
IT Uppsala university

Graph Grammar
Modeling and

Verification of Ad Hoc
Routing Protocols

Mayank Saksena, Oskar
Wibling, and Bengt Jonsson

B

A

C

UU/IT

TACAS 2008-03-31 Oskar Wibling

Summary
 Developed tool for verifying safety properties

• Symbolic backward reachability analysis of graph
grammars
 http://www.it.uu.se/research/group/mobility/adhoc/gbt

(tool + example models)

 Verified loop freedom of DYMO
• Ad hoc routing protocol

http://www.it.uu.se/research/group/mobility/adhoc/gbt
http://www.it.uu.se/research/group/mobility/adhoc/gbt

UU/IT

TACAS 2008-03-31 Oskar Wibling

Outline
 Introduction

• Ad hoc networking, properties
 The DYMO protocol
 Graph grammars
 Modeling
 Verification

• GBT tool
 Conclusions, future work

UU/IT

TACAS 2008-03-31 Oskar Wibling

Mobile ad hoc networks
 Mobile ad hoc network (MANET)

• No wireless infrastructure
 Build own structure dynamically, multi-hop

• Behavior
 Nodes change location
 Connectivity fluctuates
 Power and bandwidth limited

UU/IT

TACAS 2008-03-31 Oskar Wibling

Mobile ad hoc networks
 Usage areas

• Lack of infrastructure
• Search and rescue teams, military operations
• Spontaneous networking in mobile communities
• Sensor networks

 Set up forwarding paths
 Extend communication range

• Save power, overcome obstacles, avoid
interference

UU/IT

TACAS 2008-03-31 Oskar Wibling

Ad hoc routing protocols

 Set up forwarding paths
 Extend communication range

• Save power, overcome obstacles, avoid
interference

UU/IT

TACAS 2008-03-31 Oskar Wibling

Ad hoc routing protocols

UU/IT

TACAS 2008-03-31 Oskar Wibling

Properties of ad hoc protocols
 Correct routing

• The protocol sets up “usable” routes
• Loop freedom

 Forwarded packets do not enter a loop

UU/IT

TACAS 2008-03-31 Oskar Wibling

Properties of ad hoc protocols
 Correct routing

• The protocol sets up “usable” routes
• Loop freedom

 Forwarded packets do not enter a loop
 Can be checked by condition on route metric

M M M

M

∀ ⇒ M>M. M >M >M >M ≯MEx.

 Dynamic MANET On-demand (DYMO)
routing protocol
• Nodes have sequence number and route table
• Route table entry: < target, next, metric >

• Metric: < -sequence number, hop count >

 Routing messages used for updates

UU/IT

TACAS 2008-03-31 Oskar Wibling

DYMO

RREP
My

RREQ
Mx

UU/IT

TACAS 2008-03-31 Oskar Wibling

DYMO
 If there is previous entry

• Compare and replace if “better”
 Fresher data, shorter path

• Specification contains update rules

RREQ
Mx

UU/IT

TACAS 2008-03-31 Oskar Wibling

Graph grammars
 We model a system using graph grammars

• Initial hypergraph + hypergraph rewriting rules

• Example hypergraph:

0

1

2

0

1

0

1

node

hyperedge

UU/IT

TACAS 2008-03-31 Oskar Wibling

Hypergraphs vs patterns
 Configuration represented by hypergraph
 Patterns - constraints on configurations

• Represent sets of hypergraphs
• Positive part

 Must be subgraph of included hypergraphs
• Negative parts

 Must not match included hypergraphs

UU/IT

TACAS 2008-03-31 Oskar Wibling

Hypergraphs vs patterns
0

1

2

0

1

0

1 2

0

Included
0

1

2

0

1

0

1 2

0

0

1

2

0

1

Not included
0

1

2

0

1

0

1 2

0

0

1

2

... ...

negative
hyperedge

negative
part

positive
part

UU/IT

TACAS 2008-03-31 Oskar Wibling

Hypergraph rewriting rules
 Left hand side: pattern
 Right hand side: hypergraph
 Semantics - replacing positive part by RHS

⇒

→α

→α

Rule α

Example
rewritings

0

1

2

0

1

0

1 2

0
B

C

A 0

1

2

0

1

0

1 2

B

C

A

0

1

2

0

1

0 0

1

2

0

1

0

0

1 2

0

1

2

0

1

UU/IT

TACAS 2008-03-31 Oskar Wibling

Modeling DYMO
 Initial graph: Empty
 Example rules: New network node and RREQ

generation (simplified)

⇒Rule
NewNode

Rule
GenRREQ 0

1

A

C

1

0

D

B

0

1

<Empty pattern>

⇒ 0

1

A
1

0

D

B
0 1

C

2

0 1

Network node
has seq. num. RREQ > relation

UU/IT

TACAS 2008-03-31 Oskar Wibling

Modeling DYMO
 Followed latest version

• DYMO Internet Draft v10
• 77 rewriting rules

 38 of these are update rules

1

2

3

4

5

6

7

8

9

1011

Orig

0

1

OrigSeqNo

0

1

=

0

1

NodeHopCnt
0

1

RouteTable

0

1

RouteEntry

0

1

RouteAddress
0

1

RouteNextHopAddress

0

1

RouteHopCnt

0

1

RouteSeqNo

0 1

IPSource0

1

>

0

1

Broken

0

⇒

1

2

3

4

5

6

7

8

9

1011

Orig

0

1

OrigSeqNo

0

1

=

0

1

NodeHopCnt
0

1

RouteTable

0

1

RouteEntry

0

1
RouteAddress

0

1

RouteNextHopAddress

0

1

RouteHopCnt

0

1

=

0

1

RouteSeqNo

0 1

IPSource0

1

>

0

1

UU/IT

TACAS 2008-03-31 Oskar Wibling

Verifying DYMO
 Starting from undesirable graph patterns

• Representing all bad system configurations
• Negation of loop freedom property

 Check if reachable from initial state
• Backward reachability analysis

RouteTable0 1
RouteEntry

0

1
RouteEntry

0

1

RouteAddress0 1 RouteAddress

0

1

RouteNextHopAddress

0

1

RouteSeqNo
0

1 RouteSeqNo 01>0 1

UU/IT

TACAS 2008-03-31 Oskar Wibling

Backward reachability

Rule ⇒

Pattern

Pre set

0

1 C

A

0

1

1

0B
0 1

2

0 1

A

C D

1

0

1

0B

D

UU/IT

TACAS 2008-03-31 Oskar Wibling

Backward reachability

Rule ⇒

Pattern

Pre set

0

1 C

A

0

1

1

0B
0 1

2

0 1

A

C D

1

0

0

1

1

0

1

0B

D

1

0B

D

UU/IT

TACAS 2008-03-31 Oskar Wibling

Backward reachability

Rule ⇒

Pattern

Pre set

0

1 C

A

0

1

1

0B
0 1

2

0 1

A

C D

1

0

0

1

1

0

1

0

B

0

1

1

0

1

0

B
1

0

D

1

0

B

UU/IT

TACAS 2008-03-31 Oskar Wibling

Backward reachability

Rule ⇒

Pattern

Pre set

0

1 C

A

0

1

1

0B
0 1

2

0 1

A

C D

1

0

B
1

0

D

...

0

1

0

1

1

0

1

0

D

1

0

D

0

1

1

0

0

1

1

0

1

0

UU/IT

TACAS 2008-03-31 Oskar Wibling

Backward reachability
 Some special situations

• Graph segments created by rule
 Not every overlap possible

• Inconsistent patterns
 Need to be detected and removed
 Except when...

• Inconsistency involves segment
removed by rule
 Inconsistency resolved, introduces

abstraction

2

2

1

0

1

0

0

0

UU/IT

TACAS 2008-03-31 Oskar Wibling

Many patterns generated
 May never terminate

0

1

1

0

0

1

0

1

1

0

1

0

...

0

1

1

0

0

1

...

...

...

...

...

...

...

0

1

1

0

1

0

UU/IT

TACAS 2008-03-31 Oskar Wibling

Many patterns generated
 Optimizations needed
 Want to safely discard patterns

• Pattern subsumption
• Simple type checking

0

1
1

0

100

1

1
0

0
1

0

1
10

0
1

1
0

0
1

UU/IT

TACAS 2008-03-31 Oskar Wibling

Pattern subsumption
 Patterns are generators for sets of graphs
 For a pattern φ

• ⟦φ⟧ - set of graphs represented by φ
 For patterns φ and ψ

• φ ⪯ ψ iff ⟦φ⟧ ⊆ ⟦ψ⟧ (definition)

 Example

0

1

1

0

⪯
0

1

1

0

1

0

0

1

1

0

1

0

UU/IT

TACAS 2008-03-31 Oskar Wibling

Pattern subsumption
 Discard covered predecessors

0

1

1

0

0

1

0

1

1

0

1

0

...

0

1

1

0

0

1

...

...

...

...

...

...

...

UU/IT

TACAS 2008-03-31 Oskar Wibling

Simple type checking

Rule ⇒

Pattern

Pre set

0

1 C

A

0

1

1

0B
0 1

2

0 1

A

C D

1

0

1

0B

D

0

1

0

1

1

0

0

1

1

0

0

1

1

0

1

0

UU/IT

TACAS 2008-03-31 Oskar Wibling

Simple type checking

Rule ⇒

Pattern

Pre set

0

1

1

0B
0 1

2

0 1

A

C D

1

0

0

1 C

A
1

0B

D

0

1

0

1

1

0

0

1

1

0

0

1

1

0

1

0

Sequence numberNetwork node

UU/IT

TACAS 2008-03-31 Oskar Wibling

Simple type checking

Rule ⇒

Pattern

Pre set

0

1

1

0B
0 1

2

0 1

A

C D

1

0

0

1 C

A
1

0B

D

0

1

0

1

1

0

0

1

1

0

0

1

1

0

1

0

Sequence numberNetwork node

UU/IT

TACAS 2008-03-31 Oskar Wibling

Simple type checking

Rule ⇒

Pattern

Pre set

0

1

1

0B
0 1

2

0 1

A

C D

1

0

0

1 C

A
1

0B

D

0

1

0

1

1

0

0

1

1

0

0

1

1

0

1

0

Sequence numberNetwork node

Type constraint
(disallowed)

0

1

1

0

UU/IT

TACAS 2008-03-31 Oskar Wibling

Simple type checking

Rule ⇒

Pattern

Pre set

0

1

1

0B
0 1

2

0 1

A

C D

1

0

0

1 C

A
1

0B

D

0

1

0

1

1

0

0

1

1

0

0

1

1

0

1

0

Sequence numberNetwork node

Type constraint
(disallowed)

0

1

1

0

UU/IT

TACAS 2008-03-31 Oskar Wibling

Graph Backwards Tool (GBT)
 Takes .grm file as input

• Lists .dot files describing:
 initial graph, rewriting rules,
 undesirable patterns, and
 type constraints

 Outputs “verification successful” or error trace
• Can be spurious (due to over-approximation)

 Tool and examples available for download
• http://www.it.uu.se/research/group/mobility/adhoc/gbt

http://www.it.uu.se/research/group/mobility/adhoc/gbt
http://www.it.uu.se/research/group/mobility/adhoc/gbt

UU/IT

TACAS 2008-03-31 Oskar Wibling

Verification results
 Two DYMO versions verified

• Difference:
 Intermediate nodes can reply in v10
 Slight change in update rules

 Machine: 64-bit 2.8 GHz processor, 8 GB available memory

Protocol Actions Checked Covered Left Loop
free

Time

DYMO v10 77 295164 295108 56 Yes 4h 31 min

DYMO v05 50 118685 118637 48 Yes 1h 20 min

UU/IT

TACAS 2008-03-31 Oskar Wibling

Updated verification results
 New optimizations implemented since paper

• Example
 Patterns often subsumed by immediate predecessor
 Check this early
 Reduces memory footprint, increases speed

Protocol Actions Checked Covered Left Loop
free

Time

DYMO v10 77 254620 254610 10 Yes 1h 59 min

DYMO v05 50 119506 119496 10 Yes 39 min 20 s

UU/IT

TACAS 2008-03-31 Oskar Wibling

Related work
 König and Kozioura

• Over-approximate graph grammars using Petri nets
• No negative conditions

 Becker et al.
• Graph grammars, verification of mechatronic systems
• Only check given inductive invariant

 Abstract interpretation
• Predicate abstraction

 Need to find/devise relevant predicates
 Abstractions may be too coarse

UU/IT

TACAS 2008-03-31 Oskar Wibling

Conclusions and Future work
 Verified loop freedom of DYMO automatically

• Optimize model - faster verification?
 A few other example systems

• Working on more case studies
 Implemented some optimizations

• More can be done
 Early detection of unfruitful mappings

 We can get spurious counterexamples
• CEGAR - ongoing

 Introduce more abstraction, force termination

