Uppsala Master’s Thesis in
Computing Science 223
Examensarbete DV3
2002-08-30

ISSN : 1100-1836

Implementation of the
ESRA Constraint Modelling Language

Simon Wrang

Information Technology Department/Computing Science
Uppsala University, Box 337, S-751 05 Uppsala, Sweden

This work has been carried out at the
Department of Information Science
Uppsala University, Box 513, 751 20 Uppsala, Sweden

Abstract

This report describes my Master’s thesis project of implementing a constraint
modelling language called ESRA. ESRA adds new features to an already existing
constraint modelling language called OPL. With the help of the tools JLex and
JavaCUP, I have created a generic compiler that easily lets one change the
grammar and the ESRA-to-OPL rewrite rules of the ESRA language. I show
how to use JLex and JavaCUP in order to combine them, to make a two-
pass compiler with them, and to detect errors with them. I also show how I
created a rule file system that translates rules in a natural format into Java
code. In a second phase of the project, with the help of a tree algorithm,
I made the compiler non-deterministic, i.e., the compiler can take one input
program and translate it into several output programs. The generated programs
accomplish the same task but are implemented in different ways; they therefore
have different execution times, letting the user or the compiler select the fastest
one.

Supervisor: Brahim Hnich and Pierre Flener
Examiner: Pierre Flener
Passed:

Contents

1 Introduction
1.1 Background
1.2 About This Project
1.3 ThisReport
1.4 Acknowledgments

2 Basics
2.1 Constraint Programming
2.2 Compiling - Implementing a Language
2.3 Help Tools JLex and JavaCUP
24 ESRAandOPL.
2.5 Non-determinism in Compilation

3 Phase I: The ESRA Compiler

3.1 Goals and Requirements
3.2 Solution and Method
3.3 Combining JLex and JavaCUP
3.4 Making a Two-pass Compiler with JavaCUP

3.5 Reporting Errors with JLex and JavaCUP . .
3.6 Converting the Grammar to JavaCUP-format
3.7 Writing the Range Operator Rules
3.8 Token List Generator Generator
3.9 Parse Tree Generator Generator
3.10 Rule Converter
3.11 Other Issues
3.12 Testing and Results
3.13 Conclusion

4 Phase II: The Non-deterministic Compiler
4.1 Goals and Requirements
4.2 Solution and Methods
4.3 The Element Tree
4.4 Enhancing the Rule Converter
4.5 Testing and Results

4.6 Conclusion e
Conclusion

ESRA Application User’s Manual

Al Introductiono
A2 HowtolInstall
A3 HowtoRun e
Ad Basics e e e e e e
A5 Menu Options
A6 Grammar
A.7 Semantic Restrictions

ESRA Application Programmer’s Manual

B.1 Imtroduction
B.2 Basics e
B.3 The ESRA2 Directory
B.4 The Compiler Directory
B.5 The User Interface Directory
B.6 The Utilities Directory
B.7 Flow of Execution
B8 Example

Chapter 1

Introduction

1.1 Background

At the Department of Information Technology and the Department of Informa-
tion Science at Uppsala University in Sweden, a research group called ASTRA
is working on designing a new programming language called ESRA. ESRA is a
constraint modelling language and is an extension of an already existing con-
straint modelling language called OPL, see [5]. ESRA keeps the good parts
of OPL and adds some new features to make it more efficient to use. So far
the ESRA grammar and parts of the ESRA-to-OPL translation rules have been
determined, see [6], section 4.2. What remains is to actually implement the
language — to create the compiler.

1.2 About This Project

The main goal of my project is to implement the ESRA language. This takes
place in two phases. In the first phase I create a compiler and complete the
translation rules. The compiler is able to translate from ESRA into OPL. In
the second phase I make the compiler non-deterministic. This means that it
is able to generate several output programs from one input program. Also, an
additional goal is to make the compiler as flexible as possible — it should be
easy to update the grammar and the translation rules.

1.3 This Report

This report is divided into five chapters. The first chapter is the current one
and serves as an introduction to my work. The second chapter goes through the
basics needed to understand this project. A reader not familiar with compilers
or constraint programming should read this chapter. The third and the fourth

chapter deal with the problem and solution of the first and the second phase
respectively. The fifth and final chapter is the conclusion of the project.

At the end of the report there are two manuals, listed as appendix A and
appendix B, which pertain to the second version of the ESRA application, i.e.,
that of phase 2. The first manual is for users of the ESRA application, while the
second manual is for programmers who want to modify the code of the ESRA
application.

Also, a diskette containing the ESRA application in question is available
together with the report.

1.4 Acknowledgments

I thank the people who have helped me with this project. Most of all, I thank
Brahim Hnich, who has served as my day-to-day supervisor during this project.
He has always been available to help me and has offered a lot of good advice. I
also thank my formal supervisor, Pierre Flener, who has helped me with writing
the report and guided my project.

Chapter 2

Basics

2.1 Constraint Programming

The ESRA language, which I am implementing, is a constraint programming
language. In this section I explain what constraint programming is for those
readers who are not familiar with the term.

A constraint program is structured in regard to modelling a problem. It is
unlike a program in an imperative language, like C, Pascal and Java, in which
one models the procedure of finding the solution. A constraint program lets the
user concentrate on defining the problem, and then does all the work of solving
the problem itself.

In constraint programs, in a simplified view, one has a set of variables, do-
mains for the variables, and a set of constraints. The domains are finite sets
of values that define the types of the variables. The constraints are logical
expressions that contain the variables and restrict their possible values. The
underlying core, called the constraint solver, finds the values for the variables so
that all the constraints are fulfilled. It is rather like solving an equation system.

To understand this better, here is an example of what a constraint program
in the OPL language can look like:

var int x in 1..5;
var int y in 2..3;
solve {

X>y;

X+y=T7;
}

This program consists of six lines. The first two lines declare two variables: x,
an integer between 1 and 5; and y, an integer between 2 and 3. The fourth and
fifth lines are the constraints.

The constraint solver now solves this program. When run it prints the
following result:

solution 1: {x=4;y=3}
solution 2: {x=5;y=2}

This was just a simple example using simple variables and simple constraints.
One can also use sets, arrays, records, for-statements and other structures typ-
ically found in an imperative language. This lets one model more complex
problems. Read about this in section 2.4 about ESRA and OPL.

Those readers familiar with logic programming, such as Prolog, might won-
der what the difference is from constraint programming. The answer is that
constraint programming is the next evolving step after logic programming. Con-
straint programs let one do more things that logic programs cannot.

2.2 Compiling - Implementing a Language

My task is to implement the ESRA language, to write its compiler. In this
section I explain what a compiler is and describe the normal procedure to write
one.

What is a compiler To implement a new language means in some sense
to make it understandable to the computer. The way to do this is to have
something that can translate from the new language into a language that the
computer already understands. This something is called the compiler.

In my case I am making a compiler that translates into the OPL-language.
The OPL-language in itself cannot be understood by the computer, but it in
turn has a compiler that translates into a language that can be understood.

How to write a compiler To write a compiler one first needs to be clear
on what the grammar of one’s language is. The grammar is a set of rules that
together state what a program in the language must look like. For example,
let’s say one has a language that lets one write simple arithmetic expressions
with addition and subtraction of numbers and identifiers. Possible programs
in this language would be: 4-acc+10, atb+c-3 and just 12. Here is what the
grammar would look like:

EXPR -> EXPR PLUS EXPR
| EXPR MINUS EXPR
| ARGUMENT

ARGUMENT -> ID

| NUMBER

Each paragraph with an arrow is called a rule. To the left of the arrow is
the term that produces something; it is called a non-terminal. To the right of
the arrow are the terms that are being produced. Terms that occur here that
don’t produce anything are called terminals. The vertical bar separates different
alternatives to what is produced; these alternatives are called productions.

Once the grammar has been determined it is possible to start writing the
actual compiler. The compilation process usually is divided into three steps:
tokenizing, parsing and translation.

Tokenizing The first step in the compilation process is to tokenize the in-
put program. Tokenizing means to divide the stream of characters into larger
chunks, tokens, where every token can consist of one or more characters. A good
set of tokens for the expression language would be the plus sign, the minus sign,
identifiers and numbers. The program 4-acc+10 would generate the following
tokens:!

NUMBER(4), MINUS, IDENT(acc), PLUS, NUMBER(10)

Parsing Once the tokenizing is done, the next step is to parse the tokens.
Parsing means putting the tokens in a tree structure called the parse tree, which
reflects the grammar of the language. The leaves contain the tokens of the input
program; the nodes contain the non-terminals of the productions being used to
generate the input program. In the case of the input program 4-acc+10, here
is what the parse tree would look like:

EXPR

EXPR MINUS EXPR

L)

EXPR

ARGUMENT
NUMBER(4) ARGUMENT ARGUMENT
IDENT (acc) NUMBER(10)

INote that tokens can have values, as is the case with numbers and identifiers.

Translation Once the parse tree has been constructed it is normally easy
to do the translation. One simply traverses the parse tree and constructs the
translated result as one goes along.

Two Passes Normally when one is constructing a compiler, one talks about
how many passes through the code one has to make. In the above example one
pass would be enough. However, for most programming languages more than
one pass is needed. A programming language that lets the user declare variables
typically requires two passes. In the first pass the declarations are processed and
data about them are stored. The thing that stores the data is usually denoted
as a symbol table. In the second pass the compiler uses the data in the symbol
table to do the actual translation.

Help Tools Writing a compiler on one’s own can be a very tedious job. That
is why there exist help tools to ease one’s work. The most common ones are
Lex and Yacce for creating compilers implemented in the C-language. They let
the user write a specification file in a certain format for the tokenization and
the parsing respectively, which then become converted into actual runnable C
programs. In my project I have used the tools JLex and JavaCUP, which are
similar tools, but for creating compilers implemented in the Java language.

2.3 Help Tools JLex and JavaCUP

For writing the compiler I use two help tools: JLex for the tokenizing and
JavaCUP for the parsing and the translation.

JLex JLex expects a specification file from which it will generate a runnable
Java class named Yylex. The specification should be in a special format and
include information on how the different tokens should be created. Here is what
the specification file for the example in the previous section can look like:

import java.lang.System;

ot

DIGIT=[0-9]

NUMBER=({DIGIT})*

WHITE_SPACE=([\ \n\r\t\fl)+

hi
public void printToken(String t) {

System.out.println("Token: "+t);

}

hY

h

<YYINITIAL> "+" {
printToken ("PLUS") ;

}

<YYINITIAL> "-" {
printToken ("MINUS");

}

<YYINITIAL> {NUMBER} {
printToken ("NUMBER, "+yytext()) ;

}

<YYINITIAL> {IDENT} {
printToken ("IDENT, "+yytext());

}

<YYINITIAL> {WHITE_SPACE} {

}

I now briefly describe the structure of the specification file. For more details
read the JLex manual [1].

The specification file is divided into three parts separated by %%. Whatever
one puts in the first part is inserted at the top of the generated class. This is a
good place to put imports and package declarations.

In the second part one can create macro declarations and insert one’s own
Java code. Macro declarations tie names to regular expressions that can be
used lower down in the third part. The Java code is any code one wants to have
inserted into the body of the generated class.

In the third and final part one specifies how the different tokens are defined.
A token’s definition can be a string, a macro declaration or a regular expression.
When scanning through the input characters one of the token definitions sooner
or later matches. The Java code inside that definition is then executed.

The above specification file, when run through JLex, generates a Java pro-
gram that prints out all the tokens in a list. For the input 4-acc+10 the following
is printed:

Token: NUMBER,4
Token: MINUS
Token: IDENT,acc
Token: PLUS
Token: NUMBER,10

JavaCUP JavaCUP is the help tool for generating the parser. Like JLex
it lets the user write a specification file. With a certain format one specifies
the grammar of the language. With every production in the grammar one also
writes code, called the semantic code. It is executed for those productions that
are used to produce the input program. It is in the semantic code that the
actual translation gets done.

Here is what the JavaCUP specification file can look like for the example
language in the previous section:

import java_cup.runtime.x*;

10

terminal SEMI, PLUS;
terminal String NUMBER, IDENT;
non terminal String EXPR, ARGUMENT;
EXPR ::= EXPR:el PLUS EXPR:e2
{: RESULT = el+"-"+e2; :}
| EXPR MINUS EXPR
{: RESULT = el+"+"+e2; :}

| ARGUMENT:a
{: RESULT = a; :}
| ARGUMENT ::= ID:id
{: RESULT =
id.toUpperCase(); :}
| NUMBER:n

{: RESULT = n; :}

First come imports and package declarations, which like JLex are inserted at
the top of the generated parser class. Then follow declarations of the terminals
and non-terminals used in the grammar. Finally there is the declaration of the
grammar.

To understand how the grammar is specified one first needs to understand
how the parsing works. The parsing process is recursive. It starts at the leaves
and works itself up to the root of the parse tree. The result from parsing one
production is passed up to its parent production in the next level of the tree.
When having reached the root node of the tree, the translation is complete and
the value in the root node is the translation result.

In the grammar, the semantic code is specified inside {: and :} for every
production. The result of a production should be assigned to the RESULT variable
which is predefined. If one looks at the grammar one also sees names next to
the terms separated by a colon. These are called labels and identify the results
from parsing those terms.? These results can then be used in the semantic code
by referring to the labels.

What the above example parser does is to switch plus signs and minus signs
with each other and also capitalize all identifiers. For the input 4-acc+10 the
translated result would be 4+ACC-10.

Finally, one can also insert one’s own Java code into the parser classes that
is generated. There are actually two commands for this: parser code {: :}
and action code {: :}. The reason for this is that JavaCUP generates sev-
eral files. Among them is one that holds the main engine of the parser, named
parser.java, and another that holds the semantic code of the parser, named
CUP$parser$action.class.

For more details on how to use JavaCUP, read the JavaCUP manual [2].

2 Also unparsable terminals - tokens - can have labels. In this case the label refers to the
internal value of that token.

11

2.4 ESRA and OPL

In my compiler ESRA is translated into OPL. In this section I give a more
detailed description of these two languages. I start by describing OPL and then
give a description of what ESRA adds to OPL. I also discuss the rules used
to translate ESRA into OPL. At the end, I describe a simplified version of the
ESRA language and a language called OPL+, which are used later in the second
phase of the compiler.

OPL OPL is a constraint programming language. We have already seen an
example of a simple OPL program in section 2.1 about constraint programming,.
Like that and other OPL programs, they have a basic structure which consists
of five main parts:® data (and type-) declarations, variable declarations, an
objective, constraints and display statements.

Data declarations are the hard coded data that are used in one’s program.
For declaring data, most of the basic data types that one finds in procedural
languages also exist in OPL; there are integers, floats, strings, arrays, and so on.
OPL also has two special types that are used frequently: sets and ranges. Sets
are what they sound like; ranges are defined by two numbers, a and b, where b is
bigger than a. Closely related to data declarations are type declarations. Among
the new types that OPL lets one declare are records (structs) and enumerations.
Here are some examples:

a) int n = 8;

b) float f 3.2;
c) struct Point {
int x;
int y;

};

d) enum Days = {Mo,Tu,We};
e) int A[1..4] = [1,3,5,7];
f) range r 1..10;

g) {int} s1 = {1,2,3};

By putting the var keyword in front of a data declaration one turns it into a
variable declaration. The variables are what OPL tries to find solutions for.
Most of the data types can be variables, even arrays. However, sets and ranges
in OPL cannot. Here are some variable declarations:

a) var int count in 1..10;
b) var int grades[1..27,1..8] in 1..10;

The third part of an OPL program is the objective. It is in the objective that
one states one’s goal. There are three basic types of objectives: solve, minimize

3There are actually other parts as well but they are of less importance, at least for this
project.

12

and mazimize. With solve one simply states that one wants to find all the
solutions that satisfy the constraints. With minimize and maximize one also
has an objective expression. With these the goal is to find the ONE solution
that minimizes (or maximizes) the objective expression.

The constraints are the logical expressions that need to be satisfied for a
valid solution. OPL offers a lot of constraints to choose from. Probably the
ones most used are the relations that also exist in procedural languages: bigger
than (>), less than (<), equals (=), not equal (<>), implication (=>), and
equivalency (<=>). OPL also has versions of the typical procedural statements
forall and if-then-else. Forall lets one specify a generic constraint that should
hold for several values. The if-then-else constraint is satisfied if the if-part is
true and the then-part is true, or the if-part is false and the else-part is true.
Have a look at these examples:

X >y,
i=1=3=2;
forall (i in 1..10)
A[i] = B[i] + 1;
if x > y then x > z else y > z;

The final part of an OPL-program, which occurs at the bottom of it, are the dis-
play statements. When OPL finds solutions for one’s variables it displays them
in a default way. If one has variables that are declared with one’s own defined
data types, one might want to have them displayed in a different way. With
display statements one can achieve this. For example, consider the declaration
of the point struct given above. Using the display statement

display(p in Point: p.x>=0 & p.y>=0) <p.x,p.y>

one can have ones’ points displayed as tuples. The above display statement also
has the added feature that it won’t display point variables that contain negative
values.

Having explained all the parts that an OPL program consists of, I now show
an example. The following OPL program is a model of the Graph Coloring
problem, GCP. The GCP is a classical problem used in constraint programming,
where the objective is to use a minimal number of colors to color every country
in a map, such that no bordering countries have the same colors.

enum Country ...;
enum Color ...;
struct border {
Country cl;
Country c2;
};
{border} Borders = ...;
var int UsedColors[Color] in 0..1;
var Color Coloring[Country];

13

minimize
sum(I in Color) UsedColorsl[I]
subject to {
forall(B in Borders)
Coloring[B.c2] <> Coloring[B.c1];
forall(I in Country)
UsedColors[Coloring[I]]=1;
s
display(I in Color: UsedColors[I]=1) <I>;

Looking at this program, the data declarations are the input. The input consists
of two enumerations: a list of the existing countries and a list of the existing
colors; and a set of existing borders. Borders are records with two fields that
represent the two countries that are bordering each other. Three dots (...) in
the data declarations indicate that the data are in another file.

Similarly, variable declarations is the output. In this program there are
two array variables. The main solution is given to the array Coloring in which
every country is assigned a color. The array UsedColors is a boolean array that
won’t hold any necessary part of the solution — it is simply a transformation
of Coloring to help state the objective.

In the objective function a sum expression is used. It sums all the elements
in the UsedColors array together. Since the elements are either 0 or 1, this sum
is the actual number of used colors.

Regarding the constraints, we see that there are two of them. The first one
makes sure that two bordering countries don’t have the same color. The second
one states how the two array variables UsedColors and Coloring depend on
each other.

Finally, there is a display statement that ensures that only colors that are
used get displayed in the solution.

ESRA Now that I have explained how OPL works, I am ready to describe
ESRA. As mentioned in the introduction of this report, ESRA is an extension
of OPL. Most things that exist in OPL also exist in ESRA. Members of the
ASTRA group had been using OPL for a long time and realized that it could be
improved. They added new features to the OPL language and came up with a
new language, which is ESRA. I will now describe what these new features are.
As mentioned above, OPL does not allow sets and ranges to be variables.
However, while using OPL, members of the ASTRA group quite often used the
concept of a variable set in their programs. As set variables are not allowed,
they were forced to represent them as boolean arrays. With ESRA one can now
declare set variables and even range variables. Here are some examples:

var {T} S;

var prefix(R) P;
var suffix(R) Sf;
var subrange(R) Sb;

14

Looking at the examples, the first one shows how to declare a set variable. The
new set variable S will take values that are subsets of the existing set T. The
three last examples show different ways of declaring a range variable. Prefix
variable P represents a range at the beginning of the existing range R, suffix
variable Sf at the end, and subrange variable Sb anywhere in the middle.

When declaring variables, like above, one calls the existing identifier, like
T or R, the domain of the new variable. For example, the domain of S is T,
the domain of P is R. The domain itself might also be a variable that has a
domain. In this way, one gets whole chains, or more accurately trees, of domain
dependencies. The identifiers at the root of these trees are called ground; the
identifiers in the middle of the tree are called non-ground.

Probably the most important new feature in ESRA is mapping variables.
They map values from one set, known as the domain of the mapping, to values
in another set, known as the codomain of the mapping. Don’t get this definition
of domain mixed up with the definition of domain described in the paragraph
above. They happen to have the same name but are completely different things.
Here is how to declare a mapping variable:

var V->W M;

In this declaration, M is the new mapping variable being defined, V is the domain
of the mapping and W is the codomain of the mapping. The nice thing about
these mappings is that V and W don’t have to be constants (ground). They can
also be set and range variables (non-ground).

ESRA also introduces new operators to be used with the new types of vari-
ables. For range variables there are the operators prefix, suffix and subrange,
which check if a range is a prefix, suffix or subrange respectively of another range.
For mapping variables the functions surjective, injective and bijective are
introduced, which check if these mathematical properties are true or not. Also
some of the existing functions like card, forall, sum, etc. can now be used as
well with the new types of variables.

Using the ESRA language and its new features, I can now rewrite the GCP
program given in the paragraph about OPL. This shows the reader that using
ESRA is a more efficient way of modelling a problem. Looking below, the reader
can see, for example, that the second constraint from the OPL program is no
longer needed — unlike OPL, the variable UsedColors can now be used in the
declaration of Coloring.

enum Country ...;
enum Color ...;
struct border {
Country cl;
Country c2 };
{border} Borders = ...;
var {Color} UsedColors;
var Country -> UsedColors Coloring;

15

minimize
card (UsedColors)
subject to {
forall(B in Borders)
Coloring.B.c2 <> Coloring.B.cl
};

See [6], section 3.2, for the complete grammar of ESRA.

Translating between ESRA and OPL Here, I just mention briefly the
main principles used in translating ESRA into OPL. For a list of all the trans-
lation rules, see [6], section 4.2.

As mentioned above, the ASTRA group were using boolean arrays to rep-
resent their variable sets in OPL. This, of course, is how ESRA translates set
variables into OPL: using boolean arrays.

Range variables can also be represented as boolean arrays in OPL. Con-
straints are added to the translation to ensure that all the 1s in the array are
consecutive.

For mapping variables, different representations are used depending on whether
the domain and the codomain are ground or non-ground. For example, if both
are ground, only a simply array is needed. However, if both are non-ground, a
boolean matrix plus two constraints and a display statement are required.

As with mapping variables, the translation of operators and functions in
ESRA can be either simple or complicated. The membership operator, for
example, is easily translated into one-line OPL statements, while the sum and
forall primitives require the implementation of complex algorithms.

The simplified version of the ESRA language, and the OPL+ language
When I implement the non-deterministic compiler in the second phase, I will
ease my task by changing the input language from ESRA into a simplified version
of ESRA, and changing the output language from OPL to a modified version
of OPL, called OPL+. I describe the two languages already in this section,
because an example in the next section uses the languages.

In the language referred to as the simplified version of ESRA many primitives
have been removed. Only primitives that are necessary for creating ESRA
models that can be compiled in a non-deterministic way are kept. For example,
only mapping variables are used — set and range variables have been removed.
See the user manual, listed as appendix A, for the complete grammar.

The modified version of OPL, OPL+, is a small extension of OPL. The only
new feature is that also set variables are allowed, just like in ESRA. They are
declared as normal: var {T} S. The reason for this small change is that it helps
us to create more output language representations for the ESRA primitives. The
non-deterministic compiler thus generates more interesting results.

16

2.5 Non-determinism in Compilation

The goal of the second phase of this project is to make the ESRA compiler
non-deterministic. In this section I try to explain what non-determinism in
compilation means.

Normally a compiler takes an input program and translates it into one output
program. A non-deterministic compiler takes an input program and translates
it into several output programs. The output programs accomplish the same task
but are implemented in different ways. Put in terms of non-determinism, one
says that the compiler generates a set of programs with different representations.

The purpose of generating different programs is that of efficiency in execu-
tion. Although they do the same thing, some programs might execute faster
than other programs. By generating several programs the user can choose the
program that executes the fastest.

The execution time can also depend on which input data is used with the
program. One set of input data might be good for one program but bad for
another, while on the other hand, another set of input data is bad for the first
program, but good for the second one. By inputting to the non-deterministic
compiler a typical set of input data that one is using for one’s problem, the
compiler is able to automatically test the input data with all the generated
programs and select the fastest one.

Example on different representations Given the ESRA declaration var
V->W F, where V denotes the domain and W the codomain, there are actually at
least the following three different representations in the OPL+ language.

var V->W F;
1) var int F[V] in W;
2) var int F[V,W] in O0..1;
forall(i in V)
sum(j in W) F[i,j]l = 1;
3) var {V} F[W];
union all(j in W) F[j] = W;
forall(i in W)
forall(j in W)
i <> j => F[i] inter F[j] = {};

The first representation is a 1-dimensional array, which is the most obvious way
of representing a mapping.

The second representation is a 2-dimensional matrix, where the domain V
represents the first dimension and the codomain W represents the second di-
mension. An element in the matrix is either 1 or 0, depending on whether the
corresponding domain-codomain pair is a part of the mapping or not. The as-
sociated constraint ensures that every value in the domain maps to exactly one
element in the codomain — this is the proper definition of a mapping.

17

The third representation defines an array of set variables where each value in
the codomain is used to index its own set variable in the array. The set variable
contains all the elements in the domain that map to this value in the codomain.
The constraint ensures that an element in the domain doesn’t occur in more
than one set, again following the definition of a mapping.

See [?], chapter 4, for more examples showing non-deterministic rewrite rules.

Combining Representations Not yet mentioned is that an input model can
contain more than one part that can generate different representations. Before I
go o, let’s henceforth denote parts of a model as elements. Regarding for exam-
ple the ESRA language, there are input elements, output elements, constraint
elements and objective elements, corresponding in turn to the data declarations,
variable declarations, constraints and objective functions. For example, looking
above at the second representation for the mapping example, we can see that
an output element in the ESRA language is being translated into a set of two
elements in the OPL language: one output element and one constraint element.

So expressed in other words, it is possible that several elements in the input
model generates a set of different representations. This adds complexity to the
generation of the models. A way to combine the representations is needed. The
easiest way is to simply add the elements from the different representations to
each other in a combinatory fashion. If, for example, there is one element in the
input model generating two representations and another one generating three
representations, the overall number of generated models is the product of two
and three which is six.

Another thing that complicates matters is that representations generated
from one element may depend on representations generated from other ele-
ments. Let’s say, for example, that we have an input model consisting of the
declaration of a mapping variable F and a constraint that contains a reference
to F. Depending on which representation we use for F in the declaration, we
need to be sure that we use the same representation for F in the constraint.

A complete example To sum things up, I give an example of an input
program and all the models generated from it. First I need to introduce a new
element and some of its representations.

injective(F):
1) alldifferent(F);
2) forall(i in V)
forall(j in V) i <> j =>
F[i] <> F[j];
3) var int D_F[W] in V;
forall(i in V)
forall(j in W)
F[il = j => D_F[jl = i;
4) forall(i in W)
sum(i in V)

18

F[i,j]1 <= 1;
5) forall(i in W)
card(F[j]) <= 1;

Here we notice the dependency issue. The first three representations are to be
used if F is using its first representation. In turn, representations four and five
are required when F is represented as a matrix or an array of sets respectively.

Next I create the input program. It has three input elements: a set V, a set
W and a mapping F from V to W; and one constraint element: injective(F).

{int} V;

{int} W;

var V->W F;

solve {
injective(F)

};

Using the representations for mappings and the injective constraint and applying
the principle of combining representations described above, the following models
are generated from the input program:

1)
{int} V;
{int} W;
var F[V] in W;
solve {
alldifferent (F)
1
2)
{int} V;
{int} W;
var F[V] in W;
solve {
forall(i in W)
forall(j in W)
i <> j => F[i] <> F[j]
1
3)
{int} V;
{int} W;
var F[V] in W;
var D_F[W] in V;
solve {
forall(i in V)
forall(j in W)
F[il = j => D_F[jl = i
1

19

4)
{int} V;
{int} w;
var F[V,W] in 0..1;
solve {
forall(j in W)
sum(i in V) F[i,j] = 1;
forall(i in W)
sum(i in V)
F[i,j] <=1 };
5)
{int} V;
{int} W;
var {V} F[W];
solve {
union all(j in W)
F[jl = W;
forall(i in W)
forall(j in W)
i <> j => F[i] inter F[j] = {};
forall(i in W) card(F[j]) <=1
1

20

Chapter 3

Phase I: The ESRA Compiler

3.1 Goals and Requirements

The primary goal of phase 1 is to create the ESRA compiler. The ESRA compiler
should take as input a program written in the ESRA language and return as
output the corresponding program written in the OPL language. The grammar
of ESRA can be found in [6], section 3.2; the grammar of OPL in [5]; and the
ESRA-to-OPL rewrite rules in [6], section 4.2.

For some parts of the ESRA language the translation rules have not been
created yet. The sum and forall expressions have translation rules given in the
form of algorithms. I need to implement these. For the range operators neither
algorithms nor translation rules exist. These also need to be implemented.

Another requirement is that the compiler should be able to report an error
when there is something wrong with the ESRA input program. The error mes-
sage should be informative in such a way that it is easy to locate the error and
correct it.

For the compiler to be easy to use, there should also be a graphical interface.
It should allow the user to create, open and save files, as well as compile files.

The final requirement is that it should be easy to change the grammar and
the translation rules. One shouldn’t have to change things in several places in
the compiler code.

3.2 Solution and Method

As programming language I have chosen Java. Java is faster than Prolog and
more user friendly than C.

I use two good help tools for creating the compiler: JLex and JavaCUP.
JLex is for creating the tokenizer and JavaCUP is for creating the parser. Both
work similarly to the tools lex and bison for C.

From the ESRA grammar I have created both a JLex specification file and a
JavaCUP specification file. Since the format of the grammar in [6] was not the

21

same as the format of the grammar that JavaCUP accepts, I needed to convert
the grammar in [6], see section 3.6.

From these specification files, a Java tokenizer class and a Java parser class
are generated. The Java tokenizer produces tokens that are input to the Java
parser. For this I have investigated and solved the problem of how the two tools
can be combined, see section 3.3.

By analyzing the rewrite rules, I see that I'm going to need a two-pass
compiler. This is because most of the rules are dependent on knowing what
type the identifiers in the expressions have. In the first pass I create a symbol
table of all the identifiers, and in the second pass I do lookups of the identifiers
in the symbol table. To see how I use JavaCUP to create a two-pass compiler,
see section 3.4.

I have also incorporated an error detection system into the compiler. The
system is able to detect in which step of the compilation process the error occurs.
If the error occurs in the tokenizer, there is a lexical error; if the error occurs in
the parser, there is a syntax error; and if the error occurs in the translator, there
is a semantic error. The system also reports which token caused the error, in
what row, and in which column. To see how I did this with JLex and JavaCUP,
check section 3.5.

To ease my work of developing the compiler, I have developed two tools
in Perl: the token list generator generator, see section 3.8, and the parse tree
generator generator, see section 3.9. The two tools help display what the list
of tokens and the parse tree look like after the tokenizing step and the parsing
step respectively. They are useful when an error occurs while constructing the
compiler, because they help me determine in which step of the compilation
process the error started. For example, if there is a parse error, the error could
be either that there is something wrong in my parser or that the tokenizer
generated an incorrect list of tokens. By inspecting the list of tokens I am able
to check this.

I have also completed the missing translation rules. See section 3.7 on how
I created the rules for the range operators in the ESRA language.

For the requirement of that it should be easy to write and change the trans-
lation rules, I have created a rule file system, see section 3.10. One writes the
rules in a normal text file in almost the same way as they are written in [6].
Then I have written a special rule converter program in Perl that converts the
rule file with the rules into a Java program with corresponding Java methods.

It is also easy to modify the grammar. By using JavaCUP the grammar is
specified in the JavaCUP specification file. The format of the grammar used
in the file is almost identical to the standard format used in ASTRA reports.
Almost the only difference is that ::= is used instead of an arrow. To modify
the grammar one simply edits the specification file.

Finally I have also created the ESRA user interface, see section 3.11.

22

3.3 Combining JLex and JavaCUP

For writing the ESRA compiler, I use both JLex and JavaCUP. My problem
is therefore to figure out how to put JLex and JavaCUP together. The docu-
mentation on how to connect JLex to JavaCUP is very poor, both in the JLex
manual and in the JavaCUP manual, as well as on the Internet.! I solved the
problem by using JLex and creating a tokenizer for the example parser in the
JavaCUP manual. I discovered that one needs to do the following things in one’s
JLex specification to make it compatible with one’s JavaCUP specification.

First, one needs to add the %cup directive. This is equal to three other direc-
tives: %type Symbol, %function next_token, and jimplements java_cup.
runtime.Scanner. They alter the .lex.java file that is produced. By default,
the definition of the Yylex class in the .lex.java file won’t implement anything.
In turn, the method in the Yylex class for reading tokens gets called yylex and
returns Yytoken objects. With these directives the Yylex class will implement
java_cup.runtime.Scanner. In turn, the method gets called next_token and
returns Symbol objects. All these changes are needed so that the parser class
can access the tokenizer class.

Second, one needs to change one’s semantic actions that are associated with
the token definitions, so that they include code that create and return Symbol
objects. The Symbol constructor is called with an integer denoting the terminal
it represents and an optional value of type Object. The thing is — when
JavaCUP generates the parser class it also generates a class called sym. This
class contains all the terminals represented as integer constants. By using these
constants, JLex can tell JavaCUP which terminals the tokens stand for.

Here are two examples using the Symbol constructor:

<YYINITIAL> "+" {
return new Symbol(sym.PLUS);
}
<YYINITIAL> {NUMBER} {
return new Symbol(
sym.NUMBER,new Integer (yytext());
}

There is an important side note related to the above paragraph. As stated,
JLex uses the constants in the sym class. This means that one must generate
the parser before one generates and compiles the tokenizer. This is contrary to
the intuitive order in which one would generate and compile the two.

Third, one also needs to include the %eofval directive as follows:

heofval{
return new Symbol(sym.EQF);
heofval}

! Today, six months later, an example showing how to combine JLex and JavaCUP has
been added to the JavaCUP home page.

23

If one doesn’t have have this directive, the parser runs and produces the correct
result, but never terminates. The EOF constant is a constant that JavaCUP
includes by default in the sym file.

The fourth and final thing that one needs to do is add an import statement
in the user code section:

import java_cup.runtime.x;

This is because the Symbol class that one is using resides in the java_cup.runtime
package.
Finally, here is what the whole file looks like.

import java_cup.runtime.x*;
ot
hecup
DIGIT=[0-9]
NUMBER=({DIGIT})*
WHITE_SPACE=([\ \n\r\t\fl)+
heofval{

return new Symbol(sym.EQF);
heofval}
h
<YYINITIAL> "+" {

return new Symbol(sym.PLUS);
}

<YYINITIAL> {NUMBER} {
return new Symbol(
sym.NUMBER,new Integer (yytext());

3.4 Making a Two-pass Compiler with JavaCUP

For compilations of some languages, it is impossible to complete the translation
of the code in one pass. These languages require a two-pass parser. The ESRA
language is such a language. It requires the code to be stepped through twice,
because several of the ESRA-to-OPL rewrite rules need to know the types of
the identifiers. In the first pass the identifiers and their types are stored in
a symbol table, and in the second pass the symbol table is used to make the
actual translation. The problem is therefore to figure out how to use JavaCUP
to create a two-pass parser.

The Toy Language I solved this problem by inventing a new language called
the Toy language. The Toy language has certain features that require one to pass

24

through the code twice. However, it is much smaller than the ESRA language.
In this way, I have isolated the problem to a much smaller space. If I can create
a two-pass parser for the Toy language, I will also be able to create it for the
ESRA language.

A little simplified, the Toy language consists of a series of declarations on sep-
arate lines separated by semi-colons. Every declaration can be either a ground
or a non-ground declaration. Here is a piece of the grammar that we will focus
on:

<Declarations> -> <Declaration> ;

| <Declaration> ;<Declarations>
<Declaration> -> ground <Id>

| non_ground <Id> <Id>

These ground and non-ground declarations build up a set of hierarchical tree
structures, where identifiers declared as ground are root elements of these trees,
and identifiers declared as non-ground are nodes in the tree below the root. In
the case of non_ground <X> <Y>, the identifier X is the parent node of Y. The
domain of an identifier, dom(id), is the root of the tree that the identifier exists
in.

In the translation process, the non-ground declaration is translated in two
different ways, depending on whether the parent identifier is ground or non-
ground. Here is the translation rule for the non-ground declaration:

non_ground X Y ==> var int Y[X] in 0..1
| if X is ground

==> var int Y[dom(X)] in 0..1
| if X is non-ground

This is the reason why we need two passes of the code. In the first pass we
parse the declarations and store which identifiers are ground and which are
non-ground. In the second pass we use this stored information to translate the
non-ground declarations properly.

To create this two-pass parser I created two JavaCUP specification files:
toy passl.cup and toy pass2.cup. They are the specifications for the first and
second pass parsers respectively. I also created a Java class called DomainTree
for storing the first-pass information. Finally I have a main class called toy that
creates and runs the two parsers and connects them together.

The First Pass It is in the first specification file that I construct the DomainTree
object. I do this by using the action code directive.

action code {:
DomainTree domainTree = new DomainTree();

1}

25

Then I use the two methods of the DomainTree class, addGround and addNonGround,
to build up the tree:

Declaration ::= GROUND IDENT:id
{: domainTree.addGround(id); :}

| NON_GROUND IDENT:pid IDENT:id
{: domainTree.addNonGround(pid,id); :}

Finally, we need to get the translated result back to the caller that invoked the
parse. For this we need to do two things. First we need to declare that the
starting non-terminal is of type DomainTree:

non terminal DomainTree Declarations;

Then we need to let the semantic code for the starting non-terminal return the
DomainTree object:

Declarations ::= Declaration SEMI
{: RESULT = domainTree; :}

| Declaration SEMI Declarations
{: RESULT = domainTree; :}

The Second Pass In the second pass we use the information gathered from
the first pass. The big problem is how to actually transfer that information.
The problem is actually two-fold. This is because the parser that is gener-
ated is divided into two classes: the parser class and the actions class. Since
the DomainTree object is used by the semantic code, I first need to get the
DomainTree object into the parser class, and then from there into the actions
class.

In JavaCUP there is a directive for extending the parser with custom variable
and method declarations. I take advantage of this in the second specification file
by creating a second constructor to the parser class. It takes a second argument
which is the DomainTree object. I also add a new variable domainTree which
stores the DomainTree object that is submitted through the constructor:

parser code {:
DomainTree domainTree;
public toy_parser_pass2(
java_cup.runtime.Scanner s,
DomainTree domainTree)
{
this(s);
this.domainTree = domainTree;
}
}

26

To get the DomainTree object from the parser class into the actions class I use
the action code directive. It is similar to the parser code directive but is used
for extending the actions class. I create a method for setting the DomainTree
object in the class. I also add a member variable, domainTree, that serves as a
place holder for the DomainTree object in the actions class:

action code {:
DomainTree domainTree;
public void setDomainTree(
DomainTree domainTree)
{
this.domainTree = domainTree;
}
3

I now need to have the parser class call the method above before it starts
executing the semantic code. I solve this by placing the method call in the init
with directive. However, I need to have a reference to the actions class object
from within the parser class. By inspecting the parent class of the parser class,
lr_parser in the java_cup.runtime package, in which the parse method is
defined, I find that I can use the variable action_obj as a reference:

init with {:
action_obj.setDomainTree(domainTree) ;

s

Putting It All Together By using JavaCUP, I generate the two Java parser
files for the Toy language. By default the generated Java file is called parser.java.
Since we cannot have two Java classes with the same name, I need a way to
generate the classes with different names. The solution is to use a JavaCUP
command-line option called -parser. By doing this, I create the two files
toy parser filel.java and toy parser pass2.java:

java java_cup.Main -parser toy_parser_passl
< toy_passl.cup

java java_cup.Main -parser toy_parser_pass2
< toy_pass2.cup

There is also a -symbols option used for specifying a different name for the sym
class. However, since the two parsers parse the same language, they may use
the same sym class.

To put it all together I create the Java file toy.java. It creates the two
parser objects and connects them together. The whole file is shown below. It
reads the input code from standard input and prints the translation result to
standard output. Note that a problem was that I needed to read the same input
stream twice — one time for the first parse and a second time for the second
parse. As seen in the code, I solved this by using the methods mark and reset.

27

I used mark to mark the stream at the beginning of the first pass, and I used
reset to reset the stream to that point at the beginning of the second pass.
Note that the argument to mark is how many bytes that can be read before
the mark becomes invalid. Since I never want it to become invalid, I make this
argument very big.

InputStream stream_obj = System.in;
stream_obj.mark (100000) ;
Yylex lexer_obj = new Yylex(stream_obj);
toy_parser_passl parser_obj = new
toy_parser_passl(lexer_obj);
DomainTree domainTree =
(DomainTree) (parser_obj.parse().value);
stream_obj.reset();
lexer_obj = new Yylex(stream_obj);
toy_parser_pass2 parser_obj2 = new
toy_parser_pass2(lexer_obj,domainTree);
String result =
(String) (parser_obj2.parse().value);
System.out.print (result);

3.5 Reporting Errors with JLex and JavaCUP

When the user writes his ESRA program it will sometimes contain errors. Per-
haps he has forgotten a semi-colon; perhaps he has forgotten to declare a variable
he is using. As with any other programming language, we would like our com-
piler to catch these errors and report them. The more detailed the descriptions
of these errors, the greater the chances of the user finding and correcting them.
By default, JLex and JavaCUP return very vague error descriptions. In JLex
when there is an error, it throws an Error object with the message: “Lexical
error: Unmatched input”. In JavaCUP when there is an error, it throws an
Exceptionobject with the message: “Can’t recover from previous error(s)”.
We would like these error descriptions to be more informative; for example, we
would like them to contain information about which token caused the error, on
which line the error occurred, and at which character position the error occurred.

JLex To solve this problem in JLex I add the following line to the bottom of
the JLex specification file:

. { throw new TokenizerError (yytext(),yyline,yychar); }

By doing this, the JLex own Error object will never be thrown. Instead, all
erroneous tokens are matched by the dot, and our own defined TokenizerError
is therefore always thrown. As we are now throwing an Error, we need to have
the yylex method declare this. We do this by adding the following to the JLex
directives section:

28

%yylexthrow{
TokenizingError
%yylexthrow}

The entities yyline and yychar are defined entities in JLex which refer to
the current line and the current character position. One needs to invoke these
entities by adding the following to the JLex directives section:

%1line
%char

Note that these entities are zero-based, not one-based; that means that
yyline and yychar are O for the first row and column respectively, 1 for the
second row and column respectively, and so on. Note also that yychar refers
to the character position of the entire text. If one wants the character position
of just the current line, one can do the following trick: first one defines a new
variable called newline_pos:

hi
int newline_pos = 0;

h}

Every time there is a new line, one updates the newline_pos. It therefore
always refers to the character position of the most recent new line character:

<YYINITIAL> "\n" {
newline_pos = yychar;

3

Then finally we get the character position on the current line by simply
subtracting newline_pos from yychar:

. { throw new TokenizerError(yytext(),yyline,yychar-newline_pos); }

JavaCUP By default, when there is a parse error, JavaCUP gives an Exception
with the message: “Can’t recover from previous error(s)”. As with the
JLex error, we would like it to give us the token, line and column so that we
more easily can locate and correct the error.

The generated parser class inherits from the 1r_parser class in the java_cup.
runtime package. In it there is an error handling routine that gets called by the
parser when errors occur. Its name is report_fatal_error and is the method
that actually throws the exception. By overriding this method in the generated
parser class, we ourselves can control how the error handling should work.

The remaining problem concerns how the error handling method can get
access to the line, row and column information of the erroneous symbol. We
make use of the fact that the erroneous symbol is passed as an argument to
the report_fatal_error method. It seems suitable therefore to pack the in-
formation in the symbol object. Recall that a symbol object has two entities:

29

the token identifier and a value object. Normally, one uses the value object
to store the String object of an identifier or the Integer object of a number.
We create a new class, SymbolInfo, that holds the entities 1ine, column, token
and value. As we generate the tokens in the lex file we also create and add a
SymbolInfo object to every Symbol object that we generate:

<YYINITIAL> "forall" {
return new Symbol(sym.FORALL,new SymbolInfo(yytext(),yyline,yychar));
}

Note that the SymbolInfo can also take a fourth argument which is the
value entity. It is used, for example, by identifiers and numbers that no longer
can use the value entity of the Symbol object.

We finish by creating the report_fatal_error method. It simply unpacks
the SymbolInfo object and throws a custom-made parse error with its token,
line, and column information:

parser code {:
public void report_fatal_error(

String message,
Object object)
throws ParsingError {
Symbol symbol = (Symbol) object;
SymbolInfo info = (SymbolInfo) symbol.value;
done_parsing();
throw new ParsingError(info.token,info.line,info.column);

3.6 Converting the Grammar to JavaCUP-format

In JavaCUP, one can only write the production rules of the grammar using
a very simple format, see [2]. In [6], section 3.2, the grammar of the ESRA
language is written using a more advanced format. The difference lies in how
one can specify each production alternative: JavaCUP only allows a sequence
of terminals and non-terminals, while the conventions used in [6] also allow the
following syntax:

e [fool — foo is optional

e {foo} — zero, one, or several times foo

foo+ — one or several times foo, separated by commas.

e foox — one or several times foo, separated by semi-colons.

30

I therefore need to find a way to rewrite the grammar in [6] into the simpler
format allowed by JavaCUP. I construct and use the conversion rules that the
reader can see below. For each conversion rule, grammar rules that match the
left-hand side of the rule (the side that is to the left of the arrow, ==>), should
be replaced by the corresponding rules on the right-hand side of the rule. The
entities A, B, C, and D that occur in the left-hand side of the rule match any
arbitrary sequence of terminals and non-terminals. The values that they’re
assigned to are copied into the entities with the same names in the right-hand
side of the rule. The occurrence of the entity E, also in the right-hand side of
the rules, represents a new non-terminal, which must be created.

A —> B[C]D ==> A -> BD
-> BCD

A -> B{C}D ==> A -> BD

-> BED
E -> CE
->C
A -> BC+D == A -> BD
-> BED
E -> ,CE
-> LE
A -> BCxD == A -> BD
-> BED
E -> ;CE
-> E

Below, I give an example that shows the use of the conversion rules in practice.
Here, first, is a part of the grammar in [6]. It is the grammar rule for the Model
non-terminal. Entities inside < and > are non-terminals.

<Model> -> {<Declaration}
<Instructton>

This grammar rule matches the left-hand side of the second conversion rule of
those listed above. The Model non-terminal matches the entity A, the Declaration
non-terminal matches the entity C, and the Instruction non-terminal matches
the entity D (the entity B is matched to the empty string). Applying the con-
version rule, the following new rules are created, see below. Notice the creation
of the new non-terminal Declarations, which corresponds to E.

Model -> Instruction

| Declarations Instruction
Declarations -> Declaration

| Declaration Declarations;

31

3.7 Writing the Range Operator Rules

One of the requirements of this project was to create the translation rules for
the range operators in the ESRA language. The range operators are prefix,
suffix and subrange. They all take two arguments and enforce that the first
argument is a prefix, suffix or subrange of the second argument. What makes
this task complex is that each argument can be either a range or a range variable.
This means that for each range operator there are four different cases, and all
in all T have to create twelve different translation rules.

Several problems arose during my work in trying to create these translation
rules. First, there was the problem of how to treat empty range variables; since
a range variable is represented as a boolean array, it would be possible that all
entries were zero. Second, a lot of the constraints that I constructed consisted of
very long logical expressions involving logical or and implication, which would
take a lot of time for the solver to solve. Lastly, I realized that OPL uses strict
evaluation, so a lot of simple solutions that were based on OPL not evaluating
the second argument had to be thrown away, since they caused index out of
bounds errors for the arrays.

Due to these problems the requirements were simplified. Each operator could
now only take range variables as arguments and these range variables had to be
of the same domain, i.e., their parent ranges had to have the same lower and
upper bounds.

Before I present the solution I need to discuss how range variables in ESRA
are represented in OPL. Below is shown how a range variable in ESRA can be
declared in three different ways. S will be the new range variable and R its
domain range.

var prefix(R) S;
var suffix(R) S;
var subrange(R) S;

Their representations in OPL all have the following boolean array:
var int S[R] in 0..1;

They also all have a constraint that ensures that all 1s in the array are contigu-
ous, i.e., there are no 1s in the array that are separated by any 0s. The way to
interpret this representation is that all elements that are 1 are part of the range
and all element that are 0 are not part of the range. The index of the left-most
1 is the lower bound of the range and the index of the right-most 1 is the upper
bound of the range.

Using the above information about range variables I can now create the
translation rules for the range operators. When discussing the solution of each
operator, I will use the term interpreted range of an array to mean the contiguous
stretch of 1s that occur in the array.

For the subrange operator I create a constraint that checks that every ele-
ment in B is greater or equal to the element at the same index in A. This means

32

that for all 1s that occur in A there should be 1s at the same indices in B,
making the interpreted range of A be inside the interpreted range of B. The
figure below shows two possible instances of the arrays A and B, such that the
interpreted range of A is a subrange of the interpreted range of B. The arrows
show the comparisons of the elements made by the OPL code. Below the figure
the OPL code is listed.

B 0| 0 1 1 1)1 10

R R A

A 0| 0] O0 1 1 1 0] 0

subrange(A,B);
=> forall(i in [a..b])
B[i] >= A[i];
| A and B are range variables
with the same domain a..b

For the prefix operator I use two constraints. The first one is the same as the
one used for the subrange operator. The second one checks that every pair of
adjacent elements in A that are within the interpreted range of B, are such that
the first element is greater or equal to the second element. This means that for
the left most 1 in B, there must be a 1 at the same index in A. Therefore the
interpreted range of A is a prefix of B. The purpose of the if construct is to
prevent that an array index out of bounds error occurs if a is greater or equal
to b.

B 0|0 1 1 1|1 1,0

I I I I I I I I B[i] >= A[i]

A 0O 1 1 1 0| O 0

N ANAN AN

Alil >= Ali+11

prefix(A,B);
=> forall(i in [a..b])

33

B[i] >= A[il;
if b > a then
forall(i in [a..b-1])
B[i] = 1 & B[i+1] = 1 =>
A[i] >= A[i+1]
| A and B are range variables
with the same domain a..b

For the suffix operator I use the same two constraints as for the prefix oper-
ator. The only change I do is to reverse the greater or equal sign into a less or
equal sign in the second constraint. Using the same reasoning as for the prefix
operator above, the interpreted range of A must now be a suffix of B.

B 0|0 1 1 1|1 1,0

I I I I I I I I B[i] >= A[i]

A 0O 0 0 1 11 0

N ANAN AN

Alil <= Ali+11

suffix(A,B);
=> forall(i in [a..b])
B[i] >= A[il;
if b > a then
forall(i in [a..b-1])
B[i] = 1 & B[i+1] = 1 =>
Ali] <= A[i+1]
| A and B are range variables
with the same domain a..b

3.8 Token List Generator Generator

Creating the compiler can be a tricky job. If something goes wrong and the
wrong code is produced, it can be hard to find the bug. To help with this, I
have created two helper programs: token list generator generator and parse tree
generator generator.

Token list generator generator is a Perl program that takes the lex file and
transforms it into a new lex file. This new lex file, when run, instead of returning
symbols to the parser, prints out a nice and readable list of the tokens produced
from the input file. I now give an example.

34

Here is a simple ESRA program:

int x;
int y;
solve x = y;

And here is the print-out one gets from running it through the token list
generator generator:

[INT:?int’]
[ID:’x’]
[SEMI:?;]

[INT:?int’]
[ID:’y~]
[SEMI:?;”]

[SOLVE:’solve’]
[ID:’x”]
[EQUAL: =]
[ID:>y’]
[SEMI:?;]

3.9 Parse Tree Generator Generator

Parse tree generator generator works similarly to the token list generator gener-
ator. It generates a new cup file from the old one which, when run on an input
file, displays the parse tree of that input file.

By using these programs, I can see what’s going on in the compilation pro-
cess and narrow the location of the error down to one of the following: the
tokenization, the parsing, or the translation. Here follows an example of the
printout that is produced from the parse tree generator generator. It is based
on the simple ESRA program that is listed in the previous section.

Model {
Declarations {
Declaration {
DataDecl {
Type {
INT

ID:x
}
SEMI
}

Declarations {

35

Declaration {
DataDecl {
Type {

INT

}
ID:y
}
SEMI
}
}
}
Instruction {
SOLVE
Constraint {
Formula {
Atom {
Expression {
Argument {
ID:x
}
}
ArithOp {
EQUAL
}
Expression {
Argument {
ID:y

3.10 Rule Converter

One big part of my job was to implement the ESRA-to-OPL translation rules.
These rules are all listed in the report The Syntax and Semantics of ESRA, see
[6]. The following example shows the format of such a rule in the report. This
particular example is the rule for the suffix variable declaration.

var suffix(R) S;
=> var int S[R] in 0..1;

36

forall(I in [L..U-11)
S[I] <= S[I+1];
| R is a range L..U

Looking at the rule, the first line is the ESRA statement that is being translated.
R and S are called the parameters of the rule. The parameters are unbound
entities that will be matched to values during the translation. Then, all the
occurrences of the parameters in the body of the rule will be substituted with
the values. Regarding the body of the rule, it consists of a clause starting with
an arrow, called the output part, and a clause starting with a vertical bar, called
the condition part. There can be several such pairs consisting of an output part
and a condition part in the body of the rule; these are called subrules. The
translated result corresponds to the output part of the first subrule of which the
condition part matches. Note in the example how the condition part is being
used to extract the lower and upper bounds, L and U, of the domain range, R,
so that these can be used in the output part.

Implementing the ESRA-to-OPL translation rules meant writing them in
Java so that they could be used in the compiler. Shown below is the Java
code that I had to write for the suffix variable declaration rule. Like it and all
other rules, they are implemented as methods of which the arguments are the
parameters of the rule.

public String suffixVarDecl(String P,String R)
throws UndefinedIdentifierException,
UnsatisfiedRuleException {
String result = "";
{
SymbolData RData = symbolTable.lookup(R);
if (RData == null)
throw new UndefinedIdentifierException(R);
String L = RData.rangeLoValue();
String U = RData.rangeHiValue();
if ((RData.isRange())) {
result += (tab("var int "+P+"["+R+"] in 0..1",0));
constraint (tab("forall(I in ["+L+".."+U+"-1]1) \n",0) +
tab(""+P+" [I] >= "+P+"[I+1]1",1));
return result;
}
}

throw new UnsatisfiedRuleException();

I noticed that writing these methods by hand into the computer had many
disadvantages. For example, constructing the Java strings for the output part
was very tedious: I had to substitute all parameters with pluses (+), quotation
marks ("), and the corresponding variable names in Java. Also, the methods,

37

in their structure, were very similar to each other, and I felt I was repeating the
same job over and over again.

I therefore have implemented a Perl program that I call the rule converter.
The rule converter lets one write translation rules in a file called the rule file.
It then converts these rules automatically into Java methods, the same Java
methods as were created by hand, as the example above showed.

The format of the translation rules in the rule file is very similar to that of
the translation rules in the report [6], of which one is given in the beginning of
this section. The exact format of the rule is as follows. First comes the rule
type, which can be one of decl, cons or expr. decl is used if the statement
being translated is a declaration; cons is used if the statement being translated
is a constraint; and expr is used if the the statement being translated is an
expression. Following the rule type is the rule name, which will be the name
of the corresponding Java method. After the rule name comes the parameters
of the rule enclosed in the parentheses, which will be the arguments of the
corresponding Java method. Lastly follows the body of the rule enclosed within
{: and :}. Here, the output parts are specified exactly the same as in the report
[6]. The difference lies in the condition parts, where being formal is required.
The condition part is a semi-colon separated list of conditions. Each condition
consists of the sequence: an identifier, a colon (:), and a comma separated list
of ESRA types, which the identifier is allowed to have. The ESRA types are
int, array, enum, range(L..U), setvar, rangevar, and mapping(V->W). As
can be seen, the range type and the mapping type allow one to extract entities,
which can be used in the output part. range lets one extract the upper and
lower bounds of the range (L. .U), while mapping lets one extract the domain
and the codomain of the mapping (V->W).

The example below illustrates the format of the translation rules, by showing
how one may write the translation rule for the suffix variable declaration.

decl suffixVarDecl(R,S) {:
=> var int S[R] in 0..1;
forall(I in [L..U-1])
S[I] <= S[I+1];
| R:range(L..U)
3

Besides sparing one the trouble of writing several quotation marks (“) and pluses
(+), and letting one extract entities from range and mapping identifiers, here
are other important benefits with the rule file:

e One may write such expressions as dom(S) in the output part. The expres-
sion gets substituted with Java code that evaluates to the domain of S.
For example, here is part of the rule for the mapping variable declaration,
which is given in the report [6]. Notice all the occurrences of dom(V) and
dom(W) in the rule. The rule will be converted correctly into Java.

var V->W M;

38

=> var int M[dom(V),dom(W)] in 0..1;
forall(I in dom(V)) sum(J in dom(W))
M[I,J] = V[I];
forall(J in dom(W),I in dom(V))
M[I,J] <= W[J];
display(I in dom(V),J in dom(W):
M[I,J]=1) <I,J>;
| V:setvar,rangevar;W:setvar,rangevar

e Moreover, the rule converter detects if a line is a display, a declaration, a
constraint, or an expression statement. Depending on the type of state-
ment, the rule converter creates the appropriate Java code, so that the
statement is placed correctly in the generated OPL code.

e The rule converter also detects indentions among the lines in the output
part and generate corresponding calls to a Java tabbing function. In this
way, the indentions used in the rule file get preserved in the generated
OPL code.

3.11 Other Issues

In this section I mention some things from this phase which are of less impor-
tance, but nevertheless took pretty much time of the work.

First of all, there is the making of the graphical interface. The interface
combines all the functionality of the ESRA program. It lets one view the list
of tokens, the parse tree, the symbol table, and the final translation. It also
provides the possibility to open and save files like a normal text editor. It even
gives all the classical warnings like “Do you want to save this file before
closing it”, “This file already exists, do you want to overwrite it”,
etc.

Another significant part of this phase was implementing the translation al-
gorithms for the forall constraint and the sum expression. The algorithms are
listed in [7].

3.12 Testing and Results

In this section I do tests to show that the ESRA implementation works correctly.
In section 2.4, about ESRA and OPL, I talked about a classical constraint
problem called the Graph Coloring problem, GCP. Here I use two other classical
problems called the Warehouse Location problem, WLP, and the File Packing
problem, FPP, to test my program.

The WLP is about mapping stores to warehouses such that a certain cost
is minimized. The cost is dependent on the number of warehouses open and
the supply costs for these warehouses. The supply cost is specified individually
for all the possible pairs of warehouses and stores in the problem. The main

39

constraint in the problem is that each warehouse has a maximum capacity of
stores it can supply.

The FPP maps files to diskettes, such that a minimum number of diskettes
are used. The files all have different sizes and cannot be broken apart. The aim
is thus to place them in such a way that the non-used space on the diskettes is
minimized. For more details on this problem and the WLP, see [7].

Now I use each problem (the WLP and the FPP) to test my application
using the following procedure.

e Step 1: Create an ESRA model of the problem.

e Step 2: From the ESRA model generate an OPL program using my ESRA
application.

e Step 3: Compare the generated OPL program to a handwritten OPL
program for the same problem.

e Step 4: Create input data for the generated OPL program to be used with
the OPL constraint solver application. This application, made by ILOG,
is an interactive environment for designing and solving OPL programs.

e Step 5: Generate the solution to the generated OPL program with the
input data using the OPL constraint solver application.

e Step 6: Solve the problem on paper using the same input data and compare
it to the generated solution.

Testing with the WLP In this section I test my ESRA application with the
WLP using the procedure described above.

For step 1, I use the ESRA model from [7]. The only modifications here are
that, firstly parentheses are added to the cost function; the model would not
compile correctly otherwise, and secondly the constraint max-image-capacity
is used; the model in the report uses a forall constraint and a count expression
to achieve the same thing.

int MaintCost = ...;

int NbStores = ...;

enum Warehouses ...;

range Stores 0..NbStores-1;

int Capacity[Warehouses] = ...;

int SupplyCost[Stores,Warehouses] = ...;

var {Warehouses} OpenWarehouses;

var Stores->OpenWarehouses Supplier;

minimize (sum(I->J in Supplier)
SupplyCost[I,J]) +
(card (OpenWarehouses) * MaintCost)

subject to {
max-image-capacity(Supplier,Capacity)

};

40

For step 2, the following OPL program is generated from the ESRA model using
my ESRA application. By brief inspection, the OPL program seems to have no
obvious errors.

int MaintCost = ...;
int NbStores = ...;
enum Warehouses ...;
range Stores 0..NbStores-1;
int Capacity[Warehouses] = ...;
int SupplyCost[Stores,Warehouses] = ...;
var int OpenWarehouses[Warehouses] in 0..1;
var Warehouses Supplier[Stores];
minimize (sum(I in Stores)
(SupplyCost[I,Supplier[I]1]))+
(sum(I in Warehouses)
OpenWarehouses [I]*MaintCost)
subject to {
forall(J in Warehouses)
OpenWarehouses[J]=1 => sum(I in Stores)
(Supplier[I]=J) <= Capacity[J];
forall(I in Stores)
OpenWarehouses [Supplier[I]]=1;
s
display(I in Warehouses:
OpenWarehouses[I]=1) <I>;

For step 3, I compare the OPL program generated by the ESRA application with
the OPL program generated by hand in the thesis [7]. They are semantically
equal. The only syntactical differences are that they use different names for
some of the iterating identifiers, and that the OPL program here uses more
parentheses which is a result of the parentheses introduced in step 1.

For step 4, I create the following input data to be used with the OPL program
in the OPL constraint solver application. The values have been chosen in such
a way that finding the solution is not straight forward.

MaintCost = 10;
NbStores = 8;
Warehouses =
{uppsala,stockholm,vasteras,linkoping};
Capacity = #[
uppsala:3,
stockholm:3,
vasteras:1,
linkoping:4
1#;
SupplyCost = #[
0: [5,8,4,3],

41

~N O O WN
P

1#;

For step 5, the following solution is generated by the OPL constraint solver.
By brief inspection, I see that the cost value has been calculated correctly, and
that the maximum capacity constraint is fulfilled. What remains is testing if
the cost value is the actual minimal cost value.

objective value: 49
variable OpenWarehouses:

uppsala -1
stockholm - O
vasteras -1

linkoping - 1
variable Supplier:
- linkoping

- linkoping

- vasteras
linkoping

- linkoping

- uppsala

- uppsala
uppsala

O WN - O
|

~
|

For the final step, step 6, I will present handwritten proof that the solution
generated by the OPL constraint solver application is correct, thus proving that
my ESRA application has generated a correct OPL program.

Looking at step 5, the reader should first note that at least 3 warehouses must
be opened. The reason is that the sum of the capacities of any 2 warehouses is
less than 8, which is the number of stores. With 3 open warehouses it is possible
to supply all stores, for example with uppsala, stockholm, and linkoping,
which together have a capacity of 10.

The reader should then note that the optimal cost value cannot be less than
47. This value is the cost that comes from each store choosing its cheapest
supplying warehouse. In our solution, with the cost being 49, this is the case
for all stores except for store number 3 and store number 7 (with the first store
being store number 0). The only way we could get a better cost is if these
stores would change to their cheapest supplying warehouses. However, for store
number 3, its cheapest supplying warehouse being stockholm, we would have to
open up a new warehouse to the dispense of 10. For store number 7, its cheapest
supplying warehouse being vasteras, we cannot choose this warehouse because

42

its maximum capacity of 1 is already used, see store number 2. Alternatively
we could have store number 2 change its supplier from vasteras, which costs
1, into another supplier, but any one of those has a cost of at least 4.

Thus we see that getting a better optimal value than 49 is impossible. The
conclusion is that the solution from step 5 is the optimal solution.

Testing with the FPP Here, I test my ESRA application with the FPP
problem, in the same way as, in the previous paragraph, I tested my ESRA
application with the WLP problem.

For step 1, I use the ESRA model from the report [7]. There is one difference,
which occurs in the declaration of the identifier MinNbDis. The ESRA model
from the report uses the ceil function, like this:

int MinNbDis = ceil(card(Files)/DisSize);

The ESRA model here, which is listed further down, does not. Instead it uses
the code:

int MinNbDis = card(Files)/DisSize+1;

Using this code has the same desired effect as using the ceil function. The
reason I couldn’t use the ceil function is that it caused an invalid type error
in the OPL constraint solver application, which I never managed to solve.

int DisSize = ...;
enum Files ...;
int FileSizes[Files] = ...;

int MinNbDis = card(Files)/DisSize+1;

int MaxNbDis = card(Files);

range Diskettes 1..MaxNbDis;

var {Diskettes} UsedDiskettes;

var Files->UsedDiskettes Packing;

minimize
card (UsedDiskettes)

subject to {
card(UsedDiskettes) >= MinNbDis;
max-map-weight (Packing,FileSizes,DisSize)

};

For step 2, the following OPL program is generated from the ESRA model by
using my ESRA application. Like the OPL program generated for the WLP,
this program seems to have no obvious errors.

int DisSize = ...;
enum Files ...;
int FileSizes[Files] = ...;

int MinNbDis = card(Files)/DisSize+1;

43

int MaxNbDis = card(Files);
range Diskettes 1..MaxNbDis;
var int UsedDiskettes[Diskettes] in 0..1;
var Diskettes Packing[Files];
minimize
sum(I in Diskettes) UsedDiskettes[I]
subject to {
sum(I in Diskettes)
UsedDiskettes[I] >= MinNbDis;
forall(J in Diskettes)
UsedDiskettes[J]=1 =>
sum(I in Files)
(Packing[I]=J) * FileSizes[I]
<= DisSize;
forall(I in Files)
UsedDiskettes [Packing[I]]=1;
};
display(I in Diskettes:
UsedDiskettes[I]=1) <I>;

For step 3, I compare the OPL program generated by my ESRA application,
with the OPL program generated by hand in the report [7]. Besides the ceil
function, they are the same.

For step 4, I create the following input data to be used with the generated
OPL program in the OPL constraint solver application. Like the input data
for the WLP problem, this input data has been chosen such that finding the
solution is not obvious. For example, putting files of sizes 2,3 and 5 into a one
diskette would be the minimized solution for that diskette, but it would not be
the minimized solution for the overall problem.

DisSize = 10;
Files =
{loveletter,wordfile,homepage,
javafile, excelsheet, initfile};
FileSizes = #[

loveletter:7,

wordfile:5,

homepage:7,

javafile:2,

excelsheet:3,

initfile:4
1#;

For step 5, the following solution is generated by the OPL constraint solver
application. It is visible that the cost value is calculated correctly, and that the
choice of packing files is not breaking the maximum diskette size constraint.

44

objective value: 3
variable UsedDiskettes:
-0

OO WN -
[
= = O O

-1
variable Packing:
loveletter - 4

wordfile -
homepage -
javafile -
excelsheet -

g o OO,

initfile -

Looking at the input data from step 4, | can prove that the cost value from step
5 is the actual minimal cost value. As the reader can see, the sum of the sizes
of the files is 28. As each diskette has a size of 10, this means that a minimum
number of 3 diskettes must be used. As 3 is the solution given in step 5, this
must be the, or one of the, optimal solutions.

3.13 Conclusion

The results from the tests done on the Warehouse Location problem, WLP, and
the File Packing problem, FPP, in the previous section were successful. This
shows that my ESRA application can translate ESRA models of the WLP and
the FPP into correctly working OPL programs. Since these models are quite
complex and contain most of the features in the ESRA language, it seems likely
that my ESRA application works for most other ESRA models as well.

45

Chapter 4

Phase II: The
Non-deterministic Compiler

4.1 Goals and Requirements

For the second phase the goal is to make the compiler from phase one non-
deterministic. This means that one input program can be translated into several
different output programs. The output programs are equal in their functionality
but are implemented in different ways. Read more about this in section 2.5.

To ease my task, I have modified the languages used with the compiler. The
input language to the compiler is now a simplified version of the ESRA language
from phase 1. For example, only mapping variables are used — set variables
and range variables have been removed.

The output language to the compiler has also been changed. It is now an
extension of the OPL language, here called OPL+, which unlike OPL also allows
set variables.

In the continuation of this chapter I will refer to the simplified version of
ESRA as just ESRA. Both this language and OPL+ are described fully at the
bottom of section 2.4 about ESRA and OPL.

Another new aspect that is introduced in this phase is the usage of explana-
tions. For every produced translation line there can also be one or more lines of
comments. This is a way of automatically generating comments in the different
output models.

Finally the rule file must be modified. There should be a way to specify that
an input statement can generate several output statements. One should also be
able to state that some representations are dependent on other representations.
Moreover, there should be a way to write explanations for every translation line.
Finally, one should be able to specify substitutions. For example, if one has an
expression represented by the parameter P, one should be able to say that j is
to be substituted with F[i] in the expression P.

46

4.2 Solution and Methods

In this and the following sections I describe how I solved the requirements given
in the previous section. The main problem was how to combine the different
representations to generate all the models. Here is the overall description of my
solution.

First, the parser breaks the input code into elements. As the reader might
remember from section 2.5, there are input elements, output elements, objective
elements and constraint elements, corresponding in turn to data declarations,
variable declarations, objectives and constraints. Using the rules in the rule file,
every element in the input language is translated into elements in the output
language, i.e., a single element in the input code can produce several elements
in the output code — this is called an element set. Moreover, an element can
have several representations, i.e., it can produce a set of element sets — we call
this an element set choice, or choice for short. The term element item, or just
item for short, will be used in a general sense to mean an element, an element
set, or an element set choice. Every type of element item has a corresponding
class with the same name in my Java application.

Second, which is the central part of the solution, a tree representation is
used. The generated element items from the rule file are inserted into this tree
in a special way. The tree is then traversed and sets of elements are produced
— every set represents one model. Read the next section to see how this tree
works in more detail.

To make explanations work I added an explanation field to the element class.
When the elements in the model object are processed together to create the
string representation of the model, the explanations are extracted and inserted
into that string representation.

Finally, in section 4.4, I describe how I modified the rule file.

4.3 The Element Tree

The element tree is the key part to generating all the models. In this section I
describe how it works.

The generated element items (elements, element sets, and element set choices)
from the rules are inserted into the tree. Every time an item is inserted, a new
level of nodes at the bottom of the tree is created. If the item is an element
or an element set, then one new node is created at every leaf. The new node
contains the element or element set. If the item is an element set choice then
several new nodes are created at every leaf. Each and every one of those nodes
corresponds to one of the element sets in the choice.

From the procedure described above, it is clear that the element tree contains
a lot of redundancy — all nodes at the same level in the tree are duplicates of
each other. And worse, for every element set choice inserted into the tree, the
number of duplicate nodes grows exponentially. However, the advantage of using
this tree representation is that it’s now easy to generate all the models. In fact,

47

all the paths in the tree, from the root to the leaves, represent one model. By
traversing all the paths and collecting all the elements on the way, we obtain all
the models.

Here follows an example to illustrate what I have just described. Let’s say
one has the following ESRA model:

we

’

THEO QW e

2

A to F represent ESRA statements, for example constraints, declarations, and
so on. The ESRA model is then translated in the following way:

A --> G

B --> [H,I]

¢ --> {0J,x1,[L,M,N],[0,P,Q]}
D --> R

E --> {[s,T],[U,v]}

F --> [W,X]

G to X represent elements in the output language, in our case the OPL+ lan-
guage. Elements within square brackets, [and], make up an element set. Ele-
ment sets within curly braces, { and }, make up an element set choice. For exam-
ple, above, A translates into the element G, while B translates into the element set
[H,I], and C translates into the element set choice {[J,K1, [L,M,N],[0,P,Q]}.

Following the translation, the generated items are inserted into the tree in
the same order as they were generated. The figure below shows the element tree
when it is complete. Notice how the element tree branches when an element
set choice is inserted into the tree. Notice also the aspect of duplicates as the
element item R occurs three times and the element item [W,X] occurs six times.

48

©
)

2

Now, by traversing all the paths in the tree, we can generate all the models;
the models are listed below. As models are basically element sets, I use square
brackets to represent them.

DO WN -

L
L
L
L
L
L

In the section on non-determinism in compilation, see section 2.5, I mentioned
the problem of representations depending on other representations. With the
above procedure, all the combinations of representations are generated, even
those so called invalid combinations or invalid models that contain representa-
tions that don’t match together. The following is a description of the algorithm
I used to solve this problem.

To eliminate the invalid combinations, I created special conditions for insert-
ing an element set choice into the tree. While traversing down the path to a leaf,
I checked if any of the nodes contained a variable declaration — only variable
declarations can set representations. If I found such an element, I stored its
representation number, a key to identify the representation. Down at the leaf,
I compared the representation numbers in the choice with the representation
number that I had stored. I would create nodes only for those element sets with
the same representation number. In this way, paths corresponding to invalid
models would never be created.

Here follows a second example illustrating an element tree. The same input

49

model and the same translation rules as were listed in section 2.5 have been
used. To refresh the reader’s memory, the program looks like this:

{int} V;

{int} W;

var V->W F;

solve {
injective(F)

};

The illustration of the element tree that one sees below is, unlike the first ex-
ample, a print-out that is generated automatically from my ESRA application.
Nodes with the parent attribute are setting the representation and nodes with
the child attribute are following the representation. The number after the
colon after the child or the parent attribute is the representation number. Note
that the algorithm on eliminating invalid models has been used: a “parent” node
only has “child” nodes with the same representation number as itself below it in
the tree.

INPUT: {int} V
INPUT: {int} W

parent:1
OUTPUT: var F[V] in W

child:1
CONSTRAINT: forall(i in W)
forall(j in W)
i< 3=
F[il <> F[j]

child:1
OUTPUT: var D_F[W] in V
CONSTRAINT: forall(i in V) forall(j in W)

50

parent:2
OUTPUT: var F[V,W] in O..1
CONSTRAINT: forall(j in W) sum(i in V)
F[i,j] = 1
child:2
CONSTRAINT: forall(i in W) sum(i in V)
F[i,j]1 <=1

parent:3
OUTPUT: var {V} F[W];
CONSTRAINT: union all(j in W) F[j]l =V
CONSTRAINT: forall(i in W) forall(j in W)
i< j=
F[i] inter F[j] = {}
child:3
CONSTRAINT: forall(i in W)
card(F[j]) <=1

4.4 Enhancing the Rule Converter

As mentioned in the first section of this chapter, phase 2 added new requirements
to the rule file system. In this section I describe how I solved these requirements.

First, the appearance of the rule file was modified. Here is how the new
rule file system lets one write rules. The examples are based on the rules for
mapping variables and the injective constraint, given in section 2.5.

decl mappingVarDecl(F,V,W) {:

o1

=> var F[V] in W;
| parent:1;V:intset;W:intset;
=> % a boolean matrix
var F[V,W] in 0..1;
% should be a many-to-one mapping
forall(j in W)
sum(i in V) F[i,j] = 1;
| parent:2;V:intset;W:intset;
=> var {V} F[W];
union all(j in W) F[j] = V;
forall(i in W) forall(j in W)
i <> j => F[i] inter F[j] = {};
| parent:3;V:intset;W:intset
:}
cons injectiveConstraint(F) {:
=> alldifferent (F);
| child:1;F:varmap(V->W)
=> forall(i in W) forall(j in W)
i <> j => F[i] <> F[j];
| child:1;F:varmap(V->W)
=> var D_F[W] in V;
forall(i in V) forall(j in W)
F[il = j => D_F[jl = i;
| child:1;F:varmap(V->W)
=> forall(i in W) sum(i in V)
F[i,j] <= 1;
| child:2;F:varmap(V->W)
=> forall(i in W) card(F[jl) <= 1;
| child:3;F:varmap(V->W)

As the reader can see, the basic syntax of the rule file is still similar to that
of phase 1. A block of lines starting with an arrow (=>) makes up the output
part, and a block of lines starting with a vertical bar (|) makes up the condition
part. Each such pair consisting of an output part and a condition part is called
a subrule. However, there is a major difference. In phase 1, the translated result
was the output from the first subrule that matched the input, i.e., the output
came from only one subrule. Here, in phase 2, several subrules are allowed to
match the input. The translated result will be an element set choice, in which
the element sets correspond to the output parts of all the matching subrules.
This solves the main requirement — there can now be several representations
for one input statement.

Next was the problem of representations depending on other representations.
I solved this by adding new attributes to the conditions. Representations with
the child attribute depend on representations with the parent attribute. The
two can only be combined if they have the same representation number (given

92

after the colon).

The new rule file also allows one to write explanations. As can be seen by
the two explanations in the mapping rule, the explanations are placed above
the statement they refer to. To distinguish them from normal code statements,
the line or lines that make up the explanation start with a percent sign (%).

Finally, there is the issue of specifying substitutions in the rules. The exam-
ple below shows how it’s done. In this case the substitution takes place on line
2. Q is an expression in which all occurrences of j are substituted with F[i].

expr sumExpression(i,j,F,Q) {:
=> % substitute j
sum(i in V) Q[:j/F[il:];
| child:1;F:varmap(V->W)
=> % sum all elements
sum(i in V) sum(j in W)
F[i,j] * Q;
| child:2;F:varmap (V->W)
=> var F_B[V,W] in 0..1;
forall(i in V) forall(j in W)
F_B[i,j]l =1 <=> i in F[j];
sum(i in V)
sum(j in W)
F_B[i,jl * Q;
| child:3;F:varmap(V->W)
:}

Besides the appearance of the rule file, the new requirements have also affected
the functionality of the rule converter program. Here is how the rule for sum
expressions would be translated into Java (Note: I have omitted the Java code
for the last two productions — the code is really three times as large).

public ElementSetChoice sumExpression(
Object i_param,0Object j_param,
Object F_param,0Object Q_param) throws
UndefinedIdentifierException,
InvalidTypeException {

ElementSetChoice choice=new ElementSetChoice();

String i; String j; String F; String Q;

{
ElementSet es = ElementSet.createChild(1);
i = getStringValue(i_param,1);
addExtraElements (i_param,1,es);
j = getStringValue(j_param,1);
addExtraElements (j_param,1,es);
F = getStringValue(F_param,1);
addExtraElements (F_param,1,es);
Q = getStringValue(Q_param,1);

93

addExtraElements (Q_param,1,es);
SymbolData FData = symbolTable.lookup(F);
if (FData == null)
throw new UndefinedIdentifierException(
(SymbolInfo)F_param) ;
String V = FData.mappingDomain() ;
String W = FData.mappingCodomain() ;
if ((true) && (FData.isMappingVariable())) {
Explanation expl;
expl = new Explanation();
expl.addLine ("substitute "+j+"");
partial(es,expl,tab("sum("+i+" in "+V+
") \n",0) +
tab(""+TextSubstituter.substituteId(
l|l|+Q+l|l|’l|l|+j+l|l|’||||+F+|| [l|+i+||]l|)+||l|’1));
choice.addElementSet (es);

}
if (choice.isEmpty())

throw new InvalidTypeException();
return choice;

}

The structure of the new Java code is a lot different from that of the Java code
generated in phase 1.

To begin with, the input parameters are no longer of type SymbolInfo
but of type Object. This is because parameters can now also be of type
ElementSetChoice. The method getStringValue is called to distinguish be-
tween the two types and retrieve the correct string value of the parameter. The
method addExtraElements is called to retrieve the other optional elements that
are associated with the string value.

Another change is that the method no longer returns an ElementSet object.
Since rules can generate several representations, the method now returns an
ElementSetChoice object. Further on, Explanation objects are created and
added to their corresponding element objects.

o4

4.5 Testing and Results

In this section I test that my ESRA application works correctly. As the reader
knows, the ESRA application takes an input program in the ESRA language
and produces several output programs in the OPL+ language. As the OPL+
language is not compilable, I cannot check that the output programs themselves
work correctly (compare with steps 4, 5 and 6 from the test procedure used in
phase 1, see section 3.12). I can only check that the ESRA application produces
the right output programs, based on the rules in the rule file.

The rule file consists of five rules. Three of these rules are the rules for the
mapping variable declaration, the injective constraint, and the sum expression,
which were described in the previous section. The two other rules are the rules
for the forall constraint and the inverse image of a mapping. Each of the five
rules gets listed further down in the section in the moment it is applied for the
first time.

To test the ESRA application I will accomplish the following tasks:

e Task 1: create an ESRA model that makes use of many of the features
implemented in the ESRA application.

e Task 2: using the rules in the rule file, produce the output programs by
hand — not by using the compiler.

e Task 3: run the ESRA model thru the ESRA application to generate the
output programs.

e Tagk 4: compare the compiler-generated output programs with the output
programs produced by hand.

The objective of these tasks is to test that the ESRA application generates
the correct output programs for the ESRA model. For a successful outcome
of the test, the output programs produced by hand in task 2 should be equal
to the output programs generated by the compiler in task 3. With the ESRA
model being complex, such a successful outcome should mean that the ESRA
application will work correctly for many other ESRA models as well.

Task 1, creating the ESRA model For step 1, I create the following ESRA
model. It consists of two integer sets V and W; one mapping variable F from V
into W; an injective constraint on F; and a complex forall constraint.

{int} V;
{int} W;
var V->W F;
solve {
injective(F);
forall(<i,j> in F)
sum (<k,1> in F)

39

“F[k] * 1 =k
};

This ESRA model is small and does not represent anything meaningful. How-
ever, despite its size, it actually makes use of all five rules in the rule file. Also,
three of the rules, the rules for the forall constraint, the sum expression, and
the inverse image of a mapping, are used in a nested way.

Task 2, producing the output programs by hand In this extensive para-
graph I will perform step by step the creation of the the output programs of
the ESRA model by hand. The purpose is to check that the generated output
programs from the compiler are the correct ones.

I start by dividing the ESRA model into numbered parts, 1 to 10, as the
figure below shows.

V:set(int) 1
W:set(int) 2
var F.V—->W °
solve { ¢
injective(F) 5

forall(<i,j> in F) 10

sum(<k,|> in F) 8

~F[K] 6 * | =k

}

For each part, element items in the OPL+ language are produced. By using
the rules in the rule file, listed in the beginning of this section, I can manually
determine these element items.

When illustrating the element items in the continuation of this section, I
use semi-colons to separate elements from each other in an element set. Each
element set in an element set choice is then prefixed with the number of the
representation it applies to followed by a colon. If several element sets apply
to the same representation, these are called alternatives. An element set that
is an alternative of a representation is prefixed with the representation number

96

followed by a colon, a comma sign (,) and its alternative number. The alterna-
tive number pertains to the place the element set has among the other element
sets that apply to the same representation; the first element set has alternative
number 1, the second element set alternative number 2, and so on. For exam-
ple, in the element set choice illustration below, the first element set applies to
representation 1, the second and the third element set to representation 2, and
the fourth element set to representation 3. The second and the third element
set are distinguished from each other by their alternative numbers, 1 and 2,
respectively.

1: F[il=F[j];
i>=3;
1: F[i,j1=0;
,2: F[i,j1=1;
i<=j => i=0;
3: F[i]=0;

Parts 1 and 2 These parts are the integer set declarations {int} V and
{int} W. There exists no rule in the rule file for translating these. Instead,
the translation scheme is coded directly into the semantic code of the parser
specification file (esra_pass2.cup). In this file, it is specified that integer set
declarations should be translated into themselves:

{int} V;
{int} W;

Part 3 This part is the mapping variable declaration var V->W F. I use the
rule for mapping variable declarations from the rule file:

decl mappingVarDecl(F,V,W) {:
=> var F[V] in W;
| parent:1;V:intset;W:intset;
=> var F[V,W] in 0..1;
forall(j in W)
sum(i in V) F[i,j] = 1;
| parent:2;V:intset;W:intset;
=> var {V} F[W];
union all(j in W) F[j] = V;
forall(i in W) forall(j in W)
i <> j => F[i] inter F[j] = {};
| parent:3;V:intset;W:intset

:}
This should produce the following element set choice:

1: var F[V] in W;
2: var F[V,Ww] in 0..1;

37

forall(j in W)
sum(i in V) F[i,j] = 1;
3: var {V} F[W];
union all(j in W) F[j] = V;
forall(i in W) forall(j in W)
i <> j => F[i] inter F[j] = {};

Part 4 This part, solve, is the objective of the model. As is listed in the

parser specification file, it translates into an element of itself.

Part 5 This part is the injective constraint, injective(F). To translate it,

I use the rule for the injective constraint in the rule file:

cons injectiveConstraint(F) {:
=> alldifferent (F);
| child:1;F:varmap(V->W)
=> forall(i in W) forall(j in W)
i <> j => F[i]l <> F[jl;
| child:1;F:varmap(V->W)
=> var D_F[W] in V;
forall(i in V) forall(j in W)
F[i] = j => D_F[j] = i;
| child:1;F:varmap(V->W)
=> forall(i in W) sum(i in V)
F[i,j] <= 1;
| child:2;F:varmap (V->W)
=> forall(i in W) card(F[j]l) <= 1;
| child:3;F:varmap(V->W)

It produces the following element set choice:

1,1: alldifferent(F);
1,2: forall(i in W) forall(j in W)
i <> j => F[i] <> F[j];
1,3: var D_F[W] in V;
forall(i in V) forall(j in W)
F[i] = j => D_F[j] = i;
2: forall(i in W) sum(i in V)
F[i,j] <= 1;
3: forall(i in W) card(F[jl) <= 1;

Parts 6 to 10 These parts belong to the forall constraint and are all nested
within each other. The structure of the parts corresponds to the parse tree of
the ESRA model. The most inner part is the part that is parsed and translated
first by the compiler. Its result is passed up to the next innermost part, and

98

so on. The complete translation of the forall constraint is the result from the
outermost part, part 10.

Part 6 This part is the inverse image expression “F[k]. Listed below is the
rule for inverse image expressions in the rule file, which I use for translating the
expression.

expr mappingImageExpression(F,i) {:
=> F[i];
| child:1;F:varmap(V->W)
=> sum(j in W) F[i,j] * j;
| child:2;F:varmap(V->W)
=> var F_B[V,W] in 0..1;
forall(i in V) forall(j in W)
F_B[i,j] = 1 <=> i in F[j];
sum(j in W) F_B[i,j] * j;
| child:3;F:varmap(V->W)
:}

By applying the rule, the following element set choice should be produced. Note
that I have substituted all occurrences of i with k.

1: F[k];
2: sum(j in W) Flk,j] * j;
3: var F_B[V,W] in 0..1;
forall(k in V) forall(j in W)
F_B[k,j] = 1 <=> k in F[j1;
sum(j in W) F_B[k,j] * j;

Part 7 This part is the arithmetic expression ~“F[k]*1. As is specified in the
parser specification file, all arithmetic expressions should translate into them-
selves. Thus, I should take the translated result of “F[k] and combine it with
the code string “* 1”. Because the result of “F[k] is an element set choice,
(the element set choice from part 6), the procedure is complex. The code string
should be added to all element sets in the choice. For each element set, it should
be appended to the partial element. The partial element is a special type of
element that is not represented by any of the four standard elements, i.e., input
elements, output elements, constraint elements and objective elements. The
partial elements are used to represent subparts of other elements. For example,
in the third element set listed above, the sum expression on the last line is a
partial element. This expression is not one of the four standard elements, but
it is used to eventually create the forall constraint of part 10, which is one of
the four standard elements.

Applying the procedure, appending “* 1” to all partial elements in the ele-
ment set choice from part 6, I get this new element set choice:

99

1: F[k] * 1;
2: sum(j in W) F[k,j]l * j * 1;
3: var F_B[V,W] in 0..1;
forall(k in V) forall(j in W)
F_B[k,j] = 1 <=> k in F[j];
sum(j in W) F_B[k,j] * j * 1;

Part 8 This part is the sum expression used in the ESRA model:

sum(<k,1> in F)
“"Flk] * 1

For translating this, I use the rule for sum expressions in the rule file:

expr sumExpression(i,j,F,Q) {:
=> sum(i in V) QL[:j/F[i]:]1;
| child:1;F:varmap(V->W)
=> sum(i in V) sum(j in W)
F[i,j] * Q;
| child:2;F:varmap(V->W)
=> var F_B[V,W] in 0..1;
forall(i in V) forall(j in W)
F_B[i,j] = 1 <=> i in F[j];
sum(i in V)
sum(j in W)
F_B[i,j] * Q;
| child:3;F:varmap(V->W)
:}

Notice the parameters in the signature of the rule. For our sum expression,
i corresponds to k, j corresponds to 1, and Q corresponds to “F[k] * 1. As
the result of "F[k] * 1 is an element set choice (the element set choice from
part 8), the procedure is again complex. For each subrule R, an element set
S is produced by the rule. In R, every occurrence of the string “Q” should be
replaced. The element set E in Q, that applies to the same representation as
does R, should be used for the replacement. Its partial element, X, should be
the new value. The remaining elements in E are added to S.

Applying the procedure on the rule for sum expressions, I obtain the element
set choice listed below. All occurrences of i and j have been replaced by the
identifiers k and 1, and all occurrences of “Q” have been replaced by the correct
partial elements. Note that the substitution expression Q[:j/F[i]:] from the
first subrule comes into effect. With i and j substituted, the substitution ex-
pression is really QL:1/F[k]:]. In the partial element that corresponds to this
occurrence of @, all occurrences of 1 should be substituted with F[k]. With the
partial element being the arithmetic expression F[k]*1 from the first element
set for part 7, the result of the substitution is F[k]*F [k].

60

1: sum(k in V)
F[k] * F[k];
2: sum(k in V) sum(j in W)
F[k,1] * sum(j in W) F[k,j] * j * 1;
3: var F_B[V,W] in 0..1;
var F_B[V,W] in 0..1;
forall(k in V) forall(j in W)
F_B[k,1] = 1 <=> k in F[1];
forall(k in V) forall(j in W)
F_B[k,j] = 1 <=> k in F[j];
sum(k in V)
sum(l in W)
F_B[k,1] * sum(j in W) F_B[k,jl * j * 1;

The observant reader might notice that the third element set has a strange
feature, which could be interpreted as erroneous. It contains two exact instances
of the same variable declaration:

var F_B[V,W] in 0..1;
var F_B[V,W] in 0..1;

This strange feature is dealt with in the end of the section.

Part 9 This part is the equality relation

sum(<k,1> in F)
“Flk] * 1 =k

Its left operand is the sum expression; its right operand is the identifier k.
Similar to part 7, the result of the left operand is an element set choice (the
element set choice from part 8). The translation is done by appending the code
string “= k” to all the partial elements in the choice. By doing this, I get this
new element set choice:

1: sum(k in V)
Flk] * F[k] = k;
2: sum(k in V) sum(j in W)
Flk,1] * sum(j in W)
Flk,jl * j * 1 = k;
3: var F_B[V,W] in 0..1;
var F_B[V,W] in 0..1;
forall(k in V) forall(j in W)
F_B[k,1] = 1 <=> k in F[1];
forall(k in V) forall(j in W)
F_Blk,j]l = 1 <=> k in F[jl;
sum(k in V)
sum(l in W)
F_B[k,1] * sum(j in W)
F_Blk,j]l * j * 1 = k;

61

Final part, part 10 This part is the forall constraint

forall(<i,j> in F)
sum(<k,1> in F)
“F[k] * 1 =k

The rule for the forall constraint in the rule file is used to do the translation:

cons forallComstraint(i,j,F,P) {:
=> forall(i in V) P[:j/F[i]:];
| child:1;F:varmap(V->W)
=> forall(i in V) forall(j in W)
F[i,j] = 1 => P;
| child:2;F:varmap (V->W)
=> forall(i in V) forall(j in W)
i in F[j] => P;
| child:3;F:varmap (V->W)

Like for part 8, one of the parameters to the rule is represented by an element
set choice; this is the parameter P, which is represented by the element set
choice from part 9. I use the procedure that was described for part 8, and I
obtain a new element set choice, which is listed below. Unlike for part 8, the
substitution expression P[:j/F[i]:] in the first subrule does not come into
effect. This is because the relation sum(<k,1> in F) “F[k] * 1 = k, which
is the partial element in the first element set from part 9, doesn’t contain any
occurrences of the identifiers that are represented by the parameters i and j
in the rule (the identifiers in this case happen to have the same names as the
parameters: i and j).

1: forall(i in V) sum(k in V)
Flk] * F[k] = k;
2: forall(i in V) forall(j in W)
F[i,j1 =1 =>
sum(k in V) sum(j in W)
F[k,1] * sum(j in W)
Flk,j]l * j * 1 = k;
3: var F_B[V,W] in 0..1;
var F_B[V,W] in 0..1;
forall(k in V) forall(j in W)
F_B[k,1] = 1 <=> k in F[1];
forall(k in V) forall(j in W)
F_B[k,j] = 1 <=> k in F[j];
forall(i in V) forall(j in W)
i in F[j] => sum(k in V)
sum(1l in W)
F_B[k,1] * sum(j in W)
F_Blk,j]l * j * 1 = k;

62

Creating the element tree As all the element items have been determined,
I can now create the element tree. The element items that were obtained from
translating parts 1, 2, 3, 4, 5, and 10 of the ESRA model are the items that I
insert into the tree. When inserting the items, I make sure that I do not create
branches that give rise to invalid models, i.e., models that contain items with
conflicting representations.

Below, a figure of the tree is shown when it is complete. In the figure, the
elements or element sets that exist in the nodes are identified by one or more
of the following: (1) the number of the part of the ESRA model that they were
produced from, (2) optionally the number of the representation that they apply
to, and (3) optionally the number of the alternative of that representation.

part 3 part 3
rep 2 rep3

part 4

part 4

BtE
H

part 5 part 5 part 5
repl rep2 rep3
atl

part 10 part 10 part 10
repl rep2 rep3

Creating the models I can now create all the models by traversing the paths
in the element tree. All of the five models that are created will be treated in
their own paragraphs below. For each paragraph, I will simultaneously perform
tasks 3 and 4, so that I can verify that the ESRA application has generated the
correct model.

Model 1 By traversing the left-most path in the element tree, I obtain the
element items that belong to model 1:

63

(part 1)
V{int} Vset(int);
(part 2)
{int} w;
(part 3,rep 1)
var F[V] in W;
(part 4)
solve
(part 5,rep 1,alt 1)
alldifferent (F);
(part 10,rep 1)
forall(i in V) sum(k in V)
Flk] * F[k] = k;

The following is an excerpt of the print-out generated from the ESRA applica-
tion, representing model 1.

{int} W;
var F[V] in W;
solve {
alldifferent (F);
forall(i in V) sum(k in V)
Flk] * F[k] = k
};

A comparison of the two models shows that they contain the same element
items. The two models are therefore equal. The fact that the element items
might not be ordered in the same way is irrelevant.

Model 2 By traversing the second path in the element tree, I obtain the
element items that belong to model 2:

(part 1)
{int} V;
(part 2)
{int} W;
(part 3,rep 1)
var F[V] in W;
(part 4)
solve
(part 5,rep 1,alt 2)
forall(i in W) forall(j in W)
i <> j => F[i] <> F[jl;
(part 10,rep 1)

64

forall(i in V) sum(k in V)
Flk] * F[k] = k;

Below is the compiler-generated excerpt representing model 2.

var F[V] in W;
solve {
forall(i in W) forall(j in W)
i <> j => F[i] <> F[j];
forall(i in V) sum(k in V)
Flk] * F[k] = k
1

A comparison shows that the two models are equal.

Model 3 Path number 3 in the element tree yields the element items that
belong to model 3:

(part 1)
{int} V;
(part 2)
{int} W;
(part 3,rep 1)
var F[V] in W;
(part 4)
solve
(part 5,rep 1,alt 2)
var D_F[W] in V;
forall(i in V) forall(j in W)
F[i] = j => D_F[j] = i;
(part 10,rep 1)
forall(i in V) sum(k in V)
Flk] * F[k] = k;

Below is the excerpt of model 3 generated by the compiler.

Model 3:

var F[V] in W;
var D_F[W] in V;
solve {

65

forall(i in V) forall(j in W)
F[il = j => D_F[jl = i;
forall(i in V) sum(k in V)

F[k] * F[k] =k
}

A comparison of the two models shows that model 3 has been generated correctly
by the ESRA application.

Model 4 Path number 4 in the element tree yields the element items that
belong to model 4:

(part 1)
{int} V;
(part 2)
{int} W;
(part 3,rep 2)
var F[V,W] in 0..1;
forall(j in W)
sum(i in V) F[i,j] = 1;
(part 4)
solve
(part 5,rep 2)
forall(i in W) sum(i in V)
F[i,j] <= 1;
(part 10,rep 2)
forall(i in V) forall(j in W)
F[i,jl1 =1 =>
sum(k in V) sum(l in W)
Flk,1] * sum(j in W)
Flk,jl * j * 1 = k;

Below is the excerpt of model 4 generated by the compiler.

Model 4:
{int} V;
{int} W;
var F[V,W] in 0..1;
solve {
forall(j in W) sum(i in V)
F[i,j] = 1;
forall(i in W) sum(i in V)
F[i,j]l <= 1;

forall(i in V) forall(j in W)
F[i,j] = 1 => sum(k in V)
sum(l in W)

66

F[k,1] * sum(j in W)
Flk,jl * j * 1 = k
};

A comparison of the two models shows that model 4 has been generated correctly
by the ESRA application.

Model 5 Path number 5 in the element tree yields the element items that
belong to model 5:

(part 1)
{int} V;
(part 2)
{int} w;
(part 3,rep 3)
var {V} F[W];
union all(j in W) F[j] = V;
forall(i in W) forall(j in W)
i <> j => F[i] inter F[j] = {};
(part 4)
solve
(part 5,rep 3)
forall(i in W) card(F[j]l) <= 1;
(part 10,rep 3)
var F_B[V,W] in 0..1;
var F_B[V,W] in 0..1;
forall(k in V) forall(j in W)
F_B[k,1] = 1 <=> k in F[1];
forall(k in V) forall(j in W)
F_B[k,j] = 1 <=> k in F[j];
forall(i in V) forall(j in W)
i in F[j] => sum(k in V)
sum(l in W)
F_B[k,1] * sum(j in W)
F_Blk,j]l * j * 1 = k;

Below is the excerpt of model 5 generated by the compiler.

Model 5:

var {V} F[W];
var F_B[V,W] in 0..1;
var F_B[V,W] in 0..1;

67

solve {
union all(j in W) F[j]l = V;
forall(i in W) forall(j in W)
i <> j => F[i] inter F[j] = {};
forall(i in W)
card(F[j]) <= 1;
forall(k in V) forall(j in W)
F_B[k,j] = 1 <=> k in F[j];
forall(k in V) forall(l in W)
F_B[k,1] = 1 <=> k in F[1];
forall(i in V) forall(j in W)
i in F[j] => sum(k in V)
sum(l in W)
F_B[k,1] * sum(j in W)
F_B[k,j]l * j * 1 =k
s

A comparison of the two models shows that model 5 has been generated correctly
by the ESRA application.

As all output models generated by hand are equal to the output models
generated by the compiler, it means that the ESRA application has successfully
compiled the ESRA model.

The issue of duplicates As the reader might have noticed, model 5 has a
strange feature, which could be interpreted as an error. In this model there are
two identical declarations of the array variable F_B:

var F_B[V,W] in 0..1;
var F_B[V,W] in 0..1;

There are also two constraints that, although not identical, are semantically
equal:

forall(k in V) forall(j in W)
F_B[k,j] = 1 <=> k in F[j];
forall(k in V) forall(l in W)
F_B[k,1] = 1 <=> k in F[1];

The reason is that there are two rules that produce the same declaration and the
same constraint. They are the third subrule of the rule for the sum expression

=> var F_B[V,W] in 0..1;
forall(i in V) forall(j in W)
F_B[i,j] = 1 <=> i in F[j];
sum(i in V)
sum(j in W)
F_B[i,jl * Q;
| child:3;F:varmap(V->W)

68

and the third subrule of the rule for inverse image expressions

=> var F_B[V,W] in 0..1;
forall(i in V) forall(j in W)
F_B[i,jl = 1 <=> i in F[j];
sum(j in W) F_B[i,j] * j;
| child:3;F:varmap(V->W)

Their purpose is to convert the array F, used for the third representation, into
a new matrix F_B, used for the second representation. In this way, the third
subrule can use the translation technique of the second subrule.

A simple solution to this problem would be to create different names for the
two matrices, for example one called F_B1 and one called F_B2. However, the
problem occurs in other situations as well. For example, a program containing
two inverse image expressions, such as “F[j] and “F[k] also produces two
identical declarations of the matrix F_B. Here, one cannot solve the problem by
using different names, because the declarations are both produced by the same
rule.

Despite this problem I will not spend time solving it. The reason is that
it has been agreed on that my targeted ESRA application is not required to
handle this issue.

The issue of multiple mapping variables There is also another issue,
although not visible from the test, that can be interpreted as erroneous. This
concerns the usage of several mapping variables in the ESRA model. The non-
deterministic compiler was designed in mind of only being capable of dealing
with one mapping variable. When using several mapping variables in the ESRA
model, this presents a problem to the compiler. To understand this problem,
look at the following ESRA model that uses two mapping variables:

{int} V;

{int} w;

var V->W F;

var V->W G;

solve {
injective(F);
injective(G)

};

When translating the constraint injective(F), the translated result will con-
tain several occurrences of the mapping variable F. For each model, it is impor-
tant that the representation of F used here, is the same as the representation
used in the declaration of F. In section 4.3, the procedure for inserting element
items into the element tree was described. The procedure is to traverse down
the tree and add the new element item to all the leaves. For element set choices,
only element sets that have the same representation number as the parent in
the branch are added to the leaf. The parent is an element item that has been

69

produced by a rule in the rule file with the parent attribute. With the cur-
rent rule file, mapping variable declarations are parents. When a program has
two mapping variables, there will be two parents in the branch. The element
set choice to be inserted checks the representation set by the closest parent in
the branch, believing there is only one parent. In the case of injective(F), the
closest parent is the declaration of G.The translation of injective (F) therefore
uses the representation of G, when instead it should have used the representation
of F.

Listed below is an excerpt of the element tree that is generated by the ESRA
application, when run on the ESRA model above. The excerpt shows one of the
branches in the tree, which represents one of the output programs. The element
items in the branch have been numbered from 1 to 6.

——————————————————————————————————————— (1)

INPUT: {int} V

INPUT: {int} W

——————————————————————————————————————— (2)

parent:1

OUTPUT: var F[V] in W

——————————————————————————————————————— (3)

parent:2

OUTPUT: var G[V,W] in O..1

CONSTRAINT: forall(j in W) sum(i in V)
G[i,j1 =1

——————————————————————————————————————— (4)

child:2

CONSTRAINT: forall(i in W) sum(i in V)
F[i,j] <=1

——————————————————————————————————————— (5)

child:2

CONSTRAINT: forall(i in W) sum(i in V)
G[i,j] <=1

——————————————————————————————————————— (6)

0OBJECTIVE,SOLVE

In element item 2, F is declared using its representation number 1, F, while in
element item 3, G is declared using its representation number 2. The problem
occurs for element item 4, which is the translation of injective(F). Instead of
using representation 1, F, which is the correct representation, it uses represen-
tation 2, F. The generated output program will incorrectly contain occurrences
of both F and F.

70

Like the issue concerning duplicates, I will not spend any time solving this
problem. It has been agreed on that my targeted ESRA application is not
required to handle ESRA models with multiple mapping variable declarations.

4.6 Conclusion

The tests performed in the previous section proved that the ESRA application
could correctly generate all of the output programs for the ESRA model that
was listed there. As this ESRA model was rather complex, making use of all
the rules in the rule file, it seems likely that the ESRA application will work for
most other ESRA models, as well.

71

Chapter 5

Conclusion

This work consisted of two phases which are now completed — my project has
come to its conclusion.

Summary In this project I have created two different compilers. In phase 1,
I created a compiler that translates models in the ESRA language into OPL
programs. The ESRA language used here supports a wide range of primitives.
In phase 2, I created a compiler that translates models in the ESRA language
into a set of different output programs in OPL+. The ESRA language used here
doesn’t support as many primitives, but the choice of different output programs
provides for better execution times.

For creating the compiler I used the compiler compiler help tools called
JLex and JavaCUP. They let me specify the procedure for lexing and parsing
in separate specification files. These files could then automatically be converted
to working Java programs.

Work was spent on analyzing and investigating how JLex and JavaCUP
worked in detail. This led to the solutions of how the JLex generated tokenizer
could be connected with the JavaCUP generated parser, how to create a two-
pass compiler with JavaCUP, and how to report errors with JLex and JavaCUP.

There was also a wish to have the possibility of viewing the different stages of
the compilation. For this I created two programs called the token list generator
generator and the parse tree generator generator. These programs altered the
behavior of the JLex and JavaCUP specification files, so that they produced
nice print-outs of the token list and the parse tree respectively.

To simplify the procedure of writing translation rules for the compiler, I
created a rule converter program. The program lets one specify the rules in a
simple format, and then converts these into Java methods.

For making the compiler easy to work with, I created a graphical application.
This application lets one open and save files and use the menus to invoke actions
in the compiler. Also, it includes a nice error handling system, which is capable
of presenting informative error messages and high-lighting erroneous parts of
the program.

72

Evaluation The main goal of the project was to implement the ESRA lan-
guage. As the results of the tests showed, both for phase 1 and phase 2, this goal
has been comfortably fulfilled. The compiler from phase 1 successfully trans-
lates ESRA models of two classic constraint problems into OPL programs; the
OPL programs work correctly on given input data. The compiler from phase 2
successfully produces OPL+ models from a rather complex ESRA model; the
models produced have been proven to be correct ones, based on the translation
rules used.

Another requirement was that of flexibility; the grammar and the translation
rules that the compiler uses should be easy to modify. By using JLex and
JavaCUP, the grammar is defined in its own specification file. Here, the format
of the grammar is very similar to that used in ASTRA reports, and thus the
grammar is easy to modify. Likewise, having created a rule converter program,
the translation rules are also defined in their own file, the rule file. As the
format for creating the rules is very user-friendly, the translation rules are easy
to modify.

Lessons learned There are some things that I wish I would have done dif-
ferently in the project.

First, it is the matter of how I created the three programs: token list gen-
erator generator, parse tree generator generator, and the rule converter. Each
of these programs had the task of parsing an input file: the token list generator
generator parsed the JLex specification file, the parse tree generator generator
parsed the JavaCUP specification file, and the rule converter parsed the rule
file. As Perl is a good programming language for text processing, I used Perl to
create these three programs. The main principle used in each program is that
of cut and paste using Perl’s pattern matching and substitution mechanisms.
Using this principle made it hard to update the code as the program grew in
size. For example, modifying the rule converter program to deal with the new
changes to the rule file in phase 2 was almost impossible. An alternative ap-
proach to creating the three programs would have been to, ingeniously, use JLex
and JavaCUP (!). JLex and JavaCUP are designed to deal with text that has
a well-defined grammatical structure, as is the case with the JLex specification
file, the JavaCUP specification file, and the rule file.

Second, it is the matter of the method used by the non-deterministic compiler
for generating all the output programs belonging to a certain ESRA model.
With the current method, as is explained in detail in section 4.3, the compiler
constructs a tree of translated items by appending every item that is inserted to
all the leaves in the tree. This scheme makes it easy to generate all the models
(each model is represented by a path in the tree) but wastes a lot of storage,
as each item is represented several times in the tree. A better approach would
have been to create a linked list of the items, and then generate all the models,
by using an algorithm that is capable of iterating over all the combinations of
the items’ representations.

Third and final, it is a matter concerning the basic principle used in the

73

compilation process. When creating a compiler, two different techniques are
commonly used regarding the parsing and the translation. With the first tech-
nique, the parsing and the translation are done in the same step: the input
program is broken apart and reconstructed at the same time; the translation
is said to be done on the fly. With the second technique, the parsing and the
translation are done separately. An intermediate step is used, in which a con-
crete parse tree object is created. After that, the translation can be performed
by processing this parse tree object. The parse tree object can be a tree of
linked Java objects, each object representing a part of the input program, and
each of its attributes representing subparts of that part.

In my compiler the first of the mentioned techniques is used. I soon regretted
this, because there were several points in the translation where I needed access
to information concerning other parts of the parse tree. This occurred, for
example, when processing variable declarations, which are specified like this in
the grammar:

VarDecl ::= VAR TypeVar:typeVar ID:name

To create the translation for the VarDecl statement, I need information about
the TypeVar statement which is located below the VarDecl statement in the
tree. As the translation is done on the fly, the information about the TypeVar
statement is lost when the translation process reaches the VarDecl statement.
Up till now, I have solved this problem by creating Java objects for every non-
terminal that I need to save information about. The information is stored in
the attributes of the objects. This is in a nut shell how the second technique
works. Had I incorporated the second technique from the beginning, the scheme
of using Java objects to access information about the non-terminals in the parse
tree would already be a natural part of the compiler.

Future work Even though my work here is done, the project is by no means
a finished chapter. Here is a list of some of the things that can be done later to
continue the project:

e The problem with duplicates, from phase 2, that was described in the end
of section 4.5, Testing and Results, can be solved, possibly by modifying
the rule converter program.

e The compiler can be updated to handle declarations of multiple mapping
variables. The way to achieve this would possibly be to modify the imple-
mentation of the element tree.

e For the non-deterministic compiler, the OPL+ language can be replaced
by another output language that is compilable. In this way, it would be
possible to test the execution times of the different output programs.

e As a final fantasy, which would mean very ambitious work, but certainly is
possible, the specification of the grammar from the JavaCUP specification

74

file and the specification of the translation rules from the rule file could
be joined together to form a new type of specification file. A fictitious
example of this is listed below.

Expr -> TILDE Id:F LBRACK Deref:i RBRACK {:
=> F[il;
| child:1;F:varmap(V->W)
=> sum(j in W) F[i,j] * j;
| child:2;F:varmap(V->W)
=> var F[V,W] in 0..1;
forall(i in V) forall(j in W)
F_B[i,j] = 1 <=> i in F[jl;
sum(j in W) F_B[i,j] * j;
| child:3;F:varmap(V->W)
:}
Expr -> SUM LPAREN LESS Id:i COMMA Id:j GREATER
IN Id:F RPAREN Expr:Q {:
=> sum(i in V) Q[:j/F[i]:];
| child:1;F:varmap(V->W)
=> sum(i in V) sum(j in W)
F[i,j1 * Q;
| child:2;F:varmap(V->W)
=> var F_B[V,W] in 0..1;
forall(i in V) forall(j in W)
F_B[i,jl = 1 <=> i in F[j];
sum(i in V) sum(j in W)
F_B[i,j]l * Q;
| child:3;F:varmap(V->W)
3

Here, the translation rule for a grammar production has been inserted into the
semantic code of the grammar production. Each such grammar production
combined with its translation rule is called a grammar-translation rule. The
above shows the grammar-translation rules for the inverse image mapping ex-
pression and the sum expression. The identifiers of the labeled non-terminals in
the grammar production correspond to the parameters of the rule (see section
3.10), i.e., those entities whose values will replace the occurrences of the entities
in the body of the rule.

The advantage of using this scheme of directly combining the grammar pro-
duction with its translation rule, compared to the current way of separating
the grammar and the translation rules, is that of efficiency and abstraction.
Having the grammar and the corresponding translation rules in the same loca-
tion should make it easier to update the compiler. Also, the new specification
file gives a higher level of abstraction, as one doesn’t have to use calls to Java
methods to specify the translation rules.

75

Appendix A

ESRA Application User’s
Manual

A.1 Introduction

This manual pertains to the second version of the ESRA application, i.e., that
of phase 2, and is for anyone who wants to install and run the ESRA application
and learn how to use it. A diskette containing the ESRA application in question
is available together with the report.

A.2 How to Install

This ESRA application can only be run on UNIX platforms.

To install, load the diskette and copy the esra2.tar.gz! file to an existing
directory in your file system.

To decompress the esra2.tar.gz file, stand in the directory and type the
following command:

tar -zxvf esra2.tar.gz

This will create a directory named ESRA2.
Check for a file in your home directory called .bashrc. If you don’t have
one, create an empty one. Put the following two lines in the .bashrc file:

export ESRA_PATH=<yourpath>/ESRA2
source $ESRA_PATH/aliases

Exchange <yourpath> with the path to the directory which contains the ESRA2
directory. You should use the full path of this directory, i.e., a path starting with

IThe reason the file is called esra2.tar.gz (and not simply esra.tar.gz) is that it refers
to the ESRA application from phase 2.

76

the root symbol (/), and not a path containing for example a tilde character
(7). Note also that it is very important that you don’t use any extra spaces in
the two lines.
For example, let’s say I copy the esra2. tar.gzfile to my directory /home/siwr9625/EXJOBB.
The two lines that I put in my .bashrc file will be:

export ESRA_PATH=/home/siwr9625/EXJOBB/ESRA2
source $ESRA_PATH/aliases

Last, you should type the following at the command line:

source ~/.bashrc

A.3 How to Run

Make sure that you are running the unix shell bash. To find out which shell you
are running, type echo $SHELL at the command line. If you are not running
bash, simply type bash on the command line.

Then, stand in any directory and type esra to start the ESRA application.
This should open the left window of the two windows that are shown below.

If this doesn’t happen try typing source ~/.bashrc at the command line,
and then try typing esra again

A.4 Basics

When one starts the ESRA application a window shows up. It is in this window
that one writes one’s ESRA programs. To compile your ESRA program, A11
Models from the Compile menu should be chosen. This opens up a second
window that shows the result of the compilation. The Compile menu also has
other options, and these are described in the next section. The following is a
screen dump of the ESRA application with both windows opened.

e

i

i
fa

rsetdinty;
ar Fr\-rl;
olve |
injective (F)z
forall i, j* in B2
sum €<k, 1> in FX
TFlk]l %1 =k

=

77

A.5 Menu Options

The main window has two menus: the File menu and the Compile menu. The
File menu is the left one of the two menus in the user interface. It is similar to a
File menu of any other normal application. The Compile menu has commands
associated with the compilation process. Tokenize shows what the list of tokens
looks like after breaking the input program down into tokens; Parse shows what
the parse tree looks like after parsing the tokens; Symbol-table shows all of
the defined identifiers in the input program and their properties; Output-tree
shows the tree containing the elements of the input program, that is used in the
implementation of the non-deterministic part of the compiler; and finally A11
Models shows all models generated from the compiler.

A.6 Grammar

Here follows the complete and exact grammar of the ESRA language used in
the ESRA application. It is this grammar that one needs to follow when writing
one’s programs in the user interface. Before the grammar there is an explanation
of the syntax used in the grammar.

Syntax:

<Type> - entities in cursive inside < and >
are non-terminals

int - entities in plain text are
terminals

{<Decl>} - zero, one, or several times the

entity inside { and }

<Constr>* - one or several times the entity
suffixed by the star, and where
entities are separated by
semi-colons ().

Grammar:

<Model> -> {<Decl>}
<Instr>

<Decl> -> <DataDecl> ;

-> <VarDecl> ;
<DataDecl> -> <Type> <Id>

<Type> -> int

-> { int }
<VarDecl> -> var <Typelar> <Id>
<TypelVar> -> <Id> -> <Id>
<Ezpr> -> <Un0Op> <Ezpr>

-> <Ezpr> <Binlp> <Ezpr>
-> <A4ggr0p> (<Param>) <Ezpr>
-> <4rgument>

78

<UnOp>
<Bin0p>
<dggrlp>
<Adrgument>

<0bject>
<Inverse>
<Relation>

<4drithOp>
<SetOp>
<LogicOp>
<Constr>

<Param>
<Bounds>
<Instr>

(<Ezpr>)

+ | - | card

+ | -] *

sum | min | max
<0Object>
<Inverse>

<Id> | < <Id> ,
~ <Id> [<Id>]
<Ezpr> <Arithlp> <Ezpr>

<Ezpr> <Setlp> <Expr>

not <Relation>

<Relation> <LogicOp> <Relation>

<Id> >

= | > | <=|>1]< | <
in | not in

&1\ | =] <=>
<Relation>

forall (<Param>) <Constr>
subset (<Id> , <Id>)
injective (<Id>)

{ <Constr>x }
<0bject> in <Bounds>
<Adrgument>

solve <Comstr> ;
minimize <Ezpr>
subject to <Constr> ;
maximize <Ezpr>
subject to <Constr> ;

The reader should note two agreed-upon restrictions that the grammar has.
First, by the grammar rule of the Object non-terminal, n-tuples may contain at
most two elements. Thus, the following ESRA statement is not valid:

for (<i,j,k> in F) i+j+k=3;

Second, by the grammar rule of the Inverse non-terminal, the inverse image of
a mapping can be over only one element. Thus, one cannot write “F[1i,j].

A.7 Semantic Restrictions

The ESRA program not only needs to be grammatically correct, but also needs
to follow certain semantic rules. There are two main rules:
1. Identifiers that are used in the ESRA program must be declared in the
declaration part. The exception are the identifiers produced by the grammar
rule

79

<Object> -> <Id> | < <Id> , <Id> >

when they are used as iterating identifiers inside a forall constraint or a sum
expression. For identifiers that are used in the declaration part of the ESRA
program to help declare other identifiers, their place in the declaration part
where they are used is allowed to come before the place in the declaration part
where they are declared.

2. Depending on where the identifiers are used, they must have the correct
type. Listed below are the grammar rules that have such type requirements.
The type requirements for each rule are specified after the vertical bar (]).

<Inverse> -> 7 <Id> [<Id>]
| the first identifier must be a
mapping variable

<Comnstr> -> injective (<Id>)
| the identifier must be a mapping
variable
<TypelVar> -> <Id> -> <Id>

| this rule is used for mapping
variable declarations. Both
identifiers must be declared as
sets of integers

The compiler generates errors if any of these rules are broken: If rule number 1
is broken the semantic error undefined identifier is generated; if rule number 2
is broken the sematic error invalid type is generated.

There are other semantic issues worth noticing. Some ESRA programs, even
though not generating any errors in the compiler, produce output programs that
are conceptually incorrect.

First, there is the matter of ESRA programs using multiple mapping vari-
able declarations. If more than one mapping variable is declared, the output
programs produced by the compiler will not be the correct ones. The reason for
this is described at the end of section 4.5 in the report.

Second, ESRA programs that contain two or more inverse image expressions,
or one or more inverse image expressions and one or more sum expressions,
do not work correctly with the compiler. The compiler will produce output
programs that contain duplicates of one of the variable declarations. Section
4.5 in the report explains why.

Even though these issues can be viewed as errors, it has been agreed on that
my targeted ESRA application is not required to resolve them.

80

Appendix B

ESRA Application
Programmer’s Manual

B.1 Introduction

This manual pertains to the second version of the ESRA application, i.e., that
of phase 2, and is for anyone who wants to modify the code of the ESRA
application. It gives the reader an overview and basic understanding of the
implementation. Other documentation is also available: the reader can look
in the files themselves for comments and also look at the javadoc generated
documentation (ESRA2/javadoc/index.html). Note that the manual assumes
that the reader is familiar with the contents of the report. A diskette containing
the ESRA application in question is available together with the report.

B.2 Basics

The main and outermost directory of the ESRA application is the ESRA2 di-
rectory. One get this directory when one decompresses the esra2.tar.gz file
from the diskette. It contains, for example, the JLex application classes, the
JavaCUP application classes, javadoc pages and other general files that are as-
sociated with the ESRA application.

The main code of the ESRA application, which is in Java, exists in the
ESRA2/esra directory. This directory contains all the Java classes that I have
implemented for the ESRA application. It represents a package structure with
the following packages: esra.userinterface, esra.utilities, esra.
compiler, esra.compiler.tokenlist, esra.compiler.parsetree, and
esra.compiler.symboltable. The package esra.userinterface contains classes
associated with the user interface, for example windows and dialog boxes;
the package esra.utilities contains general classes with useful methods used
by other classes, similar to java.util; esra.compiler contains files and classes

81

associated with the compiler core, for example the specification files for the tok-

enizer and the parser, and the rule file; and finally the package esra.compiler.
tokenlist, the package esra.compiler.parsetree, and the package esra.symboltable
are used for creating the text representations of the tokens, parse tree, and sym-

bol table that one sees in the user interface.

Besides Java, Perl is also used in the ESRA application — the programs
tokenlist.pl, parsetree.pl, and ruleconv.pl in the ESRA2 directory are
all in Perl. They represent the token list generator generator, the parse tree
generator generator, and the rule converter program respectively.

To compile the whole ESRA application, type esrac at the command-line.
This runs the esra.compile script in the ESRA2 directory, which executes a
series of commands — it uses the token list generator generator and the parse
tree generator generator to convert specification files to new specifications files,
JLex and JavaCUP to convert specification files to Java, the rule converter
program to convert the rule file to Java, and javac to compile all the Java
classes. Other useful aliases are esrad that updates the javadoc pages, and
esraz that compresses the whole ESRA application so it fits on a diskette. All
these aliases and the rest of the files are described more in the next section.

B.3 The ESRA2 Directory

The ESRA application is built up of a directory structure with several files and
classes. In the following four sections I try to give a brief description of most
of these files, classes and directories. To find the description for a file, class
or directory, look for its name either in the title of a paragraph or inside a
paragraph.

This section describes the main directory of the ESRA application, ESRA2.
If one looks inside this directory one sees that it consists of several files and
directories. Here is a description of this content.

Aliases I have written aliases for most of the common shell operations used
with the ESRA application. For example, there is an alias for running JavaCUP
called jcup, and there is an alias called esraz for compressing the whole ESRA
application so it can be copied to a diskette. The file aliases contains all these
aliases, as well as comments to what the different aliases do.

Javadoc As one can see by the javadoc comments in my Java source files,
I am using javadoc in this project. The generated html files are put in the
javadoc directory. The command file esra. javadoc contains the command for
running javadoc on the esra packages. There is also an alias called esrad that
one can use — it simply invokes the command file. Neither the command file
nor the alias takes any arguments. The file packages is referenced from within
the esra. javadoc file. Instead of writing all the esra packages in the javadoc
command, they are put in this file.

82

The presed file The presed file defines a shell command that inserts a piece
of text at the beginning of a file. It is called presed because it uses the command
sed and puts the text before anything else in the file. I needed this command to
insert a Java package declaration at the top of a Java source file. For example,
the lex. java file, that is generated by the token list generator generator, needs
to have the code string “package esra.compiler.tokenlist;” inserted at the
top of it. All these invocations of presed occur within the esra.compile file.

ruleconv.pl, parsetree.pl, and tokenlist.pl These Perl files correspond in
turn to the rule converter, the parse tree generator generator, and the token list
generator generator, which are all described in my report. Like most other files
in this project, they contain extensive documentation that one can also read.

JLex and JavaCUP The JLex application and the JavaCUP application are
kept in the JLex directory and the java_cup directory respectively. To run JLex
and JavaCUP there are aliases defined in the aliases file. If one needs to down-
load these applications again for some reason, they can be found at their home
pages: http://www.cs.princeton.edu/~appel/modern/java/JLex/ and
http://www.cs.princeton.edu/ appel/modern/java/CUP/.

esra.compile This is the shell script that I mentioned in the beginning of the
manual, see section B.2, that compiles the whole ESRA application. It is this
shell script that gets invoked when one executes the esrac alias. It not only uses
javac to compile Java classes, but also invokes JLex and JavaCUP, as well as the
token list generator generator, the parse tree generator generator, and the rule
converter program. Whenever one makes a change in one of the specification
files or update the rewrite rules, one should execute this shell script.

When this script runs, the following happens: tokenlist.pl converts
esra.lextotlist.lexin the esra/compile/tokenlist directory, parsetree.
pl converts esra_passl.cupto ptree.cupin the esra/compile/parsetree di-
rectory, and ruleconv.pl converts EsraConverter.rul into EsraConverter.
java in the esra/compiler directory; then JLex and JavaCUP are used to con-
vert the specification files, including the ones just generated, to Java classes;
and finally all Java classes, including the ones just generated, are compiled with
javac.

IMPORTANT NOTE: For this script to run properly, for example by typing
esrac, the right file and directory permissions must be set. This is because the
compile script uses the cp command to copy files within the ESRA2 directory.
If you get an error running this script, you most likely need to change the
permissions of the directories and files in the ESRA2 directory.

esra.run To start up the user interface (or the ESRA application, whichever
way one views it) this shell script can be called. It basically calls the Main class,
but also sets an option to the java command, which is needed to know which

83

directories contain the example files. There is also an alias called esra that is
more commonly used.

esra.compress This shell script makes a tarred zip file of the ESRA2 directory,
which fits easily on a diskette. One can also call the esraz alias.

The readme file The README file contains simple instructions on how to
install and run the ESRA application.

Main.java (and Main.class) This is just a very small Java class that starts
the Java application by invoking the MainWindow class in the
esra.userinterface package. The Main class itself is invoked by the esra.run
script.

esra_files and opl files These directories contain example programs, which
one can access and use through the user interface.! The user interface is set
to open these directories when the user chooses open from the file menu. The
setting is done in the esra.run file.

The esra directory This is the directory that corresponds to and contains
the Java package hierarchy of classes. I described this directory in the beginning
of the manual, see section B.2.

B.4 The Compiler Directory

The Java classes that reside in this directory make up the esra.compiler pack-
age. Besides the Java classes, the lex and cup files are here, as well as the rule
file.

Error handling I have made different exception classes for the different kinds
of errors that can occur in the compiler. When there is an error in the tokeniza-
tion, the exception TokenizingError gets thrown from the Yylex class, which
is generated from the esra.lex file; when there is an error in the parsing,
the exception ParsingError gets be thrown from the esra_parser_pass1 and
esra_parser_pass2 classes, which are generated from the esra_pass1.cup and
esra_pass?2. cupfiles; when there is an error in the translation, a SemanticError
gets thrown, also from the parser classes. All these three exception classes in-
herit from the CompilerError class. It contains a generic method for converting
the exception to the formatted text representation of the error, that one sees in
the user interface.

!The name, opl_files, is a little misleading as the directory does not contain OPL pro-
grams, but rather l-language programs. However, I use this name because it makes the
application consistent with the application from phase 1.

84

The SemanticError class also has two child classes: InvalidTypeException
and UndefinedIdentifierException. They are used mostly in the
EsraConverter class that is generated from the rule file, EsraConverter.rul.
The rule converter program generates Java code that throws those errors if
needed. In the case of UndefinedIdentifierException, it is thrown if one
of the parameters sent to the rule represents an identifier that has not been
declared. In the case of InvalidTypeException, it is thrown if none of the
translation alternatives in the rule matches.

The symbol table The result from the first parser pass gets stored in an
object of class SymbolTable. The symbol table is implemented as a hash table
in which identifiers, represented as strings, map to objects of class SymbolData.
This class contains the data about the identifier, for example what type of
identifier it is. These possible types are defined as static integer constants in
the SymbolType class, and are for example INTEGER, TUPLE, MAPPING, etc.

SymbolInfo This class is described in the report, section 3.6. As it says there,
this class is used to be able to more accurately report errors generated from the
parser. Each generated token from the lexer gets associated with a SymbolInfo
objects, which holds information on which line, which column, etc., the token
occurs in the input text.

The tokenizer classes esra.lex is the JLex specification for the ESRA
language. In the compile script it gets converted to esra.lex.java, which in
turn gets compiled to the Java class Yylex. Read more about how this works
in detail in the JLex manual, see [1].

The parser classes esra_passl.cup and esra_pass2.cup are the first and
second pass parser JavaCUP specification files. From these two files, the compile
script uses JavaCUP to generate esra_parser_ passl.javaand esra_parser_
pass2.java; and two copies of sym.java. The two parser Java files are then
compiled into an action class each: CUP$esra_parser_ passi$actions.java
and CUP$esra_parser_ pass2$actions.java,as well a parser class each: esra_
parser_passl.class and esra_parser_pass2.class. The sym.java file is
compiled into sym.class. The reader can read more about how this works
in the JavaCUP manual, see [2].

Grammar helper classes Some of the non-terminals in the ESRA grammar
that occur in the cup specification files are also represented as Java classes with
the same name. These classes are Type, TypeVar, Object_, and Parameter
(note that for the non-terminal Object, the class name Object_ had to be used,
since Object already exists in Java). Normally in the JavaCUP specification
file, the result from parsing a non-terminal is of type String, representing the
translation of that non-terminal. However, for some productions one needs to
have information about some non-terminal in order to make the translation.

85

Then it is important that we do not make the translation right away, but wait
a couple of steps up the parse tree. In this case, a Java object and not a
string, is passed through the label of the non-terminal. The Java object (Type,
TypeVar, Object_ or Parameter) contains the necessary information about this
non-terminal, so that the translation can be made later on.

Tree classes The class OutputTree represents the element tree, which makes
the non-deterministic translation possible by generating a set of different output
models. It is built up recursively of TreeNode objects, and these contain objects
of class Element, class ElementSet, or class ElementSetChoice. An Element
object also contains an Explanation object. For a more thorough description
of the classes, read sections 4.2 and 4.3 of the report.

YylexWrapper In the parsetree directory there is a class called
ParseTreeGenerator that handles the process of calling and combining the
classes that are generated from the parse tree generator generator. It needs ac-
cess to the Yylex class in this directory. Since Yylex is not public (I tried
and tried to make it public using different options to JLex, but couldn’t),
and the ParseTreeGenerator class is in another package, it doesn’t have the
right to access it. However, by wrapping the Yylex class inside a public class,
YylexWrapper, it is now accessible. The wrapping is done by simply letting
YylexWrapper inherit from Yylex and recreating its two constructors. The two
new constructors simply invoke the two old constructors.

Rewriter This is a small class that connects the lexer and the two parsers
together by handling all the calls between the classes. It has the same func-
tion as the SymbolTableGenerator class in the symboltable directory, the
TokenListGenerator class in the tokenlist directory, and the
ParseTreeGenerator class in the parsetree directory. The Rewriter class is
also described in the report, see section 3.5.

Compiler This class serves as an API to the user interface. All communica-
tion from the user interface to the compiler go through this class.

Model and ModelDatabase Every model extracted from the tree gets rep-
resented as a Model object. It basically contains lists of the different kinds
of elements that make up its program. Its most important method is the
toString method that converts the Model object into a natural looking pro-
gram. ModelDatabase is simply a list, which holds all the models generated
from the tree. Its toString method prints out all models in a nicely formatted
way — it is used by the user interface when the user chooses all models from
the menu.

86

LowerCaseModule This is a very small class that can convert all big char-
acters in a text ("A’, 'B’, ’C’) to small characters (’a’, ’b’, ’c’). It was originally
used to convert all ESRA programs to lower case, but now it is no longer used.
The user, thus, is required to write all key words with small letters, which any-
way is the case with most other programming languages. Note that I’ve decided
not to delete this class, because it can be useful in the future.

The rule file EsraConverter.rul holds all the rewrite rules. In the compile
script the ruleconv.pl program is used (with the rulcon alias) to convert it
to EsraConverter. java.

The tokenlist directory The classes in this directory make up the esra.
compiler.tokenlist package. I needed to make a separate directory for the
token list generator functionality — otherwise the Yylex class of the the normal
lex file would clash with the Yylex class of token list generator lex file. In
the compile script the esra.lex file is copied from the compiler directory into
this directory. By using the tokenlist.pl program in the ESRA2 directory,
esra.lexis converted into tlist.lex. Using JLex, tlist.lexis converted into
tlist.lex.java, and in turn compiling this Java file gives two classes: Yylex
and Yytoken. Instead of, as normal, using the Symbol class for representing
tokens, we now use the Yytoken class for representing tokens. This is because we
now also want to store the name of the integer constant as a string: for example,
for sym.INT the string “INT” is stored in the token. With this information the
generated token list generator can properly display the list of tokens. Finally,
the class TokenListGenerator ties everything together and handles the calls
between the different classes.

The parsetree directory This works similarly to the tokenlist directory.
esra.cup is copied from the compiler directory, then converted to ptree.cup
using parsetree.pl in the ESRA2 directory, which in turn is converted to
parser.java and sym.java using JavaCUP. Compiling these Java files gives
parser.class, sym.class, and CUP$parser$ actions.class. Finally,
ParseTreeGenerator connects everything together.

The symboltable directory For printing out the symbol table a separate
directory was not really needed. However, it looked more symmetrical if this
functionality, like token list generator and parse tree generator, also had its own
directory. In this directory there is only one class, SymbolTableGenerator,
which calls the toString method in the SymbolTable class to print out the
symbol table in the user interface.

B.5 The User Interface Directory

This directory corresponds to the esra.userinterface package.

87

MainWindow The main class in this directory is the MainWindow class. It
represents the window object that gets opened when the user starts the appli-
cation. It contains code for handling of menu events, handling of the second
window that shows the compilation result, handling of the different dialog boxes
that sometimes pop up, and handling of the file dialog box.

Dialog Windows There are three different dialog messages that can occur in
the application: “This file does not exist, do you want to create it?7”,
“The file is not saved, do you want to save it?”, and “This file
already exists, do you want to overwrite it?”. They all are instances
of the YesNoDialog class, which has one yes button, one no button and one
cancel button. There is also another similar class called 0kDialog that has one
ok button and one cancel button. It is used when an error in the application
occurs, for example when creating a file in the file system fails. I have never
seen it happen, but it could, for example, if the file permissions are set improp-
erly. Both YesNoDialog and OkDialog inherit from MyDialog that holds some
shared code, for example a method for centering the dialog box — both the
YesNoDialog box and the OkDialog box needs to do this.

MyFileDialog One might ask why I have made this class when the class
FileDialog already exists in Java. The reason is that the FileDialog class is
a little clumsy to use. With MyFileDialog, which inherits from FileDialog,
I've added the method userChooseFile which handles, for example, the user
pressing cancel, the user leaving the text field empty, and the storing of a most
recent visited directory entity.

CompileWindow Finally, there is the CompileWindow class, which represents
the second window that gets opened whenever the user chooses an action from
the compile menu. It contains code for handling its only two menu choices: save
as and close, for expanding the window horizontally when the user chooses
‘output tree’ from the menu, and for positioning the window in the right place
next to the main window.

B.6 The Utilities Directory

This directory represents the esra.utilities directory.

Formatter This is probably the most important class in this package. It
contains a set of static methods that are used throughout the application. The
two main methods are tab and blockify. Tab can indent every line in a string
by a specified number of characters and is used in the code that generates the
OPL program, so that the OPL code gets formatted nicely. Blockify can take a
long string and break it into several lines of approximately equal length, though
not breaking any words in two, and is used to present the error message in the
compile window, so that it doesn’t mess up the nice looking tabular format.

88

TextSubstituter Like Formatter this class contains only static methods. By
far the most important method in this class is substituteld, which is capable
of distinguishing identifiers in a long string of text and replacing a specific
one with a new string entity. For example, it replaces foo in foo+3, but not
foo in foot+3. The method is used with the rule file converter for handling
the substitution expressions, [: / :]1, that can occur in the rule file, see the
report, section 4.4.

MyList This is also a class not meant to be instantiated. It has only one
method, 1istToString, which can convert a list into a string, but this method
was mainly used in the first phase of the ESRA application, where forall and
sum expressions could take multiple parameters.

MyFile MyFile is similar to the MyFileDialog case. It is an extension of
Java’s File class and adds the two useful methods readToString and
writeFromString.

B.7 Flow of Execution

I now describe what happens when running the ESRA application, i.e., what
the basic flow of the program looks like.

From the Main class to the Rewriter class Firstly, when the user types
esra, the Main class in the ESRA2 directory gets called. It in turn calls the
MainWindow class in the esra.userinterface package that displays the actual
window. When the user has written a program in the window and presses one
of the commands in the compile menu, methods with similar names get called
in the Compiler class in the esra.compiler package. Then, for each of the
commands, the Compiler class calls the generate method of the classes with
corresponding names: TokenListGenerator in the esra.compiler.tokenlist
package, ParseTreeGenerator in the esra.compiler.parsetree package,
SymbolTableGenerator in the esra.compiler.symboltable package, and
Rewriter (used for both the commands Output-tree and A1l Models) in the
esra.compiler package.

Inside the Rewriter class The generate methods of the four classes men-
tioned just above do approximately the same thing. I will focus on the Rewriter
class and the case when the user chooses the command A11 Models and describe
the flow from there. The Rewriter class, or more correctly its generate method,
starts by creating a Yylex object that takes a stream of the input program as
argument. It then creates an esra_parser_passl object and feeds the Yylex
object to it. The parse method of the esra_parser_pass1 object is called and
the semantic code in the object executes over the input program and returns a
SymbolTable object.

89

Next, a esra_parser_pass2 object is created with the SymbolTable object
as argument to its constructor. Its parse method is called and the semantic
code executes over the input program and returns an OutputTree object. It then
calls the generateAllModels method of the OutputTree object which converts
the tree to a ModelDatabase object. The generateAllModels method uses a
recursive tree algorithm to insert Element objects into Model objects that are
inserted into the created ModelDatabase object. The ModelDatabase object is
then converted into a displayable format — a String object — by calling its
toString method. This toString method in turn calls the toString methods
of the Model objects that convert the Model objects to displayable programs.

The generate method has hereby finished its execution and returns the
String object to the call made from the Compiler object, which in turn re-
turns the String object to the call made from the MainWindow object. The
MainWindow calls setBuffer in the CompileWindow so that the string — the
translated result, the displayable programs — get shown in the second window.

Inside the esra parser pass2 class Above I mentioned just briefly that
the esra_parser_pass2 class translates the input program to the output pro-
gram. Here next, I describe what actually happens inside this class in more
detail.

To begin with, the semantic code of the production rules gets executed
over the input program. Some of the productions translate to themselves so
a string result is returned with the same string that got parsed. For other pro-
ductions, like forall, sum, variable declarations, etc., the translation is more
complex. For these productions, a call is made to a method with a similar
name in the Java class EsraConverter. java that corresponds to the rule file
EsraConverter.rul. The arguments to this method are objects of type Object
that can be either SymbolInfo or ElementSetChoice. ElementSetChoice means
that the parameter represented by this object already has several representa-
tions — this is the case for, for example, expressions.

The translation is then made inside the rule file method and the result is
returned in form of a new ElementSetChoice object. The ElementSetChoice
object is then either returned by the semantic code to its parent production, or
inserted into the outputTree object using its addElementSetChoice method,
which uses a complex algorithm defined in the method addToAllLeaves to insert
the choice properly into the tree.

For the production rules there is also the case when one or more of the sub
results from the labels are ElementSetChoice objects. The production rule
then needs to combine these choices in some way. It does this by calling the
concat methods that are defined in the ElementSetChoice class. The concat
methods use combinatory algorithms to combine the choices.

90

B.8 Example

Here, I show an example of updating the programming code of the ESRA appli-
cation. This example is about adding a new statement to the ESRA language.

The problem The statement that we want to add is a constraint that looks
like foo(F). It is a function with the name foo that takes one argument, F,
which must be a mapping variable. The following is the translation rule for
the foo constraint — it uses one of three representations depending on which
representation F is using.

foo(F), where F is a mapping var. from V to W

rep 1) comment: check that all are 1’s.
forall(i in V) F[i] = 1;

rep 2) comment: check that the sum is zero
sum(j in W) F[1,j] = 0;

rep 3) comment: W_range is a subset of V
var {V} W_range;
comment: all elements make up the range
union all(i in F[i]) = W_range;

Changes to the tokenizer First we need to affect the tokenizer. We need to
make foo a new keyword of the language. To do this we open up the esra.lex
file in the compiler directory, and insert the following code with the other token
definitions:

<YYINITIAL> "foo" { return new
Symbol (sym.F00,new SymbolInfo(
yytext(),yyline,linechar() ,yychar));

Changes to the parser Next we need to affect the grammar of the language.
The grammar is defined in the cup specification. As our compiler is a two pass
compiler, it has two specification files. Both contain the same grammar but have
different semantic actions. We therefore need to modify both specification files,
and these are esra_passl.cup and esra_pass2.cup in the compiler directory.

We start with the esra_passl.cup file. In it we need to declare FOO to
be a non-terminal of the language. We do this near the top of the file. There
one can see a chunk of terminals declared there that look like this:

terminal SymbolInfo CARD,X,VAR;
terminal SymbolInfo FORALL,IN,INT,MAX,MAXIMIZE;
terminal SymbolInfo MIN,MINIMIZE,NOT;

We add FOO to one of the lines, for example like this:

91

terminal SymbolInfo MIN,MINIMIZE,NOT,FO0O;

The reader might wonder why we need both a definition of the key word foo
here in the cup file and in the lex file. The answer is that what we declared in
the lex file was that the grouping of characters, ’f’, '0’, ’0’, should be a token and
correspond to the FOO constant defined in the sym class. For this FOO constant
to at all exist in the sym class, we need to define it somewhere, and that is what
we just did, here in the cup file.

Then we scroll down to the production rule for the Constraint non-terminal,
the one that looks like this:

Constraint ::= Relation
| FORALL LPAREN Parameter RPAREN Constraint
| SUBSET LPAREN ID COMMA ID RPAREN
| INJECTIVE LPAREN ID RPAREN
| LCURLY Constraint RCURLY
| LCURLY Constraint Constraints RCURLY

Relation, FORALL. ., etc., are different production alternatives. We add the
new production alternative:

| FOO LPAREN ID RPAREN

Like the other production alternatives here, it does not need any semantic code
in this first cup file.

Next we open up the second cup file, esra_pass2.cup. Like the first cup
file, it has a section of terminal declarations at the top of the file, so we insert
F0O into it.

Then we are going to affect the production rules. Even though the gram-
mars in the two cup files produce the same language, the arrangement and
naming of the rules are a little different. As the first cup file has one rule
for constraints named Constraint, the second cup file has two rules for con-
straints named Constraint and BaselLevelConstraint. Constraint refers
to the constraints that are subparts of other constraints, like a forall con-
straint nested inside another constraint, while BaseLevelConstraint refers to
the constraints at the outermost level in the solve (or minimize of maximize)
clause. As foo cannot be nested inside another constraint, we need to affect the
BaseLevelConstraint rule and not the Constraint rule. (If the reader wonders
why we at all need to distinguish between these two types of constraints, the
answer is that they have different semantic actions, for example only constraints
of type BaseLevelConstraint should be inserted into the tree, not constraints
of type Constraint).

So now that we know in which rule to insert the FOO LPAREN... production
alternative, we need to determine what the semantic action should be. It is
the semantic action that should handle the translation. Since this is a kind of
complex translation (it has several representations), we should put the definition

92

of the translation rule in the rule file. In the semantic code we will only refer to
the definition in the rule file. This is what it all will look like in the cup file:

| FOO LPAREN ID:id RPAREN
{: ElementSetChoice c =
esraConverter.fooConstraint (id) ;
outputTree.addElementSetChoice(c) ;

1}

The effect of the first line is that the rule in the rule file needs to be called
fooConstraint and take one argument. As it returns a set of different represen-
tations, the return type is ElementSetChoice (it is always ElementSetChoice,
even for those translation rules that only have one representation). The second
line inserts the set of representations, c, into the tree.

Changes to the rule file The only thing that remains now is to create the
rule in the rule file. One does this by opening up the file, esraConverter.rul,
in the compiler directory, and putting the following code somewhere in the file:

cons fooConstraint(F) {:
=> J, check that all are 1’s.
forall(i in V) F[i] = 1;
| child:1;F:varmap(V->W)
=> , check that the sum is zero
sum(j in W) F[1,j] = 0;
| child:2;F:varmap(V->W)
=> } W_range is a subset of V
var {V} W_range;
% all elements make up the range
union all(i in F[i]) = W_range;
| child:3;F:varmap(V->W)

The first word cons has actually no purpose. It did in the first phase of the
ESRA application, but not any longer. However, one still needs to have it there
(or optionally decl or expr), because otherwise the rule file does not parse
correctly.

Then follow the different translation alternatives, each starting with an arrow
and consisting of one or several statements and an ending condition. A single
statement can span several lines, so a semi-colon is needed to indicate the end of
a statement. Each statement, as seen above, can also have a comment associated
with it. The comment should be placed directly above the statement, and the
line or lines that make up the comment should start with a percent (%) sign.
The condition at the end is distinguished by it being on its own line that starts
with a vertical bar (|). In our example the conditions generally say that F must
be a mapping variable. The (V->W) part lets us extract the domain and the
codomain of the mapping and refer to these entities in the statements. Each
translation alternative also has a child declaration in the condition. It means

93

that the translation alternative follows, not sets, a representation. The number
after the colon denotes the representation number, the unique key that identifies
the representation.

For more details about the rule file, read the extensive documentation at the
top of the rule converter program, ruleconv.pl, in the ESRA2 directory. The
reader might also find section 4.4 of the report useful.

Conclusion That completes the example. Type esrac to compile the new
changes and then esra to launch the user interface. To test that our changes
work, type in the following ESRA program and try compiling it:

{int} V;
{int} W;
var V->W F;
solve {
foo(F)
1

94

Bibliography

[1]

2]

3]

[4]

[5]

[6]

7]

18]

Elliot Berk. JLex user manual. JLex: A lexical analyzer generator for
Java. 1997. A link to the manual exists on the JLex homepage at URL:
http://www.cs.princeton.edu/ ~appel/modern/java/JLex/

Scott E. Hudson. CUP User’s Manual. 1999. The user man-
ual can be found at the homepage of JavaCUP at URL:
http://www.cs.princeton.edu/ ~appel/modern/java/CUP/

Kim Marriott and Peter J. Stuckey. Programming with Constraints, An In-
troduction. The MIT Press, 1998.

Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman. Compilers; Principles, Tech-
niques and Tools. Addison-Wesley Publishing Company, 1986.

Pascal Van Henteryck. OPL; Optimization Programming Language. The
MIT Press, 1999.

Pierre Flener and Brahim Hnich. The Syntax and Semantics of ESRA. AS-
TRA report, March 2001. Available via http://www.csd.uu.se/ " pierref/astra

Brahim Hnich. Function Variables for Constraint Programming. PhD Thesis.
In preparation.

Pierre Flener, Brahim Hnich and Zeynep Kiziltan. Compiling High-
level Type Constructors in Constraint Programming. Available via
http://www.csd.uu.se/ ~pierref/astra

95

