
IT Uppsala university

Graph Grammar
Modeling and

Verification of Ad Hoc
Routing Protocols

Mayank Saksena, Oskar
Wibling, and Bengt Jonsson

B

A

C

UU/IT

TACAS 2008-03-31 Oskar Wibling

Summary
 Developed tool for verifying safety properties

• Symbolic backward reachability analysis of graph
grammars
 http://www.it.uu.se/research/group/mobility/adhoc/gbt

(tool + example models)

 Verified loop freedom of DYMO
• Ad hoc routing protocol

http://www.it.uu.se/research/group/mobility/adhoc/gbt
http://www.it.uu.se/research/group/mobility/adhoc/gbt

UU/IT

TACAS 2008-03-31 Oskar Wibling

Outline
 Introduction

• Ad hoc networking, properties
 The DYMO protocol
 Graph grammars
 Modeling
 Verification

• GBT tool
 Conclusions, future work

UU/IT

TACAS 2008-03-31 Oskar Wibling

Mobile ad hoc networks
 Mobile ad hoc network (MANET)

• No wireless infrastructure
 Build own structure dynamically, multi-hop

• Behavior
 Nodes change location
 Connectivity fluctuates
 Power and bandwidth limited

UU/IT

TACAS 2008-03-31 Oskar Wibling

Mobile ad hoc networks
 Usage areas

• Lack of infrastructure
• Search and rescue teams, military operations
• Spontaneous networking in mobile communities
• Sensor networks

 Set up forwarding paths
 Extend communication range

• Save power, overcome obstacles, avoid
interference

UU/IT

TACAS 2008-03-31 Oskar Wibling

Ad hoc routing protocols

 Set up forwarding paths
 Extend communication range

• Save power, overcome obstacles, avoid
interference

UU/IT

TACAS 2008-03-31 Oskar Wibling

Ad hoc routing protocols

UU/IT

TACAS 2008-03-31 Oskar Wibling

Properties of ad hoc protocols
 Correct routing

• The protocol sets up “usable” routes
• Loop freedom

 Forwarded packets do not enter a loop

UU/IT

TACAS 2008-03-31 Oskar Wibling

Properties of ad hoc protocols
 Correct routing

• The protocol sets up “usable” routes
• Loop freedom

 Forwarded packets do not enter a loop
 Can be checked by condition on route metric

M M M

M

∀ ⇒ M>M. M >M >M >M ≯MEx.

 Dynamic MANET On-demand (DYMO)
routing protocol
• Nodes have sequence number and route table
• Route table entry: < target, next, metric >

• Metric: < -sequence number, hop count >

 Routing messages used for updates

UU/IT

TACAS 2008-03-31 Oskar Wibling

DYMO

RREP
My

RREQ
Mx

UU/IT

TACAS 2008-03-31 Oskar Wibling

DYMO
 If there is previous entry

• Compare and replace if “better”
 Fresher data, shorter path

• Specification contains update rules

RREQ
Mx

UU/IT

TACAS 2008-03-31 Oskar Wibling

Graph grammars
 We model a system using graph grammars

• Initial hypergraph + hypergraph rewriting rules

• Example hypergraph:

0

1

2

0

1

0

1

node

hyperedge

UU/IT

TACAS 2008-03-31 Oskar Wibling

Hypergraphs vs patterns
 Configuration represented by hypergraph
 Patterns - constraints on configurations

• Represent sets of hypergraphs
• Positive part

 Must be subgraph of included hypergraphs
• Negative parts

 Must not match included hypergraphs

UU/IT

TACAS 2008-03-31 Oskar Wibling

Hypergraphs vs patterns
0

1

2

0

1

0

1 2

0

Included
0

1

2

0

1

0

1 2

0

0

1

2

0

1

Not included
0

1

2

0

1

0

1 2

0

0

1

2

... ...

negative
hyperedge

negative
part

positive
part

UU/IT

TACAS 2008-03-31 Oskar Wibling

Hypergraph rewriting rules
 Left hand side: pattern
 Right hand side: hypergraph
 Semantics - replacing positive part by RHS

⇒

→α

→α

Rule α

Example
rewritings

0

1

2

0

1

0

1 2

0
B

C

A 0

1

2

0

1

0

1 2

B

C

A

0

1

2

0

1

0 0

1

2

0

1

0

0

1 2

0

1

2

0

1

UU/IT

TACAS 2008-03-31 Oskar Wibling

Modeling DYMO
 Initial graph: Empty
 Example rules: New network node and RREQ

generation (simplified)

⇒Rule
NewNode

Rule
GenRREQ 0

1

A

C

1

0

D

B

0

1

<Empty pattern>

⇒ 0

1

A
1

0

D

B
0 1

C

2

0 1

Network node
has seq. num. RREQ > relation

UU/IT

TACAS 2008-03-31 Oskar Wibling

Modeling DYMO
 Followed latest version

• DYMO Internet Draft v10
• 77 rewriting rules

 38 of these are update rules

1

2

3

4

5

6

7

8

9

1011

Orig

0

1

OrigSeqNo

0

1

=

0

1

NodeHopCnt
0

1

RouteTable

0

1

RouteEntry

0

1

RouteAddress
0

1

RouteNextHopAddress

0

1

RouteHopCnt

0

1

RouteSeqNo

0 1

IPSource0

1

>

0

1

Broken

0

⇒

1

2

3

4

5

6

7

8

9

1011

Orig

0

1

OrigSeqNo

0

1

=

0

1

NodeHopCnt
0

1

RouteTable

0

1

RouteEntry

0

1
RouteAddress

0

1

RouteNextHopAddress

0

1

RouteHopCnt

0

1

=

0

1

RouteSeqNo

0 1

IPSource0

1

>

0

1

UU/IT

TACAS 2008-03-31 Oskar Wibling

Verifying DYMO
 Starting from undesirable graph patterns

• Representing all bad system configurations
• Negation of loop freedom property

 Check if reachable from initial state
• Backward reachability analysis

RouteTable0 1
RouteEntry

0

1
RouteEntry

0

1

RouteAddress0 1 RouteAddress

0

1

RouteNextHopAddress

0

1

RouteSeqNo
0

1 RouteSeqNo 01>0 1

UU/IT

TACAS 2008-03-31 Oskar Wibling

Backward reachability

Rule ⇒

Pattern

Pre set

0

1 C

A

0

1

1

0B
0 1

2

0 1

A

C D

1

0

1

0B

D

UU/IT

TACAS 2008-03-31 Oskar Wibling

Backward reachability

Rule ⇒

Pattern

Pre set

0

1 C

A

0

1

1

0B
0 1

2

0 1

A

C D

1

0

0

1

1

0

1

0B

D

1

0B

D

UU/IT

TACAS 2008-03-31 Oskar Wibling

Backward reachability

Rule ⇒

Pattern

Pre set

0

1 C

A

0

1

1

0B
0 1

2

0 1

A

C D

1

0

0

1

1

0

1

0

B

0

1

1

0

1

0

B
1

0

D

1

0

B

UU/IT

TACAS 2008-03-31 Oskar Wibling

Backward reachability

Rule ⇒

Pattern

Pre set

0

1 C

A

0

1

1

0B
0 1

2

0 1

A

C D

1

0

B
1

0

D

...

0

1

0

1

1

0

1

0

D

1

0

D

0

1

1

0

0

1

1

0

1

0

UU/IT

TACAS 2008-03-31 Oskar Wibling

Backward reachability
 Some special situations

• Graph segments created by rule
 Not every overlap possible

• Inconsistent patterns
 Need to be detected and removed
 Except when...

• Inconsistency involves segment
removed by rule
 Inconsistency resolved, introduces

abstraction

2

2

1

0

1

0

0

0

UU/IT

TACAS 2008-03-31 Oskar Wibling

Many patterns generated
 May never terminate

0

1

1

0

0

1

0

1

1

0

1

0

...

0

1

1

0

0

1

...

...

...

...

...

...

...

0

1

1

0

1

0

UU/IT

TACAS 2008-03-31 Oskar Wibling

Many patterns generated
 Optimizations needed
 Want to safely discard patterns

• Pattern subsumption
• Simple type checking

0

1
1

0

100

1

1
0

0
1

0

1
10

0
1

1
0

0
1

UU/IT

TACAS 2008-03-31 Oskar Wibling

Pattern subsumption
 Patterns are generators for sets of graphs
 For a pattern φ

• ⟦φ⟧ - set of graphs represented by φ
 For patterns φ and ψ

• φ ⪯ ψ iff ⟦φ⟧ ⊆ ⟦ψ⟧ (definition)

 Example

0

1

1

0

⪯
0

1

1

0

1

0

0

1

1

0

1

0

UU/IT

TACAS 2008-03-31 Oskar Wibling

Pattern subsumption
 Discard covered predecessors

0

1

1

0

0

1

0

1

1

0

1

0

...

0

1

1

0

0

1

...

...

...

...

...

...

...

UU/IT

TACAS 2008-03-31 Oskar Wibling

Simple type checking

Rule ⇒

Pattern

Pre set

0

1 C

A

0

1

1

0B
0 1

2

0 1

A

C D

1

0

1

0B

D

0

1

0

1

1

0

0

1

1

0

0

1

1

0

1

0

UU/IT

TACAS 2008-03-31 Oskar Wibling

Simple type checking

Rule ⇒

Pattern

Pre set

0

1

1

0B
0 1

2

0 1

A

C D

1

0

0

1 C

A
1

0B

D

0

1

0

1

1

0

0

1

1

0

0

1

1

0

1

0

Sequence numberNetwork node

UU/IT

TACAS 2008-03-31 Oskar Wibling

Simple type checking

Rule ⇒

Pattern

Pre set

0

1

1

0B
0 1

2

0 1

A

C D

1

0

0

1 C

A
1

0B

D

0

1

0

1

1

0

0

1

1

0

0

1

1

0

1

0

Sequence numberNetwork node

UU/IT

TACAS 2008-03-31 Oskar Wibling

Simple type checking

Rule ⇒

Pattern

Pre set

0

1

1

0B
0 1

2

0 1

A

C D

1

0

0

1 C

A
1

0B

D

0

1

0

1

1

0

0

1

1

0

0

1

1

0

1

0

Sequence numberNetwork node

Type constraint
(disallowed)

0

1

1

0

UU/IT

TACAS 2008-03-31 Oskar Wibling

Simple type checking

Rule ⇒

Pattern

Pre set

0

1

1

0B
0 1

2

0 1

A

C D

1

0

0

1 C

A
1

0B

D

0

1

0

1

1

0

0

1

1

0

0

1

1

0

1

0

Sequence numberNetwork node

Type constraint
(disallowed)

0

1

1

0

UU/IT

TACAS 2008-03-31 Oskar Wibling

Graph Backwards Tool (GBT)
 Takes .grm file as input

• Lists .dot files describing:
 initial graph, rewriting rules,
 undesirable patterns, and
 type constraints

 Outputs “verification successful” or error trace
• Can be spurious (due to over-approximation)

 Tool and examples available for download
• http://www.it.uu.se/research/group/mobility/adhoc/gbt

http://www.it.uu.se/research/group/mobility/adhoc/gbt
http://www.it.uu.se/research/group/mobility/adhoc/gbt

UU/IT

TACAS 2008-03-31 Oskar Wibling

Verification results
 Two DYMO versions verified

• Difference:
 Intermediate nodes can reply in v10
 Slight change in update rules

 Machine: 64-bit 2.8 GHz processor, 8 GB available memory

Protocol Actions Checked Covered Left Loop
free

Time

DYMO v10 77 295164 295108 56 Yes 4h 31 min

DYMO v05 50 118685 118637 48 Yes 1h 20 min

UU/IT

TACAS 2008-03-31 Oskar Wibling

Updated verification results
 New optimizations implemented since paper

• Example
 Patterns often subsumed by immediate predecessor
 Check this early
 Reduces memory footprint, increases speed

Protocol Actions Checked Covered Left Loop
free

Time

DYMO v10 77 254620 254610 10 Yes 1h 59 min

DYMO v05 50 119506 119496 10 Yes 39 min 20 s

UU/IT

TACAS 2008-03-31 Oskar Wibling

Related work
 König and Kozioura

• Over-approximate graph grammars using Petri nets
• No negative conditions

 Becker et al.
• Graph grammars, verification of mechatronic systems
• Only check given inductive invariant

 Abstract interpretation
• Predicate abstraction

 Need to find/devise relevant predicates
 Abstractions may be too coarse

UU/IT

TACAS 2008-03-31 Oskar Wibling

Conclusions and Future work
 Verified loop freedom of DYMO automatically

• Optimize model - faster verification?
 A few other example systems

• Working on more case studies
 Implemented some optimizations

• More can be done
 Early detection of unfruitful mappings

 We can get spurious counterexamples
• CEGAR - ongoing

 Introduce more abstraction, force termination

