Implied Constraints for Automaton Constraints

M. Andreina Francisco, Pierre Flener, Justin Pearson

The Automaton Constraint

DAF augmented with accumulators can encode a constraint on a sequence \(S \) of variables using an automaton whose size does not depend on the length of \(S \) [Beldiceanu & al., CP 2004].

It is unknown how to maintain domain consistency efficiently for most of them.

Invariants on accumulators are a way to enhance propagation.

Example

The \(\text{nGroup}(N, S, W) \) constraint holds if and only if there are \(N \) groups of values from the set \(W \) in the sequence \(S \) of variables.

The following instance holds:

\[
\begin{align*}
N &= 3 \\
W &= \{\spadesuit, \heartsuit\} \\
S &= \{\spadesuit, \spadesuit, \heartsuit, \spadesuit, \heartsuit, \heartsuit, \spadesuit\}
\end{align*}
\]

nGroup automaton

\[
\{c:=0\} \quad \{c:=c+1\}
\]

Available options

Basic: linear inequalities containing only current accumulator values (i.e. \(c_i \geq 0 \))

History Variables: number of previous accumulator values (i.e. \(c_{i-2} + 1 \geq c_i \))

State Variable: include a variable \(q \) representing the current state (i.e. \(c_i - c_{i-1} \leq q \))

State Specific Implied Constraints: generate ICs that hold at specific states (i.e. \(q = s \Rightarrow c_i = c_{i+1} \))

Index Variable: include the current index (i.e. \(2c_i \leq i \))

Experiments

Ran on sets of random problems

- **nGroup**
- **FullGroupNval**
- **Inflection**

maria.andreina.francisco@it.uu.se