Graph Grammar
Modeling and
Verification of Ad Hoc

Routing Protocols

Mayank Saksena, Oskar
Wibling, and Bengt Jonsson

Uppsala university

Summary

= Developed tool for verifying safety properties

« Symbolic backward reachability analysis of graph
grammars

" http://www.it.uu.se/research/group/mobility/adhoc/gbt
(tool + example models)

= Verified loop freedom of DYMO
* Ad hoc routing protocol

Oskar Wibling TACAS 2008-03-31

http://www.it.uu.se/research/group/mobility/adhoc/gbt
http://www.it.uu.se/research/group/mobility/adhoc/gbt

Outline

= |[ntroduction
* Ad hoc networking, properties

= The DYMO protocol
= Graph grammars
= Modeling

= Verification
« GBT tool

= Conclusions, future work

Oskar Wibling TACAS 2008-03-31

Mobile ad hoc networks

= Mobile ad hoc network (MANET)

* No wireless infrastructure
= Build own structure dynamically, multi-hop

* Behavior
= Nodes change location

= Connectivity fluctuates
= Power and bandwidth limited

Oskar Wibling TACAS 2008-03-31

Mobile ad hoc networks

= Usage areas
 Lack of infrastructure
« Search and rescue teams, military operations
« Spontaneous networking in mobile communities
» Sensor networks

Oskar Wibling TACAS 2008-03-31

Ad hoc routing protocols

= Set up forwarding paths

= Extend communication range

« Save power, overcome obstacles, avoid
interference

Q e Wl e

"""""""""""""""""""""""

. O S e E
e, Rl S et T

\\\\\

Ad hoc routing protocols

= Set up forwarding paths

= Extend communication range

« Save power, overcome obstacles, avoid
interference

0.’
*
A
*
*
*
.
*
)
)
.
.
.
-
. .‘ . .
L
L]
L]
L
L
-
&
R4
4
*
*
’0
"
.
“
*
*
A
.
---"“
.

Oskar Wibling TACAS 2008-03-31

Properties of ad hoc protocols

= Correct routing
* The protocol sets up “usable” routes

* Loop freedom
* Forwarded packets do not enter a loop

Yote? e

Oskar Wibling TACAS 2008-03-31

Properties of ad hoc protocols

= Correct routing
* The protocol sets up “usable” routes

* Loop freedom
* Forwarded packets do not enter a loop
= Can be checked by condition on route metric

MR M Mg

Yoter

M
Veo. @ +@ =M, > M, Ex. Mg >Mg >Mg >M » Mg

Oskar Wibling TACAS 2008-03-31

UuiT

DYMO

= Dynamic MANET On-demand (DYMO)
routing protocol
* Nodes have sequence number and route table
« Route table entry: < target, next, metric>

e Metric: < -sequence number, hop count >

= Routing messages used for updates

RREQ

.
0,000

— -

Oskar Wibling TACAS 2008-03-31

UuiT

DYMO

= |f there is previous entry

« Compare and replace if “better”
= Fresher data, shorter path

» Specification contains update rules

Oskar Wibling TACAS 2008-03-31

Graph grammars

= We model a system using graph grammars
* |nitial hypergraph + hypergraph rewriting rules

« Example hypergraph:

<«— node

<«— hyperedge

Oskar Wibling TACAS 2008-03-31

UuiT

Hypergraphs vs patterns

= Configuration represented by hypergraph

= Patterns - constraints on configurations
* Represent sets of hypergraphs
» Positive part
= Must be subgraph of included hypergraphs
* Negative parts
= Must not match included hypergraphs

Oskar Wibling TACAS 2008-03-31

UuiT

Hypergraphs vs patterns

negative
hyperedge
positive negative
part part
Included Not included

0 2 . 0 2 .
1 0 0
[1 L1
1 \J 1 2 1 . 1 2 .

Oskar Wibling TACAS 2008-03-31

UuiT

Hypergraph rewriting rules

= Left hand side: pattern
= Right hand side: hypergraph
= Semantics - replacmg posmve part by RHS

Rule o
Example o °
rewritings ‘ ‘

' 0 2 ' 0
— L]
1 ' 1 2 '

Oskar Wibling

UuiT

Modeling DYMO

= |nitial graph: Empty

= Example rules: New network node and RREQ
generation (simplified)

II\{IleliffNOde <Empty pattern> = il—C)

Rule ® O 2 —e—E
N

GenRREQ o © S It

Network node
[] has seq. num.

Bl RREQ [> relation

Oskar Wibling TACAS 2008-03-31

UuiT

Modeling DYMO

= Followed latest version
* DYMO Internet Draft v10

* /7 rewriting rules
= 38 of these are update rules

Oskar Wibling TACAS 2008-03-31

Verifying DYMO

= Starting from undesirable graph patterns
* Representing all bad system configurations
* Negation of loop freedom property

0 | RouteNextHopAddress 1 {\f 0 { RouteTable L1 *Q
tttttttt
ry 0 (I)
1)
o | RouteAddress 1 () 1| RouteAddress | | o teEntry
0 1

0,
oooooooooo 10| > |11 {RouteseqNo oi(b

= Check if reachable from initial state
« Backward reachability analysis

Oskar Wibling TACAS 2008-03-31

UuiT

Backward reachabillity

) B)—
Rule | ‘ =
—0O O

Pattern

Pre set

UuiT

Backward reachabillity

) B)— A l—c—
Rule | | = 2 W?
1 @ D 1 0 T]?
Pattern ‘
Pre set ‘ ‘

Oskar Wibling

UuiT

Backward reachabillity

@ ‘/}73\\ - A 9 1 B 0
Rule O | = 2 ‘
1 @ 1 0 1

Pattern

e 9 P “1.!

UuiT

Backward reachabillity

® }
Rule | | T =
—0O ©

Pattern

Pre set ‘ ‘ i}—% ‘ ‘ ‘

UuiT

Backward reachabillity

= Some special situations o
« Graph segments created by rule
= Not every overlap possible 0

* |[nconsistent patterns .
= Need to be detected and removed
= Except when... 1

* Inconsistency involves segment 2
removed by rule

= |nconsistency resolved, introduces

abstraction : O

Oskar Wibling TACAS 2008-03-31

UUUUU

Many patterns generated

=L S S AN
/F Hg

TACAS 2008-03-31

Oskar Wibling

UuiT

Many patterns generated

= Optimizations needed
= Want to safely discard patterns

« Pattern subsumption
5
%)\
N\
=~/
AN

« Simple type checking

&
-}

Oskar Wibling

Pattern subsumption

= Patterns are generators for sets of graphs

= For a pattern ¢
* [@] - set of graphs represented by ¢

= For patterns ¢ and y
c o=y Iff [pI C[W] (definition)
= Example

Oskar Wibling

UuiT

Pattern subsumption

* Discard covered predecessors

LN) _

Oskar Wibling

UuiT

Simple type checking

) B)—
Rule | ‘ =
—0O O

Pattern

Pre set ‘ ‘ EO—E_E ‘ ‘ ‘

UuiT

Simple type checking

&) B—
Rule | ‘ =
—Q 0

Pattern

Pre set ‘ ‘ i}—% ‘ ‘ ‘

O Network node O Sequence number

UuiT

Simple type checking

&) B—
Rule | ‘ =
—Q 0

Pattern

Pre Set O 1 % O l O

O Network node O Sequence number

UuiT

Simple type checking

&) B—
Rule | ‘ =
—Q 0

Pattern

Pre set ‘ ‘

O Network node O Sequence number

Type constraint ‘ io
(disallowed) :

Oskar Wibling TACAS 2008-03-31

UuiT

Simple type checking

&) B—
Rule | ‘ =
—Q 0

Pattern

Pre set ‘ ‘

O Network node O Sequence number

Type constraint ‘ io
(disallowed) :

Oskar Wibling TACAS 2008-03-31

UuiT

Graph Backwards Tool (GBT)

= Takes .grm file as input

 Lists .dot files describing:
= initial graph, rewriting rules,
= undesirable patterns, and
= type constraints

= Qutputs “verification successful” or error trace
« Can be spurious (due to over-approximation)

= Tool and examples available for download

e http://www.it.uu.se/research/group/mobility/adhoc/gbt

Oskar Wibling TACAS 2008-03-31

http://www.it.uu.se/research/group/mobility/adhoc/gbt
http://www.it.uu.se/research/group/mobility/adhoc/gbt

Verification results

= Two DYMO versions verified

* Difference:
* Intermediate nodes can reply in v10
= Slight change in update rules
= Machine: 64-bit 2.8 GHz processor, 8 GB available memory

Protocol Actions [Checked |Covered |Left [Loop |Time
free

DYMO v10 |77 295164 [295108 (56 |Yes |4h 31 min

DYMO v05 |50 118685 |118637 |48 |Yes |1h 20 min

Oskar Wibling TACAS 2008-03-31

Updated verification results

= New optimizations implemented since paper
* Example
= Patterns often subsumed by immediate predecessor

= Check this early
= Reduces memory footprint, increases speed

Protocol Actions [Checked |Covered |Left [Loop |Time
free

DYMO v10 |77 254620 (254610 (10 (Yes |[1h 59 min

DYMO v05 |50 119506 119496 (10 |Yes |39 min20s

Oskar Wibling TACAS 2008-03-31

Related work

= Konig and Kozioura
* Over-approximate graph grammars using Petri nets
* No negative conditions

= Becker et al.

« Graph grammars, verification of mechatronic systems
* Only check given inductive invariant

= Abstract interpretation

* Predicate abstraction

= Need to find/devise relevant predicates
= Abstractions may be too coarse

Oskar Wibling TACAS 2008-03-31

Conclusions and Future work

= Verified loop freedom of DYMO automatically
* Optimize model - faster verification?

= A few other example systems
» Working on more case studies

= [mplemented some optimizations

* More can be done
= Early detection of unfruitful mappings

= We can get spurious counterexamples
* CEGAR - ongoing

= Introduce more abstraction, force termination

Oskar Wibling TACAS 2008-03-31

