Model Checking: An Overview

Ahmed Bouajjani

LIAFA, University Paris Diderot – Paris 7

Turunç, June 25, 2012
Model Checking

What is the problem?

- System/Program \rightarrow Model (state machine)
- Specification/Property = Set of behaviors
- Specification \rightarrow Formula (temporal logic)
- Problem: Model satisfies Formula

Issues:

- What kind of models for what kind of systems?
- What kind of logics for what kind of properties?
- Decidability? Complexity?
- Efficiency, scalability?
- Under/Upper approximations?
Models = Various Classes of Automata

After some abstraction ...

- Finite-state automata

 Hardware, communication protocols, etc.

- FSA + stack = pushdown systems

 Boolean procedural programs

- FSA + clocks = timed automata

 Real-time systems

- FSA + counters = counter automata, vector addition syst. (Petri nets)

 Mutual exclusion protocols, cache coherence protocols, device drivers, etc.

- FSA + fifo queues = fifo channel automata

 Communication protocols, distributed systems, etc.
Properties: Behaviors

A behavioral property talks about (infinite) computations.

- Safety / Invariance properties

 $$\text{Init} \Rightarrow \square \text{Safe}$$

- Termination / Liveness properties

 $$\square \text{Init} \Rightarrow \Diamond \text{Termination}$$

 $$\square \text{Request} \Rightarrow \Diamond \text{Response}$$

 $$\square \Diamond \text{Query} \Rightarrow \square \Diamond \text{Grant}$$

Specification languages: Temporal Logics (and others ...)

LTL [Pnueli 77], CTL [Clarke, Emerson 82], ...
Properties: States

State properties talks about configurations and relations between configurations (e.g., Input and Output of a procedure).

- Specifying states/configurations: FO logic over data domains
- Data domain D (integers, reals, words, terms, ...)
- Program variables $X = \{x_1, \ldots, x_n\}$ over D
- Specification logic: $\text{FO}(D, Op, Rel)$ for some set of operations Op and set of relations Rel.
- Example: Presburger arithmetic ($\mathbb{N}, \{0, 1, +\}, \{\leq\}$).
- Specifying a set of states: A formula $f(X)$
- Specifying a relation between states: A formula $R(X, X')$
- Programs are annotated with assumptions and assertions (about the set of states at particular control locations)
Checking Safety Properties

\[\text{Init} \Rightarrow \Box \text{Safe} \]

- Find and auxiliary inductive invariant \(\text{Inv} \):

\[
\begin{align*}
\text{Init} & \Rightarrow \text{Inv} \\
\text{Inv} & \Rightarrow \text{Safe} \\
\text{post}(\text{Inv}) & \Rightarrow \text{Inv}
\end{align*}
\]

or alternatively

\[\text{Inv} \Rightarrow \neg \text{pre}(\neg \text{Inv}) \]

- Reachability analysis / Synthesis of strongest inductive invariant:

\[\text{post}^*(\text{Init}) \Rightarrow \text{Safe} \]

Issues:

Representation of sets of configurations, deciding entailment, compute post/pre-images, compute reachability sets.
Models = Finite-State Automata

- Reachability is (obviously) decidable
- Model checking against temporal logics is also decidable
 - Reducible to reachability queries and cycle detection problems.
 - CTL: \(|Model| \cdot |Formula|
 - LTL: \(|Model| \cdot Exp(|Formula|)

- Automata-based approach [Vardi, Wolper 96]
- Associate with a formula \(\phi\) and automaton \(A_\phi\) s.t. \(L(A_\phi) = \llbracket \phi \rrbracket\)
- Check emptiness of \(L(M) \cap L(A_{\neg \phi})\)

Main Problem: State-space explosion !!
Partial-Order Techniques

- Asynchrony \Rightarrow a huge number of interleavings
- Several interleaving can be undistinguishable
- \Rightarrow Consider only one representative of all equivalent interleavings

 Godefroid, Wolper, Valmari, Peled ... 90’s

- Tools: SPIN [Holzmann, 8+,9-] ...

- An alternative approach: Petri nets (compact representation of concurrent systems)

- Solve reachability/MC queries on finite unfoldings of Petri nets

 Mc Millan, Esparza, ...
Symbolic Analysis

- Boolean variables \(X = \{x_1, \ldots, x_n\} \)
- Set of states = a boolean formula \(f(x_1, \ldots x_n) \)
- Transition relation = a boolean formula \(T(x_1, \ldots x_n, x'_1, \ldots x'_n) \)

\(post^*(S)/pre^*(S) \): Compute \(F_0, F_1, F_2, \ldots \) until \(F_{i+1} \Rightarrow F_i \)

\[
\begin{align*}
F_0 &= f_S(X) \\
F_{i+1} &= X_i \lor post/pre(F_i)
\end{align*}
\]

Where

\[
\begin{align*}
post(f) &= \exists Y. f(Y) \land T(Y, X) \\
pre(f) &= \exists Y. f(Y) \land T(X, Y)
\end{align*}
\]

Issue: Compact representation of boolean formulas ??

Mc Millan et al. 92: Use Bryant’s Binary Decision Diagrams.

Tool: SMV.
Efficient Representations: BDD’s

- Fix an ordering between variables
- Idea: Binary decision trees + sharing + eliminating redundant tests
- Can be exponentially more concise than explicit representations
- Canonical representations
- Similar to deterministic (acyclic) finite state automata over the alphabet \{0, 1\}
- Efficient implementation: one single representation of each sub-dag in the memory

Many efficient BDD packages are available.
Size of the BDD’s

Let \(X = \{x_1, \ldots, x_n\} \). Consider the formula:

\[
\bigwedge_{i=1}^{n} x_i = y_i
\]

- \(x_1 < y_1 < x_2 < y_2 < \ldots < x_n < y_n \).

 Linear size representation:
 Check successively \(x_i = y_i \) equalities

- \(x_1 < \ldots < x_n < y_1 < \ldots < y_n \).

 Exponential size representation:
 Must memorize values of all the \(x_i \)’s
Bounded Model Checking

Biere, Clarke, ...

- Fix a bound K.
- Detect bugs using path of length at most K
- Encode as a boolean formula and submit to a SAT solver.
- Reachability:

$$Init(X_0) \land T(X_0, X_1) \land \cdots \land T(X_{k-1}, X_k) \land \bigvee_{i=0}^{k} BAD(X_i)$$

- Fair cycle detection:

$$Init(X_0) \land T(X_0, X_1) \land \cdots \land T(X_{k-1}, X_k) \land \bigvee_{i=0}^{k} REP(X_i) \land T(X_k, X_i)$$

- Performs better than BDD-based methods for bug detection.
- Completeness: $K \leq$ the longest cycle-free path in the state graph
Infinite-State Systems

- Real-time systems
- Programs with integer/real variables
- Recursive procedure calls
- Dynamic creation of threads/processes
- Arrays, dynamic data structures

Question: How to reason about infinite state spaces?
Symbolic Reachability Analysis

- Data domain D (integers, reals, words, terms, ...)
- Variables $X = \{x_1, \ldots, x_n\}$ over D
- Set of states $= a$ formula $f(X)$ of $\text{FO}(D, Op, Rel)$
- Transition relation $= a$ formula $T(X, X')$ of $\text{FO}(D, Op, Rel)$

$post^*(S)/pre^*(S)$: Compute F_0, F_1, F_2, \ldots until $F_{i+1} \Rightarrow F_i$

$$
F_0 = f_S(X) \\
F_{i+1} = X_i \lor post/pre(F_i)
$$

Where

$$
post(f) = \exists Y. f(Y) \land T(Y, X) \\
pre(f) = \exists Y. f(Y) \land T(X, Y)
$$

Issue: Compact representations? Termination??!!
Termination of Backward Analysis: Monotonic Systems

Abdulla et al., Finkel et al.

- Well-quasi ordering \preceq on states: $\forall c_0, c_1, c_2, \ldots$, $\exists i < j$, $c_i \preceq c_j$
- \Rightarrow Each set has a finite number of minimals
- \Rightarrow Upward-closed sets are definable by their minimals
- Monotonicity: \preceq is a simulation relation
 \[\forall c_1, c'_1, c_2. \ (c_1 \rightarrow c'_1 \text{ and } c_1 \preceq c_2) \Rightarrow \exists c'_2. \ c_2 \rightarrow c'_2 \text{ and } c'_1 \preceq c'_2 \]
- \Rightarrow pre and pre* -images of \preceq-upward closed sets are \preceq-upward closed
- Reachability of upward-closed sets (coverability) is decidable:

 Given an UC U, the backward reachability analysis terminates:
 Collect iteratively all minimals of $\text{pre}^*(U)$
Monotonic Systems: Examples

- Vector addition systems with states (Petri nets)
 - Operations: $c := c + 1$, $c > 0 \lor c := c - 1$
 - WQO: usual order on natural numbers

- Lossy fifo channel systems
 - Operations: send, receive to a channel + lossyness
 - WQO: substring relation

- Other examples
 - Broadcast protocol
 - Timed Petri nets
 - etc
Finite Bisimulations

- S a set of states.
- $R \subseteq S \times S$ is a bisimulation iff R is symmetrical and $(s_1, s_2) \in R$ iff

$$\forall a. \; s_1 \xrightarrow{a} s'_1 \Rightarrow \exists s'_2. \; s_2 \xrightarrow{a} s'_2 \text{ and } (s'_1, s'_2) \in R$$

- Preserves all usual properties.
- Symbolic minimal model generation (partition refinement algorithm) [B., Fernandez, Halbwachs 90]

Ingredients: Pre-image, Intersection, Complementation

- Finite bisimulation \Rightarrow Termination \Rightarrow Decidability of MC
- Backward reachability analysis terminates.
- Used in many contexts, e.g., timed systems [Alur, Halbwachs, ...], hybrid systems [Henzinger et al., 9+]
Timed Automata

Alur & Dill 90

- FSA + real-valued clocks
- Dynamic:
 - Time progress in control states +
 - Instantaneous jumps between states
- Constraints on clocks:
 - Conjunctions of $x \leq c$ or $x - y \leq c$, c is an integer constant.
- Type of constraints:
 - Invariants associated with states + transition guards.
- Clocks can be reseted on transitions.
Regions

Let C be the maximal constant in the constraint of the automaton. Let $\vec{x} = (x_1, \ldots, x_n) \in \mathbb{R}_{\geq 0}$, the equivalence class $[\vec{x}]$ is characterized by

- Integer bounds: $(\lfloor x_1 \rfloor, \ldots, \lfloor x_n \rfloor)$

 \textit{Partition according to the integer grid.}

- Time progress: $(\text{fract}(x_{i_1}), \#_1, \text{fract}(x_{i_2}), \#_2, \ldots, \text{fract}(x_{i_n}))$

 \textit{Add diagonals.}

 where i_1, \ldots, i_n is a permutation of $1, \ldots, n$, and $\#_i \in \{<, =\}$.

- Beyond C all $\lfloor x_i \rfloor$ can be abstracted to one value ($> C$).

 \textit{Finite partition: bounded integer grid.}

- Finite Region Graph: Decidable MC

- Exponential number of regions !!
Symbolic Analysis of Timed Automata: Zones and DBM’s

- Let x_1, \ldots, x_n be the clocks of the automaton.
- Let x_0 be an additional variable always equal to 0.
- Constraints:
 \[
 \bigwedge_{i=0}^{n} x_i - x_j \#(i,j) c(i,j)
 \]
- DBM (Difference Bound Matrices):
 \[
 M(i, j) = (\#(i,j), c(i,j))
 \]
 where $\#(i,j) \in \{\leq, <\}$ and $c(i,j) \in \mathbb{Z}$
- Efficient representations for symbolic computations:
 - Canonicity: Compute strongest bounds = shortest paths
 - Emptiness: existence of a negative cycle
 - Inclusion: \leq — Intersection: min + can.
 - Time progress: remove upper bounds + can.
 - Reset: impose equality with $x_0 +$ can.
- Tools: Uppaal, Kronos, ...
Acceleration

Boigelot, Wolper, B., Abdulla, Finkel, Leroux, etc.

- Let R be the transition relation of the system
- Assume that $R = R_1 \cup \cdots \cup R_n \cup R'$
- Assume we know how, given S, to compute $R_i^*(S)$, for each R_i
- **Accelerated** computation of reachable states:

 \[
 \text{Compute } R^*(S) = X_0 \cup X_1 \cup \cdots \text{ where }
 \]

 \[
 X_0 = S
 \]

 \[
 X_{i+1} = X_i \cup R_1^*(X_i) \cup \cdots \cup R_n^*(X_i) \cup T'(X_i)
 \]

 until $X_{i+1} \subseteq X_i$

- R_1^*, \ldots, R_n^* are *meta-transitions*
- Termination is not guaranteed in general, but exact computation,
- Can be used for under-approximate analysis.
Counter Automata

- Operations $T(X, X') : X' = AX + B$
- Is $T^n(X, X')$ representable in Presburger arithmetic?
- No in general: $T : x' = 2x$, $T^n : x' = 2^nx$
- Conditions on A: There is a finite number of A^k, for any k.
- Example: $A = Id$, $T^n : X' = X + nB$
Abstract Analysis of Infinite-State Systems

Abstract interpretation [Cousot, Cousot, 77]

- $\alpha = \text{abstraction function, i.e., } S \subseteq \alpha(S)$.

- **Upper-approximate** computation of the set of reachable states:
 Compute the sequence $X_0 \cup X_1 \cup \cdots$ where

 $$
 X_0 = S \\
 X_{i+1} = X_i \sqcup \alpha(\text{post}(X_i))
 $$

 until $X_{i+1} \subseteq X_i$

- Termination if no infinite increasing sequence of abstract sets
 - α has a finite image
 - α is the upward closure operation wrt a WQO
 - \sqcup is a widening operator (extrapolation, jumps to the limit)
Numerical Abstract Domains

- Intervals
 \[l \leq x \leq u \]

- Octagons
 \[l \leq x \leq u, \quad l \leq x - y \leq u, \quad l \leq x + y \leq u \]

- Polyhedra
 \[\sum_{i=1}^{n} a_i x_i \leq b \]

- ...

Tools: e.g., APRON [Jeannet, Miné, 09]
Non Numerical Domains

- Shape analysis [Sagiv, Reps, Willems, 96] ...
 \textit{Graphs abstracting heaps}

- Shapes + Data constraints
 \textit{see for instance talk of Constantin Enea}

- I will talk later about something called Abstract Regular MC
State-Space Partitioning

[Clarke, Grumberg, Long 92], [Bensalem, B., Loiseaux, Sifakis, 92]

- Let M be a infinite-state model
- Let \sim be a partition of the set of states, and let $[s]$ be the \sim-equivalence class of s.
- $M/\sim = \text{quotient of } M \text{ w.r.t. } \sim$.

- M/\sim simulates M:

 $$\forall s. (M, s) \sqsubseteq (M/\sim, [s])$$

 \Rightarrow Preservation of universally path-quantified properties. (e.g., linear-time properties.)

 e.g., if \sim is bisimulation, then preservation of all properties.
Predicate Abstraction

Graf & Saidi 97, ...

- Let $\mathcal{P} = \{P_1, \ldots, P_n\}$ be a finite set of predicates.
- Let $\sim_\mathcal{P}$ be the equivalence induced by \mathcal{P}.

⇒ Consider $M/\sim_\mathcal{P}$: finite abstract model.

Constructing the abstract model:
 - A $\sim_\mathcal{P}$-class can be represented a boolean formula b,

 - Given a bit vector b, let
 \[
 \gamma_b = \bigwedge_{b(i)=1} P_i(X) \land \bigwedge_{b(j)=0} \neg P_j(X)
 \]

 - Given two formulas b and b',
 \[
 (b, b') \in T/\sim_\mathcal{P} \iff \exists X, X'. \gamma_b(X) \land \gamma_{b'}(X') \land T(X, X')
 \]
Counter-Example Guided Abstraction Refinement

- Abstract counter-example

\[S_0 \xrightarrow{t_1} S_1 \xrightarrow{t_2} S_2 \ldots \xrightarrow{t_n} S_n \] with \(S_n \cap BAD \neq \emptyset \)

- Compute

\[X_n = S_n \cap BAD \]
\[X_k = S_k \cap pre(X_{k+1}) \]

until

- either \(X_0 \neq \emptyset \): real counter-example
- or, there is \(i > 0 \) such that \(X_i = \emptyset \): Spurious counter-example

\[S_{i+1} \setminus X_{i+1} \text{ and } X_{i+1} \text{ must be distinguished : } \]
\[\Rightarrow \text{Add } X_{i+1} \text{ to the set of predicates } \]
Craig Interpolation

Let A and B be two formulas such as $A \land B = \text{false}$.

An interpolant for (A, B) is a formula \hat{A} such that:
- $A \Rightarrow \hat{A}$
- $\hat{A} \land B = \text{false}$
- \hat{A} refers to common variables of A and B.

Interpolants can be extracted from falsification proofs.
CEGAR using Interpolation

McMillan, Jhala, ...

- Abstract counter-example

\[\text{INIT} \xrightarrow{t_1} S_1 \xrightarrow{t_2} S_2 \ldots \xrightarrow{t_n} S_n \text{ with } S_n \cap \text{BAD} \neq \emptyset \]

- Check, using an SMT solver, satisfiability of

\[f_{\text{INIT}}(X_0) \land t_1(X_0, X_1) \land t_2(X_1, X_2) \land \ldots t_n(X_{n-1}, X_n) \land f_{\text{BAD}}(X_n) \]

- If satisfiable, then real counter-example

- If not satisfiable, then for every \(i \in \{1, \ldots, n\} \), consider the interpolant \(I_i \) of

\[(f_{\text{INIT}}(X_0) \land \ldots \land t_i(X_{i-1}, X_i), \ t_i(X_i, X_{i+1}) \land \ldots \land f_{\text{BAD}}(X_n)) \]

- Add all the \(I_i \)'s in the set of predicates.
Procedural Programs: Recursive State Machines

- \(N \) a set of nodes. \(\text{Ent} \subseteq N \) entry nodes, \(\text{Exit} \subseteq N \) exit nodes.
- \(G \) a set of globals, and \(L \) a set of locals.
- Transitions:
 \[n \xrightarrow{\text{op}} n' \text{ where op is an operation on globals and locals,} \]
 \[\text{and } n \xrightarrow{\text{call}(P,\text{en},\ell_0)} n' \]

Semantics: RSM \(\rightsquigarrow \) Pushdown system

- \(n \xrightarrow{\text{op}} n' \rightsquigarrow \langle g, (n, \ell) \rangle \rightarrow \langle g', (n', \ell') \rangle \) where \((g', n') = \text{op}(g, n) \)
- \(n \xrightarrow{\text{call}(P,\text{en},\ell_0)} n' \rightsquigarrow \langle g, (n, \ell) \rangle \rightarrow \langle g, (\text{en}, \ell_0)(n', \ell) \rangle \)
- \(\langle g, (\text{ex}, \ell) \rangle \rightarrow \langle g, \epsilon \rangle \)
Procedure Summarization

- Compute $\text{Reach}_P \subseteq (\text{Ent} \times G) \times (\text{Exit} \times G)$
- Needs the relations $R_{P,Q} \subseteq (\text{Ent} \times G \times L) \times (N \times G \times L)$
- Relations defined inductively (based on program recursive schema)
- Least fixpoint computation
- Terminates if finite-state domain. BDD-based symbolic computation.
- In general: Abstract summaries (abstract domains, widening).
Automata-based Symbolic Approach

Let P be a pushdown system

- Compute the set of backward/forward reachable configurations
- A configuration is a word $p a_1 a_2 \cdots a_n$, p is a control state of the PDS, and $a_1 a_2 \cdots a_n$ is the stack content.
- Use a finite-state automaton A_C to represent a regular set of configurations C.
- For every regular set of configurations C, $post^*(C)$ and $pre^*(C)$ are regular and effectively constructible.

Computing pre^*-image [B. Esparza, Maler 97]

- A_C has a state s_p for each control state p of P
- Compute a sequence of automata $A_0 = A_C$, A_1, ...
- $\langle p_1, a \rangle \rightarrow \langle p_2, w \rangle$ a transition of P, if $s_{p_1} \xrightarrow{w} q$ in A_i, then add $s_{p_2} \xrightarrow{a} q$ to it.
- Termination: fixed number of states.
Regular Model Checking

Abdulla, B., Jonsson, Pnueli, Saksena, Touili, Hebermehl, Vojnar, ...

- A configuration encoded as a word/tree
- Set of configurations \leadsto finite-state automaton
- An action is encoded as finite-state transducer (I/O automaton)
- Reachability problem \leadsto

 Given automata A and B, and a transducer T, check if

 $$T^*(A) \cap B = \emptyset$$

- Application to:
 - Networks of processes: Configuration = sequence/tree of local states
 - Counter automata: Encode integers as finite words over $\{0, 1\}$
 - Dynamic linked structures: Encode heaps as word / trees
RMC based verification

Generic techniques for computing (exactly/approximatively) $T^*(A)$ (or T^*)

- Acceleration techniques for some classes of regular relations
- Exact abstractions on transducers for transitive closure computations

 Abdulla, Nilsson, Jonsson, Saksena … 0+

- Abstractions on automata with counter-example guided refinement

 B., Habermehl, Rogalewich, Vojnar 06

 - Define equivalence relations on state of automata
 - Example: Accept the same words of length $\leq k$.
 - Predicate abstraction + CEGAR: A predicate $=$ automaton
 - Applied to the analysis of complex heap-manipulating programs

 Heaps \rightsquigarrow Tree + navigation expressions
Challenges

- Complex theories: structures + data constraints
- Composition in procedure decisions (split according to various domains, and combine)
- Abstraction in procedure decisions (soundness + scalability)
- Complex behavior (e.g., concurrency)
- Probabilistic verification (how likely the model is correct)
- Quantitative verification (measure the quality of the implementation)
- Synthesis (program repair)