On Search Strategies for Constraint-Based Bounded Model Checking

Michel RUEHER

Joined work with Hélène Collavizza, Nguyen Le Vinh, Olivier Ponsini and Pascal Van Hentenryck

University Nice Sophia-Antipolis
I3S – CNRS, France

CP meets CAV

25 June – 29 June 2012
A CP framework for Bounded Program Verification

CPBPV, a Depth First Dynamic Exploration of the CFG

DPVS, a Dynamic Backjumping Strategy

The Flasher Manager Application

Discussion
Motivations

→ **Automatic generation of counterexamples**
violating a property on a limited model
of the program is very useful

→ **Challenge**: finding bugs for **realistic time periods**
for **real time applications**
Bounded program verification
(the array lengths, the variable values and the loops are bounded)

- **Constraint stores** to represent the specification and the program

- Program is partially correct if the **constraint store implies the post-conditions**

- Non deterministically exploration of execution paths
CP-based BMC mainly involves three steps:

1. the program is unwound \(k\) times,
2. An annotated and simplified CFG is built
3. Program is translated in constraints on the fly

A list of solvers tried in sequence (LP, MILP, Boolean, CP)
CP framework & BMC ...

- **CP framework**
 - Specification → constraints
 - Program → constraints *(on the fly)*
 - Solving Process
 - List of solvers tried in sequence on each selected node of the CFG
 - Takes advantage of the **structure** of the program

- **BMC based on SAT / SMT solvers**
 - Program & specification → Big Boolean formula
 - Solving Process
 - SAT solvers or SMT solvers have a "Global view"
 - Critical issue: **minimum conflict sets**
 (to limit backtracks & spurious solutions)
CP framework, pre-processing

Pre-processing

1. P is unwound k times $\rightarrow P_{uw}$

2. $P_{uw} \rightarrow DSA$, Dynamic Single Assignment form
 (each variable is assigned exactly once on each program path)

3. DSA is simplified according to the specific property by applying slicing techniques

4. Domains of all variables are filtered by propagating constant values along the simplified CFG
A small example

```c
void foo(int a, int b)
int c, d, e, f;
if(a >= 0) {
    if(a < 10) {f = b - 1;}
    else {f = b - a; }
    c = a;
    if(b >= 0) {d = a; e = b;}
    else {d = a; e = -b; }
} else {
    c = b; d = 1; e = -a;
    if(a > b) {f = b + e + a;}
    else {f = e * a - b; }  
}  

assert(c >= d + e); // property \(p_1\)
assert(f >= -b * e); // property \(p_2\)
```
A small example (continued)

Initial CFG

```c
void foo(int a, int b)
int c, d, e, f;
if(a >= 0) {
    if(a < 10) { f = b - 1; }
    else { f = b - a; }
    c = a;
    if(b >= 0) { d = a; e = b; }
    else { d = a; e = -b; }
    else {
        c = b; d = 1; e = -a;
        if(a > b) { f = b + e + a; }
        else { f = e * a - b; }
    }
    c = c + d + e;
    assert(c >= d + e); // property p1
    assert(f >= -b * e); // property p2
}```
A small example (continued)

Simplified CFG

```
void foo(int a, int b)
int c, d, e, f;
if(a >= 0) {
 if(a < 10) {f = b - 1;} // property p1
 else {f = b - a;}
 c = a;
 if(b >= 0) {d = a; e = b;} // property p2
 else {d = a; e = -b;} }
else {
 c = b; d = 1; e = -a;
 if(a > b) {f = b + e + a;} // property p1
 else {f = e * a - b;} }
c = c + d + e;
assert(c >= d + e);
assert(f >= -b * e);
```

CP framework, language

- **Java** programs and **JML** specifications

  **JML** =
  
  - Comments in java code ("javadoc" like) (can be compiled and executed at run time)
  
  - Properties are directly expressed on the **program variables** → no need for abstraction
  
  - Pre-conditions and post-relations
  
  - **Exists** and **Forall** quantifiers

- **C** programs and **assertions**
CP framework, restrictions

- **Unit code** validation

- Data types: Booleans, integers, arrays of integers, [floats]

- **Bounded programs**: array lengths, number of unfoldings of loops, size of integers are known

- Normal behaviours of the method (no exception)

- JML specification:
  - post condition: the conjunction of use cases of the method
  - possibly a precondition
Building the constraint store: principle

- Each **expression** is mapped to a **constraint**: 
  \( \rho \) transforms program expressions into constraints

- SSA-like **variable renaming**: \( \sigma[v] \) is the current renaming of variable \( v \)

- **JML**:
  - \( \forall i \rightarrow \) conjunction of conditions
  - \( \exists i \rightarrow \) disjunction of conditions

  (\( i \) has bounded values)
Building the constraint store ...

**scalar assignment**

\[
\sigma_2 = \sigma_1[v/\sigma_1(v) + 1] \quad \& \quad c_2 \equiv (\rho \sigma_2 v) = (\rho \sigma_1 e)
\]

Program

\[
x = x + 1; \quad y = x \cdot y; \quad x = x + y;
\]

Constraints

\[
\{ x_1 = x_0 + 1, \quad y_1 = x_1 \cdot y_0, \quad x_2 = x_1 \cdot y_1 \}
\]
Building the constraint store ...

- **array assignment**

\[
\sigma_2 = \sigma_1[a/\sigma_1(a) + 1]
\]

\[
c_2 \equiv (\rho \; \sigma_2 \; a)[\rho \; \sigma_1 \; e_1] = (\rho \; \sigma_1 \; e_2)
\]

\[
c_3 \equiv \forall i \in 0..a.length(\rho \; \sigma_1 \; e_1) \neq i \rightarrow (\rho \; \sigma_2 \; a)[i] = (\rho \; \sigma_1 \; a)[i]
\]

\[
\langle [a[e_1] \leftarrow e_2, l], \sigma_1, c_1 \rangle \mapsto \langle [l], \sigma_2, c_1 \land c_2 \land c_3 \rangle
\]

**Program (a.length=8)**

\[
a[i] = x;
\]

**Constraints**

\[
\{ a_1[i_0] = x_0, i_0 \neq 0 \rightarrow a_1[0] = a_0[0],
\]

\[
i_0 \neq 1 \rightarrow a_1[1] = a_0[1], \ldots, i_0 \neq 7 \rightarrow a_1[7] = a_0[7]\}
\]

*guard → body* is a **guarded constraint**

\[
a[i] = x\] is the **element constraint**: \(i\) and \(x\) are constrained variables whose values may be unknown
Building the constraint store ...

- **conditional instruction**: if \( b_i \); \( l \)

\[
\frac{c \land (\rho \sigma b) \text{ is satisfiable}}{\langle if \ b_i \ ; \ l, \sigma, c \rangle \rightarrow \langle i \ ; \ l, \sigma, c \land (\rho \sigma b) \rangle}
\]

\[
\frac{c \land \neg(\rho \sigma b) \text{ is satisfiable}}{\langle if \ b_i \ ; \ l, \sigma, c \rangle \rightarrow \langle l, \sigma, c \land \neg(\rho \sigma b) \rangle}
\]
Building the constraint store ... 

- **while instruction:** `while b i ; l`

\[
c \land (\rho \sigma b) \text{ is satisfiable} \\
\langle \text{while } b \ i ; \ l, \sigma, c \rangle \mapsto \langle i; \text{while } b \ i ; \ l, \sigma, c \land (\rho \sigma b) \rangle
\]

\[
c \land \neg(\rho \sigma b) \text{ is satisfiable} \\
\langle \text{while } b \ i; \ l, \sigma, c \rangle \mapsto \langle l, \sigma, c \land \neg(\rho \sigma b) \rangle
\]
CPBPV, Depth first exploration of the CFG

- Translate precondition of the specification (if it exists) into a set of constraints \texttt{PRECOND}

- Translate post condition of the specification into a set of constraints \texttt{POSTCOND}

- Explore each branch $B_i$ of the program and translate instructions of $B_i$ into a set of constraints \texttt{PROG\_Bi}
For each branch \( B_i \), solve \( \text{CSP}_i = \text{PROG}_B \land \text{PRECOND} \land \neg \text{POSTCOND} \)

- If for each branch \( B_i \) \( \text{CSP}_i \) is inconsistent, then the program is conform with its specification
- If for a branch \( B_i \) \( \text{CSP}_i \) has a solution, then this solution is a counterexample which illustrates a non-conformity

⚠️ Inconsistencies of \( \text{CSP}_i \) are detected at each node of the control flow graph
Current prototype – On the fly validation: if c then ... else ...

- If c can be simplified into constant value “true” or “false”, select the branch which corresponds to c

- If c is linear
  1. add decision c in linear_CSP
  2. solve linear_CSP
    - if linear_CSP has no solution, condition c is not feasible for the current path
      ~⇒ choose another path
    - if linear_CSP has a solution, we can’t conclude anything on complete_CSP
      ~⇒ investigate both branches c and ¬c
Current prototype – On the fly validation : if \( c \) then ... else ...

- If \( c \) is NOT linear :
  1. abstract decision \( c \) and add it in \( \text{boolean}_CSP \)
  2. solve \( \text{boolean}_CSP \)
     - \( \text{boolean}_CSP \) has no solution \( \Rightarrow \) choose another path
     - if \( \text{boolean}_CSP \) has a solution \( \Rightarrow \) investigate both branches \( c \) and \( \neg c \)

**Boolean abstraction**

- hash-table of decisions : keys are decisions, values are Boolean variables
- sub-expressions are shared \( \Rightarrow \) rewriting
Current prototype – On the fly validation: loops

Let $c$ be the entrance condition

- if $c$ is **trivially simplified** to “true” or “false”
  $\Rightarrow$ **enter** or **exit** the loop
- if $\{c + \text{linear}\_\text{CSP}\}$ is **inconsistent**
  $\Rightarrow$ add $\neg c$ to the CSPs and **exit** the loop

In other cases, unfold loop $\text{max}$ times:

- If $\text{max}$ is **reached**
  $\Rightarrow$ add $\neg c$ to the CSPs and **exit** the loop
- Else investigate **both** paths
Example: binary search (1)

```c
/*@ requires (\forall int i; i>=0 && i<t.length-1; t[i]<=t[i+1])
 @ ensures @ (\result!=-1 ==> t[\result] == v) &&
 @ (\result==-1 ==> \forall int k; 0<=k<t.length; t[k]!=v)
 @*/

1 static int binary_search(int[] t, int v)
2 int l = 0;
3 int u = t.length-1;
4 while (l <= u)
5 int m = (l + u) / 2;
6 if (t[m]==v) return m;
7 if (t[m] > v)
8 u = m - 1;
9 else
10 l = m + 1; // ERROR else u = m - 1;
11 return -1;
```
Example: binary search (2)

- **Precondition**

\[
\forall \text{int } i; i \geq 0 \\
& \& i < t.\text{length}-1; t[i] \leq t[i+1]
\]

\[
\text{CSP} \leftarrow t_0[0] \leq t_0[1] \land t_0[1] \leq t_0[2] \land \ldots \land t_0[6] \leq t_0[7]
\]

- **Initialization**

\[
\text{int } l = 0; \text{int } u = t.\text{length}-1;
\]

\[
\text{CSP} \leftarrow \text{CSP} \land l_0 = 0 \land u_0 = 7
\]
Example: binary search (2)

- **Precondition**

  \[
  \forall \text{int } i; i \geq 0 \\
  \text{&& } i < t.\text{length}-1; t[i] \leq t[i+1]
  \]

  \[
  \text{CSP} \leftarrow t_0[0] \leq t_0[1] \land t_0[1] \leq t_0[2] \land \ldots \land t_0[6] \leq t_0[7]
  \]

- **Initialization**

  \[
  \text{int } l = 0; \text{int } u = t.\text{length}-1;
  \]

  \[
  \text{CSP} \leftarrow \text{CSP} \land l_0 = 0 \land u_0 = 7
  \]
Example: binary search (3)

- **Loop**
  
  ```
 while (l<=u)
  ```

  **Enter into the loop since l₀ ≤ u₀ is consistent with the current constraint store**
  
  ```
 CSP ← CSP ∧ l₀ ≤ u₀
  ```

- **Assignment**
  
  ```
 int m=(l+u)/2;
  ```

  ```
 CSP ← CSP ∧ m₀ = (l₀ + u₀)/2 = 3
  ```
Example: binary search (3)

- Loop
  
  while (l<=u)

  Enter into the loop since $l_0 \leq u_0$ is consistent with the current constraint store
  
  $CSP \leftarrow CSP \land l_0 \leq u_0$

- Assignment
  
  int m=(l+u)/2;

  $CSP \leftarrow CSP \land m_0 = (l_0 + u_0)/2 = 3$
Example: binary search (4)

- **Conditional**

  
  ```c
 if (t[m] == v) return m;

 t_0[m_0] = v_0 \text{ is consistent with the constraint store so take the if part}

 CSP \leftarrow CSP \land t_0[m_0] = v_0
  ```

- **Complete execution path** \( p \) whose constraint store \( c_p \) is:

  
  \[ c_{pre} \land l_0 = 0 \land u_0 = 7 \land m_0 = 3 \land t_0[m_0] = v_0 \]
Example: binary search (4)

- **Conditional**
  
  ```
 if (t[m]==v) return m;

 t₀[m₀] = v₀ is consistent with the constraint store
 so take the if part
 CSP ← CSP ∧ t₀[m₀] = v₀
  ```

- **Complete execution path** $p$ whose **constraint store** $c_p$ is:
  
  $c_{pre} ∧ l₀ = 0 ∧ u₀ = 7 ∧ m₀ = 3 ∧ t₀[m₀] = v₀$
Example: binary search (5)

Return statement has been reached

▶ add negation of post condition and link JML \( \text{result} \) variable with returned value \( m_0 \)

\[
\text{result} != -1 \implies t[\text{result}] == v) \land \lnot (\text{result} == -1 \implies \forall \text{int } k; 0 \leq k < t.\text{length}; t[k] != v)
\]

\[
\begin{align*}
\lnot m_0 & = -1 \land t_0[m_0]! = v_0 \\
\lnot m_0 & = -1 \land (t_0[0] = v_0 \lor t_0[1] = v_0 \lor \ldots \lor t_0[6] = v_0)
\end{align*}
\]

▶ solve the CSP

There is No solution so the program is correct along this execution path

Go back to conditional if \( t[m] == v \) to explore the else part
Example: binary search (5)

Return statement has been reached

- add negation of post condition and link JML \( \text{\result} \) variable with returned value \( m_0 \)

\[
\text{\result} != -1 \implies \text{\ \text{\ \text{\text{t[\text{\result}] == v}) \&\&}} \\
(\text{\result} == -1 \implies \text{\forall int } k; \\
\quad 0 \leq k < \text{\text{\text{t.length; t[k]!}=v)}
\]

\[
\text{\\n
m_0! = -1 \land t_0[m_0]! = v_0 \lor} \\
m_0 = -1 \land (t_0[0] = v_0 \lor t_0[1] = v_0 \lor \ldots \lor t_0[6] = v_0)
\]

- **solve the CSP**
  - There is **No solution** so the program is **correct** along this execution path

**Go back** to conditional **if (t[m]==v)** to explore the **else** part
Implementation

- **Dedicated solvers**
  - **ad-hoc simplifier**: trivial simplifications and calculus on constants
  - **linear solver** (LP algorithm) + **MIP solver**
  - **Boolean solver** (SAT solver)
    (Boolean relaxation of the **non linear** constraints)
  - **CSP solver**: used if none of the other solver did find an inconsistency

- **Prototype**
  - Solvers: Ilog CPLEX11 and JSolver4verif
  - Written in **Java** using **JDT** (eclipse) for parsing Java programs

!! CPLEX is unsafe but Neumaier & Shcherbina
→ method for computing a certificate of infeasibility
Table: Results for a correct binary search program

<table>
<thead>
<tr>
<th>length</th>
<th>CPBPV</th>
<th>CBMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1.08s</td>
<td>1.37s</td>
</tr>
<tr>
<td>16</td>
<td>1.69s</td>
<td>1.43s</td>
</tr>
<tr>
<td>32</td>
<td>4.04s</td>
<td>KO</td>
</tr>
<tr>
<td>64</td>
<td>17.01s</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>136.80s</td>
<td></td>
</tr>
</tbody>
</table>

Table: Results for an incorrect binary search program

<table>
<thead>
<tr>
<th>length</th>
<th>CPBPV</th>
<th>CBMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.027s</td>
<td>1.38s</td>
</tr>
<tr>
<td>16</td>
<td>0.037s</td>
<td>1.69s</td>
</tr>
<tr>
<td>32</td>
<td>0.064s</td>
<td>7.62s</td>
</tr>
<tr>
<td>64</td>
<td>0.115s</td>
<td>27.05s</td>
</tr>
<tr>
<td>128</td>
<td>0.241s</td>
<td>189.20s</td>
</tr>
</tbody>
</table>

!! CBMC only shows the decisions taken along the faulty path (they do not provide any value for the array nor the searched data)
Role of the different solvers

- **CPLEX, the MIP solver**, plays a key role

- There are only **length calls** to the CP solver (and much more calls to CPLEX)

- Almost **75% of the CPU time is spent in the CP solver**
Critical issues

- We do not need the Boolean abstraction to capture the control structure of the program
  → Use the CFG and constraints to prune the search space

- Depth first dynamic exploration of the CFG
  - Efficient if the variables are instantiated early
  - Blind searching: post-condition becomes active very late
DPVS, a Dynamic Backjumping Strategy

→ Generating *Counterexamples*

→ Starts from the postcondition and *jumps to the locations where the variables are assigned*
Why can we do it?

**Essential observation:**

When the program is in an SSA-like form, a path can be built in a non-sequential dynamic way.

CFG does not have to be explored in a top down (or bottom up) way: compatible blocks can just be collected in a non-deterministic way.
A Dynamic Backjumping Strategy

**DPVS** starts from the post-condition and dynamically collects program blocks which involve variables of the post-condition

**Why does it pay off?**

→ **Enforces the constraints** on the domains of the selected variables

→ **Detects inconsistencies earlier**
A small exemple

```c
void foo(int a, int b)
int c, d, e, f;
if(a >= 0) {
 if(a < 10) {f = b - 1;}
 else {f = b - a; }
 c = a;
 if(b >= 0) {d = a; e = b;}
 else {d = a; e = -b;}
} else {
 c = b; d = 1; e = -a;
 if(a > b) {f = b + e + a;}
 else {f = e * a - b; }
}

 c = c + d + e;
assert(c >= d + e); // property p_1
assert(f >= -b * e); // property p_2
```
To prove property $p_1$, select node (12), then select node (4)

→ the condition in node (0) must be true

$S = \{c_1 < d_0 + e_0 \land c_1 = c_0 + d_0 + e_0 \land c_0 = a_0 \land a_0 \geq 0\}$

$= \{a_0 < 0 \land a_0 \geq 0\}$ ... inconsistent
Select node (8) → condition in node (0) must be false

\[ S = \{ c_1 < d_0 + e_0 \land c_1 = c_0 + d_0 + e_0 \land c_0 = b_0 \land a_0 < 0 \land d_0 = 1 \land e_0 = -a_0 \} \]

\[= \{ a_0 < 0 \land b_0 < 0 \} \]

**Solution** \( \{ a_0 = -1, b_0 = -1 \} \)
DPVS, pre-processing

Pre-processing

1. $P$ is **unwound** $k$ times $\rightarrow P_{uw}$

2. $P_{uw} \rightarrow DSA_{Puw}$, **Dynamic Single Assignment form** (each variable is assigned exactly once on each program path)

3. $DSA_{Puw}$ is **simplified according to the specific property** $prop$ by applying slicing techniques

4. Domains of all variables are filtered by **propagating constant values** along $G$, the simplified CFG
DPVS, Algorithm (scheme)

\[ S \leftarrow \text{negation of } \textit{prop} \ % \ \textit{constraint store} \]
\[ Q \leftarrow \text{variables in } \textit{prop} \ % \ \textit{queue of variables} \]

- While \( Q \neq \emptyset \), \( v \leftarrow \text{POP}(Q) \)
  - Search for a program block \( PB(v) \) where \( v \) is defined
    - PUSH(\( Q \), \( new\_var \)), \( new\_var = \text{new variables (\( \neq \) input variables)} \) of \( PB(v) \)
    - \( S \leftarrow S \cup \{ \text{definition of } v \ \text{and conditions required to reach definition of } v \} \)
  - IF \( S \) is inconsistent, backtrack & search another definition (otherwise the dual condition is cut off)

- IF \( Q = \emptyset \) search for an instantiation of the input variables (= counterexample)

If no solution exists, DPVS backtracks.
FM Application: Description of the module

- **A real time industrial application** from a car manufacturer (provided by Geensoft)

- **Flasher Manager (FM)**: controller that drives several functions related to the flashing lights

**Purpose:**

- to indicate a direction change
- to lock and unlock the car from the distance
- to activate the warning lights

- **Simulink model** of FM → C function $f_1$
FM Application: functionalities

- **Direction change**: Boolean input $R$ or $L$ rises from 0 to 1. The corresponding light then oscillates between on/off states with a period of **6 time-units** (e.g. 3 s) → output sequence of the form $[111000]$

- **Lock and unlock of the car**
  - If the unlock button is pressed while the car is unlocked, nothing shall happen.
  - If the unlock button is pressed while the car is locked, both lights shall flash with a **period of 2 time-units during 20 time-units** (fast flashes for a short time)
  - If the lock button is pressed while the car is unlocked, both lights shall go on for **10 time-units**, and then shall go off for another 10 time-units
  - If the lock button is pressed while the car is locked, both lights shall flash during **60 time-units with a period of 2 time-units** (fast flashes for a long time) ..

- **Warning function**: when the warning is on, both lights flash with a **period of 6 time-units**
FM Application: Simulink model(1)
FM Application: Simulink model (2)
Simulink model of FM → C function $f_1$

- 81 Boolean variables (6 inputs, 2 outputs) and 28 integer variables
- **300 lines of code**: nested conditionals including linear operations and constant assignments

Piece of code:

```c
and1_a=((Switch5==TRUE)&&(TRUE!=Unit_Delay3_a_DSTATE));
if ((TRUE==((and1_a[Unit_Delay_c_DSTATE])!= 0))) {
 rtb_Switch_b=0;
}
else {
 add_a = (1+Unit_Delay1_b_DSTATE);
 rtb_Switch_b = add_a;
}
superior_a = (rtb_Switch_b>=3);
```
FM Application: properties

\( p_1 \) The lights should never remain lit

\( p_2 \) The \texttt{Warning} function has priority over other flashing functions

\( p_3 \) When the warning button has been pushed and then released, the \texttt{Warning} function resumes to the \texttt{Flashers\_left} (or \texttt{Flashers\_right}) function, if this function was active when the warning button was pushed

\( p_4 \) When the \texttt{F} signal (for flasher active) is off, then the \texttt{Flashers\_left}, \texttt{Flashers\_right} and \texttt{Warning} functions are disabled. On the contrary, all the functions related to the lock and unlock of the car are maintained
FM Application: property $p_1$

- Property $p_1$: *The lights should never remain lit*

  Property $p_1$ concerns the behaviour of FM for an infinite time period

  $\rightarrow$ $p_1$ is violated when the lights remain on for $N$ consecutive time period

  $\rightarrow$ a loop (bounded by $N$) that counts the number of times where the output of FM has consecutively been true

  **Challenge:** bound $N$ as great as possible
**Program** under test for Property:

```c
void prop4(int d) {
 //number of time where the left light has been consecutively true
 int countL = 0;
 //number of time where the right light has been consecutively true
 int countR = 0;
 //consider d units of time
 for(int i=0;i<d;i++) {
 //non-deterministic values of the inputs
 L=nondet_in(); R=nondet_in();
 LK=nondet_in(); ULK=nondet_in();
 W=nondet_in(); F=nondet_in();
 //call to fl() to simulate one pass through the module
 fl();
 if (outL)
 //the left light has been consecutively true one more time
 countL++;
 else
 //the left light has not been consecutively true
 countL=0;
 if (outR)
 //the right light has been consecutively true one more time
 countR++;
 else
 //the right light has not been consecutively true
 countR=0;
 }
 //if countL and countR are less than d,
 //then the lights did not remain lit
 assert (countL<d && countR<d);
}
```
Experiments: tools

- **DPVS**, implemented in **Comet**, a hybrid optimization platform for solving combinatorial problems

- **CPBPV***, an optimized version of CPBPV based on a dynamic **top down strategy**

- **CBMC**, one of the best bounded model checkers

Experiments were performed on a Quad-core Intel Xeon X5460 3.16GHz clocked with 16Gb memory. All times are given in seconds.
Experiments (property p1)

Solving time:

<table>
<thead>
<tr>
<th>N</th>
<th>CBMC</th>
<th>DPVS</th>
<th>CPBPV*</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.03</td>
<td>0.02</td>
<td>0.84</td>
</tr>
<tr>
<td>100</td>
<td>58.52</td>
<td>1.11</td>
<td>TO</td>
</tr>
<tr>
<td>200</td>
<td>232.19</td>
<td>1.7</td>
<td>TO</td>
</tr>
<tr>
<td>400</td>
<td>TO</td>
<td>3.83</td>
<td>TO</td>
</tr>
<tr>
<td>800</td>
<td>TO</td>
<td>9.35</td>
<td>TO</td>
</tr>
<tr>
<td>1600</td>
<td>TO</td>
<td>26.2</td>
<td>TO</td>
</tr>
</tbody>
</table>

Presolving time:

<table>
<thead>
<tr>
<th>N</th>
<th>CBMC</th>
<th>DPVS &amp; CPBPV*</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.366</td>
<td>0.48</td>
</tr>
<tr>
<td>100</td>
<td>96.21</td>
<td>14.95</td>
</tr>
<tr>
<td>200</td>
<td>395.46</td>
<td>21.65</td>
</tr>
<tr>
<td>400</td>
<td>TO</td>
<td>83.81</td>
</tr>
<tr>
<td>800</td>
<td>TO</td>
<td>218.15</td>
</tr>
<tr>
<td>1600</td>
<td>TO</td>
<td>531.82</td>
</tr>
</tbody>
</table>
Presolving, search, and total times in seconds for checking Property $p_2$ with 10 unfoldings

<table>
<thead>
<tr>
<th>Tool</th>
<th>Presolving</th>
<th>Search</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBMC</td>
<td>0.89</td>
<td>0.23</td>
<td>1.12</td>
</tr>
<tr>
<td>CBMC$_{z3}$</td>
<td>0.85</td>
<td>2.7</td>
<td>3.55</td>
</tr>
<tr>
<td>DPVS</td>
<td>3.89</td>
<td>0.08</td>
<td>3.97</td>
</tr>
<tr>
<td>DPVS$_{z3}$</td>
<td>0.34</td>
<td></td>
<td>4.23</td>
</tr>
</tbody>
</table>

This property does not hold (only 3 unfoldings are required)

Property 3 and 4 couldn’t be checked
### Discussion

#### Experiments on the binary search

<table>
<thead>
<tr>
<th>Length</th>
<th>CBMC</th>
<th>DPVS</th>
<th>CPBPV*</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5.732</td>
<td>0.529</td>
<td>0.107</td>
</tr>
<tr>
<td>8</td>
<td>110.081</td>
<td>35.074</td>
<td>0.298</td>
</tr>
<tr>
<td>16</td>
<td>TO</td>
<td>TO</td>
<td>1.149</td>
</tr>
<tr>
<td>64</td>
<td>TO</td>
<td>TO</td>
<td>27.714</td>
</tr>
<tr>
<td>128</td>
<td>TO</td>
<td>TO</td>
<td>153.646</td>
</tr>
</tbody>
</table>

- DPVS and CBMC waste a lot of time in exploring the different paths
- CPBPV* incrementally adds the decisions taken along a path → well adapted for the Binary Search program

**On going work**: Combining strategies