
Uppsala Master's Thesis inComputing S
ien
e 223Examensarbete DV32002-08-30ISSN : 1100-1836Implementation of theESRA Constraint Modelling LanguageSimon WrangInformation Te
hnology Department/Computing S
ien
eUppsala University, Box 337, S-751 05 Uppsala, SwedenThis work has been
arried out at theDepartment of Information S
ien
eUppsala University, Box 513, 751 20 Uppsala, SwedenAbstra
tThis report des
ribes my Master's thesis proje
t of implementing a
onstraintmodelling language
alled ESRA. ESRA adds new features to an already existing
onstraint modelling language
alled OPL. With the help of the tools JLex andJavaCUP, I have
reated a generi

ompiler that easily lets one
hange thegrammar and the ESRA-to-OPL rewrite rules of the ESRA language. I showhow to use JLex and JavaCUP in order to
ombine them, to make a two-pass
ompiler with them, and to dete
t errors with them. I also show how I
reated a rule �le system that translates rules in a natural format into Java
ode. In a se
ond phase of the proje
t, with the help of a tree algorithm,I made the
ompiler non-deterministi
, i.e., the
ompiler
an take one inputprogram and translate it into several output programs. The generated programsa

omplish the same task but are implemented in di�erent ways; they thereforehave di�erent exe
ution times, letting the user or the
ompiler sele
t the fastestone.Supervisor: Brahim Hni
h and Pierre FlenerExaminer: Pierre FlenerPassed: 1

Contents
1 Introdu
tion 41.1 Ba
kground . 41.2 About This Proje
t . 41.3 This Report . 41.4 A
knowledgments . 52 Basi
s 62.1 Constraint Programming . 62.2 Compiling - Implementing a Language 72.3 Help Tools JLex and JavaCUP 92.4 ESRA and OPL . 122.5 Non-determinism in Compilation 173 Phase I: The ESRA Compiler 213.1 Goals and Requirements . 213.2 Solution and Method . 213.3 Combining JLex and JavaCUP 233.4 Making a Two-pass Compiler with JavaCUP 243.5 Reporting Errors with JLex and JavaCUP 283.6 Converting the Grammar to JavaCUP-format 303.7 Writing the Range Operator Rules 323.8 Token List Generator Generator 343.9 Parse Tree Generator Generator 353.10 Rule Converter . 363.11 Other Issues . 393.12 Testing and Results . 393.13 Con
lusion . 454 Phase II: The Non-deterministi
 Compiler 464.1 Goals and Requirements . 464.2 Solution and Methods . 474.3 The Element Tree . 474.4 Enhan
ing the Rule Converter 514.5 Testing and Results . 552

4.6 Con
lusion . 715 Con
lusion 72A ESRA Appli
ation User's Manual 76A.1 Introdu
tion . 76A.2 How to Install . 76A.3 How to Run . 77A.4 Basi
s . 77A.5 Menu Options . 78A.6 Grammar . 78A.7 Semanti
 Restri
tions . 79B ESRA Appli
ation Programmer's Manual 81B.1 Introdu
tion . 81B.2 Basi
s . 81B.3 The ESRA2 Dire
tory . 82B.4 The Compiler Dire
tory . 84B.5 The User Interfa
e Dire
tory . 87B.6 The Utilities Dire
tory . 88B.7 Flow of Exe
ution . 89B.8 Example . 91

3

Chapter 1Introdu
tion1.1 Ba
kgroundAt the Department of Information Te
hnology and the Department of Informa-tion S
ien
e at Uppsala University in Sweden, a resear
h group
alled ASTRAis working on designing a new programming language
alled ESRA. ESRA is a
onstraint modelling language and is an extension of an already existing
on-straint modelling language
alled OPL, see [5℄. ESRA keeps the good partsof OPL and adds some new features to make it more e�
ient to use. So farthe ESRA grammar and parts of the ESRA-to-OPL translation rules have beendetermined, see [6℄, se
tion 4.2. What remains is to a
tually implement thelanguage � to
reate the
ompiler.1.2 About This Proje
tThe main goal of my proje
t is to implement the ESRA language. This takespla
e in two phases. In the �rst phase I
reate a
ompiler and
omplete thetranslation rules. The
ompiler is able to translate from ESRA into OPL. Inthe se
ond phase I make the
ompiler non-deterministi
. This means that itis able to generate several output programs from one input program. Also, anadditional goal is to make the
ompiler as �exible as possible � it should beeasy to update the grammar and the translation rules.1.3 This ReportThis report is divided into �ve
hapters. The �rst
hapter is the
urrent oneand serves as an introdu
tion to my work. The se
ond
hapter goes through thebasi
s needed to understand this proje
t. A reader not familiar with
ompilersor
onstraint programming should read this
hapter. The third and the fourth4

hapter deal with the problem and solution of the �rst and the se
ond phaserespe
tively. The �fth and �nal
hapter is the
on
lusion of the proje
t.At the end of the report there are two manuals, listed as appendix A andappendix B, whi
h pertain to the se
ond version of the ESRA appli
ation, i.e.,that of phase 2. The �rst manual is for users of the ESRA appli
ation, while these
ond manual is for programmers who want to modify the
ode of the ESRAappli
ation.Also, a diskette
ontaining the ESRA appli
ation in question is availabletogether with the report.1.4 A
knowledgmentsI thank the people who have helped me with this proje
t. Most of all, I thankBrahim Hni
h, who has served as my day-to-day supervisor during this proje
t.He has always been available to help me and has o�ered a lot of good advi
e. Ialso thank my formal supervisor, Pierre Flener, who has helped me with writingthe report and guided my proje
t.

5

Chapter 2Basi
s2.1 Constraint ProgrammingThe ESRA language, whi
h I am implementing, is a
onstraint programminglanguage. In this se
tion I explain what
onstraint programming is for thosereaders who are not familiar with the term.A
onstraint program is stru
tured in regard to modelling a problem. It isunlike a program in an imperative language, like C, Pas
al and Java, in whi
hone models the pro
edure of �nding the solution. A
onstraint program lets theuser
on
entrate on de�ning the problem, and then does all the work of solvingthe problem itself.In
onstraint programs, in a simpli�ed view, one has a set of variables, do-mains for the variables, and a set of
onstraints. The domains are �nite setsof values that de�ne the types of the variables. The
onstraints are logi
alexpressions that
ontain the variables and restri
t their possible values. Theunderlying
ore,
alled the
onstraint solver, �nds the values for the variables sothat all the
onstraints are ful�lled. It is rather like solving an equation system.To understand this better, here is an example of what a
onstraint programin the OPL language
an look like:var int x in 1..5;var int y in 2..3;solve {x>y;x+y=7;}This program
onsists of six lines. The �rst two lines de
lare two variables: x,an integer between 1 and 5; and y, an integer between 2 and 3. The fourth and�fth lines are the
onstraints.The
onstraint solver now solves this program. When run it prints thefollowing result: 6

solution 1: {x=4;y=3}solution 2: {x=5;y=2}This was just a simple example using simple variables and simple
onstraints.One
an also use sets, arrays, re
ords, for-statements and other stru
tures typ-i
ally found in an imperative language. This lets one model more
omplexproblems. Read about this in se
tion 2.4 about ESRA and OPL.Those readers familiar with logi
 programming, su
h as Prolog, might won-der what the di�eren
e is from
onstraint programming. The answer is that
onstraint programming is the next evolving step after logi
 programming. Con-straint programs let one do more things that logi
 programs
annot.2.2 Compiling - Implementing a LanguageMy task is to implement the ESRA language, to write its
ompiler. In thisse
tion I explain what a
ompiler is and des
ribe the normal pro
edure to writeone.What is a
ompiler To implement a new language means in some senseto make it understandable to the
omputer. The way to do this is to havesomething that
an translate from the new language into a language that the
omputer already understands. This something is
alled the
ompiler.In my
ase I am making a
ompiler that translates into the OPL-language.The OPL-language in itself
annot be understood by the
omputer, but it inturn has a
ompiler that translates into a language that
an be understood.How to write a
ompiler To write a
ompiler one �rst needs to be
learon what the grammar of one's language is. The grammar is a set of rules thattogether state what a program in the language must look like. For example,let's say one has a language that lets one write simple arithmeti
 expressionswith addition and subtra
tion of numbers and identi�ers. Possible programsin this language would be: 4-a

+10, a+b+
-3 and just 12. Here is what thegrammar would look like:EXPR -> EXPR PLUS EXPR| EXPR MINUS EXPR| ARGUMENTARGUMENT -> ID| NUMBEREa
h paragraph with an arrow is
alled a rule. To the left of the arrow isthe term that produ
es something; it is
alled a non-terminal. To the right ofthe arrow are the terms that are being produ
ed. Terms that o

ur here thatdon't produ
e anything are
alled terminals. The verti
al bar separates di�erentalternatives to what is produ
ed; these alternatives are
alled produ
tions.7

On
e the grammar has been determined it is possible to start writing thea
tual
ompiler. The
ompilation pro
ess usually is divided into three steps:tokenizing, parsing and translation.Tokenizing The �rst step in the
ompilation pro
ess is to tokenize the in-put program. Tokenizing means to divide the stream of
hara
ters into larger
hunks, tokens, where every token
an
onsist of one or more
hara
ters. A goodset of tokens for the expression language would be the plus sign, the minus sign,identi�ers and numbers. The program 4-a

+10 would generate the followingtokens:1NUMBER(4), MINUS, IDENT(a

), PLUS, NUMBER(10)Parsing On
e the tokenizing is done, the next step is to parse the tokens.Parsing means putting the tokens in a tree stru
ture
alled the parse tree, whi
hre�e
ts the grammar of the language. The leaves
ontain the tokens of the inputprogram; the nodes
ontain the non-terminals of the produ
tions being used togenerate the input program. In the
ase of the input program 4-a

+10, hereis what the parse tree would look like:
EXPR MINUS EXPR

EXPR

EXPRPLUSEXPR

ARGUMENT

IDENT(acc)

ARGUMENT

NUMBER(10)

NUMBER(4)

ARGUMENT

1Note that tokens
an have values, as is the
ase with numbers and identi�ers.8

Translation On
e the parse tree has been
onstru
ted it is normally easyto do the translation. One simply traverses the parse tree and
onstru
ts thetranslated result as one goes along.Two Passes Normally when one is
onstru
ting a
ompiler, one talks abouthow many passes through the
ode one has to make. In the above example onepass would be enough. However, for most programming languages more thanone pass is needed. A programming language that lets the user de
lare variablestypi
ally requires two passes. In the �rst pass the de
larations are pro
essed anddata about them are stored. The thing that stores the data is usually denotedas a symbol table. In the se
ond pass the
ompiler uses the data in the symboltable to do the a
tual translation.Help Tools Writing a
ompiler on one's own
an be a very tedious job. Thatis why there exist help tools to ease one's work. The most
ommon ones areLex and Ya

 for
reating
ompilers implemented in the C-language. They letthe user write a spe
i�
ation �le in a
ertain format for the tokenization andthe parsing respe
tively, whi
h then be
ome
onverted into a
tual runnable Cprograms. In my proje
t I have used the tools JLex and JavaCUP, whi
h aresimilar tools, but for
reating
ompilers implemented in the Java language.2.3 Help Tools JLex and JavaCUPFor writing the
ompiler I use two help tools: JLex for the tokenizing andJavaCUP for the parsing and the translation.JLex JLex expe
ts a spe
i�
ation �le from whi
h it will generate a runnableJava
lass named Yylex. The spe
i�
ation should be in a spe
ial format andin
lude information on how the di�erent tokens should be
reated. Here is whatthe spe
i�
ation �le for the example in the previous se
tion
an look like:import java.lang.System;%%DIGIT=[0-9℄NUMBER=({DIGIT})*WHITE_SPACE=([\ \n\r\t\f℄)+%{publi
 void printToken(String t) {System.out.println("Token: "+t);}%}%%<YYINITIAL> "+" {printToken("PLUS");} 9

<YYINITIAL> "-" {printToken("MINUS");}<YYINITIAL> {NUMBER} {printToken("NUMBER,"+yytext());}<YYINITIAL> {IDENT} {printToken("IDENT,"+yytext());}<YYINITIAL> {WHITE_SPACE} {}I now brie�y des
ribe the stru
ture of the spe
i�
ation �le. For more detailsread the JLex manual [1℄.The spe
i�
ation �le is divided into three parts separated by %%. Whateverone puts in the �rst part is inserted at the top of the generated
lass. This is agood pla
e to put imports and pa
kage de
larations.In the se
ond part one
an
reate ma
ro de
larations and insert one's ownJava
ode. Ma
ro de
larations tie names to regular expressions that
an beused lower down in the third part. The Java
ode is any
ode one wants to haveinserted into the body of the generated
lass.In the third and �nal part one spe
i�es how the di�erent tokens are de�ned.A token's de�nition
an be a string, a ma
ro de
laration or a regular expression.When s
anning through the input
hara
ters one of the token de�nitions sooneror later mat
hes. The Java
ode inside that de�nition is then exe
uted.The above spe
i�
ation �le, when run through JLex, generates a Java pro-gram that prints out all the tokens in a list. For the input 4-a

+10 the followingis printed:Token: NUMBER,4Token: MINUSToken: IDENT,a

Token: PLUSToken: NUMBER,10JavaCUP JavaCUP is the help tool for generating the parser. Like JLexit lets the user write a spe
i�
ation �le. With a
ertain format one spe
i�esthe grammar of the language. With every produ
tion in the grammar one alsowrites
ode,
alled the semanti

ode. It is exe
uted for those produ
tions thatare used to produ
e the input program. It is in the semanti

ode that thea
tual translation gets done.Here is what the JavaCUP spe
i�
ation �le
an look like for the examplelanguage in the previous se
tion:import java_
up.runtime.*; 10

terminal SEMI, PLUS;terminal String NUMBER, IDENT;non terminal String EXPR, ARGUMENT;EXPR ::= EXPR:e1 PLUS EXPR:e2{: RESULT = e1+"-"+e2; :}| EXPR MINUS EXPR{: RESULT = e1+"+"+e2; :}| ARGUMENT:a{: RESULT = a; :}| ARGUMENT ::= ID:id{: RESULT =id.toUpperCase(); :}| NUMBER:n{: RESULT = n; :}First
ome imports and pa
kage de
larations, whi
h like JLex are inserted atthe top of the generated parser
lass. Then follow de
larations of the terminalsand non-terminals used in the grammar. Finally there is the de
laration of thegrammar.To understand how the grammar is spe
i�ed one �rst needs to understandhow the parsing works. The parsing pro
ess is re
ursive. It starts at the leavesand works itself up to the root of the parse tree. The result from parsing oneprodu
tion is passed up to its parent produ
tion in the next level of the tree.When having rea
hed the root node of the tree, the translation is
omplete andthe value in the root node is the translation result.In the grammar, the semanti

ode is spe
i�ed inside {: and :} for everyprodu
tion. The result of a produ
tion should be assigned to the RESULT variablewhi
h is prede�ned. If one looks at the grammar one also sees names next tothe terms separated by a
olon. These are
alled labels and identify the resultsfrom parsing those terms.2 These results
an then be used in the semanti

odeby referring to the labels.What the above example parser does is to swit
h plus signs and minus signswith ea
h other and also
apitalize all identi�ers. For the input 4-a

+10 thetranslated result would be 4+ACC-10.Finally, one
an also insert one's own Java
ode into the parser
lasses thatis generated. There are a
tually two
ommands for this: parser
ode {: :}and a
tion
ode {: :}. The reason for this is that JavaCUP generates sev-eral �les. Among them is one that holds the main engine of the parser, namedparser.java, and another that holds the semanti

ode of the parser, namedCUP$parser$a
tion.
lass.For more details on how to use JavaCUP, read the JavaCUP manual [2℄.2Also unparsable terminals - tokens -
an have labels. In this
ase the label refers to theinternal value of that token.
11

2.4 ESRA and OPLIn my
ompiler ESRA is translated into OPL. In this se
tion I give a moredetailed des
ription of these two languages. I start by des
ribing OPL and thengive a des
ription of what ESRA adds to OPL. I also dis
uss the rules usedto translate ESRA into OPL. At the end, I des
ribe a simpli�ed version of theESRA language and a language
alled OPL+, whi
h are used later in the se
ondphase of the
ompiler.OPL OPL is a
onstraint programming language. We have already seen anexample of a simple OPL program in se
tion 2.1 about
onstraint programming.Like that and other OPL programs, they have a basi
 stru
ture whi
h
onsistsof �ve main parts:3 data (and type-) de
larations, variable de
larations, anobje
tive,
onstraints and display statements.Data de
larations are the hard
oded data that are used in one's program.For de
laring data, most of the basi
 data types that one �nds in pro
edurallanguages also exist in OPL; there are integers, �oats, strings, arrays, and so on.OPL also has two spe
ial types that are used frequently: sets and ranges. Setsare what they sound like; ranges are de�ned by two numbers, a and b, where b isbigger than a. Closely related to data de
larations are type de
larations. Amongthe new types that OPL lets one de
lare are re
ords (stru
ts) and enumerations.Here are some examples:a) int n = 8;b) float f = 3.2;
) stru
t Point {int x;int y;};d) enum Days = {Mo,Tu,We};e) int A[1..4℄ = [1,3,5,7℄;f) range r 1..10;g) {int} s1 = {1,2,3};By putting the var keyword in front of a data de
laration one turns it into avariable de
laration. The variables are what OPL tries to �nd solutions for.Most of the data types
an be variables, even arrays. However, sets and rangesin OPL
annot. Here are some variable de
larations:a) var int
ount in 1..10;b) var int grades[1..27,1..8℄ in 1..10;The third part of an OPL program is the obje
tive. It is in the obje
tive thatone states one's goal. There are three basi
 types of obje
tives: solve, minimize3There are a
tually other parts as well but they are of less importan
e, at least for thisproje
t. 12

and maximize. With solve one simply states that one wants to �nd all thesolutions that satisfy the
onstraints. With minimize and maximize one alsohas an obje
tive expression. With these the goal is to �nd the ONE solutionthat minimizes (or maximizes) the obje
tive expression.The
onstraints are the logi
al expressions that need to be satis�ed for avalid solution. OPL o�ers a lot of
onstraints to
hoose from. Probably theones most used are the relations that also exist in pro
edural languages: biggerthan (>), less than (<), equals (=), not equal (<>), impli
ation (=>), andequivalen
y (<=>). OPL also has versions of the typi
al pro
edural statementsforall and if-then-else. Forall lets one spe
ify a generi

onstraint that shouldhold for several values. The if-then-else
onstraint is satis�ed if the if-part istrue and the then-part is true, or the if-part is false and the else-part is true.Have a look at these examples:x > y;i = 1 => j = 2;forall (i in 1..10)A[i℄ = B[i℄ + 1;if x > y then x > z else y > z;The �nal part of an OPL-program, whi
h o

urs at the bottom of it, are the dis-play statements. When OPL �nds solutions for one's variables it displays themin a default way. If one has variables that are de
lared with one's own de�neddata types, one might want to have them displayed in a di�erent way. Withdisplay statements one
an a
hieve this. For example,
onsider the de
larationof the point stru
t given above. Using the display statementdisplay(p in Point: p.x>=0 & p.y>=0) <p.x,p.y>one
an have ones' points displayed as tuples. The above display statement alsohas the added feature that it won't display point variables that
ontain negativevalues.Having explained all the parts that an OPL program
onsists of, I now showan example. The following OPL program is a model of the Graph Coloringproblem, GCP. The GCP is a
lassi
al problem used in
onstraint programming,where the obje
tive is to use a minimal number of
olors to
olor every
ountryin a map, su
h that no bordering
ountries have the same
olors.enum Country ...;enum Color ...;stru
t border {Country
1;Country
2;};{border} Borders = ...;var int UsedColors[Color℄ in 0..1;var Color Coloring[Country℄;13

minimizesum(I in Color) UsedColors[I℄subje
t to {forall(B in Borders)Coloring[B.
2℄ <> Coloring[B.
1℄;forall(I in Country)UsedColors[Coloring[I℄℄=1;};display(I in Color: UsedColors[I℄=1) <I>;Looking at this program, the data de
larations are the input. The input
onsistsof two enumerations: a list of the existing
ountries and a list of the existing
olors; and a set of existing borders. Borders are re
ords with two �elds thatrepresent the two
ountries that are bordering ea
h other. Three dots (...) inthe data de
larations indi
ate that the data are in another �le.Similarly, variable de
larations is the output. In this program there aretwo array variables. The main solution is given to the array Coloring in whi
hevery
ountry is assigned a
olor. The array UsedColors is a boolean array thatwon't hold any ne
essary part of the solution � it is simply a transformationof Coloring to help state the obje
tive.In the obje
tive fun
tion a sum expression is used. It sums all the elementsin the UsedColors array together. Sin
e the elements are either 0 or 1, this sumis the a
tual number of used
olors.Regarding the
onstraints, we see that there are two of them. The �rst onemakes sure that two bordering
ountries don't have the same
olor. The se
ondone states how the two array variables UsedColors and Coloring depend onea
h other.Finally, there is a display statement that ensures that only
olors that areused get displayed in the solution.ESRA Now that I have explained how OPL works, I am ready to des
ribeESRA. As mentioned in the introdu
tion of this report, ESRA is an extensionof OPL. Most things that exist in OPL also exist in ESRA. Members of theASTRA group had been using OPL for a long time and realized that it
ould beimproved. They added new features to the OPL language and
ame up with anew language, whi
h is ESRA. I will now des
ribe what these new features are.As mentioned above, OPL does not allow sets and ranges to be variables.However, while using OPL, members of the ASTRA group quite often used the
on
ept of a variable set in their programs. As set variables are not allowed,they were for
ed to represent them as boolean arrays. With ESRA one
an nowde
lare set variables and even range variables. Here are some examples:var {T} S;var prefix(R) P;var suffix(R) Sf;var subrange(R) Sb; 14

Looking at the examples, the �rst one shows how to de
lare a set variable. Thenew set variable S will take values that are subsets of the existing set T. Thethree last examples show di�erent ways of de
laring a range variable. Pre�xvariable P represents a range at the beginning of the existing range R, su�xvariable Sf at the end, and subrange variable Sb anywhere in the middle.When de
laring variables, like above, one
alls the existing identi�er, likeT or R, the domain of the new variable. For example, the domain of S is T,the domain of P is R. The domain itself might also be a variable that has adomain. In this way, one gets whole
hains, or more a

urately trees, of domaindependen
ies. The identi�ers at the root of these trees are
alled ground ; theidenti�ers in the middle of the tree are
alled non-ground.Probably the most important new feature in ESRA is mapping variables.They map values from one set, known as the domain of the mapping, to valuesin another set, known as the
odomain of the mapping. Don't get this de�nitionof domain mixed up with the de�nition of domain des
ribed in the paragraphabove. They happen to have the same name but are
ompletely di�erent things.Here is how to de
lare a mapping variable:var V->W M;In this de
laration, M is the new mapping variable being de�ned, V is the domainof the mapping and W is the
odomain of the mapping. The ni
e thing aboutthese mappings is that V and W don't have to be
onstants (ground). They
analso be set and range variables (non-ground).ESRA also introdu
es new operators to be used with the new types of vari-ables. For range variables there are the operators prefix, suffix and subrange,whi
h
he
k if a range is a pre�x, su�x or subrange respe
tively of another range.For mapping variables the fun
tions surje
tive, inje
tive and bije
tive areintrodu
ed, whi
h
he
k if these mathemati
al properties are true or not. Alsosome of the existing fun
tions like
ard, forall, sum, et
.
an now be used aswell with the new types of variables.Using the ESRA language and its new features, I
an now rewrite the GCPprogram given in the paragraph about OPL. This shows the reader that usingESRA is a more e�
ient way of modelling a problem. Looking below, the reader
an see, for example, that the se
ond
onstraint from the OPL program is nolonger needed � unlike OPL, the variable UsedColors
an now be used in thede
laration of Coloring.enum Country ...;enum Color ...;stru
t border {Country
1;Country
2 };{border} Borders = ...;var {Color} UsedColors;var Country -> UsedColors Coloring;15

minimize
ard(UsedColors)subje
t to {forall(B in Borders)Coloring.B.
2 <> Coloring.B.
1};See [6℄, se
tion 3.2, for the
omplete grammar of ESRA.Translating between ESRA and OPL Here, I just mention brie�y themain prin
iples used in translating ESRA into OPL. For a list of all the trans-lation rules, see [6℄, se
tion 4.2.As mentioned above, the ASTRA group were using boolean arrays to rep-resent their variable sets in OPL. This, of
ourse, is how ESRA translates setvariables into OPL: using boolean arrays.Range variables
an also be represented as boolean arrays in OPL. Con-straints are added to the translation to ensure that all the 1s in the array are
onse
utive.For mapping variables, di�erent representations are used depending on whetherthe domain and the
odomain are ground or non-ground. For example, if bothare ground, only a simply array is needed. However, if both are non-ground, aboolean matrix plus two
onstraints and a display statement are required.As with mapping variables, the translation of operators and fun
tions inESRA
an be either simple or
ompli
ated. The membership operator, forexample, is easily translated into one-line OPL statements, while the sum andforall primitives require the implementation of
omplex algorithms.The simpli�ed version of the ESRA language, and the OPL+ languageWhen I implement the non-deterministi

ompiler in the se
ond phase, I willease my task by
hanging the input language from ESRA into a simpli�ed versionof ESRA, and
hanging the output language from OPL to a modi�ed versionof OPL,
alled OPL+. I des
ribe the two languages already in this se
tion,be
ause an example in the next se
tion uses the languages.In the language referred to as the simpli�ed version of ESRA many primitiveshave been removed. Only primitives that are ne
essary for
reating ESRAmodels that
an be
ompiled in a non-deterministi
 way are kept. For example,only mapping variables are used � set and range variables have been removed.See the user manual, listed as appendix A, for the
omplete grammar.The modi�ed version of OPL, OPL+, is a small extension of OPL. The onlynew feature is that also set variables are allowed, just like in ESRA. They arede
lared as normal: var {T} S. The reason for this small
hange is that it helpsus to
reate more output language representations for the ESRA primitives. Thenon-deterministi

ompiler thus generates more interesting results.
16

2.5 Non-determinism in CompilationThe goal of the se
ond phase of this proje
t is to make the ESRA
ompilernon-deterministi
. In this se
tion I try to explain what non-determinism in
ompilation means.Normally a
ompiler takes an input program and translates it into one outputprogram. A non-deterministi

ompiler takes an input program and translatesit into several output programs. The output programs a

omplish the same taskbut are implemented in di�erent ways. Put in terms of non-determinism, onesays that the
ompiler generates a set of programs with di�erent representations.The purpose of generating di�erent programs is that of e�
ien
y in exe
u-tion. Although they do the same thing, some programs might exe
ute fasterthan other programs. By generating several programs the user
an
hoose theprogram that exe
utes the fastest.The exe
ution time
an also depend on whi
h input data is used with theprogram. One set of input data might be good for one program but bad foranother, while on the other hand, another set of input data is bad for the �rstprogram, but good for the se
ond one. By inputting to the non-deterministi

ompiler a typi
al set of input data that one is using for one's problem, the
ompiler is able to automati
ally test the input data with all the generatedprograms and sele
t the fastest one.Example on di�erent representations Given the ESRA de
laration varV->W F, where V denotes the domain and W the
odomain, there are a
tually atleast the following three di�erent representations in the OPL+ language.var V->W F;1) var int F[V℄ in W;2) var int F[V,W℄ in 0..1;forall(i in V)sum(j in W) F[i,j℄ = 1;3) var {V} F[W℄;union all(j in W) F[j℄ = W;forall(i in W)forall(j in W)i <> j => F[i℄ inter F[j℄ = {};The �rst representation is a 1-dimensional array, whi
h is the most obvious wayof representing a mapping.The se
ond representation is a 2-dimensional matrix, where the domain Vrepresents the �rst dimension and the
odomain W represents the se
ond di-mension. An element in the matrix is either 1 or 0, depending on whether the
orresponding domain-
odomain pair is a part of the mapping or not. The as-so
iated
onstraint ensures that every value in the domain maps to exa
tly oneelement in the
odomain � this is the proper de�nition of a mapping.17

The third representation de�nes an array of set variables where ea
h value inthe
odomain is used to index its own set variable in the array. The set variable
ontains all the elements in the domain that map to this value in the
odomain.The
onstraint ensures that an element in the domain doesn't o

ur in morethan one set, again following the de�nition of a mapping.See [?℄,
hapter 4, for more examples showing non-deterministi
 rewrite rules.Combining Representations Not yet mentioned is that an input model
an
ontain more than one part that
an generate di�erent representations. Before Igo on, let's hen
eforth denote parts of a model as elements. Regarding for exam-ple the ESRA language, there are input elements, output elements,
onstraintelements and obje
tive elements,
orresponding in turn to the data de
larations,variable de
larations,
onstraints and obje
tive fun
tions. For example, lookingabove at the se
ond representation for the mapping example, we
an see thatan output element in the ESRA language is being translated into a set of twoelements in the OPL language: one output element and one
onstraint element.So expressed in other words, it is possible that several elements in the inputmodel generates a set of di�erent representations. This adds
omplexity to thegeneration of the models. A way to
ombine the representations is needed. Theeasiest way is to simply add the elements from the di�erent representations toea
h other in a
ombinatory fashion. If, for example, there is one element in theinput model generating two representations and another one generating threerepresentations, the overall number of generated models is the produ
t of twoand three whi
h is six.Another thing that
ompli
ates matters is that representations generatedfrom one element may depend on representations generated from other ele-ments. Let's say, for example, that we have an input model
onsisting of thede
laration of a mapping variable F and a
onstraint that
ontains a referen
eto F. Depending on whi
h representation we use for F in the de
laration, weneed to be sure that we use the same representation for F in the
onstraint.A
omplete example To sum things up, I give an example of an inputprogram and all the models generated from it. First I need to introdu
e a newelement and some of its representations.inje
tive(F):1) alldifferent(F);2) forall(i in V)forall(j in V) i <> j =>F[i℄ <> F[j℄;3) var int D_F[W℄ in V;forall(i in V)forall(j in W)F[i℄ = j => D_F[j℄ = i;4) forall(i in W)sum(i in V) 18

F[i,j℄ <= 1;5) forall(i in W)
ard(F[j℄) <= 1;Here we noti
e the dependen
y issue. The �rst three representations are to beused if F is using its �rst representation. In turn, representations four and �veare required when F is represented as a matrix or an array of sets respe
tively.Next I
reate the input program. It has three input elements: a set V, a setW and a mapping F from V to W; and one
onstraint element: inje
tive(F).{int} V;{int} W;var V->W F;solve {inje
tive(F)};Using the representations for mappings and the inje
tive
onstraint and applyingthe prin
iple of
ombining representations des
ribed above, the following modelsare generated from the input program:1){int} V;{int} W;var F[V℄ in W;solve {alldifferent(F)};2){int} V;{int} W;var F[V℄ in W;solve {forall(i in W)forall(j in W)i <> j => F[i℄ <> F[j℄};3){int} V;{int} W;var F[V℄ in W;var D_F[W℄ in V;solve {forall(i in V)forall(j in W)F[i℄ = j => D_F[j℄ = i}; 19

4){int} V;{int} W;var F[V,W℄ in 0..1;solve {forall(j in W)sum(i in V) F[i,j℄ = 1;forall(i in W)sum(i in V)F[i,j℄ <= 1 };5){int} V;{int} W;var {V} F[W℄;solve {union all(j in W)F[j℄ = W;forall(i in W)forall(j in W)i <> j => F[i℄ inter F[j℄ = {};forall(i in W)
ard(F[j℄) <= 1};

20

Chapter 3Phase I: The ESRA Compiler3.1 Goals and RequirementsThe primary goal of phase 1 is to
reate the ESRA
ompiler. The ESRA
ompilershould take as input a program written in the ESRA language and return asoutput the
orresponding program written in the OPL language. The grammarof ESRA
an be found in [6℄, se
tion 3.2; the grammar of OPL in [5℄; and theESRA-to-OPL rewrite rules in [6℄, se
tion 4.2.For some parts of the ESRA language the translation rules have not been
reated yet. The sum and forall expressions have translation rules given in theform of algorithms. I need to implement these. For the range operators neitheralgorithms nor translation rules exist. These also need to be implemented.Another requirement is that the
ompiler should be able to report an errorwhen there is something wrong with the ESRA input program. The error mes-sage should be informative in su
h a way that it is easy to lo
ate the error and
orre
t it.For the
ompiler to be easy to use, there should also be a graphi
al interfa
e.It should allow the user to
reate, open and save �les, as well as
ompile �les.The �nal requirement is that it should be easy to
hange the grammar andthe translation rules. One shouldn't have to
hange things in several pla
es inthe
ompiler
ode.3.2 Solution and MethodAs programming language I have
hosen Java. Java is faster than Prolog andmore user friendly than C.I use two good help tools for
reating the
ompiler: JLex and JavaCUP.JLex is for
reating the tokenizer and JavaCUP is for
reating the parser. Bothwork similarly to the tools lex and bison for C.From the ESRA grammar I have
reated both a JLex spe
i�
ation �le and aJavaCUP spe
i�
ation �le. Sin
e the format of the grammar in [6℄ was not the21

same as the format of the grammar that JavaCUP a

epts, I needed to
onvertthe grammar in [6℄, see se
tion 3.6.From these spe
i�
ation �les, a Java tokenizer
lass and a Java parser
lassare generated. The Java tokenizer produ
es tokens that are input to the Javaparser. For this I have investigated and solved the problem of how the two tools
an be
ombined, see se
tion 3.3.By analyzing the rewrite rules, I see that I'm going to need a two-pass
ompiler. This is be
ause most of the rules are dependent on knowing whattype the identi�ers in the expressions have. In the �rst pass I
reate a symboltable of all the identi�ers, and in the se
ond pass I do lookups of the identi�ersin the symbol table. To see how I use JavaCUP to
reate a two-pass
ompiler,see se
tion 3.4.I have also in
orporated an error dete
tion system into the
ompiler. Thesystem is able to dete
t in whi
h step of the
ompilation pro
ess the error o

urs.If the error o

urs in the tokenizer, there is a lexi
al error; if the error o

urs inthe parser, there is a syntax error; and if the error o

urs in the translator, thereis a semanti
 error. The system also reports whi
h token
aused the error, inwhat row, and in whi
h
olumn. To see how I did this with JLex and JavaCUP,
he
k se
tion 3.5.To ease my work of developing the
ompiler, I have developed two toolsin Perl: the token list generator generator, see se
tion 3.8, and the parse treegenerator generator, see se
tion 3.9. The two tools help display what the listof tokens and the parse tree look like after the tokenizing step and the parsingstep respe
tively. They are useful when an error o

urs while
onstru
ting the
ompiler, be
ause they help me determine in whi
h step of the
ompilationpro
ess the error started. For example, if there is a parse error, the error
ouldbe either that there is something wrong in my parser or that the tokenizergenerated an in
orre
t list of tokens. By inspe
ting the list of tokens I am ableto
he
k this.I have also
ompleted the missing translation rules. See se
tion 3.7 on howI
reated the rules for the range operators in the ESRA language.For the requirement of that it should be easy to write and
hange the trans-lation rules, I have
reated a rule �le system, see se
tion 3.10. One writes therules in a normal text �le in almost the same way as they are written in [6℄.Then I have written a spe
ial rule
onverter program in Perl that
onverts therule �le with the rules into a Java program with
orresponding Java methods.It is also easy to modify the grammar. By using JavaCUP the grammar isspe
i�ed in the JavaCUP spe
i�
ation �le. The format of the grammar usedin the �le is almost identi
al to the standard format used in ASTRA reports.Almost the only di�eren
e is that ::= is used instead of an arrow. To modifythe grammar one simply edits the spe
i�
ation �le.Finally I have also
reated the ESRA user interfa
e, see se
tion 3.11.
22

3.3 Combining JLex and JavaCUPFor writing the ESRA
ompiler, I use both JLex and JavaCUP. My problemis therefore to �gure out how to put JLex and JavaCUP together. The do
u-mentation on how to
onne
t JLex to JavaCUP is very poor, both in the JLexmanual and in the JavaCUP manual, as well as on the Internet.1 I solved theproblem by using JLex and
reating a tokenizer for the example parser in theJavaCUP manual. I dis
overed that one needs to do the following things in one'sJLex spe
i�
ation to make it
ompatible with one's JavaCUP spe
i�
ation.First, one needs to add the %
up dire
tive. This is equal to three other dire
-tives: %type Symbol, %fun
tion next_token, and %implements java_
up.runtime.S
anner. They alter the .lex.java �le that is produ
ed. By default,the de�nition of the Yylex
lass in the .lex.java �le won't implement anything.In turn, the method in the Yylex
lass for reading tokens gets
alled yylex andreturns Yytoken obje
ts. With these dire
tives the Yylex
lass will implementjava_
up.runtime.S
anner. In turn, the method gets
alled next_token andreturns Symbol obje
ts. All these
hanges are needed so that the parser
lass
an a

ess the tokenizer
lass.Se
ond, one needs to
hange one's semanti
 a
tions that are asso
iated withthe token de�nitions, so that they in
lude
ode that
reate and return Symbolobje
ts. The Symbol
onstru
tor is
alled with an integer denoting the terminalit represents and an optional value of type Obje
t. The thing is � whenJavaCUP generates the parser
lass it also generates a
lass
alled sym. This
lass
ontains all the terminals represented as integer
onstants. By using these
onstants, JLex
an tell JavaCUP whi
h terminals the tokens stand for.Here are two examples using the Symbol
onstru
tor:<YYINITIAL> "+" {return new Symbol(sym.PLUS);}<YYINITIAL> {NUMBER} {return new Symbol(sym.NUMBER,new Integer(yytext());}There is an important side note related to the above paragraph. As stated,JLex uses the
onstants in the sym
lass. This means that one must generatethe parser before one generates and
ompiles the tokenizer. This is
ontrary tothe intuitive order in whi
h one would generate and
ompile the two.Third, one also needs to in
lude the %eofval dire
tive as follows:%eofval{return new Symbol(sym.EOF);%eofval}1Today, six months later, an example showing how to
ombine JLex and JavaCUP hasbeen added to the JavaCUP home page. 23

If one doesn't have have this dire
tive, the parser runs and produ
es the
orre
tresult, but never terminates. The EOF
onstant is a
onstant that JavaCUPin
ludes by default in the sym �le.The fourth and �nal thing that one needs to do is add an import statementin the user
ode se
tion:import java_
up.runtime.*;This is be
ause the Symbol
lass that one is using resides in the java_
up.runtimepa
kage.Finally, here is what the whole �le looks like.import java_
up.runtime.*;%%%
upDIGIT=[0-9℄NUMBER=({DIGIT})*WHITE_SPACE=([\ \n\r\t\f℄)+%eofval{return new Symbol(sym.EOF);%eofval}%%<YYINITIAL> "+" {return new Symbol(sym.PLUS);}...<YYINITIAL> {NUMBER} {return new Symbol(sym.NUMBER,new Integer(yytext());}3.4 Making a Two-pass Compiler with JavaCUPFor
ompilations of some languages, it is impossible to
omplete the translationof the
ode in one pass. These languages require a two-pass parser. The ESRAlanguage is su
h a language. It requires the
ode to be stepped through twi
e,be
ause several of the ESRA-to-OPL rewrite rules need to know the types ofthe identi�ers. In the �rst pass the identi�ers and their types are stored ina symbol table, and in the se
ond pass the symbol table is used to make thea
tual translation. The problem is therefore to �gure out how to use JavaCUPto
reate a two-pass parser.The Toy Language I solved this problem by inventing a new language
alledthe Toy language. The Toy language has
ertain features that require one to pass24

through the
ode twi
e. However, it is mu
h smaller than the ESRA language.In this way, I have isolated the problem to a mu
h smaller spa
e. If I
an
reatea two-pass parser for the Toy language, I will also be able to
reate it for theESRA language.A little simpli�ed, the Toy language
onsists of a series of de
larations on sep-arate lines separated by semi-
olons. Every de
laration
an be either a groundor a non-ground de
laration. Here is a pie
e of the grammar that we will fo
uson: <De
larations> -> <De
laration> ;| <De
laration> ;<De
larations><De
laration> -> ground <Id>| non_ground <Id> <Id>These ground and non-ground de
larations build up a set of hierar
hi
al treestru
tures, where identi�ers de
lared as ground are root elements of these trees,and identi�ers de
lared as non-ground are nodes in the tree below the root. Inthe
ase of non_ground <X> <Y>, the identi�er X is the parent node of Y. Thedomain of an identi�er, dom(id), is the root of the tree that the identi�er existsin. In the translation pro
ess, the non-ground de
laration is translated in twodi�erent ways, depending on whether the parent identi�er is ground or non-ground. Here is the translation rule for the non-ground de
laration:non_ground X Y ==> var int Y[X℄ in 0..1| if X is ground==> var int Y[dom(X)℄ in 0..1| if X is non-groundThis is the reason why we need two passes of the
ode. In the �rst pass weparse the de
larations and store whi
h identi�ers are ground and whi
h arenon-ground. In the se
ond pass we use this stored information to translate thenon-ground de
larations properly.To
reate this two-pass parser I
reated two JavaCUP spe
i�
ation �les:toy_pass1.
up and toy_pass2.
up. They are the spe
i�
ations for the �rst andse
ond pass parsers respe
tively. I also
reated a Java
lass
alled DomainTreefor storing the �rst-pass information. Finally I have a main
lass
alled toy that
reates and runs the two parsers and
onne
ts them together.The First Pass It is in the �rst spe
i�
ation �le that I
onstru
t the DomainTreeobje
t. I do this by using the a
tion
ode dire
tive.a
tion
ode {:DomainTree domainTree = new DomainTree();:} 25

Then I use the twomethods of the DomainTree
lass, addGround and addNonGround,to build up the tree:De
laration ::= GROUND IDENT:id{: domainTree.addGround(id); :}| NON_GROUND IDENT:pid IDENT:id{: domainTree.addNonGround(pid,id); :}Finally, we need to get the translated result ba
k to the
aller that invoked theparse. For this we need to do two things. First we need to de
lare that thestarting non-terminal is of type DomainTree:non terminal DomainTree De
larations;Then we need to let the semanti

ode for the starting non-terminal return theDomainTree obje
t:De
larations ::= De
laration SEMI{: RESULT = domainTree; :}| De
laration SEMI De
larations{: RESULT = domainTree; :}The Se
ond Pass In the se
ond pass we use the information gathered fromthe �rst pass. The big problem is how to a
tually transfer that information.The problem is a
tually two-fold. This is be
ause the parser that is gener-ated is divided into two
lasses: the parser
lass and the a
tions
lass. Sin
ethe DomainTree obje
t is used by the semanti

ode, I �rst need to get theDomainTree obje
t into the parser
lass, and then from there into the a
tions
lass.In JavaCUP there is a dire
tive for extending the parser with
ustom variableand method de
larations. I take advantage of this in the se
ond spe
i�
ation �leby
reating a se
ond
onstru
tor to the parser
lass. It takes a se
ond argumentwhi
h is the DomainTree obje
t. I also add a new variable domainTree whi
hstores the DomainTree obje
t that is submitted through the
onstru
tor:parser
ode {:DomainTree domainTree;publi
 toy_parser_pass2(java_
up.runtime.S
anner s,DomainTree domainTree){ this(s);this.domainTree = domainTree;}} 26

To get the DomainTree obje
t from the parser
lass into the a
tions
lass I usethe a
tion
ode dire
tive. It is similar to the parser
ode dire
tive but is usedfor extending the a
tions
lass. I
reate a method for setting the DomainTreeobje
t in the
lass. I also add a member variable, domainTree, that serves as apla
e holder for the DomainTree obje
t in the a
tions
lass:a
tion
ode {:DomainTree domainTree;publi
 void setDomainTree(DomainTree domainTree){ this.domainTree = domainTree;}:}I now need to have the parser
lass
all the method above before it startsexe
uting the semanti

ode. I solve this by pla
ing the method
all in the initwith dire
tive. However, I need to have a referen
e to the a
tions
lass obje
tfrom within the parser
lass. By inspe
ting the parent
lass of the parser
lass,lr_parser in the java_
up.runtime pa
kage, in whi
h the parse method isde�ned, I �nd that I
an use the variable a
tion_obj as a referen
e:init with {:a
tion_obj.setDomainTree(domainTree);:}Putting It All Together By using JavaCUP, I generate the two Java parser�les for the Toy language. By default the generated Java �le is
alled parser.java.Sin
e we
annot have two Java
lasses with the same name, I need a way togenerate the
lasses with di�erent names. The solution is to use a JavaCUP
ommand-line option
alled -parser. By doing this, I
reate the two �lestoy_parser_�le1.java and toy_parser_pass2.java:java java_
up.Main -parser toy_parser_pass1< toy_pass1.
upjava java_
up.Main -parser toy_parser_pass2< toy_pass2.
upThere is also a -symbols option used for spe
ifying a di�erent name for the sym
lass. However, sin
e the two parsers parse the same language, they may usethe same sym
lass.To put it all together I
reate the Java �le toy.java. It
reates the twoparser obje
ts and
onne
ts them together. The whole �le is shown below. Itreads the input
ode from standard input and prints the translation result tostandard output. Note that a problem was that I needed to read the same inputstream twi
e � one time for the �rst parse and a se
ond time for the se
ondparse. As seen in the
ode, I solved this by using the methods mark and reset.27

I used mark to mark the stream at the beginning of the �rst pass, and I usedreset to reset the stream to that point at the beginning of the se
ond pass.Note that the argument to mark is how many bytes that
an be read beforethe mark be
omes invalid. Sin
e I never want it to be
ome invalid, I make thisargument very big.InputStream stream_obj = System.in;stream_obj.mark(100000);Yylex lexer_obj = new Yylex(stream_obj);toy_parser_pass1 parser_obj = newtoy_parser_pass1(lexer_obj);DomainTree domainTree =(DomainTree) (parser_obj.parse().value);stream_obj.reset();lexer_obj = new Yylex(stream_obj);toy_parser_pass2 parser_obj2 = newtoy_parser_pass2(lexer_obj,domainTree);String result =(String) (parser_obj2.parse().value);System.out.print(result);3.5 Reporting Errors with JLex and JavaCUPWhen the user writes his ESRA program it will sometimes
ontain errors. Per-haps he has forgotten a semi-
olon; perhaps he has forgotten to de
lare a variablehe is using. As with any other programming language, we would like our
om-piler to
at
h these errors and report them. The more detailed the des
riptionsof these errors, the greater the
han
es of the user �nding and
orre
ting them.By default, JLex and JavaCUP return very vague error des
riptions. In JLexwhen there is an error, it throws an Error obje
t with the message: �Lexi
alerror: Unmat
hed input�. In JavaCUP when there is an error, it throws anEx
eption obje
t with the message: �Can't re
over from previous error(s)�.We would like these error des
riptions to be more informative; for example, wewould like them to
ontain information about whi
h token
aused the error, onwhi
h line the error o

urred, and at whi
h
hara
ter position the error o

urred.JLex To solve this problem in JLex I add the following line to the bottom ofthe JLex spe
i�
ation �le:. { throw new TokenizerError(yytext(),yyline,yy
har); }By doing this, the JLex own Error obje
t will never be thrown. Instead, allerroneous tokens are mat
hed by the dot, and our own de�ned TokenizerErroris therefore always thrown. As we are now throwing an Error, we need to havethe yylex method de
lare this. We do this by adding the following to the JLexdire
tives se
tion: 28

%yylexthrow{TokenizingError%yylexthrow}The entities yyline and yy
har are de�ned entities in JLex whi
h refer tothe
urrent line and the
urrent
hara
ter position. One needs to invoke theseentities by adding the following to the JLex dire
tives se
tion:%line%
harNote that these entities are zero-based, not one-based; that means thatyyline and yy
har are 0 for the �rst row and
olumn respe
tively, 1 for these
ond row and
olumn respe
tively, and so on. Note also that yy
har refersto the
hara
ter position of the entire text. If one wants the
hara
ter positionof just the
urrent line, one
an do the following tri
k: �rst one de�nes a newvariable
alled newline_pos:%{int newline_pos = 0;%} Every time there is a new line, one updates the newline_pos. It thereforealways refers to the
hara
ter position of the most re
ent new line
hara
ter:<YYINITIAL> "\n" {newline_pos = yy
har;} Then �nally we get the
hara
ter position on the
urrent line by simplysubtra
ting newline_pos from yy
har:. { throw new TokenizerError(yytext(),yyline,yy
har-newline_pos); }JavaCUP By default, when there is a parse error, JavaCUP gives an Ex
eptionwith the message: �Can't re
over from previous error(s)�. As with theJLex error, we would like it to give us the token, line and
olumn so that wemore easily
an lo
ate and
orre
t the error.The generated parser
lass inherits from the lr_parser
lass in the java_
up.runtime pa
kage. In it there is an error handling routine that gets
alled by theparser when errors o

ur. Its name is report_fatal_error and is the methodthat a
tually throws the ex
eption. By overriding this method in the generatedparser
lass, we ourselves
an
ontrol how the error handling should work.The remaining problem
on
erns how the error handling method
an geta

ess to the line, row and
olumn information of the erroneous symbol. Wemake use of the fa
t that the erroneous symbol is passed as an argument tothe report_fatal_error method. It seems suitable therefore to pa
k the in-formation in the symbol obje
t. Re
all that a symbol obje
t has two entities:29

the token identi�er and a value obje
t. Normally, one uses the value obje
tto store the String obje
t of an identi�er or the Integer obje
t of a number.We
reate a new
lass, SymbolInfo, that holds the entities line,
olumn, tokenand value. As we generate the tokens in the lex �le we also
reate and add aSymbolInfo obje
t to every Symbol obje
t that we generate:<YYINITIAL> "forall" {return new Symbol(sym.FORALL,new SymbolInfo(yytext(),yyline,yy
har));} Note that the SymbolInfo
an also take a fourth argument whi
h is thevalue entity. It is used, for example, by identi�ers and numbers that no longer
an use the value entity of the Symbol obje
t.We �nish by
reating the report_fatal_error method. It simply unpa
ksthe SymbolInfo obje
t and throws a
ustom-made parse error with its token,line, and
olumn information:parser
ode {:publi
 void report_fatal_error(String message,Obje
t obje
t)throws ParsingError {Symbol symbol = (Symbol) obje
t;SymbolInfo info = (SymbolInfo) symbol.value;done_parsing();throw new ParsingError(info.token,info.line,info.
olumn);}:}3.6 Converting the Grammar to JavaCUP-formatIn JavaCUP, one
an only write the produ
tion rules of the grammar usinga very simple format, see [2℄. In [6℄, se
tion 3.2, the grammar of the ESRAlanguage is written using a more advan
ed format. The di�eren
e lies in howone
an spe
ify ea
h produ
tion alternative: JavaCUP only allows a sequen
eof terminals and non-terminals, while the
onventions used in [6℄ also allow thefollowing syntax:� [foo℄ � foo is optional� {foo} � zero, one, or several times foo� foo+ � one or several times foo , separated by
ommas.� foo* � one or several times foo , separated by semi-
olons.30

I therefore need to �nd a way to rewrite the grammar in [6℄ into the simplerformat allowed by JavaCUP. I
onstru
t and use the
onversion rules that thereader
an see below. For ea
h
onversion rule, grammar rules that mat
h theleft-hand side of the rule (the side that is to the left of the arrow, ==>), shouldbe repla
ed by the
orresponding rules on the right-hand side of the rule. Theentities A, B, C, and D that o

ur in the left-hand side of the rule mat
h anyarbitrary sequen
e of terminals and non-terminals. The values that they'reassigned to are
opied into the entities with the same names in the right-handside of the rule. The o

urren
e of the entity E, also in the right-hand side ofthe rules, represents a new non-terminal, whi
h must be
reated.A -> B[C℄D ==> A -> BD-> BCDA -> B{C}D ==> A -> BD-> BEDE -> CE-> CA -> BC+D ==> A -> BD-> BEDE -> ,CE-> ,EA -> BC*D ==> A -> BD-> BEDE -> ;CE-> ;EBelow, I give an example that shows the use of the
onversion rules in pra
ti
e.Here, �rst, is a part of the grammar in [6℄. It is the grammar rule for the Modelnon-terminal. Entities inside < and > are non-terminals.<Model> -> {<De
laration}<Instru
tion>This grammar rule mat
hes the left-hand side of the se
ond
onversion rule ofthose listed above. The Model non-terminal mat
hes the entity A, the De
larationnon-terminal mat
hes the entity C, and the Instru
tion non-terminal mat
hesthe entity D (the entity B is mat
hed to the empty string). Applying the
on-version rule, the following new rules are
reated, see below. Noti
e the
reationof the new non-terminal De
larations, whi
h
orresponds to E.Model -> Instru
tion| De
larations Instru
tionDe
larations -> De
laration| De
laration De
larations;31

3.7 Writing the Range Operator RulesOne of the requirements of this proje
t was to
reate the translation rules forthe range operators in the ESRA language. The range operators are prefix,suffix and subrange. They all take two arguments and enfor
e that the �rstargument is a pre�x, su�x or subrange of the se
ond argument. What makesthis task
omplex is that ea
h argument
an be either a range or a range variable.This means that for ea
h range operator there are four di�erent
ases, and allin all I have to
reate twelve di�erent translation rules.Several problems arose during my work in trying to
reate these translationrules. First, there was the problem of how to treat empty range variables; sin
ea range variable is represented as a boolean array, it would be possible that allentries were zero. Se
ond, a lot of the
onstraints that I
onstru
ted
onsisted ofvery long logi
al expressions involving logi
al or and impli
ation, whi
h wouldtake a lot of time for the solver to solve. Lastly, I realized that OPL uses stri
tevaluation, so a lot of simple solutions that were based on OPL not evaluatingthe se
ond argument had to be thrown away, sin
e they
aused index out ofbounds errors for the arrays.Due to these problems the requirements were simpli�ed. Ea
h operator
ouldnow only take range variables as arguments and these range variables had to beof the same domain, i.e., their parent ranges had to have the same lower andupper bounds.Before I present the solution I need to dis
uss how range variables in ESRAare represented in OPL. Below is shown how a range variable in ESRA
an bede
lared in three di�erent ways. S will be the new range variable and R itsdomain range.var prefix(R) S;var suffix(R) S;var subrange(R) S;Their representations in OPL all have the following boolean array:var int S[R℄ in 0..1;They also all have a
onstraint that ensures that all 1s in the array are
ontigu-ous, i.e., there are no 1s in the array that are separated by any 0s. The way tointerpret this representation is that all elements that are 1 are part of the rangeand all element that are 0 are not part of the range. The index of the left-most1 is the lower bound of the range and the index of the right-most 1 is the upperbound of the range.Using the above information about range variables I
an now
reate thetranslation rules for the range operators. When dis
ussing the solution of ea
hoperator, I will use the term interpreted range of an array to mean the
ontiguousstret
h of 1s that o

ur in the array.For the subrange operator I
reate a
onstraint that
he
ks that every ele-ment in B is greater or equal to the element at the same index in A. This means32

that for all 1s that o

ur in A there should be 1s at the same indi
es in B,making the interpreted range of A be inside the interpreted range of B. The�gure below shows two possible instan
es of the arrays A and B, su
h that theinterpreted range of A is a subrange of the interpreted range of B. The arrowsshow the
omparisons of the elements made by the OPL
ode. Below the �gurethe OPL
ode is listed.
0 0 1B

A

1 1 1 1 0

B[i] >= A[i]

0 0 0 1 1 1 0 0subrange(A,B);=> forall(i in [a..b℄)B[i℄ >= A[i℄;| A and B are range variableswith the same domain a..bFor the prefix operator I use two
onstraints. The �rst one is the same as theone used for the subrange operator. The se
ond one
he
ks that every pair ofadja
ent elements in A that are within the interpreted range of B, are su
h thatthe �rst element is greater or equal to the se
ond element. This means that forthe left most 1 in B, there must be a 1 at the same index in A. Therefore theinterpreted range of A is a pre�x of B. The purpose of the if
onstru
t is toprevent that an array index out of bounds error o

urs if a is greater or equalto b.
0 0 1B

A

1 1 1 1 0

0 0 1 0

B[i] >= A[i]

1 1 0 0

A[i] >= A[i+1]prefix(A,B);=> forall(i in [a..b℄) 33

B[i℄ >= A[i℄;if b > a thenforall(i in [a..b-1℄)B[i℄ = 1 & B[i+1℄ = 1 =>A[i℄ >= A[i+1℄| A and B are range variableswith the same domain a..bFor the suffix operator I use the same two
onstraints as for the prefix oper-ator. The only
hange I do is to reverse the greater or equal sign into a less orequal sign in the se
ond
onstraint. Using the same reasoning as for the prefixoperator above, the interpreted range of A must now be a su�x of B.
0 0 1B

A

1 1 1 1 0

0 0 0 0 1 1 1 0

B[i] >= A[i]

A[i] <= A[i+1]suffix(A,B);=> forall(i in [a..b℄)B[i℄ >= A[i℄;if b > a thenforall(i in [a..b-1℄)B[i℄ = 1 & B[i+1℄ = 1 =>A[i℄ <= A[i+1℄| A and B are range variableswith the same domain a..b3.8 Token List Generator GeneratorCreating the
ompiler
an be a tri
ky job. If something goes wrong and thewrong
ode is produ
ed, it
an be hard to �nd the bug. To help with this, Ihave
reated two helper programs: token list generator generator and parse treegenerator generator.Token list generator generator is a Perl program that takes the lex �le andtransforms it into a new lex �le. This new lex �le, when run, instead of returningsymbols to the parser, prints out a ni
e and readable list of the tokens produ
edfrom the input �le. I now give an example.34

Here is a simple ESRA program:int x;int y;solve x = y;And here is the print-out one gets from running it through the token listgenerator generator:[INT:'int'℄[ID:'x'℄[SEMI:';'℄[INT:'int'℄[ID:'y'℄[SEMI:';'℄[SOLVE:'solve'℄[ID:'x'℄[EQUAL:'='℄[ID:'y'℄[SEMI:';'℄3.9 Parse Tree Generator GeneratorParse tree generator generator works similarly to the token list generator gener-ator. It generates a new
up �le from the old one whi
h, when run on an input�le, displays the parse tree of that input �le.By using these programs, I
an see what's going on in the
ompilation pro-
ess and narrow the lo
ation of the error down to one of the following: thetokenization, the parsing, or the translation. Here follows an example of theprintout that is produ
ed from the parse tree generator generator. It is basedon the simple ESRA program that is listed in the previous se
tion.Model {De
larations {De
laration {DataDe
l {Type {INT}ID:x}SEMI}De
larations { 35

De
laration {DataDe
l {Type {INT}ID:y}SEMI}}}Instru
tion {SOLVEConstraint {Formula {Atom {Expression {Argument {ID:x}}ArithOp {EQUAL}Expression {Argument {ID:y}}}}}SEMI}}3.10 Rule ConverterOne big part of my job was to implement the ESRA-to-OPL translation rules.These rules are all listed in the report The Syntax and Semanti
s of ESRA, see[6℄. The following example shows the format of su
h a rule in the report. Thisparti
ular example is the rule for the su�x variable de
laration.var suffix(R) S;=> var int S[R℄ in 0..1;36

forall(I in [L..U-1℄)S[I℄ <= S[I+1℄;| R is a range L..ULooking at the rule, the �rst line is the ESRA statement that is being translated.R and S are
alled the parameters of the rule. The parameters are unboundentities that will be mat
hed to values during the translation. Then, all theo

urren
es of the parameters in the body of the rule will be substituted withthe values. Regarding the body of the rule, it
onsists of a
lause starting withan arrow,
alled the output part, and a
lause starting with a verti
al bar,
alledthe
ondition part. There
an be several su
h pairs
onsisting of an output partand a
ondition part in the body of the rule; these are
alled subrules. Thetranslated result
orresponds to the output part of the �rst subrule of whi
h the
ondition part mat
hes. Note in the example how the
ondition part is beingused to extra
t the lower and upper bounds, L and U, of the domain range, R,so that these
an be used in the output part.Implementing the ESRA-to-OPL translation rules meant writing them inJava so that they
ould be used in the
ompiler. Shown below is the Java
ode that I had to write for the su�x variable de
laration rule. Like it and allother rules, they are implemented as methods of whi
h the arguments are theparameters of the rule.publi
 String suffixVarDe
l(String P,String R)throws UndefinedIdentifierEx
eption,UnsatisfiedRuleEx
eption {String result = "";{ SymbolData RData = symbolTable.lookup(R);if (RData == null)throw new UndefinedIdentifierEx
eption(R);String L = RData.rangeLoValue();String U = RData.rangeHiValue();if ((RData.isRange())) {result += (tab("var int "+P+"["+R+"℄ in 0..1",0));
onstraint(tab("forall(I in ["+L+".."+U+"-1℄) \n",0) +tab(""+P+"[I℄ >= "+P+"[I+1℄",1));return result;}}throw new UnsatisfiedRuleEx
eption();} I noti
ed that writing these methods by hand into the
omputer had manydisadvantages. For example,
onstru
ting the Java strings for the output partwas very tedious: I had to substitute all parameters with pluses (+), quotationmarks ("), and the
orresponding variable names in Java. Also, the methods,37

in their stru
ture, were very similar to ea
h other, and I felt I was repeating thesame job over and over again.I therefore have implemented a Perl program that I
all the rule
onverter.The rule
onverter lets one write translation rules in a �le
alled the rule �le.It then
onverts these rules automati
ally into Java methods, the same Javamethods as were
reated by hand, as the example above showed.The format of the translation rules in the rule �le is very similar to that ofthe translation rules in the report [6℄, of whi
h one is given in the beginning ofthis se
tion. The exa
t format of the rule is as follows. First
omes the ruletype, whi
h
an be one of de
l,
ons or expr. de
l is used if the statementbeing translated is a de
laration;
ons is used if the statement being translatedis a
onstraint; and expr is used if the the statement being translated is anexpression. Following the rule type is the rule name, whi
h will be the nameof the
orresponding Java method. After the rule name
omes the parametersof the rule en
losed in the parentheses, whi
h will be the arguments of the
orresponding Java method. Lastly follows the body of the rule en
losed within{: and :}. Here, the output parts are spe
i�ed exa
tly the same as in the report[6℄. The di�eren
e lies in the
ondition parts, where being formal is required.The
ondition part is a semi-
olon separated list of
onditions. Ea
h
ondition
onsists of the sequen
e: an identi�er, a
olon (:), and a
omma separated listof ESRA types, whi
h the identi�er is allowed to have. The ESRA types areint, array, enum, range(L..U), setvar, rangevar, and mapping(V->W). As
an be seen, the range type and the mapping type allow one to extra
t entities,whi
h
an be used in the output part. range lets one extra
t the upper andlower bounds of the range (L..U), while mapping lets one extra
t the domainand the
odomain of the mapping (V->W).The example below illustrates the format of the translation rules, by showinghow one may write the translation rule for the su�x variable de
laration.de
l suffixVarDe
l(R,S) {:=> var int S[R℄ in 0..1;forall(I in [L..U-1℄)S[I℄ <= S[I+1℄;| R:range(L..U):}Besides sparing one the trouble of writing several quotation marks (�) and pluses(+), and letting one extra
t entities from range and mapping identi�ers, hereare other important bene�ts with the rule �le:� One may write su
h expressions as dom(S) in the output part. The expres-sion gets substituted with Java
ode that evaluates to the domain of S.For example, here is part of the rule for the mapping variable de
laration,whi
h is given in the report [6℄. Noti
e all the o

urren
es of dom(V) anddom(W) in the rule. The rule will be
onverted
orre
tly into Java.var V->W M; 38

=> var int M[dom(V),dom(W)℄ in 0..1;forall(I in dom(V)) sum(J in dom(W))M[I,J℄ = V[I℄;forall(J in dom(W),I in dom(V))M[I,J℄ <= W[J℄;display(I in dom(V),J in dom(W):M[I,J℄=1) <I,J>;| V:setvar,rangevar;W:setvar,rangevar� Moreover, the rule
onverter dete
ts if a line is a display, a de
laration, a
onstraint, or an expression statement. Depending on the type of state-ment, the rule
onverter
reates the appropriate Java
ode, so that thestatement is pla
ed
orre
tly in the generated OPL
ode.� The rule
onverter also dete
ts indentions among the lines in the outputpart and generate
orresponding
alls to a Java tabbing fun
tion. In thisway, the indentions used in the rule �le get preserved in the generatedOPL
ode.3.11 Other IssuesIn this se
tion I mention some things from this phase whi
h are of less impor-tan
e, but nevertheless took pretty mu
h time of the work.First of all, there is the making of the graphi
al interfa
e. The interfa
e
ombines all the fun
tionality of the ESRA program. It lets one view the listof tokens, the parse tree, the symbol table, and the �nal translation. It alsoprovides the possibility to open and save �les like a normal text editor. It evengives all the
lassi
al warnings like �Do you want to save this file before
losing it�, �This file already exists, do you want to overwrite it�,et
.Another signi�
ant part of this phase was implementing the translation al-gorithms for the forall
onstraint and the sum expression. The algorithms arelisted in [7℄.3.12 Testing and ResultsIn this se
tion I do tests to show that the ESRA implementation works
orre
tly.In se
tion 2.4, about ESRA and OPL, I talked about a
lassi
al
onstraintproblem
alled the Graph Coloring problem, GCP. Here I use two other
lassi
alproblems
alled the Warehouse Lo
ation problem, WLP, and the File Pa
kingproblem, FPP, to test my program.The WLP is about mapping stores to warehouses su
h that a
ertain
ostis minimized. The
ost is dependent on the number of warehouses open andthe supply
osts for these warehouses. The supply
ost is spe
i�ed individuallyfor all the possible pairs of warehouses and stores in the problem. The main39

onstraint in the problem is that ea
h warehouse has a maximum
apa
ity ofstores it
an supply.The FPP maps �les to diskettes, su
h that a minimum number of diskettesare used. The �les all have di�erent sizes and
annot be broken apart. The aimis thus to pla
e them in su
h a way that the non-used spa
e on the diskettes isminimized. For more details on this problem and the WLP, see [7℄.Now I use ea
h problem (the WLP and the FPP) to test my appli
ationusing the following pro
edure.� Step 1: Create an ESRA model of the problem.� Step 2: From the ESRA model generate an OPL program using my ESRAappli
ation.� Step 3: Compare the generated OPL program to a handwritten OPLprogram for the same problem.� Step 4: Create input data for the generated OPL program to be used withthe OPL
onstraint solver appli
ation. This appli
ation, made by ILOG,is an intera
tive environment for designing and solving OPL programs.� Step 5: Generate the solution to the generated OPL program with theinput data using the OPL
onstraint solver appli
ation.� Step 6: Solve the problem on paper using the same input data and
ompareit to the generated solution.Testing with the WLP In this se
tion I test my ESRA appli
ation with theWLP using the pro
edure des
ribed above.For step 1, I use the ESRA model from [7℄. The only modi�
ations here arethat, �rstly parentheses are added to the
ost fun
tion; the model would not
ompile
orre
tly otherwise, and se
ondly the
onstraint max-image-
apa
ityis used; the model in the report uses a forall
onstraint and a
ount expressionto a
hieve the same thing.int MaintCost = ...;int NbStores = ...;enum Warehouses ...;range Stores 0..NbStores-1;int Capa
ity[Warehouses℄ = ...;int SupplyCost[Stores,Warehouses℄ = ...;var {Warehouses} OpenWarehouses;var Stores->OpenWarehouses Supplier;minimize (sum(I->J in Supplier)SupplyCost[I,J℄) +(
ard(OpenWarehouses) * MaintCost)subje
t to {max-image-
apa
ity(Supplier,Capa
ity)}; 40

For step 2, the following OPL program is generated from the ESRA model usingmy ESRA appli
ation. By brief inspe
tion, the OPL program seems to have noobvious errors.int MaintCost = ...;int NbStores = ...;enum Warehouses ...;range Stores 0..NbStores-1;int Capa
ity[Warehouses℄ = ...;int SupplyCost[Stores,Warehouses℄ = ...;var int OpenWarehouses[Warehouses℄ in 0..1;var Warehouses Supplier[Stores℄;minimize (sum(I in Stores)(SupplyCost[I,Supplier[I℄℄))+(sum(I in Warehouses)OpenWarehouses[I℄*MaintCost)subje
t to {forall(J in Warehouses)OpenWarehouses[J℄=1 => sum(I in Stores)(Supplier[I℄=J) <= Capa
ity[J℄;forall(I in Stores)OpenWarehouses[Supplier[I℄℄=1;};display(I in Warehouses:OpenWarehouses[I℄=1) <I>;For step 3, I
ompare the OPL program generated by the ESRA appli
ation withthe OPL program generated by hand in the thesis [7℄. They are semanti
allyequal. The only synta
ti
al di�eren
es are that they use di�erent names forsome of the iterating identi�ers, and that the OPL program here uses moreparentheses whi
h is a result of the parentheses introdu
ed in step 1.For step 4, I
reate the following input data to be used with the OPL programin the OPL
onstraint solver appli
ation. The values have been
hosen in su
ha way that �nding the solution is not straight forward.MaintCost = 10;NbStores = 8;Warehouses ={uppsala,sto
kholm,vasteras,linkoping};Capa
ity = #[uppsala:3,sto
kholm:3,vasteras:1,linkoping:4℄#;SupplyCost = #[0: [5,8,4,3℄, 41

1: [3,9,2,2℄,2: [4,7,1,5℄,3: [6,3,5,4℄,4: [2,3,6,1℄,5: [3,4,9,3℄,6: [3,5,5,3℄,7: [2,5,1,4℄℄#;For step 5, the following solution is generated by the OPL
onstraint solver.By brief inspe
tion, I see that the
ost value has been
al
ulated
orre
tly, andthat the maximum
apa
ity
onstraint is ful�lled. What remains is testing ifthe
ost value is the a
tual minimal
ost value.obje
tive value: 49variable OpenWarehouses:uppsala - 1sto
kholm - 0vasteras - 1linkoping - 1variable Supplier:0 - linkoping1 - linkoping2 - vasteras3 - linkoping4 - linkoping5 - uppsala6 - uppsala7 - uppsalaFor the �nal step, step 6, I will present handwritten proof that the solutiongenerated by the OPL
onstraint solver appli
ation is
orre
t, thus proving thatmy ESRA appli
ation has generated a
orre
t OPL program.Looking at step 5, the reader should �rst note that at least 3 warehouses mustbe opened. The reason is that the sum of the
apa
ities of any 2 warehouses isless than 8, whi
h is the number of stores. With 3 open warehouses it is possibleto supply all stores, for example with uppsala, sto
kholm, and linkoping,whi
h together have a
apa
ity of 10.The reader should then note that the optimal
ost value
annot be less than47. This value is the
ost that
omes from ea
h store
hoosing its
heapestsupplying warehouse. In our solution, with the
ost being 49, this is the
asefor all stores ex
ept for store number 3 and store number 7 (with the �rst storebeing store number 0). The only way we
ould get a better
ost is if thesestores would
hange to their
heapest supplying warehouses. However, for storenumber 3, its
heapest supplying warehouse being sto
kholm, we would have toopen up a new warehouse to the dispense of 10. For store number 7, its
heapestsupplying warehouse being vasteras, we
annot
hoose this warehouse be
ause42

its maximum
apa
ity of 1 is already used, see store number 2. Alternativelywe
ould have store number 2
hange its supplier from vasteras, whi
h
osts1, into another supplier, but any one of those has a
ost of at least 4.Thus we see that getting a better optimal value than 49 is impossible. The
on
lusion is that the solution from step 5 is the optimal solution.Testing with the FPP Here, I test my ESRA appli
ation with the FPPproblem, in the same way as, in the previous paragraph, I tested my ESRAappli
ation with the WLP problem.For step 1, I use the ESRA model from the report [7℄. There is one di�eren
e,whi
h o

urs in the de
laration of the identi�er MinNbDis. The ESRA modelfrom the report uses the
eil fun
tion, like this:int MinNbDis =
eil(
ard(Files)/DisSize);The ESRA model here, whi
h is listed further down, does not. Instead it usesthe
ode:int MinNbDis =
ard(Files)/DisSize+1;Using this
ode has the same desired e�e
t as using the
eil fun
tion. Thereason I
ouldn't use the
eil fun
tion is that it
aused an invalid type errorin the OPL
onstraint solver appli
ation, whi
h I never managed to solve.int DisSize = ...;enum Files ...;int FileSizes[Files℄ = ...;int MinNbDis =
ard(Files)/DisSize+1;int MaxNbDis =
ard(Files);range Diskettes 1..MaxNbDis;var {Diskettes} UsedDiskettes;var Files->UsedDiskettes Pa
king;minimize
ard(UsedDiskettes)subje
t to {
ard(UsedDiskettes) >= MinNbDis;max-map-weight(Pa
king,FileSizes,DisSize)};For step 2, the following OPL program is generated from the ESRA model byusing my ESRA appli
ation. Like the OPL program generated for the WLP,this program seems to have no obvious errors.int DisSize = ...;enum Files ...;int FileSizes[Files℄ = ...;int MinNbDis =
ard(Files)/DisSize+1;43

int MaxNbDis =
ard(Files);range Diskettes 1..MaxNbDis;var int UsedDiskettes[Diskettes℄ in 0..1;var Diskettes Pa
king[Files℄;minimizesum(I in Diskettes) UsedDiskettes[I℄subje
t to {sum(I in Diskettes)UsedDiskettes[I℄ >= MinNbDis;forall(J in Diskettes)UsedDiskettes[J℄=1 =>sum(I in Files)(Pa
king[I℄=J) * FileSizes[I℄<= DisSize;forall(I in Files)UsedDiskettes [Pa
king[I℄℄=1;};display(I in Diskettes:UsedDiskettes[I℄=1) <I>;For step 3, I
ompare the OPL program generated by my ESRA appli
ation,with the OPL program generated by hand in the report [7℄. Besides the
eilfun
tion, they are the same.For step 4, I
reate the following input data to be used with the generatedOPL program in the OPL
onstraint solver appli
ation. Like the input datafor the WLP problem, this input data has been
hosen su
h that �nding thesolution is not obvious. For example, putting �les of sizes 2,3 and 5 into a onediskette would be the minimized solution for that diskette, but it would not bethe minimized solution for the overall problem.DisSize = 10;Files ={loveletter,wordfile,homepage,javafile, ex
elsheet, initfile};FileSizes = #[loveletter:7,wordfile:5,homepage:7,javafile:2,ex
elsheet:3,initfile:4℄#;For step 5, the following solution is generated by the OPL
onstraint solverappli
ation. It is visible that the
ost value is
al
ulated
orre
tly, and that the
hoi
e of pa
king �les is not breaking the maximum diskette size
onstraint.44

obje
tive value: 3variable UsedDiskettes:1 - 02 - 03 - 04 - 15 - 16 - 1variable Pa
king:loveletter - 4wordfile - 5homepage - 6javafile - 4ex
elsheet - 6initfile - 5Looking at the input data from step 4, l
an prove that the
ost value from step5 is the a
tual minimal
ost value. As the reader
an see, the sum of the sizesof the �les is 28. As ea
h diskette has a size of 10, this means that a minimumnumber of 3 diskettes must be used. As 3 is the solution given in step 5, thismust be the, or one of the, optimal solutions.3.13 Con
lusionThe results from the tests done on the Warehouse Lo
ation problem, WLP, andthe File Pa
king problem, FPP, in the previous se
tion were su

essful. Thisshows that my ESRA appli
ation
an translate ESRA models of the WLP andthe FPP into
orre
tly working OPL programs. Sin
e these models are quite
omplex and
ontain most of the features in the ESRA language, it seems likelythat my ESRA appli
ation works for most other ESRA models as well.

45

Chapter 4Phase II: TheNon-deterministi
 Compiler4.1 Goals and RequirementsFor the se
ond phase the goal is to make the
ompiler from phase one non-deterministi
. This means that one input program
an be translated into severaldi�erent output programs. The output programs are equal in their fun
tionalitybut are implemented in di�erent ways. Read more about this in se
tion 2.5.To ease my task, I have modi�ed the languages used with the
ompiler. Theinput language to the
ompiler is now a simpli�ed version of the ESRA languagefrom phase 1. For example, only mapping variables are used � set variablesand range variables have been removed.The output language to the
ompiler has also been
hanged. It is now anextension of the OPL language, here
alled OPL+, whi
h unlike OPL also allowsset variables.In the
ontinuation of this
hapter I will refer to the simpli�ed version ofESRA as just ESRA. Both this language and OPL+ are des
ribed fully at thebottom of se
tion 2.4 about ESRA and OPL.Another new aspe
t that is introdu
ed in this phase is the usage of explana-tions. For every produ
ed translation line there
an also be one or more lines of
omments. This is a way of automati
ally generating
omments in the di�erentoutput models.Finally the rule �le must be modi�ed. There should be a way to spe
ify thatan input statement
an generate several output statements. One should also beable to state that some representations are dependent on other representations.Moreover, there should be a way to write explanations for every translation line.Finally, one should be able to spe
ify substitutions. For example, if one has anexpression represented by the parameter P, one should be able to say that j isto be substituted with F[i℄ in the expression P.46

4.2 Solution and MethodsIn this and the following se
tions I des
ribe how I solved the requirements givenin the previous se
tion. The main problem was how to
ombine the di�erentrepresentations to generate all the models. Here is the overall des
ription of mysolution.First, the parser breaks the input
ode into elements. As the reader mightremember from se
tion 2.5, there are input elements, output elements, obje
tiveelements and
onstraint elements,
orresponding in turn to data de
larations,variable de
larations, obje
tives and
onstraints. Using the rules in the rule �le,every element in the input language is translated into elements in the outputlanguage, i.e., a single element in the input
ode
an produ
e several elementsin the output
ode � this is
alled an element set. Moreover, an element
anhave several representations, i.e., it
an produ
e a set of element sets � we
allthis an element set
hoi
e, or
hoi
e for short. The term element item, or justitem for short, will be used in a general sense to mean an element, an elementset, or an element set
hoi
e. Every type of element item has a
orresponding
lass with the same name in my Java appli
ation.Se
ond, whi
h is the
entral part of the solution, a tree representation isused. The generated element items from the rule �le are inserted into this treein a spe
ial way. The tree is then traversed and sets of elements are produ
ed� every set represents one model. Read the next se
tion to see how this treeworks in more detail.To make explanations work I added an explanation �eld to the element
lass.When the elements in the model obje
t are pro
essed together to
reate thestring representation of the model, the explanations are extra
ted and insertedinto that string representation.Finally, in se
tion 4.4, I des
ribe how I modi�ed the rule �le.4.3 The Element TreeThe element tree is the key part to generating all the models. In this se
tion Ides
ribe how it works.The generated element items (elements, element sets, and element set
hoi
es)from the rules are inserted into the tree. Every time an item is inserted, a newlevel of nodes at the bottom of the tree is
reated. If the item is an elementor an element set, then one new node is
reated at every leaf. The new node
ontains the element or element set. If the item is an element set
hoi
e thenseveral new nodes are
reated at every leaf. Ea
h and every one of those nodes
orresponds to one of the element sets in the
hoi
e.From the pro
edure des
ribed above, it is
lear that the element tree
ontainsa lot of redundan
y � all nodes at the same level in the tree are dupli
ates ofea
h other. And worse, for every element set
hoi
e inserted into the tree, thenumber of dupli
ate nodes grows exponentially. However, the advantage of usingthis tree representation is that it's now easy to generate all the models. In fa
t,47

all the paths in the tree, from the root to the leaves, represent one model. Bytraversing all the paths and
olle
ting all the elements on the way, we obtain allthe models.Here follows an example to illustrate what I have just des
ribed. Let's sayone has the following ESRA model:A;B;C;D;E;F;A to F represent ESRA statements, for example
onstraints, de
larations, andso on. The ESRA model is then translated in the following way:A --> GB --> [H,I℄C --> {[J,K℄,[L,M,N℄,[O,P,Q℄}D --> RE --> {[S,T℄,[U,V℄}F --> [W,X℄G to X represent elements in the output language, in our
ase the OPL+ lan-guage. Elements within square bra
kets, [and ℄, make up an element set. Ele-ment sets within
urly bra
es, { and }, make up an element set
hoi
e. For exam-ple, above, A translates into the element G, while B translates into the element set[H,I℄, and C translates into the element set
hoi
e {[J,K℄,[L,M,N℄,[O,P,Q℄}.Following the translation, the generated items are inserted into the tree inthe same order as they were generated. The �gure below shows the element treewhen it is
omplete. Noti
e how the element tree bran
hes when an elementset
hoi
e is inserted into the tree. Noti
e also the aspe
t of dupli
ates as theelement item R o

urs three times and the element item [W,X℄ o

urs six times.

48

G

[H,I]

[J,K]

R R R

[S,T] [U,V] [S,T] [U,V] [S,T] [U,V]

[W,X] [W,X]

[L,M,N] [O,P,Q]

[W,X] [W,X] [W,X] [W,X]Now, by traversing all the paths in the tree, we
an generate all the models;the models are listed below. As models are basi
ally element sets, I use squarebra
kets to represent them.1: [G,H,I,J,K,R,S,T,W,X℄2: [G,H,I,J,K,R,U,V,W,X℄3: [G,H,I,L,M,N,R,S,T,W,X℄4: [G,H,I,L,M,N,R,U,V,W,X℄5: [G,H,I,O,P,Q,R,S,T,W,X℄6: [G,H,I,O,P,Q,R,U,V,W,X℄In the se
tion on non-determinism in
ompilation, see se
tion 2.5, I mentionedthe problem of representations depending on other representations. With theabove pro
edure, all the
ombinations of representations are generated, eventhose so
alled invalid
ombinations or invalid models that
ontain representa-tions that don't mat
h together. The following is a des
ription of the algorithmI used to solve this problem.To eliminate the invalid
ombinations, I
reated spe
ial
onditions for insert-ing an element set
hoi
e into the tree. While traversing down the path to a leaf,I
he
ked if any of the nodes
ontained a variable de
laration � only variablede
larations
an set representations. If I found su
h an element, I stored itsrepresentation number, a key to identify the representation. Down at the leaf,I
ompared the representation numbers in the
hoi
e with the representationnumber that I had stored. I would
reate nodes only for those element sets withthe same representation number. In this way, paths
orresponding to invalidmodels would never be
reated.Here follows a se
ond example illustrating an element tree. The same input49

model and the same translation rules as were listed in se
tion 2.5 have beenused. To refresh the reader's memory, the program looks like this:{int} V;{int} W;var V->W F;solve {inje
tive(F)};The illustration of the element tree that one sees below is, unlike the �rst ex-ample, a print-out that is generated automati
ally from my ESRA appli
ation.Nodes with the parent attribute are setting the representation and nodes withthe
hild attribute are following the representation. The number after the
olon after the
hild or the parent attribute is the representation number. Notethat the algorithm on eliminating invalid models has been used: a �parent� nodeonly has �
hild� nodes with the same representation number as itself below it inthe tree.---------------------------------------INPUT: {int} VINPUT: {int} W--parent:1OUTPUT: var F[V℄ in W--
hild:1 CONSTRAINT: alldifferent(F)--OBJECTIVE,SOLVE--
hild:1CONSTRAINT: forall(i in W)forall(j in W)i <> j =>F[i℄ <> F[j℄--OBJECTIVE,SOLVE--
hild:1OUTPUT: var D_F[W℄ in VCONSTRAINT: forall(i in V) forall(j in W)50

F[i℄ = j => D_F[j℄ = i--OBJECTIVE,SOLVE--parent:2OUTPUT: var F[V,W℄ in 0..1CONSTRAINT: forall(j in W) sum(i in V)F[i,j℄ = 1--
hild:2CONSTRAINT: forall(i in W) sum(i in V)F[i,j℄ <= 1--OBJECTIVE,SOLVE--parent:3OUTPUT: var {V} F[W℄;CONSTRAINT: union all(j in W) F[j℄ = VCONSTRAINT: forall(i in W) forall(j in W)i <> j =>F[i℄ inter F[j℄ = {}--
hild:3CONSTRAINT: forall(i in W)
ard(F[j℄) <= 1--OBJECTIVE,SOLVE---------------------------------------4.4 Enhan
ing the Rule ConverterAs mentioned in the �rst se
tion of this
hapter, phase 2 added new requirementsto the rule �le system. In this se
tion I des
ribe how I solved these requirements.First, the appearan
e of the rule �le was modi�ed. Here is how the newrule �le system lets one write rules. The examples are based on the rules formapping variables and the inje
tive
onstraint, given in se
tion 2.5.de
l mappingVarDe
l(F,V,W) {:51

=> var F[V℄ in W;| parent:1;V:intset;W:intset;=> % a boolean matrixvar F[V,W℄ in 0..1;% should be a many-to-one mappingforall(j in W)sum(i in V) F[i,j℄ = 1;| parent:2;V:intset;W:intset;=> var {V} F[W℄;union all(j in W) F[j℄ = V;forall(i in W) forall(j in W)i <> j => F[i℄ inter F[j℄ = {};| parent:3;V:intset;W:intset:}
ons inje
tiveConstraint(F) {:=> alldifferent(F);|
hild:1;F:varmap(V->W)=> forall(i in W) forall(j in W)i <> j => F[i℄ <> F[j℄;|
hild:1;F:varmap(V->W)=> var D_F[W℄ in V;forall(i in V) forall(j in W)F[i℄ = j => D_F[j℄ = i;|
hild:1;F:varmap(V->W)=> forall(i in W) sum(i in V)F[i,j℄ <= 1;|
hild:2;F:varmap(V->W)=> forall(i in W)
ard(F[j℄) <= 1;|
hild:3;F:varmap(V->W):}As the reader
an see, the basi
 syntax of the rule �le is still similar to thatof phase 1. A blo
k of lines starting with an arrow (=>) makes up the outputpart, and a blo
k of lines starting with a verti
al bar (|) makes up the
onditionpart. Ea
h su
h pair
onsisting of an output part and a
ondition part is
alleda subrule. However, there is a major di�eren
e. In phase 1, the translated resultwas the output from the �rst subrule that mat
hed the input, i.e., the output
ame from only one subrule. Here, in phase 2, several subrules are allowed tomat
h the input. The translated result will be an element set
hoi
e, in whi
hthe element sets
orrespond to the output parts of all the mat
hing subrules.This solves the main requirement � there
an now be several representationsfor one input statement.Next was the problem of representations depending on other representations.I solved this by adding new attributes to the
onditions. Representations withthe
hild attribute depend on representations with the parent attribute. Thetwo
an only be
ombined if they have the same representation number (given52

after the
olon).The new rule �le also allows one to write explanations. As
an be seen bythe two explanations in the mapping rule, the explanations are pla
ed abovethe statement they refer to. To distinguish them from normal
ode statements,the line or lines that make up the explanation start with a per
ent sign (%).Finally, there is the issue of spe
ifying substitutions in the rules. The exam-ple below shows how it's done. In this
ase the substitution takes pla
e on line2. Q is an expression in whi
h all o

urren
es of j are substituted with F[i℄.expr sumExpression(i,j,F,Q) {:=> % substitute jsum(i in V) Q[:j/F[i℄:℄;|
hild:1;F:varmap(V->W)=> % sum all elementssum(i in V) sum(j in W)F[i,j℄ * Q;|
hild:2;F:varmap(V->W)=> var F_B[V,W℄ in 0..1;forall(i in V) forall(j in W)F_B[i,j℄ = 1 <=> i in F[j℄;sum(i in V)sum(j in W)F_B[i,j℄ * Q;|
hild:3;F:varmap(V->W):}Besides the appearan
e of the rule �le, the new requirements have also a�e
tedthe fun
tionality of the rule
onverter program. Here is how the rule for sumexpressions would be translated into Java (Note: I have omitted the Java
odefor the last two produ
tions � the
ode is really three times as large).publi
 ElementSetChoi
e sumExpression(Obje
t i_param,Obje
t j_param,Obje
t F_param,Obje
t Q_param) throwsUndefinedIdentifierEx
eption,InvalidTypeEx
eption {ElementSetChoi
e
hoi
e=new ElementSetChoi
e();String i; String j; String F; String Q;{ ElementSet es = ElementSet.
reateChild(1);i = getStringValue(i_param,1);addExtraElements(i_param,1,es);j = getStringValue(j_param,1);addExtraElements(j_param,1,es);F = getStringValue(F_param,1);addExtraElements(F_param,1,es);Q = getStringValue(Q_param,1);53

addExtraElements(Q_param,1,es);SymbolData FData = symbolTable.lookup(F);if (FData == null)throw new UndefinedIdentifierEx
eption((SymbolInfo)F_param);String V = FData.mappingDomain();String W = FData.mappingCodomain();if ((true) && (FData.isMappingVariable())) {Explanation expl;expl = new Explanation();expl.addLine("substitute "+j+"");partial(es,expl,tab("sum("+i+" in "+V+") \n",0) +tab(""+TextSubstituter.substituteId(""+Q+"",""+j+"",""+F+"["+i+"℄")+"",1));
hoi
e.addElementSet(es);}}{}{}if (
hoi
e.isEmpty())throw new InvalidTypeEx
eption();return
hoi
e;}The stru
ture of the new Java
ode is a lot di�erent from that of the Java
odegenerated in phase 1.To begin with, the input parameters are no longer of type SymbolInfobut of type Obje
t. This is be
ause parameters
an now also be of typeElementSetChoi
e. The method getStringValue is
alled to distinguish be-tween the two types and retrieve the
orre
t string value of the parameter. Themethod addExtraElements is
alled to retrieve the other optional elements thatare asso
iated with the string value.Another
hange is that the method no longer returns an ElementSet obje
t.Sin
e rules
an generate several representations, the method now returns anElementSetChoi
e obje
t. Further on, Explanation obje
ts are
reated andadded to their
orresponding element obje
ts.54

4.5 Testing and ResultsIn this se
tion I test that my ESRA appli
ation works
orre
tly. As the readerknows, the ESRA appli
ation takes an input program in the ESRA languageand produ
es several output programs in the OPL+ language. As the OPL+language is not
ompilable, I
annot
he
k that the output programs themselveswork
orre
tly (
ompare with steps 4, 5 and 6 from the test pro
edure used inphase 1, see se
tion 3.12). I
an only
he
k that the ESRA appli
ation produ
esthe right output programs, based on the rules in the rule �le.The rule �le
onsists of �ve rules. Three of these rules are the rules for themapping variable de
laration, the inje
tive
onstraint, and the sum expression,whi
h were des
ribed in the previous se
tion. The two other rules are the rulesfor the forall
onstraint and the inverse image of a mapping. Ea
h of the �verules gets listed further down in the se
tion in the moment it is applied for the�rst time.To test the ESRA appli
ation I will a

omplish the following tasks:� Task 1:
reate an ESRA model that makes use of many of the featuresimplemented in the ESRA appli
ation.� Task 2: using the rules in the rule �le, produ
e the output programs byhand � not by using the
ompiler.� Task 3: run the ESRA model thru the ESRA appli
ation to generate theoutput programs.� Task 4:
ompare the
ompiler-generated output programs with the outputprograms produ
ed by hand.The obje
tive of these tasks is to test that the ESRA appli
ation generatesthe
orre
t output programs for the ESRA model. For a su

essful out
omeof the test, the output programs produ
ed by hand in task 2 should be equalto the output programs generated by the
ompiler in task 3. With the ESRAmodel being
omplex, su
h a su

essful out
ome should mean that the ESRAappli
ation will work
orre
tly for many other ESRA models as well.Task 1,
reating the ESRA model For step 1, I
reate the following ESRAmodel. It
onsists of two integer sets V and W; one mapping variable F from Vinto W; an inje
tive
onstraint on F; and a
omplex forall
onstraint.{int} V;{int} W;var V->W F;solve {inje
tive(F);forall(<i,j> in F)sum (<k,l> in F) 55

~F[k℄ * l = k};This ESRA model is small and does not represent anything meaningful. How-ever, despite its size, it a
tually makes use of all �ve rules in the rule �le. Also,three of the rules, the rules for the forall
onstraint, the sum expression, andthe inverse image of a mapping, are used in a nested way.Task 2, produ
ing the output programs by hand In this extensive para-graph I will perform step by step the
reation of the the output programs ofthe ESRA model by hand. The purpose is to
he
k that the generated outputprograms from the
ompiler are the
orre
t ones.I start by dividing the ESRA model into numbered parts, 1 to 10, as the�gure below shows.

~F[k]

forall(<i,j> in F)

solve {

* l

V:set(int)

W:set(int)

var F:V−>W

injective(F)

}

sum(<k,l> in F)

= k

1

2

3

4

5

7

8
9

10

6

For ea
h part, element items in the OPL+ language are produ
ed. By usingthe rules in the rule �le, listed in the beginning of this se
tion, I
an manuallydetermine these element items.When illustrating the element items in the
ontinuation of this se
tion, Iuse semi-
olons to separate elements from ea
h other in an element set. Ea
helement set in an element set
hoi
e is then pre�xed with the number of therepresentation it applies to followed by a
olon. If several element sets applyto the same representation, these are
alled alternatives. An element set thatis an alternative of a representation is pre�xed with the representation number56

followed by a
olon, a
omma sign (,) and its alternative number. The alterna-tive number pertains to the pla
e the element set has among the other elementsets that apply to the same representation; the �rst element set has alternativenumber 1, the se
ond element set alternative number 2, and so on. For exam-ple, in the element set
hoi
e illustration below, the �rst element set applies torepresentation 1, the se
ond and the third element set to representation 2, andthe fourth element set to representation 3. The se
ond and the third elementset are distinguished from ea
h other by their alternative numbers, 1 and 2,respe
tively.1: F[i℄=F[j℄;i>=j;2,1: F[i,j℄=0;2,2: F[i,j℄=1;i<=j => i=0;3: F[i℄=0;Parts 1 and 2 These parts are the integer set de
larations {int} V and{int} W. There exists no rule in the rule �le for translating these. Instead,the translation s
heme is
oded dire
tly into the semanti

ode of the parserspe
i�
ation �le (esra_pass2.
up). In this �le, it is spe
i�ed that integer setde
larations should be translated into themselves:{int} V;{int} W;Part 3 This part is the mapping variable de
laration var V->W F. I use therule for mapping variable de
larations from the rule �le:de
l mappingVarDe
l(F,V,W) {:=> var F[V℄ in W;| parent:1;V:intset;W:intset;=> var F[V,W℄ in 0..1;forall(j in W)sum(i in V) F[i,j℄ = 1;| parent:2;V:intset;W:intset;=> var {V} F[W℄;union all(j in W) F[j℄ = V;forall(i in W) forall(j in W)i <> j => F[i℄ inter F[j℄ = {};| parent:3;V:intset;W:intset:}This should produ
e the following element set
hoi
e:1: var F[V℄ in W;2: var F[V,W℄ in 0..1; 57

forall(j in W)sum(i in V) F[i,j℄ = 1;3: var {V} F[W℄;union all(j in W) F[j℄ = V;forall(i in W) forall(j in W)i <> j => F[i℄ inter F[j℄ = {};Part 4 This part, solve, is the obje
tive of the model. As is listed in theparser spe
i�
ation �le, it translates into an element of itself.Part 5 This part is the inje
tive
onstraint, inje
tive(F). To translate it,I use the rule for the inje
tive
onstraint in the rule �le:
ons inje
tiveConstraint(F) {:=> alldifferent(F);|
hild:1;F:varmap(V->W)=> forall(i in W) forall(j in W)i <> j => F[i℄ <> F[j℄;|
hild:1;F:varmap(V->W)=> var D_F[W℄ in V;forall(i in V) forall(j in W)F[i℄ = j => D_F[j℄ = i;|
hild:1;F:varmap(V->W)=> forall(i in W) sum(i in V)F[i,j℄ <= 1;|
hild:2;F:varmap(V->W)=> forall(i in W)
ard(F[j℄) <= 1;|
hild:3;F:varmap(V->W):}It produ
es the following element set
hoi
e:1,1: alldifferent(F);1,2: forall(i in W) forall(j in W)i <> j => F[i℄ <> F[j℄;1,3: var D_F[W℄ in V;forall(i in V) forall(j in W)F[i℄ = j => D_F[j℄ = i;2: forall(i in W) sum(i in V)F[i,j℄ <= 1;3: forall(i in W)
ard(F[j℄) <= 1;Parts 6 to 10 These parts belong to the forall
onstraint and are all nestedwithin ea
h other. The stru
ture of the parts
orresponds to the parse tree ofthe ESRA model. The most inner part is the part that is parsed and translated�rst by the
ompiler. Its result is passed up to the next innermost part, and58

so on. The
omplete translation of the forall
onstraint is the result from theoutermost part, part 10.Part 6 This part is the inverse image expression ~F[k℄. Listed below is therule for inverse image expressions in the rule �le, whi
h I use for translating theexpression.expr mappingImageExpression(F,i) {:=> F[i℄;|
hild:1;F:varmap(V->W)=> sum(j in W) F[i,j℄ * j;|
hild:2;F:varmap(V->W)=> var F_B[V,W℄ in 0..1;forall(i in V) forall(j in W)F_B[i,j℄ = 1 <=> i in F[j℄;sum(j in W) F_B[i,j℄ * j;|
hild:3;F:varmap(V->W):}By applying the rule, the following element set
hoi
e should be produ
ed. Notethat I have substituted all o

urren
es of i with k.1: F[k℄;2: sum(j in W) F[k,j℄ * j;3: var F_B[V,W℄ in 0..1;forall(k in V) forall(j in W)F_B[k,j℄ = 1 <=> k in F[j℄;sum(j in W) F_B[k,j℄ * j;Part 7 This part is the arithmeti
 expression ~F[k℄*l. As is spe
i�ed in theparser spe
i�
ation �le, all arithmeti
 expressions should translate into them-selves. Thus, I should take the translated result of ~F[k℄ and
ombine it withthe
ode string �* l�. Be
ause the result of ~F[k℄ is an element set
hoi
e,(the element set
hoi
e from part 6), the pro
edure is
omplex. The
ode stringshould be added to all element sets in the
hoi
e. For ea
h element set, it shouldbe appended to the partial element. The partial element is a spe
ial type ofelement that is not represented by any of the four standard elements, i.e., inputelements, output elements,
onstraint elements and obje
tive elements. Thepartial elements are used to represent subparts of other elements. For example,in the third element set listed above, the sum expression on the last line is apartial element. This expression is not one of the four standard elements, butit is used to eventually
reate the forall
onstraint of part 10, whi
h is one ofthe four standard elements.Applying the pro
edure, appending �* l� to all partial elements in the ele-ment set
hoi
e from part 6, I get this new element set
hoi
e:59

1: F[k℄ * l;2: sum(j in W) F[k,j℄ * j * l;3: var F_B[V,W℄ in 0..1;forall(k in V) forall(j in W)F_B[k,j℄ = 1 <=> k in F[j℄;sum(j in W) F_B[k,j℄ * j * l;Part 8 This part is the sum expression used in the ESRA model:sum(<k,l> in F)~F[k℄ * lFor translating this, I use the rule for sum expressions in the rule �le:expr sumExpression(i,j,F,Q) {:=> sum(i in V) Q[:j/F[i℄:℄;|
hild:1;F:varmap(V->W)=> sum(i in V) sum(j in W)F[i,j℄ * Q;|
hild:2;F:varmap(V->W)=> var F_B[V,W℄ in 0..1;forall(i in V) forall(j in W)F_B[i,j℄ = 1 <=> i in F[j℄;sum(i in V)sum(j in W)F_B[i,j℄ * Q;|
hild:3;F:varmap(V->W):}Noti
e the parameters in the signature of the rule. For our sum expression,i
orresponds to k, j
orresponds to l, and Q
orresponds to ~F[k℄ * l. Asthe result of ~F[k℄ * l is an element set
hoi
e (the element set
hoi
e frompart 8), the pro
edure is again
omplex. For ea
h subrule R, an element setS is produ
ed by the rule. In R, every o

urren
e of the string �Q� should berepla
ed. The element set E in Q, that applies to the same representation asdoes R, should be used for the repla
ement. Its partial element, X, should bethe new value. The remaining elements in E are added to S.Applying the pro
edure on the rule for sum expressions, I obtain the elementset
hoi
e listed below. All o

urren
es of i and j have been repla
ed by theidenti�ers k and l, and all o

urren
es of �Q� have been repla
ed by the
orre
tpartial elements. Note that the substitution expression Q[:j/F[i℄:℄ from the�rst subrule
omes into e�e
t. With i and j substituted, the substitution ex-pression is really Q[:l/F[k℄:℄. In the partial element that
orresponds to thiso

urren
e of Q, all o

urren
es of l should be substituted with F[k℄. With thepartial element being the arithmeti
 expression F[k℄*l from the �rst elementset for part 7, the result of the substitution is F[k℄*F[k℄.60

1: sum(k in V)F[k℄ * F[k℄;2: sum(k in V) sum(j in W)F[k,l℄ * sum(j in W) F[k,j℄ * j * l;3: var F_B[V,W℄ in 0..1;var F_B[V,W℄ in 0..1;forall(k in V) forall(j in W)F_B[k,l℄ = 1 <=> k in F[l℄;forall(k in V) forall(j in W)F_B[k,j℄ = 1 <=> k in F[j℄;sum(k in V)sum(l in W)F_B[k,l℄ * sum(j in W) F_B[k,j℄ * j * l;The observant reader might noti
e that the third element set has a strangefeature, whi
h
ould be interpreted as erroneous. It
ontains two exa
t instan
esof the same variable de
laration:var F_B[V,W℄ in 0..1;var F_B[V,W℄ in 0..1;This strange feature is dealt with in the end of the se
tion.Part 9 This part is the equality relationsum(<k,l> in F)~F[k℄ * l = kIts left operand is the sum expression; its right operand is the identi�er k.Similar to part 7, the result of the left operand is an element set
hoi
e (theelement set
hoi
e from part 8). The translation is done by appending the
odestring �= k� to all the partial elements in the
hoi
e. By doing this, I get thisnew element set
hoi
e:1: sum(k in V)F[k℄ * F[k℄ = k;2: sum(k in V) sum(j in W)F[k,l℄ * sum(j in W)F[k,j℄ * j * l = k;3: var F_B[V,W℄ in 0..1;var F_B[V,W℄ in 0..1;forall(k in V) forall(j in W)F_B[k,l℄ = 1 <=> k in F[l℄;forall(k in V) forall(j in W)F_B[k,j℄ = 1 <=> k in F[j℄;sum(k in V)sum(l in W)F_B[k,l℄ * sum(j in W)F_B[k,j℄ * j * l = k;61

Final part, part 10 This part is the forall
onstraintforall(<i,j> in F)sum(<k,l> in F)~F[k℄ * l = kThe rule for the forall
onstraint in the rule �le is used to do the translation:
ons forallConstraint(i,j,F,P) {:=> forall(i in V) P[:j/F[i℄:℄;|
hild:1;F:varmap(V->W)=> forall(i in V) forall(j in W)F[i,j℄ = 1 => P;|
hild:2;F:varmap(V->W)=> forall(i in V) forall(j in W)i in F[j℄ => P;|
hild:3;F:varmap(V->W):}Like for part 8, one of the parameters to the rule is represented by an elementset
hoi
e; this is the parameter P, whi
h is represented by the element set
hoi
e from part 9. I use the pro
edure that was des
ribed for part 8, and Iobtain a new element set
hoi
e, whi
h is listed below. Unlike for part 8, thesubstitution expression P[:j/F[i℄:℄ in the �rst subrule does not
ome intoe�e
t. This is be
ause the relation sum(<k,l> in F) ~F[k℄ * l = k, whi
his the partial element in the �rst element set from part 9, doesn't
ontain anyo

urren
es of the identi�ers that are represented by the parameters i and jin the rule (the identi�ers in this
ase happen to have the same names as theparameters: i and j).1: forall(i in V) sum(k in V)F[k℄ * F[k℄ = k;2: forall(i in V) forall(j in W)F[i,j℄ = 1 =>sum(k in V) sum(j in W)F[k,l℄ * sum(j in W)F[k,j℄ * j * l = k;3: var F_B[V,W℄ in 0..1;var F_B[V,W℄ in 0..1;forall(k in V) forall(j in W)F_B[k,l℄ = 1 <=> k in F[l℄;forall(k in V) forall(j in W)F_B[k,j℄ = 1 <=> k in F[j℄;forall(i in V) forall(j in W)i in F[j℄ => sum(k in V)sum(l in W)F_B[k,l℄ * sum(j in W)F_B[k,j℄ * j * l = k;62

Creating the element tree As all the element items have been determined,I
an now
reate the element tree. The element items that were obtained fromtranslating parts 1, 2, 3, 4, 5, and 10 of the ESRA model are the items that Iinsert into the tree. When inserting the items, I make sure that I do not
reatebran
hes that give rise to invalid models, i.e., models that
ontain items with
on�i
ting representations.Below, a �gure of the tree is shown when it is
omplete. In the �gure, theelements or element sets that exist in the nodes are identi�ed by one or moreof the following: (1) the number of the part of the ESRA model that they wereprodu
ed from, (2) optionally the number of the representation that they applyto, and (3) optionally the number of the alternative of that representation.
part 1

part 2

rep 1
part 3 part 3

rep 2
part 3
rep 3

part 4 part 4

part 5
rep 3

part 5
rep 1
alt 1

part 5
rep 1
alt 2

part 5
rep 1
alt 3

part 10
rep 1

part 10
rep 1

part 10
rep 1

part 10
rep 3

part 4

part 5
rep 2

part 10
rep 2Creating the models I
an now
reate all the models by traversing the pathsin the element tree. All of the �ve models that are
reated will be treated intheir own paragraphs below. For ea
h paragraph, I will simultaneously performtasks 3 and 4, so that I
an verify that the ESRA appli
ation has generated the
orre
t model.Model 1 By traversing the left-most path in the element tree, I obtain theelement items that belong to model 1:63

(part 1)V{int} Vset(int);(part 2){int} W;(part 3,rep 1)var F[V℄ in W;(part 4)solve(part 5,rep 1,alt 1)alldifferent(F);(part 10,rep 1)forall(i in V) sum(k in V)F[k℄ * F[k℄ = k;The following is an ex
erpt of the print-out generated from the ESRA appli
a-tion, representing model 1.Model 1:---------------------------------------{int} V;{int} W;var F[V℄ in W;solve {alldifferent(F);forall(i in V) sum(k in V)F[k℄ * F[k℄ = k};A
omparison of the two models shows that they
ontain the same elementitems. The two models are therefore equal. The fa
t that the element itemsmight not be ordered in the same way is irrelevant.Model 2 By traversing the se
ond path in the element tree, I obtain theelement items that belong to model 2:(part 1){int} V;(part 2){int} W;(part 3,rep 1)var F[V℄ in W;(part 4)solve(part 5,rep 1,alt 2)forall(i in W) forall(j in W)i <> j => F[i℄ <> F[j℄;(part 10,rep 1) 64

forall(i in V) sum(k in V)F[k℄ * F[k℄ = k;Below is the
ompiler-generated ex
erpt representing model 2.Model 2:--{int} V;{int} W;var F[V℄ in W;solve {forall(i in W) forall(j in W)i <> j => F[i℄ <> F[j℄;forall(i in V) sum(k in V)F[k℄ * F[k℄ = k};A
omparison shows that the two models are equal.Model 3 Path number 3 in the element tree yields the element items thatbelong to model 3:(part 1){int} V;(part 2){int} W;(part 3,rep 1)var F[V℄ in W;(part 4)solve(part 5,rep 1,alt 2)var D_F[W℄ in V;forall(i in V) forall(j in W)F[i℄ = j => D_F[j℄ = i;(part 10,rep 1)forall(i in V) sum(k in V)F[k℄ * F[k℄ = k;Below is the ex
erpt of model 3 generated by the
ompiler.Model 3:--{int} V;{int} W;var F[V℄ in W;var D_F[W℄ in V;solve { 65

forall(i in V) forall(j in W)F[i℄ = j => D_F[j℄ = i;forall(i in V) sum(k in V)F[k℄ * F[k℄ = k}A
omparison of the two models shows that model 3 has been generated
orre
tlyby the ESRA appli
ation.Model 4 Path number 4 in the element tree yields the element items thatbelong to model 4:(part 1){int} V;(part 2){int} W;(part 3,rep 2)var F[V,W℄ in 0..1;forall(j in W)sum(i in V) F[i,j℄ = 1;(part 4)solve(part 5,rep 2)forall(i in W) sum(i in V)F[i,j℄ <= 1;(part 10,rep 2)forall(i in V) forall(j in W)F[i,j℄ = 1 =>sum(k in V) sum(l in W)F[k,l℄ * sum(j in W)F[k,j℄ * j * l = k;Below is the ex
erpt of model 4 generated by the
ompiler.Model 4:--{int} V;{int} W;var F[V,W℄ in 0..1;solve {forall(j in W) sum(i in V)F[i,j℄ = 1;forall(i in W) sum(i in V)F[i,j℄ <= 1;forall(i in V) forall(j in W)F[i,j℄ = 1 => sum(k in V)sum(l in W) 66

F[k,l℄ * sum(j in W)F[k,j℄ * j * l = k};A
omparison of the two models shows that model 4 has been generated
orre
tlyby the ESRA appli
ation.Model 5 Path number 5 in the element tree yields the element items thatbelong to model 5:(part 1){int} V;(part 2){int} W;(part 3,rep 3)var {V} F[W℄;union all(j in W) F[j℄ = V;forall(i in W) forall(j in W)i <> j => F[i℄ inter F[j℄ = {};(part 4)solve(part 5,rep 3)forall(i in W)
ard(F[j℄) <= 1;(part 10,rep 3)var F_B[V,W℄ in 0..1;var F_B[V,W℄ in 0..1;forall(k in V) forall(j in W)F_B[k,l℄ = 1 <=> k in F[l℄;forall(k in V) forall(j in W)F_B[k,j℄ = 1 <=> k in F[j℄;forall(i in V) forall(j in W)i in F[j℄ => sum(k in V)sum(l in W)F_B[k,l℄ * sum(j in W)F_B[k,j℄ * j * l = k;Below is the ex
erpt of model 5 generated by the
ompiler.Model 5:--{int} V;{int} W;var {V} F[W℄;var F_B[V,W℄ in 0..1;var F_B[V,W℄ in 0..1; 67

solve {union all(j in W) F[j℄ = V;forall(i in W) forall(j in W)i <> j => F[i℄ inter F[j℄ = {};forall(i in W)
ard(F[j℄) <= 1;forall(k in V) forall(j in W)F_B[k,j℄ = 1 <=> k in F[j℄;forall(k in V) forall(l in W)F_B[k,l℄ = 1 <=> k in F[l℄;forall(i in V) forall(j in W)i in F[j℄ => sum(k in V)sum(l in W)F_B[k,l℄ * sum(j in W)F_B[k,j℄ * j * l = k};A
omparison of the two models shows that model 5 has been generated
orre
tlyby the ESRA appli
ation.As all output models generated by hand are equal to the output modelsgenerated by the
ompiler, it means that the ESRA appli
ation has su

essfully
ompiled the ESRA model.The issue of dupli
ates As the reader might have noti
ed, model 5 has astrange feature, whi
h
ould be interpreted as an error. In this model there aretwo identi
al de
larations of the array variable F_B:var F_B[V,W℄ in 0..1;var F_B[V,W℄ in 0..1;There are also two
onstraints that, although not identi
al, are semanti
allyequal:forall(k in V) forall(j in W)F_B[k,j℄ = 1 <=> k in F[j℄;forall(k in V) forall(l in W)F_B[k,l℄ = 1 <=> k in F[l℄;The reason is that there are two rules that produ
e the same de
laration and thesame
onstraint. They are the third subrule of the rule for the sum expression=> var F_B[V,W℄ in 0..1;forall(i in V) forall(j in W)F_B[i,j℄ = 1 <=> i in F[j℄;sum(i in V)sum(j in W)F_B[i,j℄ * Q;|
hild:3;F:varmap(V->W)68

and the third subrule of the rule for inverse image expressions=> var F_B[V,W℄ in 0..1;forall(i in V) forall(j in W)F_B[i,j℄ = 1 <=> i in F[j℄;sum(j in W) F_B[i,j℄ * j;|
hild:3;F:varmap(V->W)Their purpose is to
onvert the array F, used for the third representation, intoa new matrix F_B, used for the se
ond representation. In this way, the thirdsubrule
an use the translation te
hnique of the se
ond subrule.A simple solution to this problem would be to
reate di�erent names for thetwo matri
es, for example one
alled F_B1 and one
alled F_B2. However, theproblem o

urs in other situations as well. For example, a program
ontainingtwo inverse image expressions, su
h as ~F[j℄ and ~F[k℄ also produ
es twoidenti
al de
larations of the matrix F_B. Here, one
annot solve the problem byusing di�erent names, be
ause the de
larations are both produ
ed by the samerule.Despite this problem I will not spend time solving it. The reason is thatit has been agreed on that my targeted ESRA appli
ation is not required tohandle this issue.The issue of multiple mapping variables There is also another issue,although not visible from the test, that
an be interpreted as erroneous. This
on
erns the usage of several mapping variables in the ESRA model. The non-deterministi

ompiler was designed in mind of only being
apable of dealingwith one mapping variable. When using several mapping variables in the ESRAmodel, this presents a problem to the
ompiler. To understand this problem,look at the following ESRA model that uses two mapping variables:{int} V;{int} W;var V->W F;var V->W G;solve {inje
tive(F);inje
tive(G)};When translating the
onstraint inje
tive(F), the translated result will
on-tain several o

urren
es of the mapping variable F. For ea
h model, it is impor-tant that the representation of F used here, is the same as the representationused in the de
laration of F. In se
tion 4.3, the pro
edure for inserting elementitems into the element tree was des
ribed. The pro
edure is to traverse downthe tree and add the new element item to all the leaves. For element set
hoi
es,only element sets that have the same representation number as the parent inthe bran
h are added to the leaf. The parent is an element item that has been69

produ
ed by a rule in the rule �le with the parent attribute. With the
ur-rent rule �le, mapping variable de
larations are parents. When a program hastwo mapping variables, there will be two parents in the bran
h. The elementset
hoi
e to be inserted
he
ks the representation set by the
losest parent inthe bran
h, believing there is only one parent. In the
ase of inje
tive(F), the
losest parent is the de
laration of G.The translation of inje
tive(F) thereforeuses the representation of G, when instead it should have used the representationof F.Listed below is an ex
erpt of the element tree that is generated by the ESRAappli
ation, when run on the ESRA model above. The ex
erpt shows one of thebran
hes in the tree, whi
h represents one of the output programs. The elementitems in the bran
h have been numbered from 1 to 6.--------------------------------------- (1)INPUT: {int} VINPUT: {int} W-- (2)parent:1OUTPUT: var F[V℄ in W-- (3)parent:2OUTPUT: var G[V,W℄ in 0..1CONSTRAINT: forall(j in W) sum(i in V)G[i,j℄ = 1-- (4)
hild:2CONSTRAINT: forall(i in W) sum(i in V)F[i,j℄ <= 1-- (5)
hild:2CONSTRAINT: forall(i in W) sum(i in V)G[i,j℄ <= 1-- (6)OBJECTIVE,SOLVE---------------------------------------In element item 2, F is de
lared using its representation number 1, F, while inelement item 3, G is de
lared using its representation number 2. The problemo

urs for element item 4, whi
h is the translation of inje
tive(F). Instead ofusing representation 1, F, whi
h is the
orre
t representation, it uses represen-tation 2, F. The generated output program will in
orre
tly
ontain o

urren
esof both F and F. 70

Like the issue
on
erning dupli
ates, I will not spend any time solving thisproblem. It has been agreed on that my targeted ESRA appli
ation is notrequired to handle ESRA models with multiple mapping variable de
larations.4.6 Con
lusionThe tests performed in the previous se
tion proved that the ESRA appli
ation
ould
orre
tly generate all of the output programs for the ESRA model thatwas listed there. As this ESRA model was rather
omplex, making use of allthe rules in the rule �le, it seems likely that the ESRA appli
ation will work formost other ESRA models, as well.

71

Chapter 5Con
lusionThis work
onsisted of two phases whi
h are now
ompleted � my proje
t has
ome to its
on
lusion.Summary In this proje
t I have
reated two di�erent
ompilers. In phase 1,I
reated a
ompiler that translates models in the ESRA language into OPLprograms. The ESRA language used here supports a wide range of primitives.In phase 2, I
reated a
ompiler that translates models in the ESRA languageinto a set of di�erent output programs in OPL+. The ESRA language used heredoesn't support as many primitives, but the
hoi
e of di�erent output programsprovides for better exe
ution times.For
reating the
ompiler I used the
ompiler
ompiler help tools
alledJLex and JavaCUP. They let me spe
ify the pro
edure for lexing and parsingin separate spe
i�
ation �les. These �les
ould then automati
ally be
onvertedto working Java programs.Work was spent on analyzing and investigating how JLex and JavaCUPworked in detail. This led to the solutions of how the JLex generated tokenizer
ould be
onne
ted with the JavaCUP generated parser, how to
reate a two-pass
ompiler with JavaCUP, and how to report errors with JLex and JavaCUP.There was also a wish to have the possibility of viewing the di�erent stages ofthe
ompilation. For this I
reated two programs
alled the token list generatorgenerator and the parse tree generator generator. These programs altered thebehavior of the JLex and JavaCUP spe
i�
ation �les, so that they produ
edni
e print-outs of the token list and the parse tree respe
tively.To simplify the pro
edure of writing translation rules for the
ompiler, I
reated a rule
onverter program. The program lets one spe
ify the rules in asimple format, and then
onverts these into Java methods.For making the
ompiler easy to work with, I
reated a graphi
al appli
ation.This appli
ation lets one open and save �les and use the menus to invoke a
tionsin the
ompiler. Also, it in
ludes a ni
e error handling system, whi
h is
apableof presenting informative error messages and high-lighting erroneous parts ofthe program. 72

Evaluation The main goal of the proje
t was to implement the ESRA lan-guage. As the results of the tests showed, both for phase 1 and phase 2, this goalhas been
omfortably ful�lled. The
ompiler from phase 1 su

essfully trans-lates ESRA models of two
lassi

onstraint problems into OPL programs; theOPL programs work
orre
tly on given input data. The
ompiler from phase 2su

essfully produ
es OPL+ models from a rather
omplex ESRA model; themodels produ
ed have been proven to be
orre
t ones, based on the translationrules used.Another requirement was that of �exibility; the grammar and the translationrules that the
ompiler uses should be easy to modify. By using JLex andJavaCUP, the grammar is de�ned in its own spe
i�
ation �le. Here, the formatof the grammar is very similar to that used in ASTRA reports, and thus thegrammar is easy to modify. Likewise, having
reated a rule
onverter program,the translation rules are also de�ned in their own �le, the rule �le. As theformat for
reating the rules is very user-friendly, the translation rules are easyto modify.Lessons learned There are some things that I wish I would have done dif-ferently in the proje
t.First, it is the matter of how I
reated the three programs: token list gen-erator generator, parse tree generator generator, and the rule
onverter. Ea
hof these programs had the task of parsing an input �le: the token list generatorgenerator parsed the JLex spe
i�
ation �le, the parse tree generator generatorparsed the JavaCUP spe
i�
ation �le, and the rule
onverter parsed the rule�le. As Perl is a good programming language for text pro
essing, I used Perl to
reate these three programs. The main prin
iple used in ea
h program is thatof
ut and paste using Perl's pattern mat
hing and substitution me
hanisms.Using this prin
iple made it hard to update the
ode as the program grew insize. For example, modifying the rule
onverter program to deal with the new
hanges to the rule �le in phase 2 was almost impossible. An alternative ap-proa
h to
reating the three programs would have been to, ingeniously, use JLexand JavaCUP (!). JLex and JavaCUP are designed to deal with text that hasa well-de�ned grammati
al stru
ture, as is the
ase with the JLex spe
i�
ation�le, the JavaCUP spe
i�
ation �le, and the rule �le.Se
ond, it is the matter of the method used by the non-deterministi

ompilerfor generating all the output programs belonging to a
ertain ESRA model.With the
urrent method, as is explained in detail in se
tion 4.3, the
ompiler
onstru
ts a tree of translated items by appending every item that is inserted toall the leaves in the tree. This s
heme makes it easy to generate all the models(ea
h model is represented by a path in the tree) but wastes a lot of storage,as ea
h item is represented several times in the tree. A better approa
h wouldhave been to
reate a linked list of the items, and then generate all the models,by using an algorithm that is
apable of iterating over all the
ombinations ofthe items' representations.Third and �nal, it is a matter
on
erning the basi
 prin
iple used in the73

ompilation pro
ess. When
reating a
ompiler, two di�erent te
hniques are
ommonly used regarding the parsing and the translation. With the �rst te
h-nique, the parsing and the translation are done in the same step: the inputprogram is broken apart and re
onstru
ted at the same time; the translationis said to be done on the �y. With the se
ond te
hnique, the parsing and thetranslation are done separately. An intermediate step is used, in whi
h a
on-
rete parse tree obje
t is
reated. After that, the translation
an be performedby pro
essing this parse tree obje
t. The parse tree obje
t
an be a tree oflinked Java obje
ts, ea
h obje
t representing a part of the input program, andea
h of its attributes representing subparts of that part.In my
ompiler the �rst of the mentioned te
hniques is used. I soon regrettedthis, be
ause there were several points in the translation where I needed a

essto information
on
erning other parts of the parse tree. This o

urred, forexample, when pro
essing variable de
larations, whi
h are spe
i�ed like this inthe grammar:VarDe
l ::= VAR TypeVar:typeVar ID:nameTo
reate the translation for the VarDe
l statement, I need information aboutthe TypeVar statement whi
h is lo
ated below the VarDe
l statement in thetree. As the translation is done on the �y, the information about the TypeVarstatement is lost when the translation pro
ess rea
hes the VarDe
l statement.Up till now, I have solved this problem by
reating Java obje
ts for every non-terminal that I need to save information about. The information is stored inthe attributes of the obje
ts. This is in a nut shell how the se
ond te
hniqueworks. Had I in
orporated the se
ond te
hnique from the beginning, the s
hemeof using Java obje
ts to a

ess information about the non-terminals in the parsetree would already be a natural part of the
ompiler.Future work Even though my work here is done, the proje
t is by no meansa �nished
hapter. Here is a list of some of the things that
an be done later to
ontinue the proje
t:� The problem with dupli
ates, from phase 2, that was des
ribed in the endof se
tion 4.5, Testing and Results,
an be solved, possibly by modifyingthe rule
onverter program.� The
ompiler
an be updated to handle de
larations of multiple mappingvariables. The way to a
hieve this would possibly be to modify the imple-mentation of the element tree.� For the non-deterministi

ompiler, the OPL+ language
an be repla
edby another output language that is
ompilable. In this way, it would bepossible to test the exe
ution times of the di�erent output programs.� As a �nal fantasy, whi
h would mean very ambitious work, but
ertainly ispossible, the spe
i�
ation of the grammar from the JavaCUP spe
i�
ation74

�le and the spe
i�
ation of the translation rules from the rule �le
ouldbe joined together to form a new type of spe
i�
ation �le. A �
titiousexample of this is listed below.Expr -> TILDE Id:F LBRACK Deref:i RBRACK {:=> F[i℄;|
hild:1;F:varmap(V->W)=> sum(j in W) F[i,j℄ * j;|
hild:2;F:varmap(V->W)=> var F[V,W℄ in 0..1;forall(i in V) forall(j in W)F_B[i,j℄ = 1 <=> i in F[j℄;sum(j in W) F_B[i,j℄ * j;|
hild:3;F:varmap(V->W):}Expr -> SUM LPAREN LESS Id:i COMMA Id:j GREATERIN Id:F RPAREN Expr:Q {:=> sum(i in V) Q[:j/F[i℄:℄;|
hild:1;F:varmap(V->W)=> sum(i in V) sum(j in W)F[i,j℄ * Q;|
hild:2;F:varmap(V->W)=> var F_B[V,W℄ in 0..1;forall(i in V) forall(j in W)F_B[i,j℄ = 1 <=> i in F[j℄;sum(i in V) sum(j in W)F_B[i,j℄ * Q;|
hild:3;F:varmap(V->W):}Here, the translation rule for a grammar produ
tion has been inserted into thesemanti

ode of the grammar produ
tion. Ea
h su
h grammar produ
tion
ombined with its translation rule is
alled a grammar-translation rule. Theabove shows the grammar-translation rules for the inverse image mapping ex-pression and the sum expression. The identi�ers of the labeled non-terminals inthe grammar produ
tion
orrespond to the parameters of the rule (see se
tion3.10), i.e., those entities whose values will repla
e the o

urren
es of the entitiesin the body of the rule.The advantage of using this s
heme of dire
tly
ombining the grammar pro-du
tion with its translation rule,
ompared to the
urrent way of separatingthe grammar and the translation rules, is that of e�
ien
y and abstra
tion.Having the grammar and the
orresponding translation rules in the same lo
a-tion should make it easier to update the
ompiler. Also, the new spe
i�
ation�le gives a higher level of abstra
tion, as one doesn't have to use
alls to Javamethods to spe
ify the translation rules.75

Appendix AESRA Appli
ation User'sManualA.1 Introdu
tionThis manual pertains to the se
ond version of the ESRA appli
ation, i.e., thatof phase 2, and is for anyone who wants to install and run the ESRA appli
ationand learn how to use it. A diskette
ontaining the ESRA appli
ation in questionis available together with the report.A.2 How to InstallThis ESRA appli
ation
an only be run on UNIX platforms.To install, load the diskette and
opy the esra2.tar.gz1 �le to an existingdire
tory in your �le system.To de
ompress the esra2.tar.gz �le, stand in the dire
tory and type thefollowing
ommand:tar -zxvf esra2.tar.gzThis will
reate a dire
tory named ESRA2.Che
k for a �le in your home dire
tory
alled .bashr
. If you don't haveone,
reate an empty one. Put the following two lines in the .bashr
 �le:export ESRA_PATH=<yourpath>/ESRA2sour
e $ESRA_PATH/aliasesEx
hange <yourpath>with the path to the dire
tory whi
h
ontains the ESRA2dire
tory. You should use the full path of this dire
tory, i.e., a path starting with1The reason the �le is
alled esra2.tar.gz (and not simply esra.tar.gz) is that it refersto the ESRA appli
ation from phase 2. 76

the root symbol (/), and not a path
ontaining for example a tilde
hara
ter(~). Note also that it is very important that you don't use any extra spa
es inthe two lines.For example, let's say I
opy the esra2.tar.gz�le to my dire
tory /home/siwr9625/EXJOBB.The two lines that I put in my .bashr
 �le will be:export ESRA_PATH=/home/siwr9625/EXJOBB/ESRA2sour
e $ESRA_PATH/aliasesLast, you should type the following at the
ommand line:sour
e ~/.bashr
A.3 How to RunMake sure that you are running the unix shell bash. To �nd out whi
h shell youare running, type e
ho $SHELL at the
ommand line. If you are not runningbash, simply type bash on the
ommand line.Then, stand in any dire
tory and type esra to start the ESRA appli
ation.This should open the left window of the two windows that are shown below.If this doesn't happen try typing sour
e ~/.bashr
 at the
ommand line,and then try typing esra againA.4 Basi
sWhen one starts the ESRA appli
ation a window shows up. It is in this windowthat one writes one's ESRA programs. To
ompile your ESRA program, AllModels from the Compile menu should be
hosen. This opens up a se
ondwindow that shows the result of the
ompilation. The Compile menu also hasother options, and these are des
ribed in the next se
tion. The following is as
reen dump of the ESRA appli
ation with both windows opened.

77

A.5 Menu OptionsThe main window has two menus: the File menu and the Compile menu. TheFilemenu is the left one of the two menus in the user interfa
e. It is similar to aFile menu of any other normal appli
ation. The Compile menu has
ommandsasso
iated with the
ompilation pro
ess. Tokenize shows what the list of tokenslooks like after breaking the input program down into tokens; Parse shows whatthe parse tree looks like after parsing the tokens; Symbol-table shows all ofthe de�ned identi�ers in the input program and their properties; Output-treeshows the tree
ontaining the elements of the input program, that is used in theimplementation of the non-deterministi
 part of the
ompiler; and �nally AllModels shows all models generated from the
ompiler.A.6 GrammarHere follows the
omplete and exa
t grammar of the ESRA language used inthe ESRA appli
ation. It is this grammar that one needs to follow when writingone's programs in the user interfa
e. Before the grammar there is an explanationof the syntax used in the grammar.Syntax:<Type> - entities in
ursive inside < and >are non-terminalsint - entities in plain text areterminals{<De
l>} - zero, one, or several times theentity inside { and }<Constr>* - one or several times the entitysuffixed by the star, and whereentities are separated bysemi-
olons (;).---Grammar:<Model> -> {<De
l>}<Instr><De
l> -> <DataDe
l> ;-> <VarDe
l> ;<DataDe
l> -> <Type> <Id><Type> -> int-> { int }<VarDe
l> -> var <TypeVar> <Id ><TypeVar> -> <Id> -> <Id><Expr> -> <UnOp> <Expr>-> <Expr> <BinOp> <Expr>-> <AggrOp> (<Param>) <Expr>-> <Argument> 78

-> (<Expr>)<UnOp> -> + | - |
ard<BinOp> -> + | - | *<AggrOp> -> sum | min | max<Argument> -> <Obje
t>-> <Inverse><Obje
t> -> <Id> | < <Id> , <Id> ><Inverse> -> ~ <Id> [<Id> ℄<Relation> -> <Expr> <ArithOp> <Expr>-> <Expr> <SetOp> <Expr>-> not <Relation>-> <Relation> <Logi
Op> <Relation><ArithOp> -> = | >= | <= | > | < | <><SetOp> -> in | not in<Logi
Op> -> & | \/ | => | <=><Constr> -> <Relation>-> forall (<Param>) <Constr>-> subset (<Id> , <Id>)-> inje
tive (<Id >)-> { <Constr>* }<Param> -> <Obje
t> in <Bounds><Bounds> -> <Argument><Instr> -> solve <Constr> ;-> minimize <Expr>subje
t to <Constr> ;-> maximize <Expr>subje
t to <Constr> ;The reader should note two agreed-upon restri
tions that the grammar has.First, by the grammar rule of the Obje
t non-terminal, n-tuples may
ontain atmost two elements. Thus, the following ESRA statement is not valid:for (<i,j,k> in F) i+j+k=3;Se
ond, by the grammar rule of the Inverse non-terminal, the inverse image ofa mapping
an be over only one element. Thus, one
annot write ~F[i,j℄.A.7 Semanti
 Restri
tionsThe ESRA program not only needs to be grammati
ally
orre
t, but also needsto follow
ertain semanti
 rules. There are two main rules:1. Identi�ers that are used in the ESRA program must be de
lared in thede
laration part. The ex
eption are the identi�ers produ
ed by the grammarrule 79

<Obje
t> -> <Id> | < <Id> , <Id> >when they are used as iterating identi�ers inside a forall
onstraint or a sumexpression. For identi�ers that are used in the de
laration part of the ESRAprogram to help de
lare other identi�ers, their pla
e in the de
laration partwhere they are used is allowed to
ome before the pla
e in the de
laration partwhere they are de
lared.2. Depending on where the identi�ers are used, they must have the
orre
ttype. Listed below are the grammar rules that have su
h type requirements.The type requirements for ea
h rule are spe
i�ed after the verti
al bar (|).<Inverse> -> ~ <Id > [<Id> ℄| the first identifier must be amapping variable<Constr> -> inje
tive (<Id>)| the identifier must be a mappingvariable<TypeVar> -> <Id> -> <Id>| this rule is used for mappingvariable de
larations. Bothidentifiers must be de
lared assets of integersThe
ompiler generates errors if any of these rules are broken: If rule number 1is broken the semanti
 error unde�ned identi�er is generated; if rule number 2is broken the semati
 error invalid type is generated.There are other semanti
 issues worth noti
ing. Some ESRA programs, eventhough not generating any errors in the
ompiler, produ
e output programs thatare
on
eptually in
orre
t.First, there is the matter of ESRA programs using multiple mapping vari-able de
larations. If more than one mapping variable is de
lared, the outputprograms produ
ed by the
ompiler will not be the
orre
t ones. The reason forthis is des
ribed at the end of se
tion 4.5 in the report.Se
ond, ESRA programs that
ontain two or more inverse image expressions,or one or more inverse image expressions and one or more sum expressions,do not work
orre
tly with the
ompiler. The
ompiler will produ
e outputprograms that
ontain dupli
ates of one of the variable de
larations. Se
tion4.5 in the report explains why.Even though these issues
an be viewed as errors, it has been agreed on thatmy targeted ESRA appli
ation is not required to resolve them.
80

Appendix BESRA Appli
ationProgrammer's ManualB.1 Introdu
tionThis manual pertains to the se
ond version of the ESRA appli
ation, i.e., thatof phase 2, and is for anyone who wants to modify the
ode of the ESRAappli
ation. It gives the reader an overview and basi
 understanding of theimplementation. Other do
umentation is also available: the reader
an lookin the �les themselves for
omments and also look at the javado
 generateddo
umentation (ESRA2/javado
/index.html). Note that the manual assumesthat the reader is familiar with the
ontents of the report. A diskette
ontainingthe ESRA appli
ation in question is available together with the report.B.2 Basi
sThe main and outermost dire
tory of the ESRA appli
ation is the ESRA2 di-re
tory. One get this dire
tory when one de
ompresses the esra2.tar.gz �lefrom the diskette. It
ontains, for example, the JLex appli
ation
lasses, theJavaCUP appli
ation
lasses, javado
 pages and other general �les that are as-so
iated with the ESRA appli
ation.The main
ode of the ESRA appli
ation, whi
h is in Java, exists in theESRA2/esra dire
tory. This dire
tory
ontains all the Java
lasses that I haveimplemented for the ESRA appli
ation. It represents a pa
kage stru
ture withthe following pa
kages: esra.userinterfa
e, esra.utilities, esra.
ompiler, esra.
ompiler.tokenlist, esra.
ompiler.parsetree, andesra.
ompiler.symboltable. The pa
kage esra.userinterfa
e
ontains
lassesasso
iated with the user interfa
e, for example windows and dialog boxes;the pa
kage esra.utilities
ontains general
lasses with useful methods usedby other
lasses, similar to java.util; esra.
ompiler
ontains �les and
lasses81

asso
iated with the
ompiler
ore, for example the spe
i�
ation �les for the tok-enizer and the parser, and the rule �le; and �nally the pa
kage esra.
ompiler.tokenlist, the pa
kage esra.
ompiler.parsetree, and the pa
kage esra.symboltableare used for
reating the text representations of the tokens, parse tree, and sym-bol table that one sees in the user interfa
e.Besides Java, Perl is also used in the ESRA appli
ation � the programstokenlist.pl, parsetree.pl, and rule
onv.pl in the ESRA2 dire
tory areall in Perl. They represent the token list generator generator, the parse treegenerator generator, and the rule
onverter program respe
tively.To
ompile the whole ESRA appli
ation, type esra
 at the
ommand-line.This runs the esra.
ompile s
ript in the ESRA2 dire
tory, whi
h exe
utes aseries of
ommands � it uses the token list generator generator and the parsetree generator generator to
onvert spe
i�
ation �les to new spe
i�
ations �les,JLex and JavaCUP to
onvert spe
i�
ation �les to Java, the rule
onverterprogram to
onvert the rule �le to Java, and java
 to
ompile all the Java
lasses. Other useful aliases are esrad that updates the javado
 pages, andesraz that
ompresses the whole ESRA appli
ation so it �ts on a diskette. Allthese aliases and the rest of the �les are des
ribed more in the next se
tion.B.3 The ESRA2 Dire
toryThe ESRA appli
ation is built up of a dire
tory stru
ture with several �les and
lasses. In the following four se
tions I try to give a brief des
ription of mostof these �les,
lasses and dire
tories. To �nd the des
ription for a �le,
lassor dire
tory, look for its name either in the title of a paragraph or inside aparagraph.This se
tion des
ribes the main dire
tory of the ESRA appli
ation, ESRA2.If one looks inside this dire
tory one sees that it
onsists of several �les anddire
tories. Here is a des
ription of this
ontent.Aliases I have written aliases for most of the
ommon shell operations usedwith the ESRA appli
ation. For example, there is an alias for running JavaCUP
alled j
up, and there is an alias
alled esraz for
ompressing the whole ESRAappli
ation so it
an be
opied to a diskette. The �le aliases
ontains all thesealiases, as well as
omments to what the di�erent aliases do.Javado
 As one
an see by the javado

omments in my Java sour
e �les,I am using javado
 in this proje
t. The generated html �les are put in thejavado
 dire
tory. The
ommand �le esra.javado

ontains the
ommand forrunning javado
 on the esra pa
kages. There is also an alias
alled esrad thatone
an use � it simply invokes the
ommand �le. Neither the
ommand �lenor the alias takes any arguments. The �le pa
kages is referen
ed from withinthe esra.javado
 �le. Instead of writing all the esra pa
kages in the javado

ommand, they are put in this �le. 82

The presed �le The presed �le de�nes a shell
ommand that inserts a pie
eof text at the beginning of a �le. It is
alled presed be
ause it uses the
ommandsed and puts the text before anything else in the �le. I needed this
ommand toinsert a Java pa
kage de
laration at the top of a Java sour
e �le. For example,the lex.java �le, that is generated by the token list generator generator, needsto have the
ode string �pa
kage esra.
ompiler.tokenlist;� inserted at thetop of it. All these invo
ations of presed o

ur within the esra.
ompile �le.rule
onv.pl, parsetree.pl, and tokenlist.pl These Perl �les
orrespond inturn to the rule
onverter, the parse tree generator generator, and the token listgenerator generator, whi
h are all des
ribed in my report. Like most other �lesin this proje
t, they
ontain extensive do
umentation that one
an also read.JLex and JavaCUP The JLex appli
ation and the JavaCUP appli
ation arekept in the JLex dire
tory and the java_
up dire
tory respe
tively. To run JLexand JavaCUP there are aliases de�ned in the aliases �le. If one needs to down-load these appli
ations again for some reason, they
an be found at their homepages: http://www.
s.prin
eton.edu/~appel/modern/java/JLex/ andhttp://www.
s.prin
eton.edu/~appel/modern/java/CUP/.esra.
ompile This is the shell s
ript that I mentioned in the beginning of themanual, see se
tion B.2, that
ompiles the whole ESRA appli
ation. It is thisshell s
ript that gets invoked when one exe
utes the esra
 alias. It not only usesjava
 to
ompile Java
lasses, but also invokes JLex and JavaCUP, as well as thetoken list generator generator, the parse tree generator generator, and the rule
onverter program. Whenever one makes a
hange in one of the spe
i�
ation�les or update the rewrite rules, one should exe
ute this shell s
ript.When this s
ript runs, the following happens: tokenlist.pl
onvertsesra.lex to tlist.lex in the esra/
ompile/tokenlistdire
tory, parsetree.pl
onverts esra_pass1.
up to ptree.
up in the esra/
ompile/parsetree di-re
tory, and rule
onv.pl
onverts EsraConverter.rul into EsraConverter.java in the esra/
ompiler dire
tory; then JLex and JavaCUP are used to
on-vert the spe
i�
ation �les, in
luding the ones just generated, to Java
lasses;and �nally all Java
lasses, in
luding the ones just generated, are
ompiled withjava
.IMPORTANT NOTE: For this s
ript to run properly, for example by typingesra
, the right �le and dire
tory permissions must be set. This is be
ause the
ompile s
ript uses the
p
ommand to
opy �les within the ESRA2 dire
tory.If you get an error running this s
ript, you most likely need to
hange thepermissions of the dire
tories and �les in the ESRA2 dire
tory.esra.run To start up the user interfa
e (or the ESRA appli
ation, whi
heverway one views it) this shell s
ript
an be
alled. It basi
ally
alls the Main
lass,but also sets an option to the java
ommand, whi
h is needed to know whi
h83

dire
tories
ontain the example �les. There is also an alias
alled esra that ismore
ommonly used.esra.
ompress This shell s
ript makes a tarred zip �le of the ESRA2 dire
tory,whi
h �ts easily on a diskette. One
an also
all the esraz alias.The readme �le The README �le
ontains simple instru
tions on how toinstall and run the ESRA appli
ation.Main.java (and Main.
lass) This is just a very small Java
lass that startsthe Java appli
ation by invoking the MainWindow
lass in theesra.userinterfa
e pa
kage. The Main
lass itself is invoked by the esra.runs
ript.esra_�les and opl_�les These dire
tories
ontain example programs, whi
hone
an a

ess and use through the user interfa
e.1 The user interfa
e is setto open these dire
tories when the user
hooses open from the �le menu. Thesetting is done in the esra.run �le.The esra dire
tory This is the dire
tory that
orresponds to and
ontainsthe Java pa
kage hierar
hy of
lasses. I des
ribed this dire
tory in the beginningof the manual, see se
tion B.2.B.4 The Compiler Dire
toryThe Java
lasses that reside in this dire
tory make up the esra.
ompiler pa
k-age. Besides the Java
lasses, the lex and
up �les are here, as well as the rule�le.Error handling I have made di�erent ex
eption
lasses for the di�erent kindsof errors that
an o

ur in the
ompiler. When there is an error in the tokeniza-tion, the ex
eption TokenizingError gets thrown from the Yylex
lass, whi
his generated from the esra.lex �le; when there is an error in the parsing,the ex
eption ParsingError gets be thrown from the esra_parser_pass1 andesra_parser_pass2
lasses, whi
h are generated from the esra_pass1.
up andesra_pass2.
up�les; when there is an error in the translation, a Semanti
Errorgets thrown, also from the parser
lasses. All these three ex
eption
lasses in-herit from the CompilerError
lass. It
ontains a generi
 method for
onvertingthe ex
eption to the formatted text representation of the error, that one sees inthe user interfa
e.1The name, opl_files, is a little misleading as the dire
tory does not
ontain OPL pro-grams, but rather l-language programs. However, I use this name be
ause it makes theappli
ation
onsistent with the appli
ation from phase 1.84

The Semanti
Error
lass also has two
hild
lasses: InvalidTypeEx
eptionand UndefinedIdentifierEx
eption. They are used mostly in theEsraConverter
lass that is generated from the rule �le, EsraConverter.rul.The rule
onverter program generates Java
ode that throws those errors ifneeded. In the
ase of UndefinedIdentifierEx
eption, it is thrown if oneof the parameters sent to the rule represents an identi�er that has not beende
lared. In the
ase of InvalidTypeEx
eption, it is thrown if none of thetranslation alternatives in the rule mat
hes.The symbol table The result from the �rst parser pass gets stored in anobje
t of
lass SymbolTable. The symbol table is implemented as a hash tablein whi
h identi�ers, represented as strings, map to obje
ts of
lass SymbolData.This
lass
ontains the data about the identi�er, for example what type ofidenti�er it is. These possible types are de�ned as stati
 integer
onstants inthe SymbolType
lass, and are for example INTEGER, TUPLE, MAPPING, et
.SymbolInfo This
lass is des
ribed in the report, se
tion 3.6. As it says there,this
lass is used to be able to more a

urately report errors generated from theparser. Ea
h generated token from the lexer gets asso
iated with a SymbolInfoobje
ts, whi
h holds information on whi
h line, whi
h
olumn, et
., the tokeno

urs in the input text.The tokenizer
lasses esra.lex is the JLex spe
i�
ation for the ESRAlanguage. In the
ompile s
ript it gets
onverted to esra.lex.java, whi
h inturn gets
ompiled to the Java
lass Yylex. Read more about how this worksin detail in the JLex manual, see [1℄.The parser
lasses esra_pass1.
up and esra_pass2.
up are the �rst andse
ond pass parser JavaCUP spe
i�
ation �les. From these two �les, the
ompiles
ript uses JavaCUP to generate esra_parser_ pass1.java and esra_parser_pass2.java; and two
opies of sym.java. The two parser Java �les are then
ompiled into an a
tion
lass ea
h: CUP$esra_parser_ pass1$a
tions.javaand CUP$esra_parser_ pass2$a
tions.java, as well a parser
lass ea
h: esra_parser_pass1.
lass and esra_parser_pass2.
lass. The sym.java �le is
ompiled into sym.
lass. The reader
an read more about how this worksin the JavaCUP manual, see [2℄.Grammar helper
lasses Some of the non-terminals in the ESRA grammarthat o

ur in the
up spe
i�
ation �les are also represented as Java
lasses withthe same name. These
lasses are Type, TypeVar, Obje
t_, and Parameter(note that for the non-terminal Obje
t, the
lass name Obje
t_ had to be used,sin
e Obje
t already exists in Java). Normally in the JavaCUP spe
i�
ation�le, the result from parsing a non-terminal is of type String, representing thetranslation of that non-terminal. However, for some produ
tions one needs tohave information about some non-terminal in order to make the translation.85

Then it is important that we do not make the translation right away, but waita
ouple of steps up the parse tree. In this
ase, a Java obje
t and not astring, is passed through the label of the non-terminal. The Java obje
t (Type,TypeVar, Obje
t_ or Parameter)
ontains the ne
essary information about thisnon-terminal, so that the translation
an be made later on.Tree
lasses The
lass OutputTree represents the element tree, whi
h makesthe non-deterministi
 translation possible by generating a set of di�erent outputmodels. It is built up re
ursively of TreeNode obje
ts, and these
ontain obje
tsof
lass Element,
lass ElementSet, or
lass ElementSetChoi
e. An Elementobje
t also
ontains an Explanation obje
t. For a more thorough des
riptionof the
lasses, read se
tions 4.2 and 4.3 of the report.YylexWrapper In the parsetree dire
tory there is a
lass
alledParseTreeGenerator that handles the pro
ess of
alling and
ombining the
lasses that are generated from the parse tree generator generator. It needs a
-
ess to the Yylex
lass in this dire
tory. Sin
e Yylex is not publi
 (I triedand tried to make it publi
 using di�erent options to JLex, but
ouldn't),and the ParseTreeGenerator
lass is in another pa
kage, it doesn't have theright to a

ess it. However, by wrapping the Yylex
lass inside a publi

lass,YylexWrapper, it is now a

essible. The wrapping is done by simply lettingYylexWrapper inherit from Yylex and re
reating its two
onstru
tors. The twonew
onstru
tors simply invoke the two old
onstru
tors.Rewriter This is a small
lass that
onne
ts the lexer and the two parserstogether by handling all the
alls between the
lasses. It has the same fun
-tion as the SymbolTableGenerator
lass in the symboltable dire
tory, theTokenListGenerator
lass in the tokenlist dire
tory, and theParseTreeGenerator
lass in the parsetree dire
tory. The Rewriter
lass isalso des
ribed in the report, see se
tion 3.5.Compiler This
lass serves as an API to the user interfa
e. All
ommuni
a-tion from the user interfa
e to the
ompiler go through this
lass.Model and ModelDatabase Every model extra
ted from the tree gets rep-resented as a Model obje
t. It basi
ally
ontains lists of the di�erent kindsof elements that make up its program. Its most important method is thetoString method that
onverts the Model obje
t into a natural looking pro-gram. ModelDatabase is simply a list, whi
h holds all the models generatedfrom the tree. Its toString method prints out all models in a ni
ely formattedway � it is used by the user interfa
e when the user
hooses all models fromthe menu.
86

LowerCaseModule This is a very small
lass that
an
onvert all big
har-a
ters in a text ('A', 'B', 'C') to small
hara
ters ('a', 'b', '
'). It was originallyused to
onvert all ESRA programs to lower
ase, but now it is no longer used.The user, thus, is required to write all key words with small letters, whi
h any-way is the
ase with most other programming languages. Note that I've de
idednot to delete this
lass, be
ause it
an be useful in the future.The rule �le EsraConverter.rul holds all the rewrite rules. In the
ompiles
ript the rule
onv.pl program is used (with the rul
on alias) to
onvert itto EsraConverter.java.The tokenlist dire
tory The
lasses in this dire
tory make up the esra.
ompiler.tokenlist pa
kage. I needed to make a separate dire
tory for thetoken list generator fun
tionality � otherwise the Yylex
lass of the the normallex �le would
lash with the Yylex
lass of token list generator lex �le. Inthe
ompile s
ript the esra.lex �le is
opied from the
ompiler dire
tory intothis dire
tory. By using the tokenlist.pl program in the ESRA2 dire
tory,esra.lex is
onverted into tlist.lex. Using JLex, tlist.lex is
onverted intotlist.lex.java, and in turn
ompiling this Java �le gives two
lasses: Yylexand Yytoken. Instead of, as normal, using the Symbol
lass for representingtokens, we now use the Yytoken
lass for representing tokens. This is be
ause wenow also want to store the name of the integer
onstant as a string: for example,for sym.INT the string �INT� is stored in the token. With this information thegenerated token list generator
an properly display the list of tokens. Finally,the
lass TokenListGenerator ties everything together and handles the
allsbetween the di�erent
lasses.The parsetree dire
tory This works similarly to the tokenlist dire
tory.esra.
up is
opied from the
ompiler dire
tory, then
onverted to ptree.
upusing parsetree.pl in the ESRA2 dire
tory, whi
h in turn is
onverted toparser.java and sym.java using JavaCUP. Compiling these Java �les givesparser.
lass, sym.
lass, and CUP$parser$ a
tions.
lass. Finally,ParseTreeGenerator
onne
ts everything together.The symboltable dire
tory For printing out the symbol table a separatedire
tory was not really needed. However, it looked more symmetri
al if thisfun
tionality, like token list generator and parse tree generator, also had its owndire
tory. In this dire
tory there is only one
lass, SymbolTableGenerator,whi
h
alls the toString method in the SymbolTable
lass to print out thesymbol table in the user interfa
e.B.5 The User Interfa
e Dire
toryThis dire
tory
orresponds to the esra.userinterfa
e pa
kage.87

MainWindow The main
lass in this dire
tory is the MainWindow
lass. Itrepresents the window obje
t that gets opened when the user starts the appli-
ation. It
ontains
ode for handling of menu events, handling of the se
ondwindow that shows the
ompilation result, handling of the di�erent dialog boxesthat sometimes pop up, and handling of the �le dialog box.Dialog Windows There are three di�erent dialog messages that
an o

ur inthe appli
ation: �This file does not exist, do you want to
reate it?�,�The file is not saved, do you want to save it?�, and �This filealready exists, do you want to overwrite it?�. They all are instan
esof the YesNoDialog
lass, whi
h has one yes button, one no button and one
an
el button. There is also another similar
lass
alled OkDialog that has oneok button and one
an
el button. It is used when an error in the appli
ationo

urs, for example when
reating a �le in the �le system fails. I have neverseen it happen, but it
ould, for example, if the �le permissions are set improp-erly. Both YesNoDialog and OkDialog inherit from MyDialog that holds someshared
ode, for example a method for
entering the dialog box � both theYesNoDialog box and the OkDialog box needs to do this.MyFileDialog One might ask why I have made this
lass when the
lassFileDialog already exists in Java. The reason is that the FileDialog
lass isa little
lumsy to use. With MyFileDialog, whi
h inherits from FileDialog,I've added the method userChooseFile whi
h handles, for example, the userpressing
an
el, the user leaving the text �eld empty, and the storing of a mostre
ent visited dire
tory entity.CompileWindow Finally, there is the CompileWindow
lass, whi
h representsthe se
ond window that gets opened whenever the user
hooses an a
tion fromthe
ompile menu. It
ontains
ode for handling its only two menu
hoi
es: saveas and
lose, for expanding the window horizontally when the user
hooses'output tree' from the menu, and for positioning the window in the right pla
enext to the main window.B.6 The Utilities Dire
toryThis dire
tory represents the esra.utilities dire
tory.Formatter This is probably the most important
lass in this pa
kage. It
ontains a set of stati
 methods that are used throughout the appli
ation. Thetwo main methods are tab and blo
kify. Tab
an indent every line in a stringby a spe
i�ed number of
hara
ters and is used in the
ode that generates theOPL program, so that the OPL
ode gets formatted ni
ely. Blo
kify
an take along string and break it into several lines of approximately equal length, thoughnot breaking any words in two, and is used to present the error message in the
ompile window, so that it doesn't mess up the ni
e looking tabular format.88

TextSubstituter Like Formatter this
lass
ontains only stati
 methods. Byfar the most important method in this
lass is substituteId, whi
h is
apableof distinguishing identi�ers in a long string of text and repla
ing a spe
i�
one with a new string entity. For example, it repla
es foo in foo+3, but notfoo in foot+3. The method is used with the rule �le
onverter for handlingthe substitution expressions, [: / :℄, that
an o

ur in the rule �le, see thereport, se
tion 4.4.MyList This is also a
lass not meant to be instantiated. It has only onemethod, listToString, whi
h
an
onvert a list into a string, but this methodwas mainly used in the �rst phase of the ESRA appli
ation, where forall andsum expressions
ould take multiple parameters.MyFile MyFile is similar to the MyFileDialog
ase. It is an extension ofJava's File
lass and adds the two useful methods readToString andwriteFromString.B.7 Flow of Exe
utionI now des
ribe what happens when running the ESRA appli
ation, i.e., whatthe basi
 �ow of the program looks like.From the Main
lass to the Rewriter
lass Firstly, when the user typesesra, the Main
lass in the ESRA2 dire
tory gets
alled. It in turn
alls theMainWindow
lass in the esra.userinterfa
e pa
kage that displays the a
tualwindow. When the user has written a program in the window and presses oneof the
ommands in the
ompile menu, methods with similar names get
alledin the Compiler
lass in the esra.
ompiler pa
kage. Then, for ea
h of the
ommands, the Compiler
lass
alls the generate method of the
lasses with
orresponding names: TokenListGenerator in the esra.
ompiler.tokenlistpa
kage, ParseTreeGenerator in the esra.
ompiler.parsetree pa
kage,SymbolTableGenerator in the esra.
ompiler.symboltable pa
kage, andRewriter (used for both the
ommands Output-tree and All Models) in theesra.
ompiler pa
kage.Inside the Rewriter
lass The generate methods of the four
lasses men-tioned just above do approximately the same thing. I will fo
us on the Rewriter
lass and the
ase when the user
hooses the
ommand All Models and des
ribethe �ow from there. The Rewriter
lass, or more
orre
tly its generatemethod,starts by
reating a Yylex obje
t that takes a stream of the input program asargument. It then
reates an esra_parser_pass1 obje
t and feeds the Yylexobje
t to it. The parse method of the esra_parser_pass1 obje
t is
alled andthe semanti

ode in the obje
t exe
utes over the input program and returns aSymbolTable obje
t. 89

Next, a esra_parser_pass2 obje
t is
reated with the SymbolTable obje
tas argument to its
onstru
tor. Its parse method is
alled and the semanti

ode exe
utes over the input program and returns an OutputTree obje
t. It then
alls the generateAllModelsmethod of the OutputTree obje
t whi
h
onvertsthe tree to a ModelDatabase obje
t. The generateAllModels method uses are
ursive tree algorithm to insert Element obje
ts into Model obje
ts that areinserted into the
reated ModelDatabase obje
t. The ModelDatabase obje
t isthen
onverted into a displayable format � a String obje
t � by
alling itstoString method. This toString method in turn
alls the toString methodsof the Model obje
ts that
onvert the Model obje
ts to displayable programs.The generate method has hereby �nished its exe
ution and returns theString obje
t to the
all made from the Compiler obje
t, whi
h in turn re-turns the String obje
t to the
all made from the MainWindow obje
t. TheMainWindow
alls setBuffer in the CompileWindow so that the string � thetranslated result, the displayable programs � get shown in the se
ond window.Inside the esra_parser_pass2
lass Above I mentioned just brie�y thatthe esra_parser_pass2
lass translates the input program to the output pro-gram. Here next, I des
ribe what a
tually happens inside this
lass in moredetail.To begin with, the semanti

ode of the produ
tion rules gets exe
utedover the input program. Some of the produ
tions translate to themselves soa string result is returned with the same string that got parsed. For other pro-du
tions, like forall, sum, variable de
larations, et
., the translation is more
omplex. For these produ
tions, a
all is made to a method with a similarname in the Java
lass EsraConverter.java that
orresponds to the rule �leEsraConverter.rul. The arguments to this method are obje
ts of type Obje
tthat
an be either SymbolInfo or ElementSetChoi
e. ElementSetChoi
emeansthat the parameter represented by this obje
t already has several representa-tions � this is the
ase for, for example, expressions.The translation is then made inside the rule �le method and the result isreturned in form of a new ElementSetChoi
e obje
t. The ElementSetChoi
eobje
t is then either returned by the semanti

ode to its parent produ
tion, orinserted into the outputTree obje
t using its addElementSetChoi
e method,whi
h uses a
omplex algorithm de�ned in the method addToAllLeaves to insertthe
hoi
e properly into the tree.For the produ
tion rules there is also the
ase when one or more of the subresults from the labels are ElementSetChoi
e obje
ts. The produ
tion rulethen needs to
ombine these
hoi
es in some way. It does this by
alling the
on
at methods that are de�ned in the ElementSetChoi
e
lass. The
on
atmethods use
ombinatory algorithms to
ombine the
hoi
es.
90

B.8 ExampleHere, I show an example of updating the programming
ode of the ESRA appli-
ation. This example is about adding a new statement to the ESRA language.The problem The statement that we want to add is a
onstraint that lookslike foo(F). It is a fun
tion with the name foo that takes one argument, F,whi
h must be a mapping variable. The following is the translation rule forthe foo
onstraint � it uses one of three representations depending on whi
hrepresentation F is using.foo(F), where F is a mapping var. from V to Wrep 1)
omment:
he
k that all are 1's.forall(i in V) F[i℄ = 1;rep 2)
omment:
he
k that the sum is zerosum(j in W) F[1,j℄ = 0;rep 3)
omment: W_range is a subset of Vvar {V} W_range;
omment: all elements make up the rangeunion all(i in F[i℄) = W_range;Changes to the tokenizer First we need to a�e
t the tokenizer. We need tomake foo a new keyword of the language. To do this we open up the esra.lex�le in the
ompiler dire
tory, and insert the following
ode with the other tokende�nitions:<YYINITIAL> "foo" { return newSymbol(sym.FOO,new SymbolInfo(yytext(),yyline,line
har(),yy
har));}Changes to the parser Next we need to a�e
t the grammar of the language.The grammar is de�ned in the
up spe
i�
ation. As our
ompiler is a two pass
ompiler, it has two spe
i�
ation �les. Both
ontain the same grammar but havedi�erent semanti
 a
tions. We therefore need to modify both spe
i�
ation �les,and these are esra_pass1.
up and esra_pass2.
up in the
ompiler dire
tory.We start with the esra_pass1.
up file. In it we need to de
lare FOO tobe a non-terminal of the language. We do this near the top of the �le. Thereone
an see a
hunk of terminals de
lared there that look like this:terminal SymbolInfo CARD,X,VAR;terminal SymbolInfo FORALL,IN,INT,MAX,MAXIMIZE;terminal SymbolInfo MIN,MINIMIZE,NOT;...We add FOO to one of the lines, for example like this:91

terminal SymbolInfo MIN,MINIMIZE,NOT,FOO;The reader might wonder why we need both a de�nition of the key word foohere in the
up �le and in the lex �le. The answer is that what we de
lared inthe lex �le was that the grouping of
hara
ters, 'f', 'o', 'o', should be a token and
orrespond to the FOO
onstant de�ned in the sym
lass. For this FOO
onstantto at all exist in the sym
lass, we need to de�ne it somewhere, and that is whatwe just did, here in the
up �le.Then we s
roll down to the produ
tion rule for the Constraint non-terminal,the one that looks like this:Constraint ::= Relation| FORALL LPAREN Parameter RPAREN Constraint| SUBSET LPAREN ID COMMA ID RPAREN| INJECTIVE LPAREN ID RPAREN| LCURLY Constraint RCURLY| LCURLY Constraint Constraints RCURLY;Relation, FORALL.., et
., are di�erent produ
tion alternatives. We add thenew produ
tion alternative:| FOO LPAREN ID RPARENLike the other produ
tion alternatives here, it does not need any semanti

odein this �rst
up �le.Next we open up the se
ond
up �le, esra_pass2.
up. Like the �rst
up�le, it has a se
tion of terminal de
larations at the top of the �le, so we insertFOO into it.Then we are going to a�e
t the produ
tion rules. Even though the gram-mars in the two
up �les produ
e the same language, the arrangement andnaming of the rules are a little di�erent. As the �rst
up �le has one rulefor
onstraints named Constraint, the se
ond
up �le has two rules for
on-straints named Constraint and BaseLevelConstraint. Constraint refersto the
onstraints that are subparts of other
onstraints, like a forall
on-straint nested inside another
onstraint, while BaseLevelConstraint refers tothe
onstraints at the outermost level in the solve (or minimize of maximize)
lause. As foo
annot be nested inside another
onstraint, we need to a�e
t theBaseLevelConstraint rule and not the Constraint rule. (If the reader wonderswhy we at all need to distinguish between these two types of
onstraints, theanswer is that they have di�erent semanti
 a
tions, for example only
onstraintsof type BaseLevelConstraint should be inserted into the tree, not
onstraintsof type Constraint).So now that we know in whi
h rule to insert the FOO LPAREN... produ
tionalternative, we need to determine what the semanti
 a
tion should be. It isthe semanti
 a
tion that should handle the translation. Sin
e this is a kind of
omplex translation (it has several representations), we should put the de�nition92

of the translation rule in the rule �le. In the semanti

ode we will only refer tothe de�nition in the rule �le. This is what it all will look like in the
up �le:| FOO LPAREN ID:id RPAREN{: ElementSetChoi
e
 =esraConverter.fooConstraint(id);outputTree.addElementSetChoi
e(
);:}The e�e
t of the �rst line is that the rule in the rule �le needs to be
alledfooConstraint and take one argument. As it returns a set of di�erent represen-tations, the return type is ElementSetChoi
e (it is always ElementSetChoi
e,even for those translation rules that only have one representation). The se
ondline inserts the set of representations,
, into the tree.Changes to the rule �le The only thing that remains now is to
reate therule in the rule �le. One does this by opening up the �le, esraConverter.rul,in the
ompiler dire
tory, and putting the following
ode somewhere in the �le:
ons fooConstraint(F) {:=> %
he
k that all are 1's.forall(i in V) F[i℄ = 1;|
hild:1;F:varmap(V->W)=> %
he
k that the sum is zerosum(j in W) F[1,j℄ = 0;|
hild:2;F:varmap(V->W)=> % W_range is a subset of Vvar {V} W_range;% all elements make up the rangeunion all(i in F[i℄) = W_range;|
hild:3;F:varmap(V->W)The �rst word
ons has a
tually no purpose. It did in the �rst phase of theESRA appli
ation, but not any longer. However, one still needs to have it there(or optionally de
l or expr), be
ause otherwise the rule �le does not parse
orre
tly.Then follow the di�erent translation alternatives, ea
h starting with an arrowand
onsisting of one or several statements and an ending
ondition. A singlestatement
an span several lines, so a semi-
olon is needed to indi
ate the end ofa statement. Ea
h statement, as seen above,
an also have a
omment asso
iatedwith it. The
omment should be pla
ed dire
tly above the statement, and theline or lines that make up the
omment should start with a per
ent (%) sign.The
ondition at the end is distinguished by it being on its own line that startswith a verti
al bar (|). In our example the
onditions generally say that F mustbe a mapping variable. The (V->W) part lets us extra
t the domain and the
odomain of the mapping and refer to these entities in the statements. Ea
htranslation alternative also has a
hild de
laration in the
ondition. It means93

that the translation alternative follows, not sets, a representation. The numberafter the
olon denotes the representation number, the unique key that identi�esthe representation.For more details about the rule �le, read the extensive do
umentation at thetop of the rule
onverter program, rule
onv.pl, in the ESRA2 dire
tory. Thereader might also �nd se
tion 4.4 of the report useful.Con
lusion That
ompletes the example. Type esra
 to
ompile the new
hanges and then esra to laun
h the user interfa
e. To test that our
hangeswork, type in the following ESRA program and try
ompiling it:{int} V;{int} W;var V->W F;solve {foo(F)};

94

Bibliography[1℄ Elliot Berk. JLex user manual. JLex: A lexi
al analyzer generator forJava. 1997. A link to the manual exists on the JLex homepage at URL:http://www.
s.prin
eton.edu/~appel/modern/java/JLex/[2℄ S
ott E. Hudson. CUP User's Manual. 1999. The user man-ual
an be found at the homepage of JavaCUP at URL:http://www.
s.prin
eton.edu/~appel/modern/java/CUP/[3℄ Kim Marriott and Peter J. Stu
key. Programming with Constraints, An In-trodu
tion. The MIT Press, 1998.[4℄ Alfred V. Aho, Ravi Sethi, Je�rey D. Ullman. Compilers; Prin
iples, Te
h-niques and Tools. Addison-Wesley Publishing Company, 1986.[5℄ Pas
al Van Hentery
k. OPL; Optimization Programming Language. TheMIT Press, 1999.[6℄ Pierre Flener and Brahim Hni
h. The Syntax and Semanti
s of ESRA. AS-TRA report, Mar
h 2001. Available via http://www.
sd.uu.se/~pierref/astra[7℄ Brahim Hni
h. Fun
tion Variables for Constraint Programming. PhD Thesis.In preparation.[8℄ Pierre Flener, Brahim Hni
h and Zeynep Kiziltan. Compiling High-level Type Constru
tors in Constraint Programming. Available viahttp://www.
sd.uu.se/~pierref/astra

95

