it, since this task requires expert knowledge. Instead,

the task to be automated is communicated to a hired programmer, who tries to

transform the demands and desires of the user to the code of the program. This

program development approach is inherently expensive since there is a large gap,

both in theory and in practice, between the original task to be automated as

perceived by the intended user and the resulting program as constructed by the

programmer.

1

2 Introduction

1.1 Purpose
Clearly, it is desirable to reduce the gap between the original task and the program

constructed for its automation, to save effort, time and money during the

development phase. This calls for more abstract, natural ways to construct computer

programs than to program at the code level. Ideally, the end user should be able to

communicate the task directly to the computer, removing the need for a hired

programmer.

We have chosen the domain of constraint satisfaction problems for the

investigation of an alternative approach to constructing source code programs. We

discuss the idea of formulating a logic metatheory for a problem class, a theory

which can be specialized into different object level theories to represent particular

problems by user instantiation of metavariables. Particular instances of the theory,

constituting a class of object level theories, are related to potentially efficient

programs which can be generated automatically.

The outlined approach is a conception of a program development methodology

with the following advantages.

¥ A compact, declarative problem representation in the well understood formalism

of predicate logic. The transparency of the representation facilitates understanding of

its fundamental concepts.

¥ FlexibilityÑthe representation can be specialized, changed and extended at an

abstraction level accessible to end users, enabling the formalization of different tasks

and problems.

¥ Interfaces to the representation are written independently, following only the

specifications of a metatheory. The design of an interface follows naturally from an

intuitive interpretation of the declarative problem representation.

¥ Efficient computation is achieved by studying the relationship between the

problem representation and a suitable computational paradigm, with the objective of

transforming from the former to the latter.

To sum up, the present work can be studied from two different perspectives. Most

obviously, the thesis is about a high-level representation for stating and solving a

class of constraint satisfaction problems. Alternatively, the material of the thesis

can be studied as an example of a suggested program development methodology,

where the concept of user specialization of a theory is a central aspect. Different

tasks and problems are specified as logic formulas and solved by programs which are

1.2 Background 3

less natural as problem representations but computationally more efficient.

1.2 Background
Logic programming systems with constraint handling capabilities have emerged

recently as a powerful tool for stating and solving a wide range of constraint

satisfaction problems (CSPs). The main motivation for developing constraint

handling logic programming systems, such as CHIP [Hentenryck 1989], is that

many constraint satisfaction problems, although elegantly stated and theoretically

solvable, cannot be solved in practice (i.e. within reasonable time) by conventional

logic programming, Prolog, systems (cf. [Sterling & Shapiro 1986]). In particular,

many discrete combinatorial problems in operations research and artificial

intelligence can be solved efficiently by constraint logic programming systems with

finite domains. We will use the abbreviation CLP(FD) for a constraint logic

programming system with finite domain variables (not to be confused with the

specific language clp(FD) [Diaz & Codognet 1993]).

From a practical programming point of view, we can say that the difference

between a constraint handling logic programming language and ordinary Prolog is

that the former is used primarily to represent and solve a certain class of problems

(CSPs), whereas the latter is a general-purpose language. This does not necessarily

mean that the former language is more restricted than the latter, but there exists a

motivation for using it only if the problem at hand belongs to the class of CSPs.

From a programming methodology point of view, it is interesting that

CLP(FD) is aimed at a certain class of CSPs. It gives us the idea that it may be

possible to construct a logic theory in which each problem of this class can be

formulated in a more abstract, natural way than writing a special-purpose constraint

logic program. When the relationship between problems formulated in the theory

and constraint logic programs has been established, computationally efficient

programs can be generated automatically. Explicit programming is replaced by high-

level programming specification (Figure 1.1).

CSP theory CLP(FD)
programinstance

Figure 1.1 A problem specified in the CSP theory corresponds to a constraint logic
program.

A major subject of our investigation is the relationship between a logic theory for

abstract specification of discrete CSPs and computationally efficient programs. We

4 Introduction

indicate a natural relationship between the former and the latter, providing the

groundwork for automatic program generation.

The logic theory is a first-order metatheory called the Assignment Theory

(AT), representing CSPs as constrained resource assignment problems. The

methodology for formulating problems in AT is a main issue, the goal being to

provide the means for building interfaces in which end users themselves can

formulate CSPs, as different object level theories (corresponding to efficient

CLP(FD) programs). The main parts of the thesis are summarized by Figure 1.2

below.

Assignment TheoryUser interface CLP(FD) program

Figure 1.2 The objects of study and the relationships between them.

Our work concerns the study of a logic metatheory for representing a class of

problems, the instantiation of specific problems in the theory as object level

theories, efficient programs for solving such problems and the relationships between

these entities. The concepts of metalogic and metaprogramming are very natural as

methodological tools for this work. Metalogic is a well-established concept from

philosophy, concerning the discussion of a language (object level) in another

language (metalevel), cf. [Tarski 1944]. Recently, metaprogramming has evolved as

a suitable formalism for practical realization of such discussions. In particular,

metaprogramming and logic programming are used for three different, though

interrelated, application areas: knowledge representation, knowledge assimilation

and knowledge processing, see [Kowalski 1990]. These three areas correspond to

the main subjects of this thesis: knowledge representation in the Assignment

Theory, knowledge assimilation by user instantiation of metavariables in the theory

and, finally, knowledge processing of the instantiated object theory in order to

achieve efficient (CLP(FD)) programs.

1.3 Outline
We begin with a discussion of the class of constraint satisfaction problems the

proposed Assignment Theory is designed to formalize. This is followed by an

abstract description of an assignment system (Chapter 2).

The Assignment Theory is the central, knowledge representation part of the

thesis. Therefore, we discuss this theory as an independent object of study,

postponing the issues of how specific problems are to be instantiated in the theory

(knowledge assimilation) and efficient computation of solutions (knowledge

1.4 Notation and Typographical Conventions 5

processing). We identify the components of the problem class and define the

meaning of a solution to a specific problem instance. An Assignment Theory is

given by defining general axioms and schemata where metavariables are used to

represent the components of infinitely many specific problems (Chapter 3); one

problem for each instantiation of the set of schemata. We then define and exemplify

constraints which can be expressed in schemata (Chapter 4).

In Chapter 5, a prototype interface is presented, as the extension of an

intuitive interpretation of the Assignment Theory.

After the description of the knowledge representation part and the informal

understanding of it, we turn our attention to knowledge assimilation, which in our

case means instantiation of metavariables, specializing AT into an object level

theory that represents a particular problem. Chapter 6 outlines a formalization of the

relationship between our first-order theory containing metavariables on one hand and

a user interface on the other.

The knowledge processing enterprise of the thesis concerns the problem of

achieving efficient programs from different instantiations of AT. First, we show

the relationship to ordinary Prolog programs (Chapter 7). Then, we take up

CLP(FD) as a more efficient problem-solving alternative (Chapter 8) and in

Chapter 9 the relation between the Assignment Theory and CLP(FD) is discussed.

Optimization of solutions is briefly touched upon in Chapter 10. Some aspects of a

flexible environment for obtaining solutions interactively are treated in Chapter 11.

Relations to other work are given in Chapter 12, while conclusions and plans

for the future are to be found in Chapter 13. After the bibliography there is an

appendix containing additional examples of discrete constraint satisfaction problems,

in different forms.

1.4 Notation and Typographical Conventions
Predicate calculus is used as the formal language for building the Assignment

Theory. In predicate calculus expressions initial lower case letters will be used for

predicate symbols and upper case for variables. Constants and functions are written

with an initial lower case letter. Predicate calculus and Horn clause expressions are

written in typewriter font. The single letters A, B and C are reserved to denote

metavariables, standing for terms or formulas. Greek letters are used as restricted

metavariables, standing for ground terms, or list structures of ground terms. Standard

set notation is used and an ordered set of two elements is written [e1, e2], where

e1 is the first element and e2 the last. We use the special symbol | as a list

6 Introduction

constructor; in the expression [e1, e2] = [U| W], U is e1 and W is [e2].

In predicate calculus and Horn clause expressions we use the following

symbols, with their standard meaning.

Î, Ï, =, ¹, <, £, >, ³, Ø, ", $, &, Ú, ®, ¬, «

The symbols are assigned increasing ranks, in the order listed, which means that «
reaches further than &, etc. If necessary, the scope of a symbol is limited by the use

of parentheses.

The formula below is an axiom schema of the Assignment Theory, containing

the metavariable A.

"X (assignment_objects(X) «
 X = A)

The symbol A is part of the metalanguage, while " , « , (,) , = ,

assignment_objects and X are symbols of the object language. In order to avoid

the mixing of languages, we follow [Kleene 1968] and say that «, e.g., appears as a

name for itself in sentences containing metalanguage expressions. That is, the

logical symbol « is being used autonymously [Carnap 1934].

CHAPTER 2
Finite Constraint Satisfaction Problems

A finite constraint satisfaction problem (CSP) can be defined as follows. There is a

finite set of variables {X1,É, Xn} with related finite domains D1,É, Dn. There is a

set of constraints c(Xi1,É, Xik) on the values that can be assigned to the variables.

A solution is an assignment of values to the variables from their respective

domains, satisfying all constraints.

The formulation above states the CSP framework in a general way. It does

not, however, define how problems are to be represented and solved in a computer.

Hentenryck and Dincbas observed [Hentenryck & Dincbas 1987] that logic

programming languages, such as Prolog, are appropriate tools for describing CSPs,

while being inefficient for solving them. They proceeded to suggest an extended

logic programming language, CHIP, in which general constraint satisfaction

problem solving techniques, such as forward checking are incorporated (the CHIP

language is described in detail in [Hentenryck 1989]).

7

8 Finite Constraint Satisfaction Problems

2.1 A Declarative and Transparent Representation
We essay to elevate the abstraction level when representing CSPs, compared to

programming in a constraint logic programming language such as CHIP. We define

a predicate calculus representation, intuitively capturing a class of CSPs, where

problems to be solved are formulated by instantiating a set of schemata. The

representation is transparent, so that a user can understand the notion of constraints

and other problem components. Under the assumption that we can design a suitable

interface between this representation and the end user, non-trivial problems can be

communicated to the computer without programming skill.

No programming constructs or problem solving techniques are present in our

predicate calculus representation. We postpone the issue of efficient computation of

solutions to Chapter 9.

To summarize, we will suggest a high-level representation in which a class of

CSPs can be expressed naturally. The solution to a given problem is found in the

appropriate combination of a finite set of assignment objects with a finite set of

resources. In general, we will refer to this problem class as assignment problems

and to our representation as an Assignment Theory (AT). We regard our

representation as a basic metatheory for the class of constraint satisfaction problems

under consideration. The theory will be studied and discussed as a foundation for

both natural user interaction and efficient problem solving (computation).

We endeavour to design a system in which a typical end user, unskilled in

programming, can specify and solve specific instances of a class of (non-trivial)

problems. If this goal is to be reached, the user must understand the fundamental

concepts and ideas behind the representation. An axiomatic predicate calculus

formulation provides a declarative and transparent representation, with a clear

semantics (the advantages of predicate calculus as a knowledge representation

formalism have been eloquently put forward elsewhere, cf. [Hayes 1977]). The

function of the system can thus be explained naturally. No control information

about how the computer should proceed to solve the problem is present in this

representation. Moreover, the actual process of problem instantiation can also be

defined quite independently of the representation itself, which will be discussed in

Chapter 6. Let us be satisfied for the moment with the notion that problem

instantiation will be controlled by a metaprogram which inspects the gradually

specified theory, enabling the use of advanced interfaces and early detection of

impossible specifications.

2.2 An Assignment System 9

2.2 An Assignment System
We are searching for a representation in which the primitives and solution

conditions of a constraint satisfaction problem can be stated as facts and rules in

predicate calculus. The Assignment Theory consists of a set of general axioms,

ATg, and a set of problem specific axioms, ATs (in addition to a set of logical

axiom schemata and inference rules of a standard first-order predicate calculus

formulation). The ATs set contains metavariables, which will be replaced by

ground terms and formulas when a specific problem is instantiated. The instantiation

of ATs is performed by a metalevel, giving the object theory ATg U ATsÕ, where

ATsÕ is the object theory which results from instantiating the metavariables of

ATs. That is, each schema is instantiated exactly once for a given problem. A

solution to the problem is then logically implied by ATg U ATsÕ, if it follows

from the given problem components. So, we can (in theory, at least) make the

following deduction both for checking and for generating solutions.

ATg U ATs' $ Y solution(Y)

The axioms of ATg and ATsÕ are given in full predicate calculus. There is

presently no known efficient computational method to perform the outlined

deduction. The most straightforward approach to solving this problem is to

transform all axioms of the theory into Horn clauses, computing solutions with a

Prolog system. Transformations can be made informally, i.e. by writing a program

based on the specification or by more formal deductions (see, e.g., [Clark &

T�rnlund 1977], [Hansson & T�rnlund 1979]). In Chapter 7 we present a Horn

clause program for checking and generating solutions. An informal metalevel view

will establish the relationship between a problem instance, represented by ATsÕ,

and a Prolog program. This provides the potential for automatic code generation, by

formalization of the metaview in a logic program.

The problem with the Prolog approach is that the solution generating program

will not solve a CSP particularly efficiently. It will display a typical generate-and-

test behaviour, which is not a computationally efficient problem solving paradigm

for constraint satisfaction problems. This leads us to explore an alternative

approach, which is based on another metalevel view of the problem formulation.

Constraint satisfaction problems with finite domains can be coded and solved

efficiently in CLP(FD), as shown in [Hentenryck 1989]. Our Assignment Theory is

capable of capturing a class of CSPs as object level theories and each such particular

1 0 Finite Constraint Satisfaction Problems

problem is related to a CLP(FD) formulation. We will discuss the relationship to

some extent, laying the ground for code-generating metaprograms. The results of a

CLP(FD) computation can be given to the end user in the original specification

format, in a suitable interface. This is important in a flexible environment which

permits the user to change suggested solutions, define partial solutions, ask the

system for new suggestions or even change the problem representation (and thereby

also the corresponding program).

CHAPTER 3
An Assignment Theory

In this and the following chapter we characterize the Assignment Theory, i.e. the

proposed representation for formalizing a class of discrete constraint satisfaction

problems. A solution to a problem will be defined as a set of correct resource

assignments to a set of assignment objects. Assignment conditions define the

structure of a solution which is also correct if, and only if, it satisfies a set of

constraints between the resource assignments.

We will define an example problem and see how its components are

represented in AT, building the theory by defining axioms.

3.1 An Example Problem
The problem is to assign hospital staff, physicians and nurses, to working periods.

The working periods are of different kinds: day, night and standby. The physicians

are divided into categories according to competenceÑsenior physicians and assistant

11

1 2 An Assignment Theory

physicians. Time is divided into Friday, Saturday and Sunday, days and nights and

specific hours. In addition, there may exist a variety of constraints concerning staff,

time and working periods. The following are examples of constraints: a certain

physician is unavailable on Friday morning, some working periods demand a senior

physician, a specific nurse and a certain doctor cannot work together, or all

physicians should work approximately the same amount of hours.

3.2 Assignment Objects
Let us represent the working periods as a set of assignment objects. Assignment

objects can represent such diverse things as technical components or hours of a

working schema. The assignment objects of our example problem are day, night and

standby working periods. They are naturally depicted as a hierarchy, where wp (short

for working period) is a main class and day, night, etc., are further specializations of

this class.

wp

day night standby

fri sat sun fri sat sun s1 s2

Figure 3.1 A hierarchical description of assignment objects.

We can represent an assignment object as a structure where the first element is the

main class, wp, the second is either day, night or standby, etc. The hierarchy of

Figure 3.1 corresponds to eight such structures, from [wp, day, fri] to [wp,

standby, s2]. The set of assignment objects is represented in AT by instantiating

the metavariable A of Schema1.

Schema1
"X (assignment_objects(X) «

 X = A)

where A is a metavariable which is to be replaced by a set of unique assignment

objects, X, where each object is a constant or a list structure. In the latter case, the

elements of the list structure are nodes in an assignment object hierarchy. This

schema, and the ones to follow, can be instantiated only once for a given problem.

That is, if the problem formalization is changed, for example by adding an

3.3 Resources 1 3

assignment object, a new schema instantiation will replace the previous one.

In the working period example, the set of assignment objects, X, is:

{[wp, day, fri], [wp, day, sat], [wp, day, sun],

 [wp, night, fri], [wp, night, sat], [wp, night, sun],

 [wp, standby, s1], [wp, standby, s2]}.

Each member of a set of assignment objects is an assignment object. This is easily

defined by a general axiom.

"U (assignment_object(U) «
 $X (assignment_objects(X) & U Î X))

The reason for representing each assignment object above as a list structure, instead

of a simple constant as wpdayfri, is that the structure provides the means for

natural reference to different sets of assignment objects. This, in turn, provides the

means for natural constraint formulations. For instance, we can refer to all night or

day periods in a constraint, without having to enumerate them explicitly. Let us, for

the sake of the argument, show a definition of a night period.

"U (night_period(U) «
 $V (U = [wp, night, V] & assignment_object(U)))

The outlined technique will be a basis for expressing constraints on solutions, where

reference is made to sets of assignment objects and sets of resources.

3.3 Resources
In our example there are two kinds of resources: hospital staff and time, as

depicted below.

nurse

 smith jones

 staff

 assistant senior

pettersson olsonandersson svensson

 physician

time

friday saturday

day night day night

9 10 23 24 9 10 23 24

sunday

day night

9 10 23 24

Figure 3.2 Resource hierarchies.

A resource is of the same structure as an assignment object. The set of all resources

1 4 An Assignment Theory

consists of all structures reflecting paths in the hierarchiesÑfrom [time, friday,

day, 9] to [staff, physician, senior, olson] in Figure 3.2.

More generally, a set of resources is an instance of the metavariable B of an

axiom schema.

Schema2
"X (resources(X) «
 X = B)

where B is to be replaced by a set of resources, X, where each resource is a constant

or a list structure. In the latter case, the elements of the list structure are nodes of a

resource hierarchy.

The set of resources in our example domain is as follows.

{[time, friday, day, 9], [time, friday, day, 10],

 [time, friday, night, 23], [time, friday, night, 24],

 [time, saturday, day, 9], [time, saturday, day, 10],

 [time, saturday, night, 23], [time, saturday, night, 24],

 [time, sunday, day, 9], [time, sunday, day, 10],

 [time, sunday, night, 23], [time, sunday, night, 24],

 [staff, nurse, smith], [staff, nurse, jones],

 [staff, physician, assistant, andersson],

 [staff, physician, assistant, svensson],

 [staff, physician, senior, pettersson],

 [staff, physician, senior, olson]}

An individual resource, R, is defined as a member of a resource set.

"R (resource(R) «
 $X (resources(X) & R Î X))

Analogously to the reference to sets of assignment objects, we can use variable parts

of expressions to refer to sets of resources. For instance, we can define the midnight

hours of the resource set.

"R (midnight_hour_resource(R) «
 $V1$V2 (R = [time, V1, V2, 24] & resource(R)))

3.4 Resource Assignment Specification 1 5

When a variable is referenced only once in a logic formula, as is the case for both V1

and V2 above, we sometimes use the underscore, _, to stand for the variable and

omit explicit quantification. It will be clear from context if _ stands for a

universally or existentially quantified variable. We will also use the convention of

letting just $ (or ") represent the existential (or universal) closure of variables not

within the scope of other quantifiers.

3.4 Resource Assignment Specification
A correct combination of assignment objects and resources will constitute a

solution to a given problem. This is formalized by a general axiom.

"Y (solution(Y) «

 assignments(Y) & correct(Y))

There are two demands on the solution; it must consist of assignments and it has to

be correct. The first demand expresses the basic conditions of an assignment

problem, as exemplified below, where time and staff are assigned to different

working periods. Specific times are set for all working periods, while the

assignments of staff resources are more loosely specified, with the aid of existential

variables.

"Y (assignments(Y) «
$ (Y = [[[wp, day, fri], [A1, A2, A3, A4]],
 [[wp, day, sat], [A5, A6, A7, A8]],

 [[wp, day, sun], [A9, A10, A11, A12]],

 [[wp, night, fri], [A13, A14, A15, A16]],

 [[wp, night, sat], [A17, A18, A19, A20]],

 [[wp, night, sun], [A21, A22, A23, A24]],

 [[wp, standby, s1], [A25, A26, A27, A28, A29, A30, A31]],

 [[wp, standby, s2], [A32, A33, A34, A35, A36, A37, A38]]] &

A1 = [time, friday, day, 9] & A2 = [time, friday, day, 10] &

A3 = [staff, physician, assistant, V1] & A4 = [staff, nurse, V2] &

A5 = [time, saturday, day, 9] & A6 = [time, saturday, day, 10] &

A7 = [staff, physician, assistant, V3] & A8 = [staff, nurse, V4] &

A9 = [time, sunday, day, 9] & A10 = [time, sunday, day, 10] &

A11 = [staff, physician, assistant, V5] &

A12 = [staff, nurse, V6] & A13 = [time, friday, night, 23] &

A14 = [time, friday, night, 24] &

A15 = [staff, physician, V7, V8] & A16 = [staff, nurse, V9] &

A17 = [time, saturday, night, 23] &

1 6 An Assignment Theory

A18 = [time, saturday, night, 24] &

A19 = [staff, physician, V10, V11] & A20 = [staff, nurse, V12] &

A21 = [time, sunday, night, 23] & A22 = [time, sunday, night, 24] &

A23 = [staff, physician, V13, V14] & A24 = [staff, nurse, V15] &

A25 = [time, friday, day, 9] & A26 = [time, friday, day, 10] &

A27 = [time, friday, night, 23] & A28 = [time, friday, night, 24] &

A29 = [time, saturday, day, 9] & A30 = [time, saturday, day, 10] &

A31 = [staff, physician, V16, V17] &

A32 = [time, saturday, night, 23] &

A33 = [time, saturday, night, 24] & A34 = [time, sunday, day, 9] &

A35 = [time, sunday, day, 10] & A36 = [time, sunday, night, 23] &

A37 = [time, sunday, night, 24] &

A38 = [staff, physician, V18, V19] &

resource(A1) & ... & resource(A38)))

It is stated that the day working periods must have an assistant physician and a nurse

assigned, while a night working period is to be combined with a physician (assistant

or senior) and a nurse. The first standby period covers the first half of the weekend,

while the second takes the other half, each with one physician assigned. More

generally, the solution is defined to be an ordered structure of eight assignment

objects, each with an ordered list of assignments. Each assignment is a resource and

if its specification contains variables, more than one resource may exist as a

potential instantiation.

The example of assignment specifications above is an instantiation of the

following schema.

Schema3
"Y (assignments(Y) «
 $ (Y = [[D1, [A1, ..., Ar]], ..., [Dn, [As, ..., At]]] &
 A1 = E1 & ... & At = Et &
 resource(A1) & ... & resource(At)))

where Y is an ordered structure, each Di is a variable free assignment object

structure, belonging to the set specified in Schema1 and each Ei is either a

resource specification, which may contain variables, or a variable identical to Ai.

The level of detail of the Assignment Theory may seem too low for natural problem

specification. There is no reason, however, why a user of the system should be as

detailed as the theory itself when instantiating particular problems. For instance, a

3.5 Summary 1 7

user should not be expected to explicitly write the existential variables in the

resource assignment expression above. A user interface to the theory is naturally

seen as the realization of an intended interpretation of the theory. If AT is employed

to represent problems where concrete objects are to be combined, the theory is

interpreted accordingly, resulting in an interface where the assignment objects are

naturally reflected, e.g. as graphical objects on a screen. In a work assignment

domain, the interpretation of assignment objects would probably be different,

resulting in other presentations. Similarly, there are many ways to interpret the

constraints of the next section. It will be the task of an interface designer to interpret

AT and construct an interface according to the interpretation. The fundamental

concepts of the theory will thus be communicated mainly through the user interface.

An example interface, resulting from an interpretation of AT, is discussed in

Chapter 5.

3.5 Summary
We have defined the first parts of the Assignment Theory; assignment objects,

resources and the basic specification of their potential combinations. A solution is a

combination of resource assignments which, in addition, must be correct. Solution

correctness will be defined in terms of relational and numerical constraints, the

subjects of the next chapter.

CHAPTER 4
Formulation of Constraints

In the previous chapter we described the formalization of assignment objects,

resources and the general conditions for combining them in a solution. Now, we

will define the means for expressing constraints on a solution. That is, a solution

must also be correct, as defined below.

"Y (solution(Y) «

 assignments(Y) & correct(Y))

"Y (correct(Y) «
 satisfies_relational_constraints(Y) &

 satisfies_numerical_constraints(Y))

A solution is correct if, and only if, all relational and numerical constraints on the

solution are satisfied. We will give schemata for expressing these categories of

18

4.1 Relational Constraints 1 9

constraints. Relational constraints concern how resources must, or must not, be

combined with assignment objects, sometimes depending on other resource

assignments. Numerical constraints are used to state limitations on the usage of

resources in a solution.

4.1 Relational Constraints
We will introduce relational constraints by describing how some restrictions from

the example hospital domain are formalized in AT. This is meant to give an

understanding of the different kinds of constraints which can be expressed, as well as

introducing their logical form.

Let us assume that we want to state the following constraint in our theory: Òif

senior physician Olson is assigned to a night working period, he must work with

nurse JonesÓ. In order to express this formally, we map the constituents of the

natural language statement into the concepts of AT, using appropriate predicate

calculus symbols. A first order formula follows.

"Y (satisfies_relational_constraints(Y) «
 "([U1, Z1] Î Y & U1 = [wp, night, _] &
 RSpec1 Î Z1 & RSpec1 = [staff, physician, senior, olson] ®
 RSpec2 Î Z1 & RSpec2 = [staff, nurse, jones]))

As soon as Olson is assigned to a night period, Jones must work with himÑ

otherwise the axiom is not satisfied. Naturally, the constraint is satisfied if Olson is

not assigned to a night working period, since we then have a false antecedent of a

material implication.

In another example, we assume that: Òa night working period must always

have either a senior physician or Svensson assignedÓ. This exemplifies the need for

especially qualified physicians during some periods. Again, the formalization comes

naturally (the constraint is stated within the satisfies relational constraints axiom

above).

" ([U1, Z1] Î Y & U1 = [wp, night, _] ®

 $ (RSpec1 Î Z1 &
 (RSpec1 = [staff, physician, senior, _] Ú
 RSpec1 = [staff, physician, assistant, svensson])))

Next, we want to state that a certain combination of resources is not allowed in a

solution, exemplified by the statement: Ònurse Jones refuses to work together with

2 0 Formulation of Constraints

senior physician Olson on a night working periodÓ.

Ø$ ([U1, Z1] Î Y & U1 = [wp, night, _] &
 RSpec1 Î Z1 & RSpec2 Î Z1 &
 RSpec1 = [staff, physician, senior, olson] &

 RSpec2 = [staff, nurse, jones])

The first three example constraints all treat relationships only between resources of

the same assignment object. There are no relations between resources of different

assignment objects. We will now confront our theory with some examples where

such relations do occur. Two constraints are presented, followed by their

formalization. (i) Òif Andersson is assigned to a working period, then a senior

physician must be assigned to a simultaneous standby periodÓ (ii) Òif a night

working period is scheduled to the same time as a standby period, then at least one

of the periods must have a senior physician assignedÓ.

" ([U1, Z1] Î Y &
 RSpec1 Î Z1 & RSpec2 Î Z1 &
 RSpec1 = [time, R1, R2, R3] &

 RSpec2 = [staff, physician, assistant, andersson] ®
 $ ([U2, Z2] Î Y & U1 ¹ U2 & U2 = [wp, standby, _] &

 RSpec3 Î Z2 & RSpec4 Î Z2 &
 RSpec3 = [time, R1, R2, R3] &
 RSpec4 = [staff, physician, senior, _])) &

" ([U1, Z1] Î Y & U1 = [wp, night, _] &
 [U2, Z2] Î Y & U2 = [wp, standby, _] &
 RSpec1 Î Z1 & RSpec2 Î Z2 &
 RSpec1 = [time, R1, R2, R3] &

 RSpec2 = [time, R1, R2, R3] ®
 $ (RSpec3 Î Z1 & RSpec3 = [staff, physician, senior, _] Ú
 RSpec3 Î Z2 & RSpec3 = [staff, physician, senior, _]))

The main novelty in these constraints is that they concern resources of two separate

assignment objects. A typical relationship between resources of different assignment

units is that they must be equal, as expressed by the two occurrences of the

specification [time, R1, R2, R3] in the first constraint above.

By using negation we can express that some relationship is forbidden. Let us

formalize the constraint: Òit is forbidden to have two different senior physicians

assigned to different working periods at the same time in the nightÓ.

4.2 Distances between Resources 2 1

Ø$ ([U1, Z1] Î Y &

 [U2, Z2] Î Y & U1 ¹ U2 &

 RSpec1 Î Z1 & RSpec2 Î Z1 & RSpec3 Î Z2 & RSpec4 Î Z2 &
 RSpec1 = [time, R1, night, R2] &

 RSpec2 = [staff, physician, senior, R3] &

 RSpec3 = [time, R1, night, R2] &

 RSpec4 = [staff, physician, senior, R4] & R3 ¹ R4)

In some real-world constraints one refers to the order of resources. For instance, if

we want to state that no physician should work more than two nights in sequence,

we must be able to tell that Saturday comes after Friday, etc. We will therefore

incorporate the means for ordering resource hierarchies and for expressing distances

between resources.

4.2 Distances between Resources
Let us assume that the distance between Friday and Saturday is one day, that there is

one hour between nine and ten of Friday morning, etc., as illustrated in the time

hierarchy of Figure 4.1.

time

friday saturday

day night day night

9 10 23 24 9 10 23 24

sunday

day night

9 10 23 24

1 1

13 13131 1 1 1 1 19 9

Figure 4.1 Distances in the time resource hierarchy.

Naturally, it is now up to us to interpret the number one between Friday and

Saturday to mean one day, while the same number between nine and ten means one

hour. This is important for the use of asserted distances in constraint formulations.

Also, in order to be meaningful, distances should be specified only between

elements at the same level of a resource hierarchy.

Let us now see how we can formalize distances in the theory. If we look at the

illustration above, we see that the distance one between nine and ten oÕclock on

Friday is easily asserted by specifying this distance between two resourcesÑ[time,

2 2 Formulation of Constraints

friday, day, 9] and [time, friday, day, 10]. The distance between Friday

and Saturday is differentÑwe need to define the distance between the resource classes

[time, friday] and [time, saturday]. The set of distances between resources

and resource classes for a given problem is asserted by instantiating the fourth

axiom schema of our theory.

Schema4
" (resource_distance(R1, R2, D) «
 R1 = B11 & R2 = B12 & D = r1 Ú ... Ú
 R1 = Bn1 & R2 = Bn2 & D = rn)

where each Bij and Bik are resources, or resource classes, at the same level in the

resource hierarchy and each ri is an integer.

" (resource_distance(R1, R2, D) «
 R1 = [staff, physician, assistant] &

 R2 = [staff, physician, senior] & D = 1 Ú
 R1 = [time, friday] & R2 = [time, saturday] & D = 1 Ú
 R1 = [time, saturday] & R2 = [time, sunday] & D = 1 Ú
 R1 = [time, friday, day, 9] &

 R2 = [time, friday, day, 10] & D = 1 Ú
 R1 = [time, friday, day, 10] &

 R2 = [time, friday, night, 23] & D = 13 Ú
 R1 = [time, friday, night, 23] &

 R2 = [time, friday, night, 24] & D = 1 Ú
 R1 = [time, friday, night, 24] &

 R2 = [time, saturday, day, 9] & D = 9 Ú
 R1 = [time, saturday, day, 9] &

 R2 = [time, saturday, day, 10] & D = 1 Ú
 R1 = [time, saturday, day, 10] &

 R2 = [time, saturday, night, 23] & D = 13 Ú
 R1 = [time, saturday, night, 23] &

 R2 = [time, saturday, night, 24] & D = 1 Ú
 R1 = [time, saturday, night, 24] &

 R2 = [time, sunday, day, 9] & D = 9 Ú
 R1 = [time, sunday, day, 9] &

 R2 = [time, sunday, day, 10] & D = 1 Ú
 R1 = [time, sunday, day, 10] &

 R2 = [time, sunday, night, 23] & D = 13 Ú
 R1 = [time, sunday, night, 23] &

 R2 = [time, sunday, night, 24] & D = 1)

4.2 Distances between Resources 2 3

We define a general axiom which states the distance between two resources, or

resource classes (which are assumed to be at the same level of the resource

hierarchy).

" (distance(R1, R2, D) «
 resource_distance(R1, R2, D) Ú
 $ (resource_distance(R1, R3, D1) &
 distance(R3, R2, D2) &

 D = D1 + D2))

Next, we define some axioms which enable us to conveniently state that a resource

or a resource class is before or after some other resource or class of resources.

" (before(S1, S2) «
 $ (distance(S1, S2, D) & D > 0))

" (before_equal(S1, S2) «
 $ (distance(S1, S2, D) & D ³ 0))

" (after(S1, S2) «
 $ (distance(S2, S1, D) & D > 0))

" (after_equal(S1, S2) «
 $ (distance(S2, S1, D) & D ³ 0))

Given the general axioms above and suitable instantiations of resource distances, it

is possible to write constraints which talk about demanded or forbidden distances

between resources. An example constraint is Ònurse Jones must work two night

periods in sequenceÓ, as formalized below.

$ ([[wp, night, U1], Z1] Î Y &
 [[wp, night, U2], Z2] Î Y & U1 ¹ U2 &

 Z1 = [RSpec1, RSpec2, RSpec3, RSpec4] &

 Z2 = [RSpec5, RSpec6, RSpec7, RSpec8] &

 RSpec4 = [staff, nurse, jones] &

 RSpec8 = [staff, nurse, jones] &

 RSpec2 = [time, R1, _, _] & RSpec5 = [time, R2, _, _] &

 distance([time, R1], [time, R2], 1))

2 4 Formulation of Constraints

This concludes our exemplification of the formulation of relational constraints in

AT. A metalevel schema for representing relational constraints is stated below.

Schema5
"Y (satisfies_relational_constraints(Y) «
 A1(Y) & ... & An(Y))

where each Ai is an implication

"(B(Y) ® $C(Y))

or a disjunction of m implications

("(B(Y)1 ® $C(Y)1) Ú ... Ú "(B(Y)m ® $C(Y)m))

where B and C are built from the predicates: Î, Ï, =, ¹, >, ³, <, £, distance,

before, before_equal, after and after_equal and the arithmetic symbols +, -

and *, using the logical connectives & and Ú. Negation, Ø, is used only to negate the

consequent part. Variables in the antecedent are universally quantified over the whole

constraint, while variables introduced in the consequent are existentially quantified.

Arithmetic expressions can be stated over integer constants and any quantified

variable representing an integer, using +, - and *. Parentheses are used to limit the

scope of symbols such as Ú, when necessary. The antecedent of a constraint may be

empty, in which case there are only existential variables, if any, in the expression.

In addition to the relational constraints, we distinguish a class of constraints which

is used to express numerical demands on resource employment in a solution.

4.3 Constraints on Resource Usage
The last schema of ATs is used to express constraints on resource usage. In this

schema we can state that certain resources, as defined by a specification, must occur

a specified number of times in a solution, allotted to certain assignment objects.

Schema6
"Y (satisfies_numerical_constraints(Y) «
 A1(Y) & ... & An(Y))

where each Ai is an expression of the form

4.4 Summary 2 5

$ (number_of_combinations(Ei, Di, Y, P) &
 rj £ P £ rk))))

where Ej is to represent a resource specification and Di is an assignment object

specification. Resource and object specifications may contain existentially quantified

variables. The metavariables rj and rk will represent numbers, rj £ rk, denoting

an interval to which the number of resource combinations, P, must belong.

Below we give an example instantiation, specifying that (i) Òphysician Olson must

work two or three night periodsÓ (ii) Òthe maximum total use of all senior

physicians is 15 periodsÓ.

"Y (satisfies_numerical_constraints(Y) «
 $ (number_of_combinations([staff, physician, senior, olson],
 [wp, night, U1], Y, P) &

 2 £ P £ 3) &

 $ (number_of_combinations([staff, physician, senior, R1],
 U1, Y, P) &

 0 £ P £ 15))

The number_of_combinations predicate is a relation between a resource

specification, an assignment object specification, the solution and a number. The

intuition is that all assignment units of Y with an assignment object equal to the

specification of the constraint, and a resource which is equal to the resource

specification, make up the number of combinations.

4.4 Summary
We have defined two kinds of constraintsÑrelational and numericalÑwhich are

intended to naturally formalize some typical components of CSPs. In particular, a

single relational constraint can be used to state that a relationship involving many

individual objects of different classes is demanded or forbidden. Such constraints need

not be changed if only the sets of individual objects, e.g. staff resources, change

over time. The formalization of constraints is intended to be as natural as possible

with respect to the real-world problem statements, but the abstraction level will

have to be further elevated in a useful assignment system. The subject of a user

interface to the problem representation of AT is treated in the next chapter.

CHAPTER 5
The Interface between User and Theory

The purpose of the Assignment Theory is to provide a high-level representation in

which a class of CSPs can be formulated naturally, i.e. in a form which is close to

the original problem statements, as perceived by the user of the assignment system

in the real world. Still, the AT formalism is too cumbersome for the end user, who

cannot be expected to be skilled in logic. The question is therefore if we can find a

natural mapping from the entities of ATÑassignment objects, constraints, etc.Ñto

an intuitive user interface. We claim that this is the case. In fact, when formulating

AT in the first place, our starting point was an intuitive, informal understanding of

the problem domainÑassignment objects as a hierarchy, natural language

formulations of relational constraints, etc. This first conceptualization of the objects

and relationships of the domain did not contain any technical constructions of logic,

such as universal or existential quantification of variables. The line we will follow

is therefore to regard the user interface as an intended interpretation of the theory,

26

5.1 A Prototype Interface 2 7

where the technicalities of the logic formalism, for instance explicit quantification

of variables, are presented more abstractly yet precisely.

We will outline a prototype interface implementation between AT and the end

user. It should be emphasized that this interface is merely a sketch and that

fundamentally different versions could well be imagined and designed. The interface

should be seen as a modular part of an assignment system, communicating with

AT only through a formal relationship, which will be described in the next chapter.

The objective of our prototype is to see if we can find an intuitive interpretation of

AT that maps naturally into a comprehensible user interface.

5.1 A Prototype Interface
Let us assume that the different parts of ATs, i.e. the six schemata, are specialized

by user interaction in the following order: assignment objects, resources, resource

distances, resource assignments, relational constraints and numerical constraints. At

the outset the interface will, in some format, have access to the general part of the

Assignment Theory,

