
Parameterized Verification of Infinite-state

Processes with Global Conditions

Parosh Aziz Abdulla1 parosh@it.uu.se,
Giorgio Delzanno2 giorgio@disi.unige.it, and

Ahmed Rezine1 Rezine.Ahmed@it.uu.se

1 Uppsala University, Sweden
2 Università di Genova, Italy.

Abstract. We present a simple and effective approximated backward
reachability algorithm for parameterized systems with existentially and
universally quantified global conditions. The individual processes oper-
ate on unbounded local variables ranging over the natural numbers. In
addition, processes may communicate via broadcast, rendez-vous and
shared variables. We apply the algorithm to verify mutual exclusion for
complex protocols such as Lamport’s bakery algorithm both with and
without atomicity conditions, a distributed version of the bakery algo-
rithm, and Ricart-Agrawala’s distributed mutual exclusion algorithm.

1 Introduction

We consider the analysis of safety properties for parameterized systems. A pa-
rameterized system consists of an arbitrary number of processes. The task is
to verify correctness regardless of the number of processes. This amounts to the
verification of an infinite family; namely one for each size of the system. Most ex-
isting approaches to automatic verification of parameterized systems make the
restriction that each process is finite-state. However, there are many applica-
tions where the behaviour relies on unbounded data structures such as counters,
priorities, local clocks, time-stamps, and process identifiers.

In this paper, we consider parameterized systems where the individual pro-
cesses operate on Boolean variables, and on numerical variables which range over
the natural numbers. The transitions are conditioned by the local state of the
process, values of the local variables; and by global conditions which check the
local states and variables of the other processes. These conditions are stated as
propositional constraints on the Boolean variables, and as gap-order constraints

on the numerical variables. Gap-order constraints [19] are a logical formalism
in which we can express simple relations on variables such as lower and upper
bounds on the values of individual variables; and equality, and gaps (minimal
differences) between values of pairs of variables. A global condition is either
universally or existentially quantified. An example of a universal condition is
“variable x of a given process i has a value which is greater than the value of
variable y in all other processes inside the system”. Process i is then allowed to

perform the transition only if this condition is satisfied. In an existential con-
dition we require that some (rather than all) processes satisfy the condition.
In addition to these classes of transitions, processes may communicate through
broadcast, rendez-vous, and shared variables.

There are at least two advantages with using gap-order constraints as a lan-
guage for expressing the enabling conditions of transitions. First, they allow to
handle a large class of protocols where the behaviour depends on the relative
ordering of values among variables, rather than the actual values of these vari-
ables. The second reason is that they define a natural ordering on the set of
system configurations. In fact, it can be shown, using standard techniques (such
as the ones in [22]), that checking safety properties (expressed as regular lan-
guages) can be translated into the reachability of sets of configurations which
are upward closed with respect to this ordering.

To check safety properties, we perform backward reachability analysis us-
ing gap-order constraints as a symbolic representation of upward closed sets of
configurations. In the analysis, we consider a transition relation which is an over-
approximation of the one induced by the parameterized system. To do that, we
modify the semantics of universal quantifiers by eliminating the processes which
violate the given condition. For instance in the above example, process i is al-
ways allowed to take the transition. However, when performing the transition,
we eliminate each process j where the value of y is smaller than the value of x in
i. The approximate transition system obtained in this manner is monotonic with
respect to the above mentioned ordering, in the sense that larger configurations
can simulate smaller ones. In fact, it turns out that universal quantification is
the only operation which does not preserve monotonicity and hence it is the only
source of approximation in the model. The fact that the approximate transition
relation is monotonic, means that upward closedness is maintained under the
operation of computing predecessors. Therefore, all the sets which are generated
during the backward reachability analysis procedure are upward closed, and can
hence be represented by gap-order constraints. A significant aspect of the reach-
ability procedure is that the number of copies of variables (both Boolean and
numerical) which appear in the upward closed sets is not bounded a priori. The
reason is that there is an arbitrary number of processes each with its own local
copy of the variables. The whole verification process is fully automatic since both
the approximation and the reachability analysis are carried out without user in-
tervention. Observe that if the approximate transition system satisfies a safety
property then we can conclude that the original system satisfies the property,
too.

Termination of the approximated backward reachability analysis is not guar-
anteed in general. However, the procedure terminates on all the examples we
report in this paper. Furthermore, termination is guaranteed in some restricted
cases such as for systems with existential or universal global conditions but with
at most one local integer variable.

In order to test our method we have selected a collection of challenging
protocols in which integer variables are used either as identifiers, priorities, local

clocks, or time-stamps. Almost all of the examples are outside the class for
which termination is guaranteed. In particular, we automatically verify safety
properties for parameterized versions of the following algorithms:

– Lamport’s bakery algorithm [18] with atomicity conditions;
– A version of Lamport’s bakery algorithm with non-atomic computation of

tickets;
– A distributed version of Lamport’s bakery in which tickets and entry con-

ditions are computed and tested non-atomically by means of a receive-reply
protocol run by each process;

– The Ticket mutual exclusion algorithm with a central monitor for distribut-
ing tickets [5];

– The Ricart-Agrawala distributed mutual exclusion algorithm based on the
use of logical clocks and time-stamps [20].

We also consider a bogus version of the Lamport’s bakery without atomicity
conditions in the computation of tickets. In this version, the choosing flag is
simply ignored in the entry section. For this example, our procedure returns
symbolic traces (from initial to bad states) that explain the subtle race conditions
that may arise when the flag is not tested.

Each one of these examples present challenging problems for parameterized
verification methods in the following sense:

– Their underlying logic is already hard for manual or finite-state verification.
– They are all instances of multidimensional infinite-state systems in which

processes have unbounded local variables and (apart from Ticket) an order
over identifiers is used to break the tie in the entry section. For instance,
they cannot be modelled without the use of abstractions in the framework
of Regular Model Checking [16, 4, 7, 3].

– In all examples, global conditions are needed to model the communication
mechanisms used in the protocols (e.g. broadcasts, update, and entry condi-
tions that depend on the local integer variables of other processes).

Related Work The multi-dimensional parameterized models studied in the present
paper cannot be analyzed without use of additional abstractions by methods de-
signed for networks of finite-state processes, e.g., Regular Model Checking [16, 4,
7] and counter abstraction methods [11, 15, 12, 13]. The approximation scheme
we apply in our backward reachability procedure works well for a very large
class of one-dimensional parameterized systems. In fact, the verification proce-
dure used in [3] is a special case of the current one, where the processes are
restricted to be finite-state systems.

Parameterized versions of Lamport’s bakery algorithm have been tested us-
ing a semi-automated verification method based on invisible invariants in [6],
with the help of environmental abstractions for a formulation with atomicity
conditions in [10], and using heuristics to discover indexed predicates in [17]. A
parameterized formulation of the Ricart-Agrawala algorithm has been verified
semi-automatically in [21], where the STeP prover is used to discharge some

of the verification conditions needed in the proof. We are not aware of other
attempts of fully automatic verification of parameterized versions of the Ricart-
Agrawala algorithm or of the distributed version (with no atomicity assumptions)
of Lamport’s bakery algorithm.

In contrast to the above mentioned methods, our verification procedure is
fully automated and it is based on a generic approximation scheme. Furthermore,
our method is applicable to versions of Lamport’s bakery both with and without
atomicity conditions and may return symbolic traces useful for debugging.

A parameterized formulation of an abstraction of the Ticket algorithm has
been analyzed in [8]. The verification procedure in [8] does not handle parame-
terized universally quantified global conditions. Furthermore, in the abstraction
of the Ticket algorithm studied in [8] the central monitor may forget tickets (the
update of turn is defined by a jump to any larger value). Thus, the model does
not keep the FIFO order of requests. With the help of universally quantified
guards and of our approximation, we verify a more precise model in which the
FIFO order of requests is always preserved.

In contrast to symbolic methods for finite, a priori fixed collections of pro-
cesses with local integer variables, e.g., those in [9, 14], our gap-order constraints
are defined over an infinite collections of variables. The number of copies of
variables needed during the backward search cannot be bounded a priori. This
feature allows us to reason about systems with global conditions over any num-
ber of processes. Furthermore, the present method covers that of [2] which also
uses gap-order constraints to reason about systems with unbounded numbers
of processes. However, [2] cannot deal with global conditions which is the main
feature of the examples considered here.

Outline In the next two Sections we give some preliminaries and define a basic
model for parameterized systems. Section 4 and 5 describe the induced transi-
tion system and the coverability (safety) problem. In Section 6 we define the
approximated transition system. Section 7 defines the gap-order constraints and
presents the backward reachability algorithm, while Section 8 describes the op-
erations on constraints used in the algorithm. Section 9 explains how we extend
the basic model to cover features such as shared variables, broadcast and binary
communication. In Section 10 we report the results of running our prototypes on
a number of examples. Finally, in Section 11, we give conclusions and directions
for future work. In the appendix, we give some proofs and detailed descriptions
of the case studies.

2 Preliminaries

In this section, we give some preliminary notations and definitions. We use B to
denote the set {true, false} of Boolean values; and use N to denote the set of
natural numbers. For a natural number n, let n denote the set {1, . . . , n}.

For a finite set A, we write a multiset over A as a list [a1, a2, . . . , an], where
ai ∈ A for each i : 1 ≤ i ≤ n. We use a ∈ A to denote that a = ai for some i : 1 ≤

i ≤ n. For multisets M1 = [a1, . . . , am] and M2 = [b1, . . . , bn], we use M1 •M2 to
denote the union (sum) of M1 and M2 (i.e., M1 •M2 = [a1, . . . , am, b1, . . . , bn]).

We will work with sets of variables. Such a set A is often partitioned into
two subsets: Boolean variables AB which range over B, and numerical variables
AN which range over N . We denote by B(AB) the set of Boolean formulas over
AB. We will also use a simple set of formulas, called gap formulas, to constrain
the numerical variables. More precisely, we let G(AN) be the set of formulas
which are either of the form x = y or of the form x <c y where ∼∈ {<,≤},
x, y ∈ AN ∪ N , and c ∈ N . Here x <c y stands for x + c < y. We use F(A) to
denote the set of formulas which has members of B(A) and of G(N) as atomic
formulas, and which is closed under the Boolean connectives ∧,∨. For instance,
if AB = {a, b} and AN = {x, y} then θ = (a ⊃ b) ∧ (x + 3 < y) is in F(A).
Sometimes, we write a formula as θ(y1, . . . , yk) where y1, . . . , yk are the variables
which may occur in θ; so we can write the above formula as θ(x, y, a, b).

Sometimes, we perform substitutions on logical formulas. A substitution is
a set {x1 ← e1, . . . , xn ← en} of pairs, where xi is a variable and ei is either
a constant or a variable of the same type as xi, for each i : 1 ≤ i ≤ n.
Here, we assume that all the variables are distinct, i.e., xi 6= xj if i 6= j. For
a formula θ and a substitution S, we use θ[S] to denote the formula we get
from θ by simultaneously replacing all occurrences of the variables x1, . . . , xn

by e1, e2, . . . , en respectively. Sometimes, we may write θ[S1][S2] · · · [Sm] instead
of θ[S1 ∪ S2 ∪ · · · ∪ Sm]. As an example, if θ = (x1 < x2) ∧ (x3 < x4) then
θ[x1 ← 3, x4 ← 2][x2 ← y] = (3 < y) ∧ (x3 < 2).

3 Parameterized Systems

In this section, we introduce a basic model for parameterized systems. The basic
model will be enriched by additional features in Section 9.

A parameterized system consists of an arbitrary (but finite) number of iden-
tical processes. Each process is modelled as an extended finite-state automaton
operating on local variables which range over the Booleans and the natural num-
bers. The transitions of the automaton are conditioned by the values of the local
variables and by global conditions in which the process checks, for instance, the
local states and variables of all the other processes inside the system. A tran-
sition may change the value of any local variable inside the process (possibly
deriving the new values from those of the other processes). A parameterized
system induces an infinite family of (potentially infinite-state) systems, namely
one for each size n. The aim is to verify correctness of the systems for the whole
family (regardless of the number n of processes inside the system).

Formally, a parameterized system P is a triple (Q,X, T), where Q is a finite
set of local states, X is a finite set of local variables partitioned into XB (which
range over B) and XN (which range over N), and T is a finite set of transition

rules. A transition rule t is of the form

t :
[

q → q′ ⊲ θ
]

(1)

where q, q′ ∈ Q and θ is either a local or a global condition. Intuitively, the
process which makes the transition changes its local state from q to q′. In the
meantime, the values of the local variables of the process are updated according
to θ. Below, we describe how we define local and global conditions.

To simplify the definitions, we sometimes regard members of the set Q as
Boolean variables. Intuitively, the value of the Boolean variable q ∈ Q is true for
a particular process iff the process is in local state q. We define the set Y = X∪Q.

To define local conditions, we introduce the set Xnext which contains the
next-value versions of the variables in X . A variable xnext ∈ Xnext represents the
next value of x ∈ X . A local condition is a formula in F(X ∪Xnext). The formula
specifies how local variables of the current process are updated with respect to
their current values. This operation is performed locally without checking the
local variables of the other processes.

Global conditions check the values of local variables of the current process,
together with the local states and the values of local variables of the other
processes. Consequently, we need to distinguish between a local variable, say
x, of the process which is about to perform a transition, and the same local
variable x of the other processes inside the system. In order to do that, we
introduce for each x ∈ Y , two new variables self ·x and other ·x. We define
the sets self·Y = {self·x|x ∈ Y } and other·Y = {other·x|x ∈ Y }. The sets
self·X , other·Xnext , etc, are defined in the obvious manner. A global condition

θ is of one of the following two forms:

∀ other 6= self · θ1 ∃ other 6= self · θ1 (2)

where θ1 ∈ F (self·X ∪ other·Y ∪ self·Xnext). In other words, the formula
checks the local variables of the process which is about to make the transition
(through self ·X), and the local states and variables of the other processes
(through other ·Y). It also specifies how the local variables of the process in
transition are updated (through self ·Xnext). Notice that the new values are
defined in terms of the current values of variables and local states of all the pro-
cesses inside the system. A global condition is said to be universal or existential

depending on the type of the quantifier appearing in it.
As an example, the following formula

∀ other 6= self · (self·a) ∧ (self·xnext > other·x) ∧ other·q1

states that the transition may be performed only if variable a of the current
process has the value true, and all the other processes are in local state q1.
When the transition is performed, variable x of the current process is assigned
a value which is greater than the value of x in all the other processes.

4 Transition System

We describe the transition system induced by a parameterized system.
A transition system T is a pair (D,=⇒), where D is an (infinite) set of

configurations and =⇒ is a binary relation on D. We use ∗=⇒ to denote the

reflexive transitive closure of =⇒. Let � be an ordering on D. We say that
T is monotonic with respect to � if the following property is satisfied: for all
c1, c2, c3 ∈ D with c1 =⇒ c2 and c1 � c3, there is a c4 ∈ D such that c3 =⇒ c4
and c2 � c4. We will consider several transition systems in this paper.

First, a parameterized system P = (Q,X, T) induces a transition system
T (P) = (C,−→) as follows. A configuration is defined by the local states and
the values of the local variables in the processes. Formally, a local variable state v

is a mapping fromX to B∪N which respects the types of the variables. A process

state u is a pair (q, v) where q ∈ Q and v is a local variable state. As mentioned
in Section 3, we sometimes regard members of the set Q as Boolean variables.
Thus, we can view a process state (q, v) as a mapping u : Y 7→ B ∪ N , where
u(x) = v(x) for each x ∈ X , u(q) = true, and u(q′) = false for each q′ ∈ Q−{q}.
The process state thus agrees with v on the values of local variables, and maps
all elements of Q, except q, to false. A configuration is a multiset [u1, u2, . . . , un]
of process states. Intuitively, the above configuration corresponds to an instance
of the system with n processes. Each pair ui = (qi, vi) gives the local state and
the values of local variables of one process in the system. Notice that if c1 and
c2 are configurations then so is their union c1 • c2.

We define the transition relation −→ on the set of configurations as follows.
We start by describing the semantics of local conditions. Recall that a local
condition corresponds to one process changing state without checking states of
the other processes. Therefore, the semantics is defined in terms of two local
variable states v, v′ corresponding to the current resp. next values of the local
variables of the process; and a formula θ ∈ F(X ∪ Xnext) (representing the
local condition). We write (v, v′) |= θ to denote the validity of the formula
θ [ρ] [ρ′] where the substitutions are defined by ρ := {x← v(x)| x ∈ X} and
ρ′ := {xnext ← v′(x)| x ∈ X}. In other words, we check the formula we get by
replacing the current- resp. next-value variables in θ by their values as defined
by v resp. v′. The formula is evaluated using the standard interpretations of the
Boolean connectives, and the arithmetical relations <,≤,=. For process states
u = (q, v) and u′ = (q′, v′), we use (u, u′) |= θ to denote that (v, v′) |= θ.

Next, we describe the semantics of global conditions. The definition is given
in terms of two local variable states v, v′, a process state u1, and a formula θ ∈
F (self·X ∪ other·Y ∪ self·Xnext) (representing a global condition). The roles
of v and v′ are the same as for local conditions. We recall that a global condition
also checks states of all (or some) of the other processes. Here, u1 represents the
local state and variables of one such a process. We write (v, v′, u1) |= θ to denote
the validity of the formula θ [ρ] [ρ′] [ρ1] where the substitutions are defined by
ρ := {self·x← v(x)| x ∈ X}, ρ′ := {self·xnext ← v′(x)| x ∈ X}, and ρ1 :=
{other·x← u1(x)| x ∈ Y }. The substitutions on v and v′ are analogous to the
case of local conditions. In addition, we replace the local states and variables of
the other processes by their values as defined by v1. The relation (u, u′, u1) |= θ

is interpreted in a similar manner to the case of local conditions.

Now, we are ready to define the transition relation −→. Let t be a transition
rule of the form of (1). Consider two configurations c = c1 • [u] • c2 and c′ =

c1•[u′]•c2. We denote by c t−→ c′ that one of the following conditions is satisfied:

1. θ is a local condition and (u, u′) |= θ.
2. θ is a universal global condition of the form of (2), and (u, u′, u1) |= θ1 for

each u1 ∈ c1 • c2.
3. θ is an existential global condition of the form of (2), and (u, u′, u1) |= θ1 for

some u1 ∈ c1 • c2.

We use c −→ c′ to denote that c t−→ c′ for some t ∈ T .

5 Safety Properties

In this section, we introduce an ordering on configurations, and use it to define
the safety problem. Given a parameterized system P = (Q,X, T), we assume
that, prior to starting the execution of the system, each process is in an (iden-
tical) initial process state uinit = (qinit , vinit). In the induced transition system
T (P) = (C,−→), we use Init to denote the set of initial configurations, i.e.,
configurations of the form [uinit , . . . , uinit] . Notice that this set is infinite.

We define an ordering on configurations as follows. Consider two configu-
rations, c = [u1 · . . . · um] and c′ = [u′1 · . . . · u

′
n], where ui = (qi, vi) for each

i : 1 ≤ i ≤ m, and u′i = (q′i, v
′
i) for each i : 1 ≤ i ≤ n. We write c � c′ to denote

that there is an injection h : m→ n such that the following four conditions are
satisfied for each i, j : 1 ≤ i, j ≤ m:

1. qi = q′h(i).

2. vi(x) = true iff v′
h(i)(x) = true for each x ∈ XB.

3. vi(x) = vj(y) iff v′
h(i)(x) = v′

h(j)(y), for each x, y ∈ XN .

4. vi(x) <c vj(y) implies that there is a d ≥ c with v′
h(i)(x) <d v′

h(j)(y), for
each x, y ∈ XN .

In other words, for each process in c there is a corresponding process in c′. The
local states and the values of the Boolean variables coincide in the corresponding
processes (Conditions 1 and 2). Regarding the numerical variables, the ordering
preserves equality of variables (Condition 3), while gaps between variables in c′

are larger than gaps between the corresponding variables in c (Condition 4).
A set of configurations D ⊆ C is upward closed (with respect to the ordering

�) if c ∈ D and c � c′ implies c′ ∈ D. For sets of configurations D,D′ ⊆ C we
use D −→ D′ to denote that there are c ∈ D and c′ ∈ D′ with c −→ c′.

The coverability problem for parameterized systems is defined as follows:

PAR-COV

Instance

– A parameterized system P = (Q,X, T).
– An upward closed set CF of configurations.

Question Init
∗−→ CF ?

It can be shown, using standard techniques (see e.g. [22]), that checking safety
properties (expressed as regular languages) can be translated into instances of the
coverability problem. Therefore, checking safety properties amounts to solving
PAR-COV (i.e., to the reachability of upward closed sets).

6 Approximation

In this section, we introduce an over-approximation of the transition relation
of a parameterized system. The aim of the over-approximations is to derive a
new transition system which is monotonic with respect to the ordering � de-
fined on configurations in Section 5. The only transitions which do not preserve
monotonicity are those involving universal global conditions. Therefore, the ap-
proximate transition system modifies the behavior of universal quantifiers in such
a manner that monotonicity is maintained. Roughly speaking, in the new seman-
tics, we remove all processes in the configuration which violate the condition of
the universal quantifier. Below we describe how this is done.

In Section 4, we mentioned that each parameterized system P = (Q,X, T)
induces a transition system T (P) = (C,−→). A parameterized system P also
induces an approximate transition system A(P) = (C,;); the set C of con-
figurations is identical to the one in T (P). We define ;= (−→ ∪;1), where
−→ is defined in Section 4, and ;1 (which reflects the approximation of uni-
versal quantifiers) is defined as follows. For a configuration c, a formula θ ∈
F (self·X ∪ other·Y ∪ self·Xnext), and process states u, u′, we use c⊖(θ, u, u′)
to denote the configuration derived from c by deleting all process states u1 such
that (u, u′, u1) 6|= θ. To explain this operation intuitively, we recall that a uni-
versal global condition requires that the current and next states of the current
process (described by u resp. u′) together with the state of each other process
(described by u1) should satisfy the formula θ. The operation then removes from
c each process whose state u1 does not comply with this condition.

Consider two configurations c = c1•u•c2 and c′ = c′1•u
′•c′2, where u = (q, v)

and u′ = (q′, v′). Let t be a transition rule of the form of (1), such that θ is a

universal global condition of the form of (2). We write c t
;1 c

′ to denote that

c′1 = c1⊖ (θ1, u, u
′) and c′2 = c2⊖ (θ1, u, u

′). We use c ; c′ to denote that c t
; c′

for some t ∈ T ; and use ∗
; to denote the reflexive transitive closure of ;.

Lemma 1. The approximate transition system (C,;) is monotonic with re-

spect to �.

We define the coverability problem for the approximate system as follows.

APRX-PAR-COV

Instance

– A parameterized system P = (Q,X, T).
– An upward closed set CF of configurations.

Question Init
∗
; CF ?

Since −→⊆;, a negative answer to APRX-PAR-COV implies a negative
answer to PAR-COV.

7 Backward Reachability Analysis

In this section, we present a scheme based on backward reachability analysis for
solving APRX-PAR-COV. For the rest of this section, we fix an approximate
transition system A(P) = (C,;).

Constraints The scheme operates on constraints which we use as a symbolic
representation for sets of configurations. A constraint φ denotes an upward closed
set [[φ]] ⊆ C of configurations. The constraint φ represents minimal conditions
on configurations. More precisely, φ specifies a minimum number of processes
which should be in the configuration, and then imposes certain conditions on
these processes. The conditions are formulated as specifications of the control
states of the processes, and as restrictions on values of the local variables. The
restrictions on values are stated as combinations of Boolean formulas (on the
Boolean variables) and gap formulas (on the numerical variables). A configura-
tion c which satisfies φ should have at least the number of processes specified
by φ. Furthermore, the local states and the values of the local variables should
satisfy the conditions imposed by φ. In such a case, c may have any number of
additional processes (whose local states and local variables are then irrelevant
for the satisfiability of φ by c). Notice that this definition implies that the in-
terpretation [[φ]] of a constraint φ is upward closed (a fact proved in Lemma 2).
Below, we define the notion of a constraint formally.

For each natural number i ∈ N we make a copy Y i such that xi ∈ Y i if
x ∈ Y . A constraint φ is a pair (m,ψ), where m ∈ N is a natural number, and
ψ ∈ F(Y 1∪Y 2∪· · ·∪Y m). Intuitively, a configuration satisfying φ should contain
at least m processes (indexed by 1, . . . ,m). The constraint φ uses the elements
of the set Y i to refer to the local states and variables of process i. The values of
these states and variables are constrained by the formula ψ. Formally, consider
a configuration c = [u1, u2, . . . , un] and a constraint φ = (m,ψ). Let h : m 7→ n

be an injection. We write c |=h φ to denote the validity of the formula ψ [ρ]
where ρ :=

{

xi ← uh(i)(x)| x ∈ Y and 1 ≤ i ≤ m
}

. In other words, there should
be at least m processes inside c whose local states and variables have values
which satisfy ψ. We write c |= φ to denote that c |=h φ for some h; and define
[[φ]] = {c| φ |= c}. For a (finite) set of constraints Φ, we define [[Φ]] =

⋃

φ∈Φ [[φ]].
The following lemma follows from the definitions.

Lemma 2. For each constraint φ, the set [[φ]] is upward closed. Conversely, for

any upward closed set U of configurations there is a finite set of constraints Φ

such that U = [[Φ]].

This means that the set CF in the definition of APRX-PAR-COV can be
represented by a finite set ΦF of constraints. The coverability question can then
be answered by checking whether Init

∗−→ [[ΦF]].

Entailment and Predecessors To define our scheme we will use two oper-
ations on constraints; namely entailment, and computing predecessors, defined
below. We define an entailment relation ⊑ on constraints, where φ1 ⊑ φ2 iff
[[φ2]] ⊆ [[φ1]]. For sets Φ1, Φ2 of constraints, abusing notation, we let Φ1 ⊑ Φ2

denote that for each φ2 ∈ Φ2 there is a φ1 ∈ Φ1 with φ1 ⊑ φ2. Observe that
Φ1 ⊑ Φ2 implies that [[Φ2]] ⊆ [[Φ1]].

For a constraint φ, we let Pre(φ) be a finite set of constraints, such that
[[Pre(φ)]] = {c| ∃c′ ∈ [[φ]] . c ; c′}. In other words Pre(φ) characterizes the set of
configurations from which we can reach a configuration in φ through the appli-
cation of a single rule in the approximate transition relation. In the definition
of Pre we rely on the fact that, in any monotonic transition system, upward-
closedness is preserved under the computation of the set of predecessors (see e.g.
[1]). From Lemma 2 we know that [[φ]] is upward closed; and from Lemma 1,
we know that (C,;) is monotonic. It follows from Lemma 2 that the finite set
Pre(φ), mentioned above, indeed exists. In Section 8, we show that this set is in
fact computable. For a set Φ of constraints, we let Pre(Φ) =

⋃

φ∈Φ Pre(φ).

Scheme Given a finite set ΦF of constraints, the scheme checks whether Init
∗=⇒

[[ΦF]]. We perform a backward reachability analysis, generating a sequence Φ0 ⊒
Φ1 ⊒ Φ2 ⊒ · · · of finite sets of constraints such that Φ0 = ΦF , and Φj+1 =
Φj ∪ Pre(Φj). Since [[Φ0]] ⊆ [[Φ1]] ⊆ [[Φ2]] ⊆ · · · , the procedure terminates when
we reach a point j where Φj ⊑ Φj+1. Notice that the termination condition
implies that [[Φj]] = (

⋃

0≤i≤j [[Φi]]). Consequently, Φj characterizes the set of all

predecessors of [[φF]]. This means that Init
∗−→ [[ΦF]] iff (Init

⋂

[[Φj]]) 6= ∅.
Observe that, in order to implement the scheme (i.e., transform it into an

algorithm), we need to be able to (i) compute Pre; (ii) check for entailment
between constraints; and (iii) check for emptiness of (Init

⋂

[[φ]]) 6= ∅ for a con-
straint φ.

8 Constraint Operations

In this section, we show how to perform the three operations on constraints
which are used in the scheme presented in Section 7. In the rest of the section,
we fix a parameterized systems P = (Q,X, T). Recall that Y = X ∪Q.

Entailment Consider two constraints φ = (m,ψ), and φ′ = (m′, ψ′). Let
H(φ, φ′) be the set of injections h : m 7→ m′. We use ψh to denote the for-
mula ψ [ρ], where ρ :=

{

xi ← xh(i)| x ∈ Y and 1 ≤ i ≤ m
}

. The following lemma
gives a logical characterization which allows the computation of the entailment
relation.

Lemma 3. Given two constraints φ = (m,ψ), and φ′ = (m′, ψ′), we have φ ⊑ φ′

iff

∀y1 · · · yk.



ψ′(y1, . . . , yk) ⊃
∨

h∈H(φ,φ′)

ψh(y1, . . . , yk)





Pre The following lemma describes the computation of the function Pre. The
proof of the lemma can be found in the appendix.

Lemma 4. For a constraint φ, we can compute Pre(φ) as a finite set of con-

straints.

One important aspect of the Pre function is that it can potentially increase the
size of the constraint (the number of processes inside the constraint). This means
that there is no bound a priori on the sizes of constraints which may arise in the
reachability analysis scheme.

Intersection with Initial States For a constraint φ = (m,ψ), we have
(Init

⋂

[[φ]]) 6= ∅ iff [uinit , . . . , uinit] |= φ, where the multiset [uinit , . . . , uinit]
is of size m.

9 Additional Features

In this section, we add a number of features to the model of Section 2. These
features are modelled by generalizing the guards which are allowed in the tran-
sitions. For all the new features, we can use the same constraint system as in
Section 7; consequently checking entailment and intersection with initial states
need not be modified. Also, as shown in the appendix, the definition of the Pre

operator can be extended to cope with the new classes of guards.

Binary Communication In binary communication two processes perform a
rendez-vous, changing states simultaneously. Such a transition can be encoded
by considering a more general form of existential global conditions than the one
allowed in Section 3. More precisely we take θ1 in the definition of an existential
global conditions (see (2)), to be a formula in the set

F
(

self·X ∪ other·Y ∪ self·Xnext ∪ other·Y next
)

In other words, the formula θ1 may also constrain variables in the set other·Y next .
Here, self and other· represent the two processes involved in the rendez-vous.
For instance, the transition

[

idle→ busy ⊲ ∃ other 6= self · other·wait ∧ other·use′
]

represents a rendez-vous between a process in state idle and a process in state
wait. The first moves to busy while the second one moves to use.

Shared Variables We assume the presence of a finite set Xs of Boolean and
numerical shared variables that can be read and written by all processes in the
system. A transition may both modify and check Xs together with the local
variables of the processes. Shared variables can be modeled as special processes.
The updating of the value of a shared variable by a process can be modeled as
a rendez-vous between the process and the variable.

Broadcast A broadcast transition is initiated by a process, called the initiator.
Together with the initiator, each other process inside the system responds simul-
taneously changing its local state and variables. We can model broadcast transi-
tions by generalizing universally quantified conditions. The generalization is sim-
ilar to the case of binary communication, i.e., we allow variables in other·Y next

to occur in the quantified formula. For instance, the transition
[

idle→ wait ⊲ ∀ other 6= self · other·wait ⊃ other·xnext = self·x
]

models the broadcasting of the value of variable x in the initiator to all processes
which are in state wait.

10 Experimental Results

We have built two different prototypes that implement our approximated back-
ward reachability procedure, based on an integer resp. a real solver for handling
the constraints over the process variables. The results are summarized in Figure
1. For each protocol we give the number of iterations and the time needed for
performing the verification. The experiments are performed using a Pentium M
1.6 Ghz with 1G of memory (see the appendix for the details).

Model Iterations Time Safe Trace

R I R I R I R I

Simplified Bakery Alg. 6 6 0.8s 1s
√ √

Lamport’s Bakery Alg. 9 9 2.1s 5s
√ √

Bogus Bakery 10 6 0.8s 9s
√ √

Ticket Mutex Alg. 9 8 0.3s 3.7s
√ √

Ricart-Agrawala Distr. Mutex Alg. 11 11 15s 80s
√ √

Lamport’s Distr. Mutex Alg. 21 27 20m 146mn
√ √

Fig. 1. Experimental results. R and I stand for the real resp. integer solver. Safe and
Trace stand for checking safety properties resp. generating a counter-example.

11 Conclusion and Future Work

We have presented a method for approximate reachability analysis of systems
which consist of an arbitrary number of processes each of which is infinite-state.
Based on the method, we have implemented a prototype and automatically ver-
ified several non-trivial mutual exclusion protocols. The Bakery example de-
scribes a distributed protocol without atomicity assumptions on the transitions.
One direction for future research is to develop a methodology for automatic ver-
ification of general classes of parameterized systems with non-atomic global con-
ditions. Furthermore, our algorithm relies on an abstract ordering which can be
naturally extended to several different types of data structures. We are currently
developing similar algorithms for systems with more complicated topologies such
as trees and general forms of graphs.

References

1. P. A. Abdulla, K. Čerāns, B. Jonsson, and T. Yih-Kuen. Algorithmic analy-
sis of programs with well quasi-ordered domains. Information and Computation,
160:109–127, 2000.

2. P. A. Abdulla and G. Delzanno. On the coverability problem for constrained
multiset rewriting. In Proc. AVIS’06, 2006.

3. P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine. Regular model checking
without transducers In Proc. TACAS ’07, 2007. To appear.

4. P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Regular model checking
made simple and efficient. In Proc. CONCUR 2002, volume 2421 of LNCS, 2002.

5. G. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison Wesley, 2000.

6. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with
automatically computed inductive assertions. In Proc. CAV 2001, volume 2102 of
LNCS, 2001.

7. B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large. In Proc.

CAV 2003, volume 2725 of LNCS, 2003.
8. M. Bozzano and G. Delzanno. Beyond parameterized verification. In Proc. TACAS

’02, volume 2280 of LNCS, 2002.
9. T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with

unbounded integer variables. ACM TOPLAS, 21(4):747–789, 1999.
10. E. Clarke, M. Talupur, and H. Veith. Environment abstraction for parameterized

verification. In Proc. VMCAI ’06, volume 3855 of LNCS, pages 126–141, 2006.
11. G. Delzanno. Automatic verification of cache coherence protocols. In Proc. CAV

2000, volume 1855 of LNCS, 2000.
12. E. Emerson and K. Namjoshi. On model checking for non-deterministic infinite-

state systems. In Proc. LICS’ 98, 1998.
13. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In

Proc. LICS’ 99, 14th IEEE Int. Symp. on Logic in Computer Science, 1999.
14. L. Fribourg and J. Richardson. Symbolic verification with gap-order constraints.

In Proc. LOPSTR’96, volume 1207 of LNCS, 1997.
15. S. M. German and A. P. Sistla. Reasoning about systems with many identical

processes. Journal of the ACM, 39(3):675–735, 1992.
16. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model

checking with rich assertional languages. TCS, 256:93–112, 2001.
17. S. K. Lahiri and R. E. Bryant. Indexed predicate discovery for unbounded system

verification. In Proc. CAV 2004, pages 135–147, 2004.
18. L. Lamport. A new solution of dijkstra’s concurrent programming problem. Com-

mun. ACM, 17(8):453–455, 1974.
19. P. Revesz. A closed form evaluation for datalog queries with integer (gap)-order

constraints. Theoretical Computer Science, 116(1):117–149, 1993.
20. G. Ricart and A. K. Agrawal. An optimal algorithm for mutual exclusion in

computer networks. Communications of the ACM, 24(1):9–17, 1981.
21. E. Sedletsky, A. Pnueli, and M. Ben-Ari. Formal verification of the ricart-agrawala

algorithm. In Proc. FSTTCS’00, 2000.
22. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification. In Proc. LICS ’86, June 1986.

