
Kakuro as a Constraint Problem

Helmut Simonis

4C, Cork Constraint Computation Centre
Department of Computer Science

University College Cork
Ireland

h.simonis@4c.ucc.ie

Abstract. In this paper we describe models of the logic puzzle Kakuro
as a constraint problem with finite domain variables. We show a basic
model expressing the constraints of the problem and present various im-
provements to enhance the constraint propagation, and compare alterna-
tives using MILP and SAT solvers. Results for different puzzle collections
are given. We also propose a grading scheme predicting the difficulty of a
puzzle for a human and show how problems can be tightened by removing
hints.

1 Introduction

Kakuro is one the many logical puzzles popularized by the Japanese company
Nikoli [27]. Table 1 shows a small scale example taken from [26] and its solution.

@@ @@23 @@30 @@ @@ @@27 @@12 @@16

@@
16

@@ @@
24

17

@@
17

@@
29

15

@@
35

@@12 @@

@@ @@
7

@@
8

7 @@7

@@ @@11 @@
16

10

@@
21

@@
5

@@
6

@@ @@
3

@@ @@23 @@30 @@ @@ @@27 @@12 @@16

@@
16

9 7 @@ @@
24

17 8 7 9

@@
17

8 9 @@
29

15 8 9 5 7

@@
35

6 8 5 9 7 @@12 @@

@@ @@
7

6 1 @@
8

7 2 6 @@7

@@ @@11 @@
16

10 4 6 1 3 2

@@
21

8 9 3 1 @@
5

1 4

@@
6

3 1 2 @@ @@
3

2 1

Table 1. Example Problem and Solution

The puzzle is described by the following rules:

1. The puzzle uses a rectilinear grid of black and white cells. Black cells may
contain hints (integer numbers). The number below the diagonal divider is



the hint for cells below, the number above the diagonal divider is the hint
for cells to the right.

2. The task is to enter numbers from 1 to 9 into the white cells satisfying the
following constraints:
(a) The sum of a continuous block of white cell in horizontal (or vertical)

direction must be equal to the hint given in the black cell to the left
(above).

(b) All numbers in a continuous block of white cells must be pairwise differ-
ent.

The grid size of the puzzle can vary, the largest instance in our evaluation has
124 rows and 90 columns. A valid Kakuro puzzle has solutions, a well posed

problem admits a single solution. An interesting feature of logical puzzles is
that the solution should be deduced with a finite set of deduction rules, without
using search. A characterisation of the difficulty of a puzzle instance is the rule
set required to solve it.

We show in this paper that all instances from commercial sources used in the
tests can be solved by constraint propagation with a generalized arc consistent
(GAC) version of the alldifferent-sum constraint, which combines rules 2a and
2b of the problem description for a set of variables and a simple redundant
constraint modelling the interaction of row and column constraint pairs. We see
that a naive model using alldifferent and sum constraints is not sufficient, and see
how the full constraint propagation can be achieved without writing a specific
new global constraint. The constraint programming approach closely resembles
the way most humans solve the puzzle by hand.

We also present (naive) models using MILP (mixed integer linear program-
ming) and a PseudoBoolean model mapped to a SAT solver, which show that
even for relatively small problem sizes the problem is not trivial.

2 Related Work

Kakuro has become widely popular in the wake of the Sudoku craze that swept
country after country in recent years[26]. While the problems are related, their
models show significant differences. While Sudoku is mainly concerned with the
propagation of the alldifferent constraint and the interaction of multiple such
constraints [18, 9, 13, 7, 1], we find that the challenge for Kakuro is the interaction
of an alldifferent constraint with the sum constraint over the same variables. The
alldifferent-sum constraint is not found in the global constraint catalog [2], but a
more general constraint weighted-partial-alldiff could be used. The PhD thesis of
S. Thiel [20] describes GAC propagation for part of this constraint. Implementing
this global constraint in ECLiPSe for the sole purpose of this analysis seemed
excessive.

On the other hand, the chosen method in this paper is re-using ideas first
applied to crossword puzzles [21, 12]. We use the propia library of ECLiPSe [28] to
obtain a generalized arc consistent alldifferent-sum constraint by simple program
annotation. We show that for the problem considered this is competitive with
state of the art constraint libraries written in C++.



3 Initial Model

The initial model for solving the Kakuro puzzle with finite domain variables is
fairly straightforward. For each white cell, we introduce a finite domain variable
which ranges over values from 1 to 9. For each hint over a continuous horizontal
(or vertical) block of variables we introduce an alldifferent and a sum constraint.
Slightly more formally, a Kakuro puzzle is defined by a tuple < G, H > with
G a set of cell locations, and H a set of hints given as tuples < I, v > with a
positive integer v and a set I ⊂ G. The model then consists of variables xi

∀i∈G : xi ∈ [1, 9]

and two types of constraints. The alldifferent constraint states that a set of
variables must be pairwise different

∀<I,v>∈H : alldifferent({xi|i ∈ I})

The sum constraint states that the sum of the variables in a hint must be equal
to a given integer value.

∀<I,v>∈H :
∑

i∈I

xi = v

Together with a search routine, this defines a model of the problem. We use the
built-in search procedure of the ic library of ECLiPSe 5.10 with default values

search(L,0,input_order,indomain,complete,[])

and impose a timeout of 300 seconds. Note that we don’t use any clever method
for variable or value selection. As we want to solve the puzzle without search at
all, the search routine only serves as a backstop.

A generic technique which helps the reasoning for many puzzles is shaving[10],
already used for Sudoku in [18]. Before starting search it tests for each variable
and each value in its domain if the value can be assigned to the variable. If
the assignment fails, then the value can be safely removed from the domain,
strengthening the constraint propagation. This is applied recursively until no
more domain reduction can be achieved. For logical puzzles the time required
for shaving usually is well spent, as it removes possible dead-ends and helps with
propagation and variable selection.

Most human puzzle solvers frown upon the use of shaving as a deduction
method, since it tests out values and therefore “performs search”. On the other
hand, it is a very effective technique which only uses polynomial time.

4 Evaluation

We test our model on a selection of puzzles from different sources:

big A single very large puzzle instance from Nikoli [22].
mix Some puzzles from the Penpa Mix puzzle collections of Nikoli [24].



giants Another puzzle collection from Nikoli, containing large scale examples
[25].

kakuro A special issue from Nikoli on Kakuro [23].

jnp A collection of number puzzles [6] which contains some Kakuro instances.

suzuki Another collection of different puzzle types [19] containing a number of
Kakuro puzzles. Note that some puzzle instances have multiple solutions,
they are not used in our evaluation.

The problem sizes range from very small (9x9 grid with 36 variables) to quite
large (124 rows, 90 columns and 8339 variables). The experiments for all systems
were run on a laptop with 2GHz Pentium M processor and 1Gb of memory under
Linux.

Table 2 shows the result for the basic model with a recursive shaving routine,
which iterates shaving until saturation is reached (i.e. no more elements can
be removed). The search is limited by a timeout of 300 seconds. K indicates
the number of instances in the set, Setup the percentage of problems solved at
problem setup, just by constraint propagation, Shave the percentage of problems
solved after shaving and Total the percentage of problems solved after search.
Average and maximal execution times for the solved instances are given, as well
as average and maximal backtrack counts for the solved instances.

Set X Y K Setup Shave Total Avg Time Max Time Avg Back Max Back

big 124 90 1 0.00 0.00 100.00 258.09 258.09 577710.00 577710

giants 32 22 46 0.00 54.35 89.13 10.01 287.37 26776.51 760019

giants 32 42 6 0.00 33.33 83.33 6.25 15.53 13705.80 36702

giants 32 46 1 0.00 0.00 100.00 68.92 68.92 161256.00 161256

jnp 9 9 8 0.00 100.00 100.00 0.01 0.01 0.00 0

jnp 10 10 8 0.00 87.50 100.00 0.03 0.07 3.88 31

jnp 12 12 8 0.00 50.00 100.00 0.04 0.08 4.75 32

kakuro 10 14 39 0.00 100.00 100.00 0.02 0.04 0.00 0

kakuro 16 16 44 0.00 81.82 100.00 0.13 2.26 150.34 6210

kakuro 32 22 18 0.00 61.11 100.00 1.03 8.82 2413.11 31867

mix 12 12 12 0.00 100.00 100.00 0.01 0.02 0.00 0

mix 16 16 70 0.00 87.14 100.00 0.08 0.58 31.11 1615

mix 32 22 8 0.00 50.00 100.00 0.85 2.14 1019.75 3565

suzuki 20 12 44 0.00 97.73 100.00 0.04 0.12 0.43 19

All 313 0.00 80.51 98.08 2.63 287.37 6403.28 760019

Table 2. Basic Model with Shaving

None of the problems are solved by propagation alone, and even after shaving
only about 80% of instances are solved. 6 of the larger instances were not solved
within the given time limit. The contribution of shaving is significant. Without it,
only 90% of the problems are solved within the time limit (15 unsolved instances).



5 MILP Model

To check if the constraint approach is competitive, we have tried both (naive)
MILP and SAT formulations of the problem and tested them with the eplex

library in ECLiPSe [17] and with Minisat+ [5], a Pseudo-Boolean problem pre-
processor for Minisat [4].

The MILP model uses 0/1 integer variables yij which indicate if cell i takes
value j, j ranging from 1 to 9.

∀i∈G, ∀j∈[1,9] : yij ∈ {0, 1}

We then have to restrict the variables for the same cell to state that exactly one
of the yij variables must be one, i.e. one of the values from 1 to 9 must be taken.
This is expressed with a set of equations:

∀i∈G :
∑

j∈[1,9]

yij = 1

The next constraint type states that cells in the same block must contain different
values, i.e. that value j can only be taken once for all cells in the index set of a
hint.

∀<I,v>∈H , ∀j∈[1,9] :
∑

i∈I

yij ≤ 1 (1)

The last constraint type expresses the arithmetic constraints, stating that the
sum over all cells in a hint index set must be equal to the hint value v. Since
our basic model uses 0/1 integers, we need a rather lengthy linear form of the
constraint:

∀<I,v>∈H :
∑

i∈I

∑

j∈[1,9]

j ∗ yij = v

The model does not have a real objective function, as we are only looking for a
(the unique) feasible solution. A dummy objective function

min
∑

i∈G

∑

j∈[1,9]

yij

is used in our test runs. Alternatives do not seem to have a major impact. Table 3
shows results for the default Coin-OR[8] solver (CLP/CBC) in eplex[17] with a
timeout of 300 seconds. 76 (mostly large) instances can not be solved within the
timeout, only 76% of all instances are solved.

6 Pseudo Boolean Model

We can re-use the MIP model as the basis for a Pseudo-Boolean model, which
is expanded into a SAT model. We use the same 0/1 variables, and only have to



Group X Y K Nr Vars Solved Avg Time Max Time

big 124 90 1 n/a n/a n/a n/a

giants 32 22 46 4465.17 10.87 98.81 241.31

giants 32 42 6 8742.00 0.00 n/a n/a

giants 32 46 1 9423.00 0.00 n/a n/a

jnp 9 9 8 366.75 100.00 0.85 4.65

jnp 10 10 8 572.62 100.00 3.41 10.40

jnp 12 12 8 820.12 100.00 9.54 31.18

kakuro 10 14 39 745.38 100.00 1.02 6.90

kakuro 16 16 44 1487.45 95.45 29.81 151.25

kakuro 32 22 18 4351.00 27.78 153.23 301.24

mix 12 12 12 744.00 100.00 1.10 6.25

mix 16 16 70 1494.00 92.86 23.03 248.53

mix 32 22 8 4341.38 12.50 3.94 3.94

suzuki 20 12 44 1357.77 100.00 17.00 287.30

All 313 2122.33 75.71 20.78 301.24

Table 3. MILP Model Overview

transform the less or equal constraint (1) into a greater or equal constraint, as
required by the data format for Minisat+.

∀<I,v>∈H , ∀j∈[1,9] :
∑

i∈I

−yij ≥ −1

We rely on the automated translation of the equations and inequality constraints
into clausal form in Minisat+, and do not use any of the possible control param-
eters. As we only require a feasible solution, there is no objective function.

Results for the combination of Minisat+ and Minisat2.0 [4, 5] are shown in
table 4, which report the time required to find a first solution. Proving that the
solution is unique does not significantly increase execution times.

Even by only using the default settings, the results are very consistent. All
problems (up to 695000 clauses) except the largest one (5.2 million clauses) are
solved within 300 seconds, with an average solution time of nearly 18 seconds.
A solution for the “big” instance is not found in 10 hours.

7 Improving Propagation

It is disappointing that our basic finite domain constraint model was not able to
solve all problems, but a simple reflection shows that missing constraint prop-
agation is to blame. Consider a block of five cells with a sum of 15. This is
modelled as

[X1,X2,X3,X4,X5] :: 1..9,

alldifferent([X1,X2,X3,X4,X5]),

X1+X2+X3+X4+X5 = 15



Set X Y K Solved Restart Conflict Avg Dec Max Dec Avg Time Max Time

big 124 90 1 0.00 n/a n/a n/a n/a n/a n/a

giants 32 22 46 100.00 15.13 91793.39 292493.80 817837 51.64 173.06

giants 32 42 6 100.00 17.00 165484.33 695334.00 920827 178.34 254.92

giants 32 46 1 100.00 17.00 163183.00 778007.00 778007 204.01 204.01

jnp 9 9 8 100.00 5.50 1437.75 4282.75 7412 0.43 0.57

jnp 10 10 8 100.00 8.38 5198.00 14062.75 28060 1.34 2.10

jnp 12 12 8 100.00 10.38 11475.12 29130.00 48752 2.75 4.91

kakuro 10 14 39 100.00 7.59 3939.18 11064.38 23566 1.30 2.38

kakuro 16 16 44 100.00 11.43 18389.02 52642.30 135559 5.24 13.06

kakuro 32 22 18 100.00 14.56 61504.61 224880.67 340253 41.65 74.16

mix 12 12 12 100.00 7.50 3714.08 10850.58 21390 1.11 1.80

mix 16 16 70 100.00 10.97 15185.57 46195.66 101888 5.15 11.06

mix 32 22 8 100.00 15.25 79101.00 264553.25 365393 40.65 67.36

suzuki 20 12 44 100.00 9.73 9082.39 30027.75 53245 3.60 7.58

All 313 99.68 11.15 31196.45 103787.51 920827 17.87 254.92

Table 4. SAT Model Overview

There is no propagation from the alldifferent constraint, and the bounds calcu-
lated for the variables in the equality constraint

∑

k∈I

xk = N

are

xi = N −
∑

k∈I,k 6=i

xk

xi = N −
∑

k∈I,k 6=i

xk

which evaluate to 11 and -21, and therefore do not constrain the variables either.
But as we know that the values must be different, we can compute an upper

bound of 5 = 15−(1+2+3+4), i.e. we can remove values 6 to 9 from all domains.
In order to achieve this propagation, we can either just pre-compute the domain
restrictions as a redundant model, or consider the alldifferent-sum constraint as
a global, generalized arc consistent constraint. We try the first, simpler approach
in the next section, and then consider the alldifferent-sum constraint.

7.1 Domain Reduction

How do we know which values we can remove for which constraint? We can
precompute this (with a simple finite domain constraint program) by considering
every constraint of a given arity and fixed total sum. In 33 cases we can solve
the alldifferent-sum constraint by this domain reduction and an GAC alldifferent

constraint. In a further 31 cases, we can reduce the domains, without solving



the constraint completely. This leaves 55 cases where no reduction is possible.
Fortunately, these cases only occur sporadically in the given problem instances.
The constraint of arity 9 is a special case. The only possible sum is 45, which is
reached by any permutation of nine different values, so again a GAC alldifferent

constraint is sufficient.
By applying the domain reductions as a first step before setting up any other

constraint, we dramatically improve performance, as shown in table 5.

Set X Y K Setup Shave Total Avg Time Max Time Avg Back Max Back

big 124 90 1 0.00 100.00 100.00 1.76 1.76 0.00 0

giants 32 22 46 4.35 100.00 100.00 0.08 0.18 0.00 0

giants 32 42 6 0.00 100.00 100.00 0.17 0.22 0.00 0

giants 32 46 1 0.00 100.00 100.00 0.18 0.18 0.00 0

jnp 9 9 8 50.00 100.00 100.00 0.01 0.02 0.00 0

jnp 10 10 8 25.00 100.00 100.00 0.01 0.04 0.00 0

jnp 12 12 8 0.00 100.00 100.00 0.01 0.02 0.00 0

kakuro 10 14 39 76.92 100.00 100.00 0.01 0.04 0.00 0

kakuro 16 16 44 27.27 100.00 100.00 0.03 0.05 0.00 0

kakuro 32 22 18 5.56 100.00 100.00 0.07 0.11 0.00 0

mix 12 12 12 91.67 100.00 100.00 0.01 0.02 0.00 0

mix 16 16 70 27.14 100.00 100.00 0.02 0.08 0.00 0

mix 32 22 8 12.50 100.00 100.00 0.07 0.13 0.00 0

suzuki 20 12 44 2.27 100.00 100.00 0.02 0.05 0.00 0

All 313 26.52 100.00 100.00 0.04 1.76 0.00 0

Table 5. Basic Model with Removed Values

Now a quarter of the problems are solved at setup, and all instances are
solved after shaving, without calling the search routine.

Note that the same reduction can be applied to the SAT and MILP models.
Table 6 shows the result for Minisat+. It now solves all problem instances with
an average time of 2 seconds, the maximal time required is 434 seconds for the
“big” instance with 2.1 million clauses. The results for MILP are also improved,
but the model still only solves 95% of all problem instances within 300 seconds.

7.2 GAC alldifferent-sum

Reducing the initial domain of the variables is only a first step in improving the
reasoning for the alldifferent-sum constraint. Ideally, we want to treat it as a
global constraint and enforce generalized arc consistency in its propagation, i.e.
for each constraint all unsupported values are removed as soon as possible. But
writing a new global constraint for just this purpose seems excessive. Is there
another way of achieving generalized arc consistency for our problem?

Using ECLiPSe [28], we can use the propia [12] library for generalized prop-
agation. This is based on the observation that the number of feasible solutions



Set X Y K Solved Restart Conflict Avg Dec Max Dec Avg Time Max Time

big 124 90 1 100.00 16.00 87910.00 1006558.00 1006558 434.58 434.58

giants 32 22 46 100.00 4.65 2022.70 8786.11 50232 1.80 7.61

giants 32 42 6 100.00 7.00 3434.17 25951.83 51882 6.40 11.37

giants 32 46 1 100.00 7.00 2734.00 25118.00 25118 6.04 6.04

jnp 9 9 8 100.00 1.12 57.00 180.25 413 0.06 0.08

jnp 10 10 8 100.00 1.88 205.88 643.12 2908 0.12 0.35

jnp 12 12 8 100.00 2.25 290.25 1068.62 4031 0.18 0.42

kakuro 10 14 39 100.00 1.05 11.74 44.23 526 0.06 0.12

kakuro 16 16 44 100.00 1.82 194.64 745.39 4935 0.22 0.85

kakuro 32 22 18 100.00 3.28 554.50 2941.78 9599 0.86 1.84

mix 12 12 12 100.00 1.00 6.83 35.00 136 0.06 0.08

mix 16 16 70 100.00 1.53 134.59 570.49 6116 0.20 0.80

mix 32 22 8 100.00 3.12 638.25 3146.00 12087 0.94 2.52

suzuki 20 12 44 100.00 2.32 315.55 1091.64 7616 0.23 0.93

All 313 100.00 2.39 818.58 5775.44 1006558 1.99 434.58

Table 6. SAT Model with Removed Values

to each alldifferent-sum constraint is limited. For two variables and sum 3 there
are only two possible solutions, [1,2] and [2,1]. For nine variable (sum 45), there
are 9! = 362880 possible solutions.

Note that in ECLiPSe it is not necessary to generate the tables up-front. We
can use the “infers” notation of propia shown below to state that we want to use
some program as a GAC constraint[15].

alldifferent_sum(L,N):-

sumup(L,Sum),

(eval(Sum) #= N,

alldifferent(L),

labeling(L)) infers ac.

For performance reasons it is essential to generate the constraints in the correct
sequence, by increasing arity. This reduces the domains of the variables early,
so that we don’t have to consider all possible combinations for the large arity
constraints.

Alternatively, if we generate the tables for all constraints, we can use a ta-

ble constraint or multiple arc-consistent element constraint to achieve the same
propagation.

To reduce overall execution time, we perform the initial domain restriction
before starting to set-up the constraints. As this removes inconsistent values very
rapidly, we reduce the amount of work left for the more complex constraints. To
reduce computation time further, we can set up the alldifferent constraint and
sum constraints of the basic model before setting up the GAC version. This
again removes some inconsistent values before the more complex reasoning is



started. Table 7 shows the results for our improved ECLiPSe model, combining
all techniques discussed above.

Set X Y K Setup Shave Total Avg Time Max Time Avg Back Max Back

big 124 90 1 100.00 100.00 100.00 2.73 2.73 0.00 0

giants 32 22 46 100.00 100.00 100.00 0.17 1.28 0.00 0

giants 32 42 6 100.00 100.00 100.00 0.27 0.35 0.00 0

giants 32 46 1 100.00 100.00 100.00 0.28 0.28 0.00 0

jnp 9 9 8 100.00 100.00 100.00 0.01 0.01 0.00 0

jnp 10 10 8 100.00 100.00 100.00 0.01 0.03 0.00 0

jnp 12 12 8 87.50 100.00 100.00 0.03 0.06 0.00 0

kakuro 10 14 39 100.00 100.00 100.00 0.02 0.05 0.00 0

kakuro 16 16 44 100.00 100.00 100.00 0.04 0.07 0.00 0

kakuro 32 22 18 94.44 100.00 100.00 0.11 0.22 0.00 0

mix 12 12 12 100.00 100.00 100.00 0.02 0.05 0.00 0

mix 16 16 70 100.00 100.00 100.00 0.04 0.09 0.00 0

mix 32 22 8 100.00 100.00 100.00 0.09 0.12 0.00 0

suzuki 20 12 44 97.73 100.00 100.00 0.04 0.09 0.00 0

All 313 99.04 100.00 100.00 0.07 2.73 0.00 0

Table 7. Combined Model

The interesting result is that all but three of the instances considered are now
solved just by initially propagating the constraints, neither shaving nor search
is required. We will consider the three remaining problem instances in section 8.

7.3 Alternative Models

To compare our ECLiPSe solution with an efficient finite domain solver in C++,
we did run our test cases using the Kakuro program written by C. Schulte and
M. Lagerkvist in the Gecode[16] system. After fixing two small problems, we
obtained the results shown in table 8.

The Gecode program generates regular constraints[11] based on finite au-
tomata for the alldifferent-sum constraints, which provide GAC propagation.
The average solving time for both systems is nearly identical, but the individual
solving times vary significantly. The last three columns show the min, average

and max ratio of the Gecode time to the combined model in ECLiPSe.
Another model using the gcc constraint with cost [14] was suggested by M.

Carlsson[3] and tested with Sicstus Prolog. The propagation does not achieve
GAC for the alldifferent-sum constraint.

8 Redundant Constraints

Only three problems remain unsolved after initial constraint propagation with an
GAC alldifferent-sum constraint. Table 9 shows the relevant part of an unsolved



Time Ratio Gecode/ECLiPSe
Set X Y K Setup Total Avg Max Min Avg Max

big 124 90 1 100.00 100.00 0.64 0.64 0.23 0.23 0.23

giants 32 22 46 100.00 100.00 0.19 0.89 0.10 1.18 4.27

giants 32 42 6 100.00 100.00 0.19 0.44 0.24 0.71 1.63

giants 32 46 1 100.00 100.00 0.40 0.40 1.38 1.38 1.38

jnp 9 9 8 100.00 100.00 0.00 0.01 0.50 0.83 1.00

jnp 10 10 8 100.00 100.00 0.03 0.08 0.67 2.36 4.00

jnp 12 12 8 87.50 100.00 0.09 0.48 0.50 4.29 24.00

kakuro 10 14 39 100.00 100.00 0.00 0.03 0.50 0.68 1.50

kakuro 16 16 44 100.00 100.00 0.08 0.47 0.13 1.97 9.33

kakuro 32 22 18 94.44 100.00 0.13 0.57 0.20 1.29 6.33

mix 12 12 12 100.00 100.00 0.00 0.01 0.50 0.83 1.00

mix 16 16 70 100.00 100.00 0.06 0.49 0.14 1.73 12.25

mix 32 22 8 100.00 100.00 0.14 0.36 0.60 1.34 3.60

suzuki 20 12 44 97.73 100.00 0.08 0.43 0.25 2.01 8.67

All 313 99.04 100.00 0.08 0.89 0.10 1.67 24.00

Table 8. Gecode Model Results

puzzle after propagation (instance jnp-142). If a white cell contains a number,
that value has been fixed by propagation. Otherwise, the remaining domain
is shown. We are interested in the top four unsolved cells on the right hand,
coloured in red, which we call A ∈ {8, 9}, B ∈ {8, 9},C ∈ {5, 8},D ∈ {6, 9}. We
can remove value 8 from A. If A is 8, then B must be 9 (alldifferent), and C
must be 5 (alldifferent). The assignment of B to 9 removes 9 from the domain
of D (alldifferent), leaving 6. But then C + D = 11, not 14 as required by the
horizontal sum. This causes a failure. Note we can only deduce this through the
interaction of two horizontal and two vertical alldifferent-sum constraints.

Instead of defining specific patterns to capture such redundant constraint
reasoning, we again use generalized propagation as suggested in [15] to cap-
ture the interaction of row and column constraints. The program remains quite
simple. For every quadruple of unsolved, intersecting pairs of horizontal and ver-
tical constraints we impose the interact constraint shown below, which provides
a restricted form of path consistency. L is the set of variables occurring in the
constraint.

interact(L,L1,N1,L2,N2,L3,N3,L4,N4):-

(alldifferent_sum(L1,N1),

alldifferent_sum(L2,N2),

alldifferent_sum(L3,N3),

alldifferent_sum(L4,N4),

lableing(L)) infers ac.

By adding these redundant constraints to the combined model we solve the re-
maining three problems at constraint setup, requiring neither shaving nor search.



3 9 2 6 1
45

1 26
17

8 9 3 6
42

5 8 9
6

10
8

3 7

2 3 27
11

3 7
. . .

. . .

.89

. . .

. . .

.89

21
9

6 5 2 1 4 3

5 7
12

6 1 14
11

. . .

.5.

.8.

.. .

..6

..9

4 7
12

22 9
. . .

.5.

7..

. . .

. .6

.8.

3
9

2 1 7
24

2 1 4

1 3 2 7 7
10

2 5

6 29 5
. . .

. . .

.89

. ..

. . .

78.

. . .

. . .

789

2 15 4
. . .

. . .

.89

.23

.. .

. . .

Table 9. jnp-142: State after Propagation

9 Grading Puzzles

Most of the puzzle collections that we considered group the problems in multiple
grades. This grading is typically based on how difficult the designer finds to solve
the puzzle. As this is not only dependent on the techniques used, but also on
the particular order in which the methods are applied, this is a highly subjective
measure, which often leads to frustration for puzzle users. We propose a more
objective measure of puzzle difficulty based on a constraint model which mim-
ics human solving techniques. As a first step, the domain reduction discussed
in section 7.1 is used. In addition we use a forward checking version of alldif-

ferent, and the usual sum constraint. This models “obvious” propagation steps
when values are assigned. After this initial propagation, we impose the GAC
alldifferent-sum constraints by increasing arity. This sequence is also normally
used by humans, as it reduces the number of individual cases to be considered.
Table 10 shows result of an evaluation with this model. After setting up the ini-
tial model, about 26% of all instances are solved, increasing to 99% when setting
up all GAC constraints. This grading roughly corresponds to the grade assigned
by the designers, shown in column Grade, with some notable exceptions. The
“medium” mix-12-12 problems for example are actually easier than the “easy”
problems of the same size. The results also show that GAC is really required for
hard instances, even for the largest arity of the alldifferent-sum constraint.

10 Eliminating Hints

For logical puzzles we are always interested if they are given in their minimal
form, i.e. if they contain redundant hints. Reducing hints will make the puzzle



Set Grade X Y K Setup P2 P3 P4 P5 P6 P7 P8 P9
big hard 124 90 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

giants hard 32 22 46 4.35 4.35 6.52 43.48 54.35 65.22 82.61 86.96 100.00
giants hard 32 42 6 0.00 0.00 0.00 0.00 33.33 83.33 83.33 83.33 100.00
giants hard 32 46 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

jnp easy 9 9 8 50.00 50.00 62.50 100.00 100.00 100.00 100.00 100.00 100.00
jnp medium 10 10 8 25.00 25.00 37.50 62.50 75.00 100.00 100.00 100.00 100.00
jnp medium 12 12 8 0.00 0.00 0.00 25.00 50.00 75.00 87.50 87.50 87.50

kakuro easy 10 14 24 91.67 91.67 100.00 100.00 100.00 100.00 100.00 100.00 100.00
kakuro medium 10 14 12 66.67 66.67 91.67 91.67 100.00 100.00 100.00 100.00 100.00
kakuro hard 10 14 3 0.00 0.00 33.33 100.00 100.00 100.00 100.00 100.00 100.00
kakuro easy 16 16 5 80.00 80.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
kakuro medium 16 16 22 27.27 27.27 54.55 72.73 100.00 100.00 100.00 100.00 100.00
kakuro hard 16 16 17 11.76 11.76 11.76 29.41 58.82 76.47 94.12 94.12 100.00
kakuro hard 32 22 18 5.56 5.56 11.11 44.44 77.78 88.89 88.89 94.44 94.44

mix easy 12 12 8 87.50 87.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00
mix medium 12 12 4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
mix medium 16 16 30 33.33 33.33 46.67 70.00 96.67 96.67 100.00 100.00 100.00
mix hard 16 16 40 22.50 22.50 32.50 77.50 85.00 92.50 97.50 97.50 100.00
mix hard 32 22 8 12.50 12.50 12.50 37.50 62.50 100.00 100.00 100.00 100.00

suzuki easy 20 12 15 0.00 0.00 13.33 60.00 100.00 100.00 100.00 100.00 100.00
suzuki medium 20 12 20 5.00 5.00 5.00 20.00 70.00 95.00 100.00 100.00 100.00
suzuki hard 20 12 9 0.00 0.00 0.00 11.11 11.11 33.33 66.67 66.67 88.89
All 313 26.52 26.52 35.46 60.06 78.27 87.86 93.93 94.89 99.04

Table 10. Grading of Instances

more challenging, as long as it remains well-posed, i.e. keeps a unique solution.
Similar to [18], we experimented with a greedy method which removes hints
one by one, until multiple solutions appear. We consider two variants, in the
complete reduction we remove the hint completely from the problem, in the
partial reduction we keep the alldifferent condition and only remove the sum

constraint. Table 11 shows the result for a subset of problem instances. We can
see that for complete reduction we can remove between 3 and 16 percent of all
hints without loosing uniqueness, while for partial removal this increase to 6 to
37 percent.

Complete Partial
Set X Y K Min Avg Max Min Avg Max

giants 32 22 10 5.51 6.86 8.40 11.42 14.26 20.44

jnp 9 9 8 6.25 11.02 16.67 6.25 14.44 17.86

jnp 10 10 8 5.56 10.38 15.79 8.33 12.10 15.79

jnp 12 12 8 7.41 10.18 16.07 10.00 13.39 18.52

kakuro 10 14 39 3.85 10.48 15.52 12.07 21.64 36.21

kakuro 16 16 44 3.41 8.48 12.50 9.76 17.68 25.00

mix 12 12 12 4.17 9.85 14.29 13.46 21.06 37.50

mix 16 16 70 4.26 9.35 13.21 11.36 17.58 26.19

suzuki 20 12 44 6.38 10.39 13.46 11.96 18.22 26.53

All 243 3.41 9.60 16.67 6.25 17.98 37.50

Table 11. Reduction Summary



The reduced problems are significantly more difficult than the original. Ta-
ble 12 shows the results for the combined model on the partial reduction. Note
that now only a quarter of the problems are solved at setup, while even shaving
is not sufficient to solve all reduced problems. Results for the complete reduction
are slightly better, but comparable.

Set X Y K Setup Shave Total Avg Time Max Time Avg Back Max Back

giants 32 22 10 0.00 60.00 100.00 15.98 49.85 4.40 34

jnp 9 9 8 62.50 100.00 100.00 0.02 0.06 0.00 0

jnp 10 10 8 50.00 100.00 100.00 0.03 0.07 0.00 0

jnp 12 12 8 12.50 100.00 100.00 0.16 0.48 0.00 0

kakuro 10 14 39 41.03 100.00 100.00 0.04 0.18 0.00 0

kakuro 16 16 44 13.64 90.91 100.00 0.47 6.37 1.80 65

mix 12 12 12 41.67 100.00 100.00 0.02 0.04 0.00 0

mix 16 16 70 21.43 98.57 100.00 0.94 37.02 0.00 0

suzuki 20 12 44 22.73 100.00 100.00 0.12 0.52 0.00 0

All 243 25.51 96.30 100.00 1.05 49.85 0.51 65
Table 12. Partial Reduction Results

11 Summary

In this paper we have considered models for the Kakuro logic puzzle. A finite
domain constraint model with a GAC alldifferent-sum constraint solves nearly all
considered instances just by constraint propagation, without requiring shaving
or search. Adding some redundant constraints, all examples (up to 124x90 size)
are solved without search or shaving in less than 3 seconds (average 70ms). This
compares favourably to (naive) models using MIP and SAT techniques, and
is comparable to efficient C++ based solutions. We also considered a grading
scheme to estimate the difficulty of a puzzle instance for a human, and showed
that a significant number of hints in the puzzles can be removed without loosing
the uniqueness of the solution, generating more challenging puzzles.

References

1. Carlos Ansótegui, Ramón Béjar, Cèsar Fernández, Carla P. Gomes, and Carles Ma-
teu. The impact of balancing on problem hardness in a highly structured domain.
In AAAI. AAAI Press, 2006.

2. N. Beldiceanu, M. Carlsson, and J.X. Rampon. Global constraint catalog. Tech-
nical Report T2005:08, SICS, May 2005.

3. M. Carlsson. Kakuro model with gcc constraint, 2007. Personal communication.
4. Niklas En and Niklas Srensson. An extensible SAT-solver. In Enrico Giunchiglia

and Armando Tacchella, editors, SAT, volume 2919 of Lecture Notes in Computer

Science, pages 502–518. Springer, 2003.



5. Niklas En and Niklas Srensson. Translating Pseudo-Boolean constraints into SAT.
Journal on Satisability, Boolean Modeling and Computation, 2:1–26, 2006.

6. A. Immanuvel. Japanese Number Puzzles. Carlton Books, 2006.
7. S. K. Jones, P. A. Roach, and S. Perkins. Construction of heuristics for a search-

based approach to solving SuDoku. In Research and Development in Intelligent

Systems XXIV: Proceedings of AI-2007, the Twenty-seventh SGAI International

Conference on Artificial Intelligence. Springer-Verlag, 2007.
8. Robin Lougee-Heimer. The common optimization interface for operations research.

IBM Journal of Research and Development, 47(1):57–66, January 2003.
9. I. Lynce and J. Ouaknine. Sudoku as a SAT problem. In 9th International Sym-

posium on Artificial Intelligence and Mathematics, January 2006.
10. Paul Martin and David B. Shmoys. A new approach to computing optimal sched-

ules for the job-shop scheduling problem. In William H. Cunningham, S. Thomas
McCormick, and Maurice Queyranne, editors, IPCO, volume 1084 of Lecture Notes

in Computer Science, pages 389–403. Springer, 1996.
11. Gilles Pesant. A regular language membership constraint for finite sequences of

variables. In Mark Wallace, editor, CP, volume 3258 of Lecture Notes in Computer

Science, pages 482–495. Springer, 2004.
12. Thierry Le Provost and Mark Wallace. Generalised constraint propagation over

the CLP scheme. Journal of Logic Programming, 16(3):319–360, 1993.
13. Christopher G. Reeson, Kai-Chen Huang, Kenneth M. Bayer, and Berthe Y.

Choueiry. An interactive constraint-based approach to Sudoku. In AAAI, pages
1976–1977. AAAI Press, 2007.

14. Jean-Charles Régin. Arc consistency for global cardinality constraints with costs.
In Joxan Jaffar, editor, CP, volume 1713 of Lecture Notes in Computer Science,
pages 390–404. Springer, 1999.

15. Joachim Schimpf and Kish Shen. ECLiPSe by example, 2007. Tutorial at CP-2007.
16. Christian Schulte and Peter J. Stuckey. Efficient constraint propagation engines.

CoRR, abs/cs/0611009, 2006.
17. Kish Shen and Joachim Schimpf. Eplex: Harnessing mathematical programming

solvers for constraint logic programming. In Peter van Beek, editor, CP, volume
3709 of Lecture Notes in Computer Science, pages 622–636. Springer, 2005.

18. H. Simonis. Sudoku as a constraint problem. In B. Hnich, P. Prosser, and B. Smith,
editors, Proceedings of the 4th International Workshop on Modelling and Reformu-

lating Constraint Satisfaction Problems, pages 13–27, September 2005.
19. Y. Suzuki. The Giant Book of Japanese Puzzles. Arcturus, 2006.
20. S. Thiel. Efficient Algorithms for Constraint Propagation and for Processing Tree

Descriptions. PhD thesis, Universität des Saarlandes, 2004.
21. Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,

1989.
22. various. Huge Sheet of Kakuro 2. Nikoli, 2001. In Japanese.
23. various. 101 Kakuro. Nikoli, 2003. In Japanese.
24. various. Penpa Mix 1-4. Nikoli, 2004. In Japanese.
25. various. Puzzle the Giants Vol 1-6,17,18,19,20. Nikoli, 2004. In Japanese.
26. various. Kakuro, 2007. http://en.wikipedia.org/wiki/Kakuro.
27. various. Nikoli web site, 2007. http://www.nikoli.co.jp/en.
28. M. Wallace, S. Novello, and J. Schimpf. ECLiPSe : A platform for constraint logic

programming. ICL Systems Journal, 12(1), May 1997.


