
Efficient Propagation of Disjunctive Constraints
using Watched Literals

Christopher Jefferson and Karen E. Petrie

Computing Laboratory, University of Oxford, UK, email:
chris.jefferson@comlab.ox.ac.uk, karen.petrie@comlab.ox.ac.uk

Abstract. Efficient constraint propagation is important for all con-
straint solvers. One of the key reasons that Boolean Satisfiability solvers
are often more efficient than constraint solvers is that they can propagate
disjunctive constraints efficiently. This propagation is undertaken using
the watched literals mechanism. In a recent paper Gent et al. showed how
watched literals can be used in constraint programming, to propagate
simple disjunctive constraints. This paper shows through experiment the
deficiencies in the existing methods of implementing the disjunction of
a set constraints in CP solvers and presents a new algorithm based on
watched literals which when applicable massively outperforms all exist-
ing algorithms. In particular we show that if variables are not duplicated
between the different constraints being considered disjunctively, and a
Generalised Arc Consistent (GAC) propagator is known for each of the
constraints; then GAC propagation can be efficiently achieved across the
entire disjunctive constraint. We end by showing how this new propaga-
tion mechanism can be used to produce efficient models of combinatorial
problems, including that of finding Hamming codes.

1 Introduction

A constraint satisfaction problem (CSP [1]) is a set of decision variables, each
with an associated domain of potential values, and a set of constraints. An as-
signment maps a variable to a value from its domain. Each constraint specifies
allowed combinations of assignments of values to a subset of the variables. Con-
structing a problem into this CSP framework is the art of modelling. A solution
to a CSP is an assignment to all the variables that satisfies all the constraints. So-
lutions are found for CSP’s through systematic search of possible assignments to
variables. During search constraint propagation algorithms are used. These prop-
agators make inferences, recorded as domain reductions, based on the domains
of the variables constrained and the assignments that satisfy the constraints. If
at any point these inferences result in any variable having an empty domain then
search backtracks and a new branch is considered.

This paper outlines a new propagation algorithm, for the disjunction of a
collection of constraints i.e. the case where you need to ensure that at least
one constraint from a collection is imposed. This propagation method makes it
easy to find an efficient model for problems which include a disjunction between



constraints. This work is motivated by Example 1, which was proposed by a
researcher in a field other then that of CSP.

Example 1. How do you model efficiently as a CSP that two arrays, X and Y ,
of equal length n, are not the same i.e. ∃i. X[i] 6= Y [i]

There are two ways to model this using the constraints built into Minion
[2]. The first method introduces auxiliary variables as an array of Booleans, B
of length n. It makes use of two constraints; firstly a reified version of the not
equals constraint (neq) and secondly the sum greater then or equal to constraint
(sumgeq). The reified neq constraint takes in two variables and returns a Boolean
specifying whether these two variables are not equal. The sumgeq constraint
specifies that the sum of an array must be more then the given value. The CSP
model is then given by the constraints:
∀i. reify(neq(X[i], Y [i]), B[i]), sumgeq(B, 1)
This method provides generalised arc consistent (GAC) propagation, which

is the strongest form of propagation. GAC propagation guarantees that the do-
mains of all the constrained variables are reduced as far as possible at every node
of the search tree. However, this is done at a cost as the number of search nodes
processed per second for this method is poor. Full experimental results for this
method can be seen in Section 5.1.

The problem can also be modeled a second way using the element constraint,
as well as the neq constraint which the previous method used. An efficient prop-
agator for the element constraint was devised by Gent et al. [3], using watched
literals for propagation. Watched literals are the method used by Boolean Satis-
fiability (SAT) solvers to provide efficient propagation. This propagation method
is explained in more detail in Section 2.1. The element constraint takes an array
of variables X and a single variable i, it returns the value x of the array variable
at index i i.e. X[i] = x. The CSP model is then:

element(X, i, x), element(Y, i, y), neq(x, y)
This method runs faster then the previous model in that it processes more

search nodes per second. However, it does not obtain GAC propagation, so the
search space explored can be far larger then that of the previous model. This is
explained in more detail in Section 4.2.

One obvious way to express this problem is as (X[1] 6= Y [1]) ∨ (X[2] 6=
Y [2])∨ . . .∨ (X[n] 6= Y [n]), where the arrays are both of length n. This disjunct
of constraints looks a lot like a SAT problem, so it is an obvious step to treat
it as such and use the SAT propagation method of watched literals to provide
efficient and fast propagation. Being able to propagate all constraints which
take the form of a disjunct of smaller constraints is the focus of this paper.
Our watched literals based method runs at a higher speed then either model
explained above and provides GAC propagation for this problem, making it a
more efficient method then either of the models above.

In the next Section of this paper, we go on to explain in more detail the back-
ground of this method, including a detailed explanation of how watched literals
work. The subsequent section provides a detailed account of our method, in-
cluding outlining the algorithm in full and proving which cases obtain GAC (the



highest level) of propagation. We then finish by looking at some experimental
results on a number of problems, including finding Hamming Codes.

2 Background

The success of constraint programming is based upon its flexibility and expressiv-
ity, constraints provide a rich language allowing most problems to be expressed
straightforwardly once the model is selected. However, constraint programming
has a flaw, the expressibility of the language means that in order for a con-
straint program (CP) to run efficiently an expert in the field has to choose the
correct set of constraints to use; what level of propagation should be applied
on each constraint; which order the variables should be searched in; and which
search procedure to undertake. The result is that constraint programming, for
any problem which is difficult to solve, requires a high degree of expertise and is
outside the scope of all who have not received a great deal of training in the field.
Puget [4] suggests that today’s constraint toolkits are far too complex to achieve
widespread acceptance and use. He advocates a ’model and run’ paradigm for
CP similar to that achieved by SAT and mathematical programming.

Minion [2] is a fast and scalable CP based on the model and run paradigm.
A number of the early design decisions are modelled on those of zChaff, which
revolutionised modern SAT solving [5]. In a later paper Gent et al. borrowed
another feature from SAT, in the form of watched literals. Gent et al. showed how
watched literals can be used to implement simple disjunctive constraints along
with more complex constraints, such as the element constraint mentioned in the
previous section. This paper builds on that work by showing how watched literals
can be used to efficiently propagate more complex constraints, namely where
each of the disjuncts is itself a constraint. This adds to the ethos of Minion in
two ways. Firstly, such constraints often seem to occur in practice, so giving end
users a guaranteed efficient implementation means that decompositions (of the
type shown in the Introduction) do not need to be considered. It is now possible
to choose any Minion constraint and disjunct this with any other constraint, this
will be propagated in a very efficient manner. This adds to the ease of use of the
solver and falls within the model and run paradigm. Secondly, we are continuing
in the Minion ethos of seeing which elements can be taken from SAT to increase
the efficiency of CP solvers.

It should be noted however, that although the method outlined in this pa-
per was conceived as part of the Minion ethos, it is actually a general method
that can easily be implemented in any constraint solver where watched liter-
als are present. As watched literals are fundamental to the performance of our
algorithm, we shall now describe them in depth, using SAT constraints as an
example.

2.1 Watched Literals

One important part of how propagators are implemented is how they are called.
Almost all solvers allow constraints to attach triggers to variables, which denote



that this constraint should be informed when a variable’s domain is changed.
When these triggers are activated they are placed on a queue. The solver then
moves through this queue, calling each constraint in turn.

There are many modifications and extensions to this basic principle. Rather
then a constraint being informed whenever a variable’s domain is changed for
example, it could instead only be informed if a particular domain value is re-
moved. Here we are concerned only about the triggers themselves, rather then
what happens once they are triggered. In Minion there are three classes of trig-
gers, outlined below and discussed in depth in [3].

Simple: These triggers are placed on variables at the beginning of search. They
can never be moved or removed.

Backtrackable: These triggers can be placed, moved and removed during search.
When search backtracks, they are restored to their previous location.

Watched: These triggers can be placed, moved and removed during search.
When search backtracks, they are not restored to their previous place.

The class of triggers considered in this paper are watched triggers. Using
these triggers can produce great improvements in the performance of the solver,
as there is no need to specially handle them when search backtracks. However,
the fact that they can be moved and do not revert to their original position
when search backtracks introduce several complications to the implementation
of algorithms which use them. Example 2 demonstrates how watched literals are
traditionally used to implement SAT.

Example 2. This Example illustrates a search tree where watched literals are
used to implement propagation for the SAT constraint A ∨ B ∨ C ∨ D. This
algorithm is based around the principle that as long as two literals could be
assigned true, no propagation can occur. Once only one literal is satisfiable, it
must be true. Therefore at all points the algorithm watches two literals, and
when only one still holds it is assigned true. In the table the literal assigned
through search at that level is highlighted and the last column explains the
effect of this change on the watched literals.

Domains Watch Description
A B C D 1 2
{0,1} {0,1} {0,1} {0,1} A B Algorithm Setup
{0,1} {0,1} {0} {0,1} A B No effect
{0} {0,1} {0} {0,1} D B B triggered - Watch Moved to D
{0} {1} {0} {0,1} D B B triggered - Watch Left at B

Search Backtracks to start for unrelated reason
{0,1} {0,1} {0,1} {0,1} D B No effect - triggers left on D and B
{0} {0,1} {0} {0,1} D B No effect
{0} {0} {0} {1} D B B triggered - D assigned.

Search Backtracks for unrelated reason
{0} {0,1} {0} {0,1} D B No effect - triggers left on D and B.



There are a number of important points to notice about Example 2. When
the algorithm says that there is “no effect”, there really is no effect at all. In
particular, given a SAT constraint where the watches are placed on variables
which are never propagated during search, the constraint is never considered
during search, although obviously it does take up a small amount of memory.
Also, when search backtracks the watches remain in situ. However, it is easy to
see from this example that these new values provide a valid support.

2.2 Related work on disjunction in constraint programming

Given the importance of having efficient disjunctive constraints, as we have high-
lighted in the previous sections, it is unsurprising to note that there has been
previous research papers in this area. There are three research projects which
have tackled the same problem as ourselves, that of a disjunct of constraints.

The first by Müller and Würtz [6, 7] implements disjunction between con-
straints in Oz without the use of watched literals. This method always gets GAC
propagation, including the case where there are repeated variables between dis-
juncts, which our method does not. This is explained in Section 4. However,
it has similar performance to the sum decomposition model, which is the first
model outlined in Example 1, so our method always manages to search more
nodes per second. We will show in Section 5 that in practice our method is of-
ten at least 10 times faster then this and never slower. Also it should be noted
that in any solver where watched literals are implemented, our method is very
easy to execute. Whereas the method of Müller and Würtz requires a detailed
infrastructure of its own.

The second paper in this area by Bacchus and Walsh [8] provides theoretical
results for considering disjunction between constraints, but no implementation
framework details are given. Hence, it is difficult for us to see how our work
relates in practice. However, we do note that no mention is given of watched
literals in this paper so our algorithm is very different in nature. In the next
section we go on to describe exactly how our algorithm operates.

Lhomme [9] completed the third work in this area. Their paper shows how
finding supports in algorithms like GAC-Schema can be improved by making use
of the fact constraints are a disjunction. This massively improves performance
over treating the whole constraint as a set of tuples. However, the method de-
scribed in Lhomme’s paper still keeps an assignment to all the variables in the
disjunction for each literal in each variable.

3 Overview of Method

The general design of our algorithm for propagating complex disjunctive con-
straints can be seen as an extension and generalisation of the basic algorithm for
implementing SAT. Both the general SAT algorithm, and our algorithm, follow
the same basic outline:



Setup Phase: Find two disjuncts which have a satisfying assignment. If two
can be found, then watch a satisfying assignment to both disjuncts, else move
to the Propagation phase.

Update Phase: If a domain value being watched is removed then look for an-
other satisfying assignment to the same disjunct, or a satisfying assignment
to a different disjunct. If one can be found watch that, else go to the Prop-
agation Phase

Propagation Phase: If only one satisfiable disjunct exists, propagate that it
is true, else the constraint fails.

This basic algorithm makes use of the fact (proved in Theorem 1 shown
below) that during search, given a constraint of the form C1 ∨ C2 ∨ . . . ∨ Cn,
where no two disjuncts share variables, then there is no need for propagation
as long as two disjuncts have a satisfying assignment. There are however two
features of SAT which make implementing this framework simpler, then it is for
our more general algorithm.

The first simplification is that given a disjunct of a SAT constraint, checking
if a satisfying assignment exists is trivial, whereas for a general disjunct this can
be more complicated. The second issue comes in the Propagation Phase. The
SAT constraint is propagated by assigning the variable either true or False
and after this every variable in the constraint is assigned. Consider however a
constraint with the disjunct x 6= y, where the current domain of both x and y is
{0, 1}. Given these domains no propagation can occur, as every domain value for
both variables is part of a solution to the disjunct. However, once x is assigned
0, then y must be assigned 1.

This means that propagation may have to be performed more then once on
a disjunct once we enter the propagation phase. This means in our algorithm
the propagation phase is replaced from the one in SAT with:

Propagation Phase: If the ’update phase’ ever fails, it means only one of the
disjuncts can possibly be satisfied. At this point, start propagating that
constraint as normal.

4 Implementation Details

Our algorithm is split into three clear phases as in the overview in the previous
section, namely a setup phase, a updating phase and a propagation phase.
In this section we will present each phase separately.

The first thing to note is the basic principle behind our algorithm, which is
to consider each disjunct in isolation, never removes valid solutions. Theorem 1
provides the central result which ensures the correctness of our algorithm. This
theorem shows that assuming that no two disjuncts in our constraint share a
variable, then we can implement GAC propagation by waiting until only one
disjunct can be satisfied, and then GAC propagating that disjunct.



Theorem 1. Consider a constraint C which can be expressed as Con1∨Con2∨
. . .∨Conn where the scopes of the Coni are disjoint, and a non-empty sub-domain
Dv for each variable in the scope of C.

Then the Dv are GAC with respect to C if and only if, either:

1. At least two of the Coni have satisfying assignments in the Dv

2. Exactly one of the Coni has a satisfying assignment in the Dv, and the Dv

are GAC with respect to that Coni.

Proof. 1. Assume that Coni and Conj have satisfying assignments. Then given
any assignment to one variable which is not in the scope of Coni, a satisfying
assignment to C can be generated by assigning the variables in the scope of
Coni so that they satisfy Coni. For variables in Coni, the variables in the
scope of Conj can be similarly assigned so that they satisfy.

2. Assume that Coni is the only satisfiable disjunct for the sub-domains Dv.
There is support for all variables in all other disjuncts, as they are in an
assignment which assigns the variables in Coni such that they satisfy Coni.
Any assignment to the variables in the scope of Coni cannot be true be-
cause one of the other disjuncts is true, and therefore all assignments can be
extendable to a solution if and only if Coni is GAC with respect to Dv.

We note that our algorithm, like any propagator, is still correct when a vari-
able occurs in multiple disjuncts by treating the multiple occurrences as if they
were distinct variables with the same domain. However, unlike the alternative
algorithms presented in [6, 7], it will not achieve GAC propagation.

Before presenting the steps in our algorithm, we first describe the state that
the algorithm stores between calls.

PropagateMode: a Boolean which represents if we are in the Propagation
phase of the algorithm. Is reverted when search backtracks.

Disjuncts: The disjunct constraints, named C1 to Cn. A track is also kept of
which disjuncts are currently being watched.

One important feature of our algorithm is that while it requires a propagator
for each disjunct, this propagator can be any standard propagator, either using
watched literals or other standard methods. This ensures that propagating a
disjunct is almost as efficient as propagating a normal constraint.

Unlike the algorithm presented in [6, 7], there is no requirement for any
changes to be made to how the domains of variables are queried or changed.
However, it is necessary to add a simple check to the part of the constraint
solver responsible for activating constraints. This is the propagating Phase of
the algorithm.

if PropagateMode = False then
do nothing;

else
propagate constraint as normal;

end



This code is required because in the middle of search when only a single
disjunct constraint can be satisfied standard propagation is applied to this con-
straint. However, this propagator must be removed when search backtracks to
the node where the propagator was added. In some frameworks this removal of
triggers on backtrack occurs automatically, but the major strength of watched
literals is that they require no work to be performed on backtrack. Therefore
this additional check must be added.

As well as the propagator for each disjunct constraint, another function is
required which will return a valid assignment to the disjunct, or return that
no valid assignment can be found. For a large number of constraints this is a
much simpler and shorter piece of code then a general propagator. Assuming
these functions are in place the method then commences by initiating the setup
phase. This searches for two satisfiable disjuncts. If two can be found then they
are both watched, if one is found then PropagateMode is entered, if none are
found then the constraint fails.

PropagateMode = False;
if ∃i. Ci is satisfiable then

if ∃j. i 6= j ∧ Cj is satisfiable then
Add watches to satisfying assignment of Ci;
Add watches to satisfying assignment of Cj ;

else
addPropagationTo(Ci);
PropagateMode = True;

end
else

Fail;
end

Now we enter the central loop of the method, the updating phase which
is called whenever the satisfying assignment to a disjunct is lost. The most im-
portant feature of this phase to notice is that in the case when no unwatched
satisfiable clause can be found, the watches are not removed from any disjunct,
including the one which just lost support. This is because while Propagate-
Mode is true, any calls to these triggers are ignored. When search eventually
backtracks to the start of the node in which PropagateMode was set to true,
then all these watches will become valid again.

To prove our algorithm correct, we present two invariants, which ensure our
algorithm works correctly.

Lemma 1. After the setup phase for the algorithm has completed, at any point
during search where failure has not occurred and all items on the constraint queue
have been executed, the following two invarients are true.

1. Either PropagateMode = True or two satisfying assignments in two dis-
juncts are being watched.

2. Either PropagateMode = False or only one clause is satisfiable and that
clause is being propagated.



Input: C1, C2, . . . , Cn: disjuncts
Input: d : Disjunct which failed
Global Data: PropagateMode
if PropagateMode then

Return
end
if Cd is satisfiable then

Move watches to new satisfying assignment to Cd;
else

if ∃i. Ci is satisfiable and unwatched then
Move watches to satisfying assignment to Ci from Cd;

else
Remove all old Propagation trigger / setup on all disjuncts;
Initialise Propagation on the other watched disjuncts;
PropagateMode = True;

end

end

Proof. 1. Clearly this is true after setup, and whenever search progresses for-
ward. However, we must consider what happens when search backtracks. If
PropagateMode was True and remains so, then the condition is trivially
satisfied. There are two other cases to consider:
– Backtrack from a node where PropagateMode is False. In this case

PropagateMode must still be False. While the watched assignments
might not be same one as when this search node was left, if they were
allowed by children of this node they are supported here.

– Backtrack from a node where PropagateMode is True to one where
it is False. In this case the watched assignments have no changed since
this node was left, and as they were allowed before they are still allowed
now.

2. When PropagateMode becomes True, propagation progresses as normal.
Further, when PropagateMode was made True only one clause was sat-
isfiable and therefore it is not possible that more then one clause could be
satisfiable deeper in search. When search backtracks to the node at which
propagation was set up, PropagateMode becomes False and all the prop-
agation triggers are disabled and will be removed before PropagateMode
is ever made True again.

Lemma 1 proves that our algorithm works correctly, when moving between
the Updating phase and the Propagation phase. In this next section we go on
to show a generalisation of our algorithm that allows more complex constraints
to be constructed.

4.1 Implementing Watched Sum

The constraint C1 ∨ . . . ∨ Cn can also be expressed as the constraint
∑

i Ci ≥ 1
if Boolean expressions are treated as taking the value 0 if false and 1 is true. In



a similar fashion to how the “watched sumgeq” presented in [3] generalised the
basic SAT algorithm, we can also easily generalise our algorithm to implement∑

i Ci ≥ j for a constant j. In practice this algorithm is most efficient when j is
small compared to the number of disjuncts.

The general design of this more generalised algorithm is similar to the basic
algorithm presented at the start of this Section. Rather then watching two dis-
juncts and propagating the single disjunct if the other loses support, we instead
watch several disjuncts, and propagate all of those remaining once one of them
loses support. The proofs of correctness follow almost identically, as does the
algorithm itself.

The algorithm for the setup phase from the previous section, is extended to
the algorithm below:

Input: C1, C2, . . . , Cn: disjuncts
Input: j: number of disjuncts to watch
Global Data: PropagateMode
PropagateMode = False;
propagatingDisjunct = -1;
if ∃z1, . . . , zj . ∀i 6= j. zi 6= zj ∧ Czi

is satisfiable then
if ∃j. i 6= j ∧ Cj is satisfiable then

Add watches to satisfying assignment to all the Czi
;

Add watches to satisfying assignment to Cj ;
else

add Propagation to all the Czi
);

PropagateMode = True;
end

else
Fail;

end

4.2 Theoretical Analysis of Alternative Implementations

Our algorithm in not the only method of implementing disjunction. In this sec-
tion we will discuss two pre-existing methods outlined in Example 1 which use
standard disjunction and element constraints.

The first, model from Example 1 implements disjunction by flattening the
constraint by the introduction of extra variables. This is the common way in
which complex constraints are constructed in CP solvers. Some solvers such as
Minion require the user to do this flattening, while others such as Eclipse and
ILOG Solver do this flattening behind the scenes on the user’s behalf.

The second model from Example 1 uses the element constraint which im-
plements X[i] = x. There are two distinct problems with implementing this as
X[i] = x, Y [i] = y, x 6= y. Consider the following example:

X[0] = {0} X[1] = {1}
Y [0] = {1} Y [1] = {0}



In this case, x and y can still take any value, as can the index variable i.
Further, x 6= zy leads to no propagation. Therefore not only does this represen-
tation not achieve GAC but even after assigning all variables in X and Y the
extra variables must still be assigned before failure can occur.

The second problem comes from the fact that there may be many indices
i where X[i] 6= Y [i]. In this case, a different solution will be generated for
possible assignment to the index variable. For a problem with many disjunctive
constraints, this can lead to each original solution resulting in an exponential
number of solutions. In theory this problem could be fixed by symmetry breaking,
but the simplest way of doing so would involve introducing all X[i] 6= Y [i] for
each index value i, removing the advantage of this more compact representation.

5 Experimental Results

To test our new algorithm we performed three experiments. These three problems
will show our algorithm and the existing alternatives in various comparisons.

5.1 The Generalised Pigeon-Hole problem

The first experiment we performed is that of ∃i. X[i] 6= Y [i] which is outlined
in detail in Example 1. This is actually a generalisation of the pigeon-hole prob-
lem. Rather then the traditional problem of finding assignments to an array
of variables which are all different, we instead consider the problem of finding
assignments to a two-dimensional array of variables, where each row must be
different.

Watched OR: Implemented as a watched OR, the algorithm described in this
paper.

Element: The second model from Example 1.
Sum: The first model from Example 1.
Watched Sum: The same algorithm as sum, except the sum constraint is re-

placed by a watched SAT clause b[1] ∨ . . . ∨ b[l].
Custom: A custom-written traditional propagation algorithm. This algorithm

is designed to supersede the algorithm of Lhomme in [9].

Note that using Theorem 6.6 from [10], as long as we get GAC on each of
the constraints in the Sum and Watched Sum models, we get GAC over the
whole problem, and further as long as we place the new variables at the end of
the search ordering, the resulting searches will be identical to the Watched OR
model. Therefore, the only model which could result in a different sized search
is Element.

In fact, it turns out that this model does indeed produce larger searches.
Consider the following small instances of the array pigeon-hole problem.



Element Watched OR
Time Nodes Time Nodes

8 arrays of length 3 and domain size 2 20.25 12,335,593 0.05 25
8 arrays of length 4 and domain size 2 1716.11 1,092,789,218 0.05 33

These instances show how poorly the Element model performs and therefore it
will not be considered further. As the remaining four models produce identical
search trees, we shall only compare them in terms of the number of nodes of
search they perform per second.

We compare the number of nodes per second achieved on average over 100
seconds on various instances of the array pigeon-hole problem, always consider-
ing the case of finding 100 arrays.

Length Domain Watched-OR Flattening + Flattening + Traditional
Size traditional sum watched sum Single Propagator

5 2 313,459 38,577 51,758 74,389
10 2 989,251 3,085 3,149 111,947
20 2 4,142,598 989 1,000 85,723
30 2 4,176,330 630 630 78,276
40 2 4,334,456 465 472 96,441
50 2 3,964,028 374 377 66,531
5 10 1,939,067 8,230 8,227 87,851

10 10 1,502,164 3,373 3,470 48,434
20 10 464,445 997 1,004 60,249
30 10 281,841 615 616 57,474
40 10 210,891 455 458 46,929
50 10 176,598 365 366 43,433

These results show the massive improvements which can arise from using the
Watched-OR propagator. The comparison with the traditional single propagator
shows the huge gains which can be achieved by watching only a small proportion
of the variables at any time. This leads to the perhaps surprising result that the
Watched-OR algorithm sometimes increases in speed as instance size increases,
as the proportion of the variables being watched decreases.

The reason for the instability in the performance of the single traditional
propagator is unclear. However it clearly wins over the decompositions while
also clearly being beaten by the Watched-OR algorithm.

The massive slowdowns of the flattening methods arise from the much larger
numbers of variables required to implement them. The small differences between
using a watched or traditional sum show that the gain from using watched literals
is almost completely removed if flattening is used.

5.2 The Anti-Chain problem

The second experiment we consider is the anti-chain problem, defined below.



Definition 1. An anti-chain is a set S of multisets where ∀{x, y} ⊆ S. x 6⊆
y ∧ y 6⊆ x. We consider the following class of problems:

The 〈n, l, d〉 instance of the anti-chain problem is a CSP with n arrays of
variables, denoted M1, . . . ,Mn, each containing l variables with domain {1, . . . , d}
and the constraints ∀i 6= j ∈ {1, . . . , n}. ∃k ∈ {1, . . . , n}. Mi[k] < Mj [k].

Similarly to the generalised pigeon-hole problem, we consider 4 implementa-
tions of the constraint ∃i. M [i] < N [i] for arrays M and N .

Watched OR: Implemented as a watched OR, the algorithm described in this
paper.

Element: Introduce 3 variables, a with domain {1, . . . , l} and b and c, each
with domain {1, . . . , d}. Impose the three constraints M [a] = b, N [a] = c
and b < c.

Sum: Introduce a new array of Boolean variables b[l] and impose the set of
constraints ∀i ∈ {1, . . . , l}. (M [i] < N [i]) ↔ b[i]. Then impose

∑
(bij) ≥

1. We believe this algorithm is similar to the one given in [6, 7], although
simplified as it only requires disjoint variables.

Watched Sum: The same algorithm as sum, except the constraint
∑

(b ≥ 1
is replaced by a watched SAT clause b[1] ∨ . . . ∨ b[l].

In this, and later problems we did not construct a single propagator due to
lack of time and lack of an efficient implementation of Lhomme’s algorithm from
[9].

Similarly the previous experiment, the Watched OR, Sum and Watched
Sum all achieve GAC propagation. Once again, we will consider the element
model separately, as we must compare time, rather then just nodes per second.
In each of these experiments, we search for only the first solution.

Instance Element Watched Or
Time Nodes Time Nodes

12 arrays of length 4 and domain size 3 63 3,030,555 7.98 2,189,034
11 arrays of length 5 and domain size 2 29.34 2,411,733 7.91 2,411,733

These results are much more competitive then those in the pigeon hole problem,
on some instances the element model achieves the same sized search as our
algorithm. However, the element algorithm always loses out both on number of
nodes searched per second, and occasionally the search size increases massively.
Furthermore, it still produces much larger numbers of solutions, for example on
the 6 arrays of length 4 and domain size 2 instance the element model finds
46,080 solutions in 7 seconds, while the watched OR model find 720 solutions
in 0.2 seconds.

To compare the other three models we consider how many nodes per second
the particular model can solve, averaged over the first 100 seconds of search. In
both cases we consider solving the anti-chain problem on 100 arrays of varying



length and domain size. We do not solve the entire problem as the longer than
1 hour for all problems, we also know the number of nodes and search will be
identical.

Length Domain Watched-OR Flattening + Flattening +
Size traditional sum watched sum

5 2 47,970 3,285 3,137
10 2 38,316 2,793 2,402
15 2 32,544 2,416 2,031
20 2 28,550 2,028 1,771
25 2 24,835 1,808 1,506
30 2 21,858 1,627 1,288
35 2 20,090 1,449 1,153
40 2 18,250 1,226 979
45 2 17,087 1,052 839
50 2 15,820 888 716
5 10 1,467 77 70

10 10 1,228 71 64
15 10 1,286 70 63
20 10 1,330 70 65
25 10 1,357 70 64
30 10 1,487 69 65
35 10 1,698 70 67
40 10 1,971 72 69
45 10 2,190 75 72
50 10 2,249 76 72

A number of conclusions can be drawn from these results. First of all, our al-
gorithm performs well on short vectors, but improves steadily as the length
increases. For example with Boolean domains for length 5 arrays our algorithm
is around 15 times faster, improving to 22 times for length 50. We note that for
larger domains the nodes per seconds increases as the problem size increases.
This is not a mistake, and appears to arise from the decreasing frequency chance
of a conflict occurring. While using a watched sum in the flattening is consistently
slightly better, the improvement is nowhere near the gain from our algorithm.

5.3 Hamming Codes

The final experiment considered is Hamming codes, defined below.

Definition 2. The 〈n, l, d, s〉 instance Hamming problem is the following CSP:
Find n arrays of integers, named M1, . . . ,Mn, each of length l and domain

{1, . . . , d} which satisfy the constraints:
∀i, j ⊆ {1, . . . , n}. (

∑
k∈{1,...,l}Mi[k] 6= Mj [k]) ≥ s.



We test 3 implementations of the constraint: (
∑

i∈{1,...,l}M [i] 6= N [i]) ≥ s

Watched OR: Implemented as a watched OR with count, the algorithm de-
scribed in Section 4.1.

Sum: Introduce a new array of Boolean variables b[l] and impose the set of
constraints ∀i ∈ {1, . . . , l}. (M [i] 6= N [i])↔ b[i]. Then impose

∑
b ≥ s.

Watched Sum: The same algorithm as sum, except the constraint
∑

b ≥ s is
replaced by a watched sum constraint.

For this problem we do not attempt to give an Element model, as the
performance was so poor it was impossible to usefully compare it to any of the
other models.

Here we consider calculating Hamming codes for 50 arrays of Boolean vari-
ables, each of length 50. We run this experiment for various different Hamming
distances. We do not give the total times and number of nodes as we the total
node will be identical and solving time was over the timeout imposed in all cases.

Distance Watched-OR Flattening + Flattening +
traditional sum watched sum

49 29,879 37,425 13,494
45 80,496 72,225 19,625
40 88,030 83,900 27,651
30 159,411 95,964 41,254
20 175,656 99,757 59,059
10 90,787 29,743 19,923
5 3,710,787 2,616 2,598
3 4,821,390 2,146 2,175
2 4,848,664 2,089 2,092

We might expect that flattening and traditional sum would be unaffected by
the varying distance. However, there is an obvious decrease in the difficulty of
solving problems as the Hamming distance reaches the middle values. Ignoring
this effect, we see that for maximum Hamming distances our algorithm actually
performs slightly worse that watched sum. This is not surprising, as one of the
major benefits of watched algorithms is that they can attach triggers to only a
small number of the variables. However it’s performance is still competitive as
there is no need to introduce auxiliary variables.

6 Conclusion

We have shown the weaknesses of the existing methods of modelling disjunction
in constraint programming. To help rectify this problem, we have presented the
framework for propagating disjuncts of constraints using the concept of watched
literals. One of the major strengths of our algorithm is that it allows existing
propagators to be used for the disjuncts without minimal alteration and no loss
of efficiency. We have proved that our method obtains GAC propagation in the
case where there are no shared variables between disjunct constraints. We have



also shown that this constraint is useful in modelling multiple problems which
include disjuncts and related constraints, such as hamming distance. The use
of our constraint makes it possible to solve these problems several orders of
magnitudes faster then the current best known methods, including specialised
propagators which do not make use of watched literals. We hope to extend this
work to other logical connectives, and also to achieve GAC in the case where
disjuncts share variables, while maintaining high performance.

Acknowledgments

We would like to thank the referees for their comments which helped improve this
paper. We also thank Neil Moore and Martin Green for their helpful comments
on earlier drafts. The first author is financed by an EPSRC grant and the second
holds a Royal Society Fellowship.

References

1. Dechter., R.: Constraint Processing. Morgan Kaufmann Publishers (2003)
2. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In

Brewka, G., Coradeschi, S., Perini, A., Traverso, P., eds.: Conf. ECAI 2006, IOS
Press (2006) 98–102

3. Gent, I.P., Jefferson, C., Miguel, I.: Watched literals for constraint propagation in
Minion. In Benhamou, F., ed.: In conf., CP 2006. Volume 4204 of LNCS., Springer
(2006) 182–197

4. J.-F.Puget: Constraint programming next challenge: Simplicity of use. In Wallace,
M., ed.: In conf. CP 2004. Volume 3258 of LNCS., Springer (2004) 5–8

5. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: conf. DAC 2001, ACM (2001) 530–535

6. Müller, T., Würtz, J.: Constructive disjunction in Oz. In: WLP. (1995) 113–122
7. Würtz, J., Müller, T.: Constructive disjunction revisited. In Görz, G., Hölldobler,

S., eds.: In conf. KI-96. Volume 1137 of LNCS., Springer (1996) 377–386
8. Bacchus, F., T.Walsh: Propagating logical combinations of constraints. In Kael-

bling, L.P., Saffiotti, A., eds.: In conf. IJCAI-05, Professional Book Center (2005)
35–40

9. Lhomme, O.: An efficient filtering algorithm for disjunction of constraints. In:
Conf. CP 2003, Springer (2003) 904–908

10. Jefferson, C.: Representations in Constraint Programming. PhD thesis, University
of York (2007)


