Routing Optimisation with OscaR.cbls and some context

OscaR v4.0 - Spring 2017

Renaud De Landtsheer, Yoann Guyot, Christophe Ponsard, Gustavo Ospina, Fabian Germeau
TSP is often polynomial (joke?)

• Academia:
 – Given
 • the distance matrix
 – Find
 • The cheapest permutation

• In the real world:
 – You have to compute the distance matrix
 100 points leads to ~10k distance
 0.1 sec per distance leads to 16 minutes
CETIC Research and Tech transfer

• Staff: 42
• Budget 2015: 4.8 M€
• Three research department:
 – Software & System Engineering
 • Software engineering, formal methods, code analysis, algorithmic optimization, requirements engineering
 – Software and service technologies
 • Cloud computing, distributes architectures, data management
 – Embedded and Communication Systems
 • IoT, heterogeneous hardware architectures
• Two economical activities:
 – Research projects:
 • H2020, Cornet, Regional, etc
 – Service to industry.
 • custom, short term, paid by company, IP transferred
History of OscaR.cbls

- **PIPAs project: Job-shop scheduling**
 - Lot of budget; develop a CBLS engine with iFlatRelax: Asteroïd
- **Merging code base with Scampi (Pierre Schaus): OscaR**
- **Service on routing optimization, delivered with GoogleCP**
- **SimQRI research project: Cornet**
 - Research on how to represent search strategies, notion of combinator
- **Service on Routing optimization round2:**
 - Generating the distance matrix (a lot of work)
 - with traffic jam
 - Lots of algorithmic there (closed source, NDA)
 - Switching to OscaR.cbls (not so much work)
 - Because GoogleCP could not handle traffic jams
 - Speed improvement,
 - routing neighbourhoods into combinator framework
History of OscaR.cbls

- Internships: symmetry elimination, parallel propagation, routing, bin packing, PDP, etc.
- Ongoing projects with OscaR.cbls:
 - SAMOBI research project
 - Sequence variable, refreshing the routing engine, PDP
 - H2020 TANGO
 - Flexible job-shop
 - 2 Regional
 - Large capacitated warehouse with additional constraints
 - Routing /scheduling stuff (not clear yet)
 - Cornet
 - Stochastic scheduling
 - (?)factory scheduling?, eval ongoing
- Tutorial ongoing
– Oscar
 • Open source framework for combinatorial optimization
 • CP, CBLS, MIP, DFO engines

– Open source LGPL license
 • https://bitbucket.org/oscarlib/oscar
 • Implemented in Scala

– Consortium
 • CETIC, UCL, N-Side Belgium
 • Contributions from UPPSALA Sweden
• Introduction
 – CETIC, OscaR.cbls
 – OscaR.Cbls

• Using OscaR.cbls
 – Local Search
 – Warehouse location

• The OscaR.cbls framework
 – Modelling
 – Searching

• Routing with OscaR.cbls
 – Modelling
 – Searching
 – A simple example
 – A complex example

• More examples:
 – car sequencing
 – FlowShop

• Conclusion

• Future work

• Who is Who

• Some fun, in case you have questions
Local search in one slide

TSP: all the possible tours

- *n cities:* \((n-1)! \) tours

Point in the search space

TSP: moving a city
to another position in the tour

- **Current state:** \(a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow a \)
- **Moving city** \(c \) yields three neighbors:
 - \(a \rightarrow c \rightarrow b \rightarrow d \rightarrow e \rightarrow a \)
 - \(a \rightarrow b \rightarrow d \rightarrow c \rightarrow e \rightarrow a \)
 - \(a \rightarrow b \rightarrow d \rightarrow e \rightarrow c \rightarrow a \)

- \(O(n^2) \) neighbors when considering all cities

Pick an initial solution

Repeat

- Explore neighborhood
- Move to best neighbor

Until no better neighbor

Some black magic required to escape from local minima

TSP: random tour?
The basic equation of local search

Local search-based solver = model + search procedure

- Defines
 - variables
 - constraints
 - Objectives
 - ...

- Neighborhoods That modify some variables of the problem
The uncapacitated warehouse location problem

• Given
 – S: set of stores that must be stocked by the warehouses
 – W: set of potential warehouses
 • Each warehouse has a fixed cost f_w
 • transportation cost from warehouse w to store s is c_{ws}

• Find
 – O: subset of warehouses to open
 – Minimizing the sum of the fixed and the transportation cost.
 $$\sum_{w \in O} f_w + \sum_{s \in S} \min_{w \in O} (c_{ws})$$

• Notice
 – A store is assigned to its nearest open warehouse
A WLP solver written with neighbourhood combiners

```scala
val m = new Store()

val warehouseOpenArray = warehouses.map(
    CBLSIntVar(m, 0 to 1, 0, "warehouse_" + _ + "")).toArray

val openWarehouses = Filter(warehouseOpenArray)

val distanceToNearestOpenWarehouse = stores.map(
    min(distanceCost(_), openWarehouses,
        defaultCostForNoOpenWarehouse)).toArray

val obj = Objective(Sum(distanceToNearestOpenWarehouse)
    + Sum(costForOpeningWarehouse, openWarehouses))

m.close()

val neighborhood = (BestSlopeFirst(List(
    AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse"),
    SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")),
    onExhaustRestartAfter(
        RandomizeNeighborhood(warehouseOpenArray, W/10), 2, obj))

val it = neighborhood.doAllMoves(obj)
```
Local search is (most of the time) black magic!

- Non exhaustive
 - Seldom proof of optimality, only benchmarking

- Needs tuning:
 - Neighborhood rule
 - What neighborhood? What parameters?
 - Modeling
 - Soft, hard, implicit, automatic constraint?
 - Meta-heuristics
 - When to call neighborhoods? tabu? Restart? Simulated annealing?

- ... But it (can) work
 - 3-opt for TSP <3% to optimum in practice!!
 - iFlatiRelax <1% to optimality for cumulative jobShop

→ Need for benchmarking, tuning, etc

OscaR.cbls is about making this quick, so you can get the most of your algorithm
Local search is (most of the time) black magic!

- Non exhaustive
 - Seldom proof of optimality, only benchmarking
- Needs tuning:
 - Neighborhood
 - What neighborhood? What parameters?
- Modeling
 - Soft, hard, implicit, automatic constraint?
- Meta-heuristics
 - When to call neighborhoods, tabu? Restart? Simulated annealing?

... But it (can) work

- 3-opt for TSP <3% to optimum in practice!!
- iFatiRelax <1% to optimality for cumulative jobShop

Local search is black magic

You are wizards or spell inventors

OscaR.cbls is about making this quick, so you can... I am a wand maker with my team...
Modeling Support with OscaR

• Three types of variables
 – IntVar, SetVar, and SeqVar

• Invariant library
 – Logic:
 • Access on array of Int/SetVar, Filter, Cluster, etc.
 – MinMax:
 • Min, Max, ArgMin, ArgMax
 – Numeric:
 • Sum, Prod, Minus, Div, Abs, etc.
 – Set:
 • Inter, Union, Diff, Cardinality, etc.
 – Seq:
 • Concatenate, Size, Content, etc.
 – Routig on Seq:
 • Constant Distance, Node-Vehicle restrictions, etc.

Summing up to roughly 100 invariants in the library
A quick look under the hood: Propagation graph for the WLP(4,6)

Propagation: update the output(s) to reflect a change on the inputs

- **Single wave**: elements are touched at most once
- **Incremental**: all invariants update their outputs incrementally
- **Selective**: only things that need to be updated wrt. changes are updated
- **Partial**: only things contributing to the needed output are updated

Automatic when using objectives, so mostly you do not have to worry about that
• Three sets of neighbourhoods
 – **Domain-independent**: assign, swap, flip, roll, shift, etc.
 – **Routing**: one point move, 2-opt, 3-opt, insert point, etc.
 – **Scheduling**: flatten, relax
 lots of tuning: symmetry elimination, hot restart, best/first, search zone, etc.

• Neighbourhood combinators
 – Selecting neighbourhood
 – Stop criteria
 – Solution management
 – Meta-heuristics: restart, simulated annealing
 – Combined neighbourhood: cross-product “AndThen”, linear aggregation
 – Graphical display of objective function vs. run time

• Can also use customized search procedure based on linear selectors
Three shades of Warehouse Location

• All Assigns, all swaps, all assigns, etc

```scala
val neighborhood = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse")
  exhaustBack SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")
orElse (RandomizeNeighborhood(warehouseOpenArray, W/5) maxMoves 2)
saveBestAndRestoreOnExhaust obj)
```

• ... with best move for switch

```scala
search = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse ", best=true)
  exhaustBack SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")
orElse (RandomizeNeighborhood(warehouseOpenArray, W/5) maxMoves 2)
saveBestAndRestoreOnExhaust obj)
```

• Tabu search (requires model extension)

```scala
search = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse 
  searchZone = nonTabuWarehouses , best=true)
acceptAll
afterMoveOnMove((a:AssignMove) => tabu(a.id) = lt.value + tabulength; lt += 1)
maxMoves xx withoutImprovementOver obj)
saveBestAndRestoreOnExhaust obj)
```
Routing with OscaR.cbls

• **Modelling**
 – The sequence variable
 – Library of invariants

• **Searching**
 – Library of neighbourhoods
 – Compatible with our combinators

• **Example**
 – Simple benchmark VRP
 – A complex search strategy for deliveries
New sequence variable, for routing

• **Why?** SPEED & GENERICITY !!
 – Efficient representation of moves in the sequence
 – Symbolic information on moves & check pointing
 • Makes it possible to develop efficient constraints and invariants
 – Library of efficient constraint and invariants,
 • Routing: distance matrix, node-vehicle restriction, etc.
 • Standard: size, content, flip, append, etc.

• Dedicated, efficient data-structures
• All vehicle in the same sequence variable
• Vehicle [0..v-1] start from nodes [0..v-1]
• Vehicle starts are always in the sequence in that order
• Vehicle implicitly come back to their start point
 – All invariants use this assumption
 – You can “tune” distance matrices if it is not the case
• Vehicle starts cannot be moved
 – But you can of course move all other nodes
• At most one occurrence of every value in the sequence
class MySimpleRoutingWithUnroutedPoints(n:Int,v:Int, symmetricDistance:Array[Array[Int]],m:Store, maxPivot:Int) extends VRP(n,v,m,maxPivot) with ClosestNeighbors{
 override def getDistance(from:Int,to:Int):Int= symmetricDistance(from)(to)

 val penaltyForUnrouted = 10000
 val routed = Content(routes.createClone(50))
 val unrouted = Diff(CBLSSetConst(SortedSet(nodes:_*)), routed)

 val totalDistance = ConstantRoutingDistance(routes, v, false, symmetricDistance, true)(0)

 val obj = Objective(totalDistance +
 (penaltyForUnrouted*(n - Size(routes))))

 val closestNeighboursForward = computeClosestNeighborsForward()
 def size = routes.value.size
}
Main routing invariants (1/2)

- **ConstantRoutingDistance**
 - *given* a distance matrix,
 - *maintains* the driven distance
 - **options**: isSymmetric? perVehicle? preCompute?
 - $O(1)$ update on classical neighbourhoods (with proper options)

- **ForwardCumulativeIntegerDimensionOnVehicle**
 - *given* a function $(\text{node} \times \text{content} \times \text{node'}) => \text{content'}$
 - *maintains* an array node=>content

- **ForwardCumulativeConstraintOnVehicle**
 - *given*
 - a function $(\text{node} \times \text{content} \times \text{node'}) => \text{content'}$
 - a max capacity
 - *maintains* a violation per vehicle (sum of overshoot per node)

- **NodesOfVehicle**
 - *given* route
 - *maintains* vehicle => set of nodes reached by vehicle
Main routing invariants (2/2)

• **NodeVehicleRestrictions**
 – **given** set of couples (node,vehicle)
 – **maintains** number of such couples \((n,v)\) such that vehicle \(v\) reaches node \(n\)
 – \(O(1)\) update on classical neighbourhoods!

• **RouteSuccessorAndPredecessors**
 – **given** route
 – **maintains** two IntVar arrays: node => predecessor, node => successor
 – you can declare virtually anything from these arrays, using element invariant

• **VehicleOfNodes**
 – **given** route
 – **maintains** a SetVar array: vehicle => nodes reached by vehicle
Routing neighbourhoods

- **InsertPoint**
 - **InsertPointRoutedFirst:**
 for(r <- routed)
 for(u <- unrouted relevant wrt r)
 ...
 - **InsertPointUnroutedFirst**
 for(u <- unrouted)
 for(r <- routed relevant wrt u)
 ...

- **OnePointMove**
- **RemovePoint**
- **SegmentExchange**
- **ThreeOpt**
- **TwoOpt**
 - TwoOpt1
 - TwoOpt2
Symetric VRP \((v = 100)\) \(N\) vs. run time

```scala
val search = (BestSlopeFirst(List(
    insertPointUnroutedFirst(k=10),
    insertPointRoutedFirst(k=10),
    onePointMove(k=10),
    twoOpt(k=10),
    threeOpt(k=10))
    exhaust threeOpt(k=20))
```

Median over 10 runs with symmetric distance:
square map with randomly placed points and straight line distance
Another example of search strategy

- Basic Problem: routing a tanker truck
 - Serve as many customers as possible
 - Need to refill at depot to serve more customer
- Problem: inserting depot pass is not desirable
- Solution: insert depot and additional customer at the same time to make it desirable
 - Dedicated two-point-insert, built through cartesian product of neighbourhoods

```scala
val routingWithDepotSearch =
  insertPoint
  orElse (insertDepot andThen insertPoint)
exhaustBack new Learning(onePointMove,
  threeOpt, swapInsert, ...)
```
Other CBLS tools

- Comet
 - First CBLS implem by pascal van Hentenryck
 - Not maintained since 2008?
- Kangaroo
 - One paper @CP2011, status unknown, not available
- LocalSolver
 - Commercial tool, with acad licence
 - Only Booleans and floats, very few invariants
 - Closed search procedure, closed source
- EasyLocal++
 - No support for modelling
- GoogleCP
 - Not a CBLS tool; a CP engine mimicking CBLS, less scalability
- InCell
- Lion
Conclusion: Features of Oscar.cbls

- **Modelling part:** Rich modelling language
 - IntVar, SetVar, SeqVar
 - ~100 invariants: Logic, numeric, set, min-max, etc.
 - 17 constraints: LE, GE, AllDiff, Sequence, etc.
 - Constraints can attribute a violation degree to any variable
 - Model can include cycles
 - Fast model evaluation mechanism
 - Efficient single wave model update mechanism
 - Partial and lazy model updating, to quickly explore neighbourhoods

- **Search part**
 - Library of standard neighbourhoods
 - Combinators to define your global strategy in a concise way
 - Handy verbose and statistics feature, to help you tuning your search

- **Business packages:** Routing, scheduling
 - Model and neighbourhoods

- **FlatZinc Front End** [Bjö15]

- 49kLOC
Who is behind OscaR.cbls?

• CETIC team
 – Renaud De Landtsheer
 – Yoann Guyot
 – Fabian Germeau
 – Gustavo Ospina
 – Christophe Ponsard

• Contributions from Uppsala
 – Jean-Noël Monette
 – Gustav Björdal

• Internships & MS Theses
 – UMONS: Gaël Thouvenin, Sébastien Drobsz, Florent Ghilain, Jannou Bohée
 – IPL: Fabian Germeau
 – HENALUX: Quentin Wautelet
Where is OscaR?

• Repository / source code
 – https://bitbucket.org/oscarlib/oscar/wiki/Home

• Released code and documentation
 – https://oscarlib.bitbucket.org/

• Discussion group / mailing list
 – https://groups.google.com/forum/?fromgroups#!forum/oscar-user
Two typical remarks on OscaR.cbls

• Why don’t you use C/C++ with templates, and compile with gcc –o3? You would be 2 times faster!

• I can develop a dedicated solver that will run 2 times faster because it will not need the overhead data structures of OscaR.cbls

... these remarks are correct, but ...
Brain cycle is more valuable than CPU cycle

- Algorithmic tunings deliver more than 2 to 4!
 - Ex: symmetry elimination on neighbourhoods
 - Ex: Restricting your neighbourhood to relevant search zones
 - Ex: Tuning when your neighbourhoods are actually used
 - We lately had a speedup 10 by tuning a search procedure

- Our framework cuts down dev cost, so you have time to focus on these high-level tunings!

- TODO: parallel propagation
 - Goal: same “basic speed” as dedicated implem
 - A core is cheaper than a single day of work for an engineer
In the real world, solving optimization problems using exact methods is a waste of resources