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Summary

= Developed tool for verifying safety properties

« Symbolic backward reachability analysis of graph
grammars

" http://www.it.uu.se/research/group/mobility/adhoc/gbt
(tool + example models)

= Verified loop freedom of DYMO
* Ad hoc routing protocol
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Outline

= |[ntroduction
* Ad hoc networking, properties

= The DYMO protocol
= Graph grammars
= Modeling

= Verification
« GBT tool

= Conclusions, future work
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Mobile ad hoc networks

= Mobile ad hoc network (MANET)

* No wireless infrastructure
= Build own structure dynamically, multi-hop

* Behavior
= Nodes change location

= Connectivity fluctuates
= Power and bandwidth limited
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Mobile ad hoc networks

= Usage areas
 Lack of infrastructure
« Search and rescue teams, military operations
« Spontaneous networking in mobile communities
» Sensor networks
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Ad hoc routing protocols

= Set up forwarding paths

= Extend communication range

« Save power, overcome obstacles, avoid
interference
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Ad hoc routing protocols

= Set up forwarding paths

= Extend communication range

« Save power, overcome obstacles, avoid
interference
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Properties of ad hoc protocols

= Correct routing
* The protocol sets up “usable” routes

* Loop freedom
* Forwarded packets do not enter a loop
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Properties of ad hoc protocols

= Correct routing
* The protocol sets up “usable” routes

* Loop freedom
* Forwarded packets do not enter a loop
= Can be checked by condition on route metric

MR M Mg

Yoter

M
Veo. @ +@ =M, > M, Ex. Mg >Mg >Mg >M » Mg

Oskar Wibling TACAS 2008-03-31



UuiT

DYMO

= Dynamic MANET On-demand (DYMO)
routing protocol
* Nodes have sequence number and route table
« Route table entry: < target, next, metric>

e Metric: < -sequence number, hop count >

= Routing messages used for updates
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UuiT

DYMO

= |f there is previous entry

« Compare and replace if “better”
= Fresher data, shorter path

» Specification contains update rules
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Graph grammars

= We model a system using graph grammars
* |nitial hypergraph + hypergraph rewriting rules

« Example hypergraph:

<«— node

<«— hyperedge
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UuiT

Hypergraphs vs patterns

= Configuration represented by hypergraph

= Patterns - constraints on configurations
* Represent sets of hypergraphs
» Positive part
= Must be subgraph of included hypergraphs
* Negative parts
= Must not match included hypergraphs
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UuiT

Hypergraphs vs patterns

negative
hyperedge
positive negative
part part
Included Not included
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UuiT

Hypergraph rewriting rules

= Left hand side: pattern
= Right hand side: hypergraph
= Semantics - replacmg posmve part by RHS

Rule o
Example o °
rewritings ‘ ‘
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UuiT

Modeling DYMO

= |nitial graph: Empty

= Example rules: New network node and RREQ
generation (simplified)

II\{IleliffNOde <Empty pattern> = il—C)

Rule ® O 2 —e—E
N

GenRREQ o © S It

Network node
[] has seq. num.

Bl RREQ [ > relation
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UuiT

Modeling DYMO

= Followed latest version
* DYMO Internet Draft v10

* /7 rewriting rules
= 38 of these are update rules
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Verifying DYMO

= Starting from undesirable graph patterns
* Representing all bad system configurations
* Negation of loop freedom property
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= Check if reachable from initial state
« Backward reachability analysis
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Backward reachabillity
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Backward reachabillity
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UuiT

Backward reachabillity
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UuiT

Backward reachabillity
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UuiT

Backward reachabillity

= Some special situations o
« Graph segments created by rule
= Not every overlap possible 0

* |[nconsistent patterns .
= Need to be detected and removed
= Except when... 1

* Inconsistency involves segment 2
removed by rule

= |nconsistency resolved, introduces

abstraction : O
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Many patterns generated
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UuiT

Many patterns generated

= Optimizations needed
= Want to safely discard patterns

« Pattern subsumption
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« Simple type checking
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Pattern subsumption

= Patterns are generators for sets of graphs

= For a pattern ¢
* [@] - set of graphs represented by ¢

= For patterns ¢ and y
c o=y Iff [pI C[W] (definition)
= Example
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UuiT

Pattern subsumption

* Discard covered predecessors
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UuiT

Simple type checking
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UuiT

Simple type checking
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Simple type checking
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UuiT

Simple type checking
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Type constraint ‘ io
(disallowed) :
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UuiT

Simple type checking
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UuiT

Graph Backwards Tool (GBT)

= Takes .grm file as input

 Lists .dot files describing:
= initial graph, rewriting rules,
= undesirable patterns, and
= type constraints

= Qutputs “verification successful” or error trace
« Can be spurious (due to over-approximation)

= Tool and examples available for download

e http://www.it.uu.se/research/group/mobility/adhoc/gbt
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Verification results

= Two DYMO versions verified

* Difference:
* Intermediate nodes can reply in v10
= Slight change in update rules
= Machine: 64-bit 2.8 GHz processor, 8 GB available memory

Protocol Actions [Checked |Covered |Left [Loop |Time
free

DYMO v10 |77 295164 [295108 (56 |Yes |4h 31 min

DYMO v05 |50 118685 |118637 |48 |Yes |1h 20 min
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Updated verification results

= New optimizations implemented since paper
* Example
= Patterns often subsumed by immediate predecessor

= Check this early
= Reduces memory footprint, increases speed

Protocol Actions [Checked |Covered |Left [Loop |Time
free

DYMO v10 |77 254620 (254610 (10 (Yes |[1h 59 min

DYMO v05 |50 119506 119496 (10 |Yes |39 min20s
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Related work

= Konig and Kozioura
* Over-approximate graph grammars using Petri nets
* No negative conditions

= Becker et al.

« Graph grammars, verification of mechatronic systems
* Only check given inductive invariant

= Abstract interpretation

* Predicate abstraction

= Need to find/devise relevant predicates
= Abstractions may be too coarse
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Conclusions and Future work

= Verified loop freedom of DYMO automatically
* Optimize model - faster verification?

= A few other example systems
» Working on more case studies

= [mplemented some optimizations

* More can be done
= Early detection of unfruitful mappings

= We can get spurious counterexamples
* CEGAR - ongoing

= Introduce more abstraction, force termination
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