
The Many Roads Leading to Rome:

Solving Zinc Models by Various Solvers

Ralph Becket1,2, Sebastian Brand1,2, Mark Brown1,2, Gregory J. Duck1,2,
Thibaut Feydy1,2, Julien Fischer1,2, Jinbo Huang1,3, Kim Marriott4, Nicholas
Nethercote1,2, Jakob Puchinger1,2, Reza Rafeh4, Peter J. Stuckey1,2, and Mark

G. Wallace1,4

1 NICTA
2 University of Melbourne, Melbourne

3 Australian National University, Canberra
4 Monash University, Melbourne

Australia

Abstract. Zinc is a solver-independent modelling language designed to
support very high level modelling and easy experimentation with differ-
ent solving technologies for the same problem. In this position paper we
illustrate the many ways in which we can reformulate and solve a Zinc
model using various solving technologies.

1 Introduction

The practical relevance of a high-level constraint modelling language relies on
the availability of tools that transform models in the language into a form accept-
able to ordinary solving platforms. There are several aspects of such a reduction.
Languages such as Essence [1] and Zinc [2] possess a complex type system. So
variables with a complex type, and the constraints on them, must often be rep-
resented by simply-typed variables (on integers, say) and constraints. Models
in a solver-independent language must generally be transformed so as to only
use constraints of the target solver. For example, mixed integer programming
solvers solve only linear and integrality constraints. Even constraint program-
ming solvers, which in principle accept a very rich constraint language, need
adaptation of models because existing solvers differ in the range of constraints
they pre-define.

In this position paper we report on the current tool set developed around
the language Zinc within G12. The G12 project is concerned with developing
a software platform for solving large-scale industrial combinatorial optimisation
problems [3]. Zinc has expressly been designed to be solver-independent, and to
evaluate this aspiration, we examine several concrete target solvers from each
of the following categories: finite domain constraint solvers, linear solvers, and
propositional clausal solvers. We discuss the individual transformation paths that
a model can take and explain our rationales behind the architectural choices.

This discussion is followed by an extended section on computational exper-
iments. With it, we argue, first, that Zinc as a solver-independent language is

predicate all_different(array[$I] of $T: a) =
forall(i,j in index_set(a) where i < j) (a[i] != a[j]);

%-- Instance --

int: k = 9; % sets 1..k
int: n = 3; % numbers 1..n

%-- Types ---

type numbers = 1..n; % numbers
type sets = 1..k; % sets of numbers
type positions = 1..n*k; % positions of (number, set) pairs
type num_set = tuple(numbers, sets); % (number, set) pairs
type num_set_var = tuple(var numbers, var sets); % .. and as variables

%-- Primal model --

array[num_set] of var positions: Pos; % Pos[ns]: position of (number, set)
% pair in the sought sequence

constraint all_different(Pos);

constraint forall(i in 1..n, j in 1..k-1) (Pos[i,j+1] - Pos[i,j] = i+1)

%-- Partial dual model --

array[positions] of num_set_var: Num; % Num[p]: (number, set) pair at
% position p in the sought sequence

constraint all_different(Num);

% -- Channelling between primal and dual model --------------------------------

constraint forall(i in numbers, j in sets, p in positions)
(let { num_set: ns = (i,j) } in (Pos[ns] = p) <-> (Num[p] = ns));

%-- Solving objective and solution output -------------------------------------

solve satisfy;

output ["langford: ", show(n), " numbers; ", show(k), " sets\nsolution:"] ++
[" " ++ show(Num[p].1) | p in positions];

Fig. 1. A Zinc model: Langford’s number problem

feasible, practical and successful, and, second, that multi-solver support is rele-
vant because solvers have different strengths.

G12 Languages

We begin with an overview of languages and implementations developed within
G12 or relevant to it.

Zinc is a declarative, high-level, logical constraint modelling language. A
detailed exposition is provided in [4]. Figure 1 gives an example. It shows a
Zinc model of Langford’s number problem (number 24 in CSPLib [5]), which
requires one to arrange k sets of numbers 1 to n so that each appearance of
the number m is m numbers on from the last. We can use it to illustrate some

2

capabilities of Zinc: functions and predicates (all different), complex types
(e.g. num set), arrays indexed by arbitrary finite types (array Pos), variables
declared locally in expressions (in the channelling constraint), and totally ordered
types (i < j inside the predicate). Zinc supports solver-defined constraints by
allowing predicates to be declared but left undefined.

A feature not shown in Figure 1 is annotations. They are attached to expres-
sions and used to hold non-logical information that control the solving. Exam-
ples are solver search specifications and master problem/subproblem markers in
a column generation model.

MiniZinc is a medium-level subset of Zinc that is close to the capabilities
of existing solvers [6]. Specifically, its type system is restricted, and constrained
types, functions, indexed arrays are disallowed.

FlatZinc is a low-level derivative of MiniZinc designed to be straightforward
to implement [6]. It allows only variable declarations and atomic, flat constraint
expressions. Quantification and nested Boolean operations are not allowed.

Cadmium is a rule-based constraint model transformation language based
on associative, commutative term rewriting. Its distinguishing feature is support
for conjunctive context matching: rewriting rules can refer to terms contained
higher up in the superterm that are ‘conjunctively connected’ to the term being
rewritten [7].

Mercury is a modern logic/functional programming language [8]. It serves as
the implementation platform for G12, notably its FD solver, and also holds the
interfaces to external solvers such as CPLEX and MiniSAT.

2 Models and Solvers in G12

The current situation for tools supporting Zinc and MiniZinc is shown in Figure 2
(where Fzn indicates a FlatZinc solver). These tools are generally prototypes
and are still under development, but many have a reasonable coverage (see the
benchmark section). We now discuss the individual nodes and edges appearing
in the diagram.

2.1 Zinc reduction

Mapping Zinc to MiniZinc principally involves translating the expressive types
available to the Zinc modeller into the more restricted capabilities of MiniZinc.
The translation is written in Cadmium and is largely data independent in the
sense that it does not require the actual values of parameters. Notably array
and set comprehensions (often used in expressions such as forall, sum) are not
unfolded. The first phase of the reduction consists in transforming variable and
parameter declarations so as to only involve simple types. The key components
are given in the following list:

– array-of-arrays: composed to multi-dimensional arrays,
– array-of-tuples: commuted to tuple of arrays; same for records,

3

Zinc

MiniZinc

Reduction

Mercury

Zinc

compiler

FD Mercury

IC Mercury

FlatZinc

Flattening

Base Zinc

Bzn IC

ECLiPSe

Fzn FD

Mercury

Fzn IC

ECLiPSe

Fzn FD

ECLiPSe

Linear FlatZincLinearisation

CPLEX LP format

LP format

printer

MIP solvers

Lin. Fzn

Mercury

CPLEX

GLPK

OSI

Fzn Column

Gen. Mercury

Boolean FlatZinc

Booleanisation

DIMACS format

DIMACS

format

printer

SAT solvers

Boolean Fzn

Mercury

MiniSAT TiniSAT

Fzn LazyFD

Mercury

model language solver subsolver

Fig. 2. Model formats and solvers in G12

– top-level tuples and records: decomposed into separate variables,

– complex sets: reduced to simple sets and arrays,

– indexed arrays: reduced to simply indexed arrays,

– constrained types: reduced to simple types and separate constraints.

Subsequently, expressions of complex type are reduced. For instance, comparison
constraints are decomposed into comparisons of simply-typed variables; e.g. com-
parisons of arrays are treated as lex constraints. Comprehension generators are
ensured to be over a simple type; e.g. a generator over a set of tuples represented
by a Cartesian product becomes a sequence of generators over the components
of the Cartesian product.

4

For example, consider a fragment from the transformed model of Langford’s
problem concerned with the all different constraints. The array Pos has tuple
indices. The iteration over the index set is flattened into one over the components:

forall([Pos[i,j] != Pos[p,q] |
i in 1..n, j in 1..k, p in 1..n, q in 1..k where i = p /\ j < q \/ i < p]).

The elements of the array Num are not simply-typed but pairs. It is split into
two arrays Num 1, Num 2, and the binary inequalities from the all different

are decomposed accordingly:

forall([Num_1[i] != Num_1[j] \/ Num_2[i] != Num_2[j] |
i in 1..n*k, j in 1..n*k where i < j]).

2.2 MiniZinc flattening

The translation from MiniZinc to FlatZinc is well understood and described
in [6]. We have two versions of the translation, one in Mercury with a focus
on translation efficiency, and another more flexible version written in Cadmium
aimed at producing high-quality models and in turn accepting greater translation
times.

To continue the example above, the constraints generated for
Num_1[3] != Num_1[5] \/ Num_2[3] != Num_2[5] are the following:

int_ne_reif(Num_1[3], Num_1[5], b1),
int_ne_reif(Num_2[3], Num_2[5], b2),
bool_or(b1, b2, true).

The constraints int ne reif and bool or are FlatZinc built-ins for reified inte-
ger inequation and Boolean disjunction, respectively.

2.3 MiniZinc linearisation

Mapping MiniZinc to (mixed integer) linear programs is a much more complex
transformation. The translation is written in Cadmium and described in [9]. It
shares substantial code with the Cadmium MiniZinc to FlatZinc translation.

At the core of the linearisation lies the elimination of Boolean oper-
ators other than conjunction by the Big-M technique [10]: a disjunction
(x 6 0) ∨ b, where b is a Boolean variable, is equivalently written as the in-
equality x 6 ub(x) · bool2int(b), where ub is an upper bound on the value of
the expression x and bool2int transforms a boolean variable into a 0/1 integer
variable. Our linearisation makes an effort to derive tight upper bounds as the
quality of the obtained linear model for MIP solving purposes increases with the
tightness.

As an illustration of this technique, recall from above the constraint
Num_1[3] != Num_1[5] \/ Num_2[3] != Num_2[5]. With n=9 and k=3, it is lin-
earised into

1 <= b1 + b2 + b3 + b4,
-8 <= -9*b1 + Num_1[5] - Num_1[3],
-8 <= -9*b2 + Num_2[5] - Num_2[3],
-2 <= -3*b3 + Num_1[3] - Num_1[5],
-2 <= -3*b4 + Num_2[3] - Num_2[5].

5

The linearisation applies other methods to improve the quality of the re-
sulting model. One is the context-dependent linearisation of piece-wise linear,
convex functions such as max and abs. More compact linear translations of such
function applications exist when they occur such that its lower or upper bound
is irrelevant, as in 3 >= max(x,y), linearised to 3 >= x, 3 >= y, for example.
Another method concerns the linearisation of certain well-studied complex con-
straints such as all different. Linear versions are known that capture the
convex hull of these constraints. It is often easy to add such improvements to
our Cadmium linearisation.

2.4 LP format printer

In order to use external standalone linear programming solvers without adding
a front end, we also provide a mapping from linear MiniZinc to the CPLEX LP
file format [11], an ASCII format for linear programming problems.

2.5 Booleanisation

The subset of FlatZinc that does not include floats can be mapped to Boolean
constraints only. The Booleanisation is implemented in C++ and described
in [12]. It is based on a binary encoding of integers and corresponding algo-
rithms that perform integer operations on binary numbers.

Continuing with the example above, the FlatZinc reified integer inequation
int_ne_reif(Num_1[3], Num_1[5], b1) is Booleanised as follows, using 4 bits to
encode each integer:

bool_ne(v_2, v_15), bool_ne(v_3, v_19),
bool_ne(v_6, v_16), bool_ne(v_7, v_20),
bool_or(v_15, v_6, v_17), bool_or(v_19, v_7, v_21),
bool_or(v_16, v_2, v_18), bool_or(v_20, v_3, v_22),
bool_and(v_17, v_18, v_11), bool_and(v_21, v_22, v_12),

bool_ne(v_4, v_23), bool_ne(v_5, v_27),
bool_ne(v_8, v_24), bool_ne(v_9, v_28),
bool_or(v_23, v_8, v_25), bool_or(v_27, v_9, v_29),
bool_or(v_24, v_4, v_26), bool_or(v_28, v_5, v_30),
bool_and(v_25, v_26, v_13), bool_and(v_29, v_30, v_14),

array_bool_and([v_11, v_12, v_13, v_14], v_10),

bool_ne(v_10, b1).

The new Boolean variables v 2, v 3, v 4, v 5 encode the integer Num_1[3];
v 6, v 7, v 8, v 9 encode Num_1[5]. The rest of the new variables are auxil-
iary ones that have been introduced in order to implement the inequation as a
compact set (conjunction) of Boolean constraints.

Naturally, the size of the Booleanisation will grow with the number of bits
used to encode integers, which if too small may eliminate solutions when they
in fact exist. To strike a balance between efficiency and completeness, the solver
we use in experiments, described below, adopts the following strategy: it starts
with a number of bits just sufficient to encode all constants in the model, and

6

repeatedly increases it until a solution is found, or until that number equals the
number of bits in a word sized integer.

Our Mercury Boolean FlatZinc solver is not yet fully implemented, so our
experiments with Booleanisation were conducted using FznTini [12], which uses
the Tinisat SAT solver and solves optimisation problems by binary search.

2.6 DIMACS format printer

In order to use a standalone SAT solver to tackle Boolean FlatZinc problems we
provide a translator to DIMACS CNF format [13]. For optimisation problems,
the DIMACS file encodes the satisfaction version of the problem, and includes
a special comment line encoding information that fully specifies the original
optimisation version. One is then free to implement an extension of the SAT
solver that reads the comment and handles the optimisation accordingly.

2.7 Finite domain constraint solvers

We have a complete FlatZinc interface to the G12 finite domain constraint pro-
gramming solver. This solver is implemented in Mercury. It provides a modest
set of pre-defined constraints; FlatZinc constraints that are not built-in (such as
rounding integer division) are provide as decompositions.

ECLiPSe [14] provides FlatZinc interfaces to its fd and ic libraries.

2.8 SAT solvers

SAT solvers are used in one of two ways, as we alluded to earlier. They can
directly operate on the output of the DIMACS printer, or provide their reasoning
power, through a Mercury interface, to the Mercury Boolean FlatZinc solver and
the lazy clause generation FD solver.

2.9 Lazy clause generation FD solver

The lazy clause generation FD solver is a propagation constraint solver that
not only propagates domain reductions but also generates the corresponding
clauses [15]. These clauses are handled by a SAT solver, which performs unit
propagation, nogood learning and backjumping. Search can be performed either
with a finite domain search procedure or using the SAT solver search heuristic.
The solver is implemented in Mercury and uses MiniSAT [16] as the underlying
SAT solver.

2.10 Linear solvers

We have a FlatZinc interface to G12’s generic linear solver interface that can
be used to solve linearised Zinc models. G12’s generic linear solver interface
provides a standard way for Mercury code to interact with (mixed integer) linear

7

programming solvers. Such code is independent of the underlying solver being
used. Implementations of the interface exist for CPLEX, GLPK (the GNU Linear
Programming Kit) and to the solvers that are available via the Open Solver
Interface (OSI) of the COIN-OR [17] project.

2.11 Column generation solver

A FlatZinc interface also exists to the G12 column generation solver. This solver
implements a branch-and-price algorithm on top of Dantzig-Wolfe decomposition
and column generation. In principle, it can use any other solver in G12 that is
capable of dealing with linear floating point objective functions as a subproblem
solver. Currently, the only such solvers are the linear solvers and a specialised
knapsack solver.

The column generation solver requires that the models be annotated, in or-
der to identify subproblems and supply other information required by the solver.
We ran our experiments with the column generation solver on trucking, cutting
stock, and two-dimensional bin packing problems. In order to apply Dantzig-
Wolfe decomposition and column generation to the trucking problem we first
applied a MiniZinc to MiniZinc model reformulation using Cadmium. For the
cutting stock problem, Dantzig-Wolfe decomposition is applied to a classical
model. The decomposition aggregates identical subproblems. Branching is per-
formed on original problem variables thus preserving subproblem structure. For
the two-dimensional bin packing problem, branching is performed using subprob-
lem constraint branches. For related references and a more detailed description
of the G12 column generation solver and its application to these models see [18].

2.12 Zinc compiler

The other major approach to solving Zinc (and MiniZinc) models is the Zinc
compiler. The Zinc compiler translates a Zinc model into a Mercury program.
This can then be compiled into an executable that solves the model when run.
It currently only works with the Mercury FD and IC solvers, however, work is
underway to extend it to other solvers.

The compilation does little flattening. For example, MiniZinc predicates are
compiled into Mercury predicates, and complex expressions like calls and com-
prehensions are evaluated at run-time; to support this, a run-time library con-
taining code for built-in operations is linked into every compiled model. This
approach allows the generated binaries to be data-independent—any undefined
parameters can be read from a data file at run-time.

2.13 Monash implementation

A prototype of Zinc has been developed in Monash University aimed at ex-
perimenting with mapping high-level Zinc models into low-level design models
using three different solving techniques: constraint programming, local search

8

and mathematical methods. It translates Zinc models into ECLiPSe programs
using the ic, ic sets, branch and bound and eplex libraries.

Two different intermediate languages have been implemented: Flattened Zinc
and Base Zinc. Flattened Zinc is a subset of Zinc and resembles FlatZinc (for
more information see [2]). Base Zinc [19] resembles MiniZinc and is closer to Zinc.
It supports comprehensions and user-defined functions. While using a higher-
level intermediate language as Base Zinc requires more implementation effort to
map the models to design models, it makes the generated models more compact
and the mapping process faster.

3 Computational Experiments

We performed computational experiments on a wide set of benchmarks. The
goal of these experiments was to show the ability of our system to run high-level
models on very different solver platforms. We also demonstrate the ability of
our system for supporting solve annotations and hybrid algorithms. Finally it is
interesting to evaluate the performance of different solvers on different classes of
problems in a generic way.

3.1 Benchmark problems

We used the following problems as benchmarks. For problems in CSPLib, we
give only their number and refer the reader to the CSPLib website [5] for further
details.

– 2DBinPacking: two-dimensional bin packing (see [18] for details);

– bibd: balanced incomplete block designs (problem 28 in CSPLib);

– cutstock: cutting stock problem (see [18] for details);

– golfers: social golfer problem (problem 10 in CSPLib);

– golomb: Golomb rulers (problem 7 in CSPLib);

– kakuro: solving a Kakuro logic-puzzle;

– knights: finding a cyclic knight’s tour of given length on a chessboard of given
size;

– langford: Langford’s number problem (problem 24 in CSPLib);

– radiation: decomposing integer matrices into weighted sums of binary matri-
ces. This has applications in the radiation treatment of cancer [20];

– shortest path: finding the shortest path in a directed graph;

– steiner-triples: Steiner triple systems (problem 44 in CSPLib);

– trucking: a transportation problem (see [18] for details).

All benchmark models and data are available as part of
the G12 MiniZinc distribution, which may be downloaded from
www.g12.csse.unimelb.edu.au/minizinc/.

9

3.2 Benchmarking environment

The benchmarking machine was a PC with a 3.4Ghz Pentium D CPU with 2M
of cache, 4G of main memory, running Linux kernel version 2.6.18-6. (This is
a dual core CPU but for the benchmark runs only a single core was used.) We
used version rotd-2008-08-15 of the G12 platform, CPLEX version 10 and the
development version of OSI from 22 May 2007. The Mercury compiler used to
compile G12 was rotd-2008-08-15. All Mercury code was compiled in the grade
hlc.gc.tr. C and C++ code was compiled using gcc 3.4.6. The version of ECLiPSe

we used was 5.10#140.

3.3 Results

We tested 10 solvers on 12 problems, each with a number of instances. Flatten-
ing and linearisation (where applicable) were given a time limit of 30 minutes
per instance. Solving was give a time limit of 10 minutes per instance for the
‘2DPacking’, ‘cutstock’ and ‘trucking’ problems and 30 minutes per instance for
the others. Solutions were verified by re-flattening and re-solving the instances
using the solution as an additional data file. (This was not possible for all solvers
since not all of them handled output items correctly; for these solvers the so-
lutions were inspected manually.) Table 1 summarises the solving results. The
flattening/linearisation times are reported in Tables 2 and 3.

Each row of the table displays the results for the different solvers on several
problem instances of a given model. The upper figure is the percentage of runs
finishing within the given run-time limit. Some runs aborted, mainly because of
excessive memory usage, and in this table these are counted as exceeding the
limit. The lower figure is the average time taken for those instances that did not
exceed the limit, and is parenthesised if this does not include all instances. For
each model the solver with the highest percentage is highlighted, with the lowest
average time used to break ties.

The ‘2DPacking’ and ‘cutstock’ models come in two versions: one using col-
umn generation (ColGen) and the other not using it (the latter are suffixed with
“-nc”). Both models are integer programming oriented and are not given a spe-
cialised FD search specification. We observe that constraint-based solvers cannot
compete on those models. Furthermore, the models are strongly symmetric, and
only the column generation solver is aware of those symmetries. It is therefore
able to solve most of the instances. Note that the G12 column generation solver
uses CPLEX as the underlying LP and MIP solver. Table 4 displays the detailed
results for these models.

The G12/FD and G12/Zinc solvers use the same back-end FD solver. The
former follows the FlatZinc path whereas the latter is compiled, which means
that the decompositions sent to the back-ends may differ. The solvers also use
slightly different default search strategies if the model does not specify the FD
search (both use minimum-domain-size as the variable selection criterion, but
G12/Zinc breaks ties by maximum-degree). Only ‘golfers’, ‘golomb’, ‘langford’,

10

Model G12/FD G12/Zinc G12/LazyFD ECLiPSe/IC ECLiPSe/FD BaseZinc FznTini G12/CPLEX OSI-CBC COLGEN

bibd 100% 78% 89% 67% 67% 89% 89% 56% 56% n.a.
163.23s (19.42s) (0.85s) (227.69s) (138.07s) (4.37s) (5.52s) (1.23s) (17.08s)

golfers1 44% 44% 44% 11% 11% 33% 22% 11% 11% n.a.
(14.73s) (3.58s) (0.97s) (0.31s) (0.27s) (53.34s) (43.45s) (0.88s) (17.04s)

golomb 86% 86% 71% 71% 86% 71% 43% 57% 43% n.a.
(47.90s) (110.87s) (38.03s) (38.37s) (226.07s) (303.27s) (29.17s) (90.97s) (559.00s)

kakuro 100% 100% 100% 100% 100% 100% 100% 100% 100% n.a.
0.55s 0.57s 0.56s 0.24s 0.23s 0.98s 0.01s 0.69s 0.70s

knights 100% 100% 100% 50% 50% 100% 100% 100% 75% n.a.
1.49s 0.23s 0.58s (455.65s) (299.05s) 0.21s 0.16s 0.85s (36.79s)

langford 81% 81% 43% 76% 76% 76% 67% 19% 10% n.a.
(78.15s) (83.58s) (63.81s) (25.59s) (41.14s) (8.31s) (156.62s) (1.27s) (4.63s)

radiation 100% 100% 100% 67% 0% 0% 33% 100% 67% n.a.
182.72s 279.31s 1.41s (26.26s) (1627.27s) 1.07s (315.81s)

shortest-path 40% 40% 40% 60% 50% 60% 0% 100% 100% n.a.
(3.54s) (17.71s) (32.69s) (455.74s) (316.10s) (421.76s) 0.76s 0.77s

steiner-triples 67% 50% 0% 17% 17% 86% 83% 0% 0% n.a.
(0.68s) (390.21s) (0.22s) (0.20s) (0.52s) (265.47s)

2DPacking n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 100%

1.70s

2DPacking-nc 0% 0% 0% 0% 0% 0% 0% 90% 10% n.a.
(109.55s) (4.50s)

cutstock n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 67%

(76.04s)

cutstock-nc 0% 0% 0% 8% 0% 0% 0% 17% 0% n.a.
(0.00s) (0.86s)

trucking n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 100%

0.89s

trucking-nc 50% 50% 0% 50% 50% 50% 30% 100% 100% n.a.
(2.67s) (2.78s) (7.58s) (3.37s) (7.74s) (264.52s) 0.54s 0.57s

Table 1. Solving ratios and times

11

‘radiation’, and ‘steiner-triples’ specify the search. Differences in the times be-
tween the two solvers are a consequence of the different decompositions, as well
as the different default search strategy in cases that do not specify the search.

The Base Zinc solver does not currently support search specifications in the
model. Therefore the figures shown for it in Table 1 are the solving times using
the default first fail search strategy.

The Booleanisation (FznTini) ran out of memory on some of the ‘golfers’
instances, highlighting one of the weaknesses of this approach as it is currently
implemented: the abundance of all_different constraints in these models leads
to exceedingly large Booleanisations as each all_different is flattened into a set
of pairwise inequations.

The LazyFD solver use the Cadmium MiniZinc to FlatZinc transformation
rather than the Mercury one. In contrast to the Mercury variant, the Cadmium
implementation tries to infer bounds when introducing a new variable, and the
current LazyFD solver implementation does not support unbounded variables in
the model.

Considering the flattening and linearisation shown in Table 2, we observe
that flattening without linearisation is generally fast. Flattening with linearisa-
tion appears to depend on the instance. This is largely explained by the fact
that our current linearisation is data-dependent. Indeed, it first unfolds all com-
prehensions (e.g. in forall, sum) and then linearises every constraint instance
separately. Many models generate constraints by comprehensions. Therefore, a
better approach may be to linearise data-independently before creating any con-
straint instance. Work on it is underway.

Finally, by comparing and verifying solutions, we found that CPLEX re-
turned sub-optimal solutions for some of the ‘radiation’ instances. Analysis
showed that the CPLEX default setting of a relative optimality gap was set
too high.

4 Final Remarks

We have presented a snapshot of the tool set around the Zinc language that is
available to us at present. Our experimental evaluation demonstrates that Zinc
as a solver-independent constraint modelling language is feasible. It furthermore
confirmed that multi-solver support is useful as different solvers dominate for
different models. However, it is also clear that scalability in time and memory
for some tools is an issue that needs attention.

Currently ongoing work includes adding more hybrid solving capability to
the menu. An FD/LP FlatZinc solver will be available in the near future. In the
medium term, we also expect to have a local search solver within G12.

12

5 Acknowledgements

Joachim Schimp developed the FlatZinc interfaces to ECLiPSe . We are grateful
to the reviewers for their comments on this paper.

References

1. Frisch, A.M., Grum, M., Jefferson, C., Hernández, B.M., Miguel, I.: The design
of ESSENCE: A constraint language for specifying combinatorial problems. In:
IJCAI’07. (2007) 80–87

2. Garcia de la Banda, M.J., Marriott, K., Rafeh, R., Wallace, M.: The modelling
language Zinc. In Benhamou, F., ed.: 12th Int. Conf. on Principles and Practice of
Constraint Programming (CP’06). Volume 4204 of LNCS., Springer (2006) 700–705

3. Stuckey, P.J., de la Banda, M.J.G., Maher, M.J., Marriott, K., Slaney, J.K., Som-
ogyi, Z., Wallace, M., Walsh, T.: The G12 project: Mapping solver independent
models to efficient solutions. In van Beek, P., ed.: 11th Int. Conf. on Principles
and Principles and Practice of Constraint Programming (CP’05). Volume 3709 of
LNCS., Springer (2005) 13–16

4. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P., Garcia de la Banda, M.,
Wallace, M.: The design of the Zinc modelling language. Constraints, Special
Issue on Abstraction and Automation in Constraint Modelling 13(3) (2008)

5. Hnich, B., Miguel, I., Gent, I.P., Walsh, T.: CSPLib: a problem library for con-
straints. URL: www.csplib.org/.

6. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Mini-
Zinc: Towards a standard CP modelling language. [21] 529–543

7. Duck, G.J., Stuckey, P.J., Brand, S.: ACD term rewriting. In Etalle, S., Truszczyn-
ski, M., eds.: 22nd Int. Conf. on Logic Programming (ICLP’06). Volume 4079 of
LNCS., Springer (2006) 117–131

8. Somogyi, Z., Henderson, F., Conway, T.: The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming 29(1-3) (1996) 17–64

9. Brand, S., Duck, G.J., Puchinger, J., Stuckey, P.J.: Flexible, rule-based constraint
model linearisation. In Hudak, P., Warren, D.S., eds.: 10th Int. Symp. on Practical
Aspects of Declarative Languages, (PADL’08). Volume 4902 of LNCS., Springer
(2008) 68–83

10. McKinnon, K., Williams, H.: Constructing integer programming models by the
predicate calculus. Annals of Operations Research 21 (1989) 227–246

11. ILOG S.A. and ILOG: ILOG CPLEX 10.0 File Formats. (January 2006)

12. Huang, J.: Universal Booleanization of constraint models. In Stuckey, P., ed.: 14th
Int. Conf. on Principles and Practice of Constraint Programming (CP’08). Volume
5202 of LNCS., Springer (2008)

13. Hoos, H.H., Stützle, T.: SATLIB: An Online Resource for Research on SAT. In:
SAT 2000, IOS Press (2000) 283–292 SATLIB is available online at www.satlib.org.

14. Wallace, M.G., Novello, S., Schimpf, J.: ECLiPSe: A platform for constraint logic
programming. ICL Systems Journal 12(1) (1997) 159–200

15. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation = lazy clause generation.
[21] 544–558

16. Eén, N., Sörensson, N.: An extensible sat-solver. In: SAT. (2003) 502–518

13

17. Lougee-Heimer, R.: The Common Optimization INterface for Operations Research:
Promoting open-source software in the operations research community. IBM Jour-
nal of Research and Development 47(1) (2003) 57–66

18. Puchinger, J., Stuckey, P.J., M.Wallace, Brand, S.: From high-level model to
branch-and-price solution in G12. In Perron, L., Trick, M.A., eds.: CPAIOR 2008.
Volume 5015 of LNCS., Springer (2008) 218–232

19. Rafeh, R.: The Modelling Language Zinc. PhD thesis, Clayton School of Informa-
tion Technology, Monash University, Australia (Submitted June 2008)

20. Baatar, D., Boland, N., Brand, S., Stuckey, P.J.: Minimum cardinality matrix
decomposition into consecutive-ones matrices: CP and IP approaches. Volume
4510 of LNCS., Springer (2007) 1–15

21. Bessière, C., ed.: 13th Int. Conf. on Principles and Practice of Constraint Pro-
gramming (CP’07). Volume 4741 of LNCS., Springer (2007)

A Results Per Instance

Table 4 displays the detailed results for solving the column generation models.
The flattening and linearisation times are shown in Table 2.
In Tables 5–7 the solving results per instance (non-column generation solvers)

are given. The acronym TO indicates that the time-limit of 30 minutes was hit
before an optimal solution was found. MO means that the run was aborted due to
excessive memory usage. NF/NL mean that Cadmium flattening or linearisation
was aborted due to excessive memory usage or because of hitting the time-limit.
For some solver/instance combinations some error occurred during solving; those
cases are marked EE.

14

Model compile mzn2fzn mzn2fzn-cd mzn2fzn-mip

bibd
bibd 11 5 2 7.19 0.64 23.06 7.63
bibd 13 4 1 7.21 0.68 84.18 NF
bibd 15 10 3 7.16 0.76 269.34 NF
bibd 16 4 1 7.25 0.92 902.90 NF
bibd 28 10 1 7.21 1.01 NF NF
bibd 4 2 1 7.09 0.56 0.87 1.43
bibd 6 3 2 7.34 0.56 1.97 2.28
bibd 7 3 1 7.23 0.60 1.92 2.20
bibd 9 3 1 7.13 0.60 11.67 4.13

golfers1
golfers 2 2 3 8.19 0.54 1.03 3.19
golfers 4 4 5 8.07 0.55 1.25 NL
golfers 5 2 8 8.05 0.60 0.90 NL
golfers 5 3 6 8.06 0.59 1.17 TO
golfers 5 5 6 7.99 0.58 2.75 NL
golfers 6 6 3 8.02 0.56 2.36 TO
golfers 7 7 7 8.04 0.69 19.16 TO
golfers 8 4 5 8.02 0.63 5.36 TO
golfers 8 8 9 7.99 0.85 99.61 TO

golomb
06 6.79 0.58 1.03 2.03
07 6.25 0.55 0.78 2.50
08 6.39 0.57 0.80 3.35
09 6.20 0.51 0.80 5.45
10 6.37 0.52 0.83 10.71
11 6.33 0.56 0.88 NF
12 6.30 0.57 0.88 NF

kakuro
kakuro 6 6 easy 16.20 0.56 3.79 5.03
kakuro 6 6 hard 13.60 0.54 3.32 4.14
kakuro 6 6 super 13.50 0.54 3.50 4.38
kakuro 8 8 easy 14.26 0.54 4.80 5.92
kakuro 8 8 hard 15.00 0.58 5.65 7.50
kakuro 8 8 super 15.14 0.56 6.03 8.54

knights
08 04 6.60 0.58 1.02 1.94
08 10 6.77 0.53 1.11 6.25
08 12 6.56 0.55 1.26 13.34
08 14 6.54 0.55 1.49 28.93

Table 2. Flattening and linearisation times per instance (in sec)

15

Model compile mzn2fzn mzn2fzn-cd mzn2fzn-mip

langford
l 2 03 7.31 0.55 1.08 2.35
l 2 04 6.95 0.51 0.84 2.34
l 2 07 7.02 0.53 1.18 5.56
l 2 08 7.22 0.54 1.44 8.53
l 2 09 6.95 0.57 1.81 12.76
l 2 10 7.09 0.57 2.26 NF
l 2 11 7.03 0.60 2.75 NF
l 2 12 6.97 0.61 3.58 NF
l 2 13 6.92 0.60 4.44 NF
l 2 14 7.07 0.58 5.80 NL
l 2 17 7.03 0.66 11.55 NF
l 2 18 7.06 0.66 14.68 NF
l 2 19 7.01 0.66 18.10 NF
l 2 20 7.05 0.67 21.54 NF
l 2 23 6.96 0.72 39.65 NF
l 2 24 7.02 0.80 50.56 NL
l 3 09 7.29 0.60 5.04 NF
l 3 10 6.99 0.60 7.68 NF
l 3 17 7.08 0.75 69.42 NF
l 3 18 7.23 0.80 92.26 NF
l 4 24 7.11 1.38 NF TO

radiation
01 8.25 0.58 2.31 4.20
02 7.97 0.58 1.92 3.75
03 8.46 0.56 1.97 3.75
04 8.34 0.56 3.02 6.27
05 8.32 0.58 3.03 6.30
06 8.13 0.60 3.04 6.24
07 8.18 0.58 3.60 7.65
08 8.24 0.60 3.68 7.59
09 8.14 0.57 3.63 7.59

shortest-path
00 47.19 0.67 314.10 11.27
01 71.96 0.68 573.79 14.78
02 354.15 1.20 TO 75.30
03 739.33 1.39 TO 94.26
04 TO 5.03 TO 691.99
05 46.74 0.70 317.59 10.43
06 71.78 0.71 575.92 14.84
07 353.53 1.22 TO 75.23
08 508.58 1.36 TO 94.72
09 TO 5.06 TO 691.06

steiner-triples
03 6.19 0.26 0.97 NL
07 6.06 0.53 0.73 NL
09 6.10 0.51 0.83 NL
13 6.12 0.57 2.32 TO
15 6.15 0.58 5.78 TO
19 6.04 0.70 56.85 TO

Table 3. Flattening and linearisation times per instance (in sec)

16

Model G12/FD G12/Zinc G12/LazyFD ECLiPSe/IC ECLiPSe/FD BaseZinc FznTini G12/CPLEX OSI-CBC COLGEN

2DPacking
1.22
1.58
3.70
1.44
1.39
1.73
1.62
1.48
1.36
1.46

2DPacking-nc
TO TO TO TO TO TO TO 2.20 TO
TO TO TO TO TO TO TO 1.15 4.50
TO TO TO TO TO TO TO 9.99 TO
TO TO TO TO TO TO TO TO TO
TO TO TO TO TO TO TO 3.19 TO
TO TO TO TO TO TO TO 962.13 TO
TO TO TO TO TO TO TO 2.14 TO
TO TO TO TO TO TO TO 3.79 TO
TO TO TO TO TO TO TO TO TO
TO TO TO TO TO TO TO 1.40 TO

cutstock
TO
2.92
TO
TO
1.15
5.94
TO

540.94
1.07
5.77
2.02

48.50

cutstock-nc
TO TO TO TO TO TO TO 0.62 TO
TO TO TO TO TO TO TO TO TO
TO TO TO TO TO TO TO 1.11 TO
TO TO TO TO TO TO TO TO TO
TO TO TO TO TO TO TO TO TO
TO TO TO TO TO TO TO TO TO
TO TO TO TO TO TO TO TO TO
TO TO TO TO TO TO TO TO TO
TO TO TO TO TO TO TO TO TO
TO TO TO TO TO TO TO TO TO
TO TO TO TO TO TO TO TO TO
TO TO TO TO TO TO TO TO

trucking
0.58
0.57
0.60
0.61
0.54
0.70
1.07
0.99
1.17
2.06

trucking-nc
0.60 0.60 EE 0.48 0.32 0.46 208.62 0.26 0.28
0.60 0.56 EE 0.43 0.30 0.41 387.34 0.27 0.28
0.57 0.57 EE 0.47 0.33 0.46 197.60 0.30 0.25
1.19 1.24 EE 2.94 1.40 3.20 TO 0.24 0.28

10.41 10.92 EE 33.57 14.48 34.15 TO 0.28 0.31
TO TO EE TO TO TO TO 0.60 0.58
TO TO EE TO TO TO TO 0.60 0.66
TO TO EE TO TO TO TO 0.92 0.96
TO TO EE TO TO TO TO 0.88 0.96
TO TO EE TO TO TO TO 1.05 1.17

Table 4. Column generation models, solving time per instance (in sec)

17

Model G12/FD G12/Zinc G12/LazyFD ECLiPSe/IC ECLiPSe/FD BaseZinc FznTini G12/CPLEX OSI-CBC

bibd
0.90 3.20 1.04 TO TO 1.55 0.40 2.84 50.50
0.95 6.98 0.96 1.12 1.22 3.80 2.34 NF NF
0.82 122.85 1.02 TO TO 8.69 17.00 NF NF
0.97 TO 1.15 1361.81 824.17 19.07 24.18 NF NF

1462.31 TO NF TO TO TO TO NF NF
0.53 0.55 0.58 0.24 0.22 0.21 0.01 0.53 0.57
0.89 0.59 0.60 2.21 2.06 0.35 0.04 0.92 21.12
0.84 0.61 0.57 0.26 0.27 0.34 0.03 0.85 1.25
0.84 1.19 0.88 0.49 0.51 0.98 0.13 1.00 11.98

golfers1
0.25 0.28 0.54 0.31 0.27 0.20 0.04 0.88 17.04
0.62 0.68 0.85 TO TO 159.28 TO NL NL
TO TO 0.68 TO TO 0.55 86.86 NL NL
TO TO 1.82 TO TO TO TO NL NL
8.10 9.86 TO TO TO TO TO NL NL

49.97 3.49 TO TO TO TO TO NL NL
TO TO TO TO TO TO MO NL NL
TO TO TO TO TO TO MO NL NL
TO TO MO TO TO TO MO NL NL

golomb
0.27 0.25 0.50 0.26 0.24 0.20 0.16 0.69 9.68
0.52 0.62 0.59 0.53 0.32 0.44 4.02 2.04 110.09
0.67 0.82 1.15 2.65 1.10 3.77 83.32 19.67 1557.22
1.94 3.32 9.12 20.43 7.46 57.24 TO 341.48 TO

13.95 30.83 178.81 168.00 61.01 1454.72 TO TO TO
270.02 629.38 TO TO 1286.28 TO TO NF NF

TO TO TO TO TO TO TO NF NF

Table 5. Regular models 1, solving times per instance (in sec)

18

Model G12/FD G12/Zinc G12/LazyFD ECLiPSe/IC ECLiPSe/FD BaseZinc FznTini G12/CPLEX OSI-CBC

kakuro
0.56 0.54 0.56 0.24 0.23 0.74 0.01 0.58 0.59
0.53 0.57 0.60 0.23 0.23 0.72 0.01 0.56 0.62
0.56 0.60 0.52 0.24 0.24 0.72 0.01 0.62 0.64
0.53 0.57 0.58 0.24 0.23 1.11 0.01 0.59 0.56
0.55 0.54 0.57 0.25 0.23 1.24 0.02 0.93 0.91
0.54 0.60 0.55 0.26 0.24 1.34 0.02 0.89 0.89

knights
0.57 0.24 0.57 0.23 0.21 0.20 0.02 0.60 0.56
0.74 0.26 0.53 911.07 597.89 0.20 0.15 0.94 31.19
0.82 0.22 0.60 TO TO 0.22 0.15 0.90 78.63
3.83 0.22 0.62 TO TO 0.33 0.97 TO

langford
0.52 0.25 0.51 0.23 0.22 45.29 0.00 0.57 0.68
0.52 0.22 0.54 0.23 0.22 0.42 0.01 0.96 8.58
0.55 0.53 0.62 0.24 0.24 0.47 0.08 1.80 TO
0.58 0.51 0.84 0.27 0.26 TO 0.04 1.77 TO
1.32 1.05 20.60 5.48 4.24 TO 1148.23 TO TO
3.70 3.68 446.74 29.16 24.38 TO TO NF NF
0.87 0.52 78.46 0.31 0.29 TO 0.24 NF NF
0.83 0.56 TO 0.30 0.29 0.95 1.15 NF NF

1255.37 1353.46 TO TO TO 1.42 TO NF NF
TO TO TO TO TO 3.73 TO NF NF
TO TO TO TO TO 15.89 TO NF NF
TO TO TO TO TO 0.20 TO NF NF
0.96 0.58 TO 0.56 0.70 0.22 6.83 NF NF
1.00 0.67 TO 0.80 0.93 0.26 6.67 NF NF
3.22 3.07 TO 14.77 17.98 0.30 9.74 NL NL
0.95 0.87 TO 2.10 2.68 8.00 9.54 NL NL
0.90 0.62 3.67 0.55 0.58 2.28 1.74 NF NF
0.98 0.69 22.32 1.25 1.29 14.56 14.82 NF NF
9.60 9.00 TO 57.99 95.34 38.07 993.54 NL NL

46.63 44.51 TO 295.21 508.53 0.96 TO NL NL
TO TO NF TO TO TO TO NL NL

Table 6. Regular models 2, solving times per instance (in sec)

19

Model G12/FD G12/Zinc G12/LazyFD ECLiPSe/IC ECLiPSe/FD BaseZinc FznTini G12/CPLEX OSI-CBC

radiation
3.13 4.24 0.87 22.15 EE TO 1793.58 0.66 285.70

818.93 1256.13 0.78 TO EE TO 1569.84 0.65 44.06
236.21 367.23 1.01 TO EE 1518.39 0.64 145.84

3.66 4.20 1.45 26.36 EE TO 1.08 TO
0.92 0.69 1.41 1.16 EE TO 1.06 TO
2.08 2.69 1.59 11.72 EE TO 1.40 1059.87
3.20 3.78 1.36 21.33 EE TO 1.32 354.14
9.12 15.16 2.03 74.86 EE TO 1.68 TO

567.27 859.64 2.19 TO EE TO 1.14 5.28

shortest-path
TO 3.53 1.75 3.41 2.19 13.83 TO 0.62 0.57
9.52 60.14 3.34 4.26 2.74 18.27 TO 0.60 0.59
2.22 2.62 NF 1.86 3.59 102.88 TO 0.81 0.89
TO TO NF TO TO TO TO 0.86 0.85
1.29 NF NF TO TO TO TO 0.92 0.99
TO TO 122.71 TO TO TO TO 0.53 0.57
1.14 4.56 2.95 1.12 0.90 16.87 TO 0.56 0.56
TO TO NF 1633.93 1571.06 1736.49 TO 0.90 0.84
TO TO NF 1089.84 TO 642.23 TO 0.86 0.90
TO NF NF TO TO TO TO 0.95 0.98

steiner-triples
0.25 0.28 EE 0.22 0.20 0.18 0.00 NL NL
0.58 0.76 EE EE EE 0.18 0.09 NL NL
1.03 1169.60 EE EE EE 2.20 1.64 NL NL
TO TO EE EE EE TO 131.15 NL NL
0.86 TO EE EE EE 0.58 1194.48 NL NL
TO TO EE EE EE TO NL NL

Table 7. Regular models 3, solving times per instance (in sec)

20

