Advanced Process
Calculi

Lecture |:the pi-calculus

Copenhagen, August 201 3

Joachim Parrow

Learning outcomes

After completing the course you will be able to:

® Use modern process calculi to make high-
level models.

® Explain key issues involved in their
construction, abilities, and limitations.

® Use a prototype tool to analyze your
models.

Teachers

¢ Joachim Parrow, professor in
Computing Science, Uppsala University

¢ Jesper Bengtson, professor in
Computer Science, | T-university
Copenhagen

¢ Ramunas Gutkovas, PhD student,
Uppsala University

How it works

® 4 |lectures of 2x45 mins each. Slides will
be available after each lecture.

® 4 afternoons of tutored exercise and lab
sessions.

¢ Examination:individual project. Choose
an application and model it. (Examined in
September by Jesper Bengtson.)

Material

http://www.it.uu.se/research/group/mobility/apc-course-

copenhagen-2013

http://www.it.uu.se/research/group/mobility/apc-course-copenhagen-2013
http://www.it.uu.se/research/group/mobility/apc-course-copenhagen-2013
http://www.it.uu.se/research/group/mobility/apc-course-copenhagen-2013
http://www.it.uu.se/research/group/mobility/apc-course-copenhagen-2013
http://user.it.uu.se/~joachim/APC/Material.html
http://user.it.uu.se/~joachim/APC/Material.html

Advanced Process C&'CU“

Advanced Process C&'CU“

® A calculus: something in which we can
calculate things.

Advanced Process C&'CU“

® A calculus: something in which we can
calculate things.

® (Calculation presupposes a rigorously
defined semantics.

Advanced Process C&'CU“

® A calculus: something in which we can
calculate things.

® (Calculation presupposes a rigorously
defined semantics.

® (Calculation = logically obtained conclusion

Advanced Process C&'CU“

® A calculus: something in which we can
calculate things.

® (Calculation presupposes a rigorously
defined semantics.

® (Calculation = logically obtained conclusion

® Note the plural form.There will be more
than one...

Advanced Process Calculi

Advanced Process Calculi

® [he objects that we calculate with will be
processes.

Advanced Process Calculi

® [he objects that we calculate with will be
processes.

® A process is something that exhibits

behaviour through interactions with the
environment.

Advanced Process Calculi

® [he objects that we calculate with will be
processes.

® A process is something that exhibits
behaviour through interactions with the
environment.

® Defined in an abstract and high-level way.
Could be implemented as software or
hardware.

Advanced Process Calculi

® [he objects that we calculate with will be
processes.

® A process is something that exhibits
behaviour through interactions with the
environment.

® Defined in an abstract and high-level way.
Could be implemented as software or
hardware.

Eg: *"Send data value 5 along the output channel”’

tisdag 20 augusti 13

Advanced Process Calculi

Advanced Process Calculi

® Suggests that there are also basic ones...

Advanced Process Calculi

® Suggests that there are also basic ones...

® No fret! We will start out by recapitulating
the pi-calculus, a very basic one. (pi-calculus experts

in the audience: see you tomorrow!)

tisdag 20 augusti 13

Advanced Process Calculi

® Suggests that there are also basic ones...

® No fret! We will start out by recapitulating
the pi-calculus, a very basic one. (pi-calculus experts

in the audience: see you tomorrow!)

® Advanced = Complicated?! Rich? Powerful?
Recent!

tisdag 20 augusti 13

The pi-calculus

® Developed in 1987-1992 by Robin Milner,
Joachim Parrow and David Walker.

® (Goal: give a minimalistic compositional
computational model encompassing
concurrency with mobility and scoping.

tisdag 20 augusti 13

¢ minimalistic: only include stuff necessary
to capture concurrency, mobility and
scoping

tisdag 20 augusti 13

¢ minimalistic: only include stuff necessary

to capture concurrency, mobility and
scoping

® conhcurrency:asynchronous processes
communicate in binary atomic actions

tisdag 20 augusti 13

¢ minimalistic: only include stuff necessary

to capture concurrency, mobility and
scoping

® conhcurrency:asynchronous processes
communicate in binary atomic actions

¢ mobility: connections between processes
may change during execution

tisdag 20 augusti 13

minimalistic: only include stuff necessary

to capture concurrency, mobility and
scoping

concurrency: asynchronous processes
communicate in binary atomic actions

mobility: connections between processes
may change during execution

scoping: these conections may be local

tisdag 20 augusti 13

minimalistic: only include stuff necessary

to capture concurrency, mobility and
scoping

concurrency: asynchronous processes
communicate in binary atomic actions

mobility: connections between processes
may change during execution

scoping: these conections may be local

Departure: CCS, a process calculus having

all of the above except mobility (Milner,
1979 -)

tisdag 20 augusti 13

Compositionality

"The behaviour of a system is given by the
behaviour of its parts”

Compositionality

"The behaviour of a system is given by the
behaviour of its parts”

B behavesas [l means that

they can replace
each other

Compositionality

"The behaviour of a system is given by the
behaviour of its parts”

B behavesas [l means that

they can replace
each other

Formally:

If the behaviour [[A4]] of a system
A is defined as the transitions
between its states

tisdag 20 augusti 13

Formally:

If the behaviour [[A4]] of a system
A is defined as the transitions
between its states

then the states and transitions
of a system should be
determined by the states and
transitions of its components.

tisdag 20 augusti 13

Formally:

If the behaviour [[A4]] of a system
A is defined as the transitions
between its states

then the states and transitions
of a system should be
determined by the states and
transitions of its components.

tisdag 20 augusti 13

Scoping

When a name is introduced, the valid
places of its use, aka scope, is defined.

"Scope boundary”

\' ----------------- -~
’)
1 1
1 1

]

These A all refer to A : The outer A do not refer
the name intro- A to that name, even though it
duced at ‘ : : is called the same
: A .
A
A

tisdag 20 augusti 13

Scope
boundary

Scoping
“Declaration of local resource”

Local variable

k=1+1;
({int i=10;
while (1>0)
{1-=; k=k+ti;};

_}7/
1f (1=2)

tisdag 20 augusti 13

Scope
boundary

Scoping

"Declaration of local resource”

Local variable

k=1+4+1; a

Local channel

" {int 1=10;
while (1>0)
{1--, k=k+1;};

_}7/
1f (1=2)

not accegsible from outside

tisdag 20 augusti 13

Scope
boundary

Scoping

"Declaration of local resource”

Local variable

k=1+4+1; a

Local channel

{int 1=10;
while (i>0)
{1-=; k=k+ti;};

_}7/
1f (1=2)

tisdag 20 augusti 13

Scoping

Universal law #1:Alpha-conversion

A scoped name can systematically be
replaced by any other name not
already occurring in its scope

k=1+1;

{int 1=10;
while (1>0)
{1--, k=k+1;};

}
1f (1=2)

tisdag 20 augusti 13

Scoping

Universal law #1:Alpha-conversion

A scoped name can systematically be
replaced by any other name not
already occurring in its scope

k=1+1;

{int m=10;
while (m>0)
{m--, k=k+m; };

b i

1f (1=2)

tisdag 20 augusti 13

Scoping

Universal law #1:Alpha-conversion

A scoped name can systematically be
replaced by any other name not
already occurring in its scope

tisdag 20 augusti 13

Scoping

Universal law #2: Scope extension

A scope can be extended (or retracted)
as long as it does not include more (or
fewer) occurrences of the scoped name

k=1+4+1;

{int 1=10;
while (1>0)
{1-=;, k=k+1;};

o
k=k*2;

tisdag 20 augusti 13

Scoping

Universal law #2: Scope extension

A scope can be extended (or retracted)
as long as it does not include more (or
fewer) occurrences of the scoped name

k=1+4+1;

{int 1=10;
while (1>0)
{1-=;, k=k+1;};

k=k*2;
}

tisdag 20 augusti 13

Scoping

Universal law #2: Scope extension

A scope can be extended (or retracted)
as long as it does not include more (or
fewer) occurrences of the scoped name

tisdag 20 augusti 13

Alpha-conversion

Alpha-conversion

Scope extension

Mobility
Data moves from caller to called

int k=6;

k=fac (k) +3; int fac(int 1)
{if (1<2) return 1;
else return i*fac(i-1);

}

Example: call by value

tisdag 20 augusti 13

Mobility
Data moves from caller to called

int k=6;

k=fac (k) +3; int fac(int 6)
{if (6<2) return 1;
else return 6*fac(6-1);

}

Example: call by value

tisdag 20 augusti 13

Mobility

Data moves in a hetwork

—(2
send (R, 127);

receive (P, x);
if (x>0)

tisdag 20 augusti 13

Mobility

Data moves in a hetwork

—(2
send (R, 127);

receive (P, 127);
if (127>0)

tisdag 20 augusti 13

Mobility of Scopes

What happens when a scoped thing
moves out of its boundary!?

Example: call by reference

{int k=3; int foo(ref int 1)
foo(k); if k==4 ...} {if (i<2) i++;}

tisdag 20 augusti 13

Mobility of Scopes

What happens when a scoped thing
moves out of its boundary!?

Example: call by reference

{int k=3; int foo(ref int k)
foo(k); if k==4 ...} {if (k<2) k++;}

Scope of k is increased to old 1!

tisdag 20 augusti 13

Mobility of Scopes

Example: transfer access to local resource

- -
.......
- ~

|IServer

.....

tisdag 20 augusti 13

Mobility of Scopes

Example: transfer access to local resource

g ™ W W E Em mmmom e L I I . -
- o - mewmow

|Server

The scope includes also Client!

tisdag 20 augusti 13

Mobility of Scopes

Universal law #3: Scope Extrusion

When a scoped item is moved,
the scope follows the item

tisdag 20 augusti 13

Mobility of Scopes

Universal law #3: Scope Extrusion

When a scoped item is moved,
the scope follows the item

tisdag 20 augusti 13

Mobility of Scopes

What happens when a thing moves into a
scope!

int foo(ref int 1)
{int k=0;

foo(k): if k==4 ...
oo(k)i 1 if (i<k) i++;3}

tisdag 20 augusti 13

Mobility of Scopes

What happens when a thing moves into a
scope!

int foo(ref int k)
{int k=0;

foo(k); if k==4 ... ,
co(x)i 1 if (k<k) k++;}

tisdag 20 augusti 13

Mobility of Scopes

What happens when a thing moves into a
scope!

int foo(ref int k)
{int m=0;

foo(k); if k==4 ... ,
co(x)i 1 if (k<m) k++;}

The scope is alpha-converted!

tisdag 20 augusti 13

Mobility of Scopes

Universal law #4: Scope Intrusion

When an item is moved inside a scope, that scope is
alpha-converted

tisdag 20 augusti 13

Mobility of Scopes

Universal law #4: Scope Intrusion

When an item is moved inside a scope, that scope is
alpha-converted

tisdag 20 augusti 13

tisdag 20 augusti 13

tisdag 20 augusti 13

tisdag 20 augusti 13

A minimal model

Assume a set of names a,b,...z2

The agents P, (), . . . are of the following forms:

au.P Output, send u along a

a(z).P Input for x along a
Pl P and Q in parallel

(vz)P Restriction: z is local in P

tisdag 20 augusti 13

Example

az.P Output z along a

1 Input something on a,
CL(I) bCCQ then output it on b

tisdag 20 augusti 13

Example

az.P Output z along a

1 Input something on a,
CL(I) bCCQ then output it on b

az. P| a(r).br.Q

Example

az.P
a(x).bz.Q

Output z along a

Input something on a,
then output it on b

"Does not occur in’

bZ . Q Assuming xFE()

Example

az.P Output z along a

1 Input something on a,
CL($) bCCQ then output it on b

"Does not occur in’

P ‘ EZ . Q Assuming xFE()

az. P|a(r).br.Q — P|bz.Q

Rules for Transitions

P—Q |

Means that P can evolve into Q through an

action that is internal to P, possibly an
interaction between components of P.

tisdag 20 augusti 13

Rules for Transitions

P—Q |

Means that P can evolve into Q through an

action that is internal to P, possibly an
interaction between components of P.

What about compositionality? How can we
calculate the transitions of 71U in terms of the

transitions of 7 and U?

tisdag 20 augusti 13

Bad News:

This is clearly impossible:

- — Have the same transitions
au.P bu.P (namely none)

tisdag 20 augusti 13

Bad News:

This is clearly impossible:

au. P ‘ CL(CIZ‘) Q EUP ‘ CL(ZC)Q Have different transitions

| T

Pl

tisdag 20 augusti 13

Labelled Transitions

Solution: Introduce labels on transitions to
signify output and input actions.

p Y pr I Says P can output u along a
and move to state P’
P2y p! I Says P can input u along a
and move to state P’

tisdag 20 augusti 13

Some Rules

au.P %4 PI

a(z).P = Plr := u]

—‘
——
-
-
-

--
-
-
-
-
Py

Substitution: Replace
all x by u, while alpha-
converting any scopes
of u to take care of
scope intrusion

tisdag 20 augusti 13

Some Rules

au.P %4 PI

a(z).P = Plr := u]

—‘
——
-
-
-

--
-
-
-
-
Py

Substitution: Replace Example:

all x by u, while alpha- = au 5
converting any scopes CL(Q’J).bm.Q — bu'Q
of u to take care of Assuming 740

scope intrusion

tisdag 20 augusti 13

Communication rule

PE P, QX (Q
PlQ—P|Q

Example:

az. P| a(x).br.Q— P|bz.Q

Communication rule

PE P, QX (Q
P|Q—P|Q

Example:

az. P| a(x).br.Q— P|bz.Q

Now, what about scope extrusions!?

Blackboard in Robin’s office, April 1987

ax a(y)
ar. P2 p ay).Q ~ Q

ax.P | a(y).Q — P | Q{z/y}

Blackboard in Robin’s office, April 1987

ax a(y)
ar. P2 p ay).Q = Q

ax.P | a(y).Q — P | Q{z/y}

2

Blackboard in Robin’s office, April 1987

ax a(y)
ar. P2 p ay).Q ~ Q

ax.P | a(y).Q — P | Q{z/y}

(ax.P)\x

Blackboard in Robin’s office, April 1987

P p ay).Q™YQ
ar.P|a(y).Q — P | Q{zx/y}

(@r.P)\z "% P

Blackboard in Robin’s office, April 1987

ax a(y)
ar. P2 p ay).Q ~ Q

ax.P | a(y).Q — P | Q{z/y}

a(x)

(@r.P)\z % p
(@x.P)\z | a(y).C

Blackboard in Robin’s office, April 1987

Scope txilrusion!

ax a(y)
ar.P2p ay).Q = Q

ax.P | a(y).Q — P | Q{z/y}

(@r.P)\z "% P

(@z.P)\z | a(y).Q — (P | Q{z/y})\z

2

R}:\Q Rm My ‘v

P \Ij“”ﬁ, lé‘qmjé :{»/w ({2&/&”(‘&3 "y Cowmvmica .
The very first written note . o ,
This v an afedy” & Smplfy M praktn 8] T
. Bas & Nelen ah Folbjtar o medeTre Technint
by Robin on what was to k. . miy K5 G55 e bt i

Wl "3"5 f')wj } ft a ﬁhw launs

become the pi-calculus. s s e S fos o ot

lm"ﬁ erW Wq vaneble — « labe) vanelle — aud no
Connts | (T el be adlded | b e dod st ned fan £
gef oty Moléfa), T-M-e'»; o W yef — ila e add
° ° i H’M«i‘\)m W%W#Md,‘magwf
What do you think Robin did b i { o) e Gy g
° 9 uged ﬁm—hwwr L[,,,L)) -ﬂqm “d ;
in the very first sentence? b Tk b e e
(res in typusove ped = e tnld Ao wld newloe Gdeds Ay
here we nse Dcfij # mesn fmwcﬁz [che! /Km]u #q{‘y y
. Oud x(g) b wtm " Comman T Sowe bded ﬁfyw/éw(r!/

|) Explained the main idea by’ SR L s () o bily e, T e
. . . I Gpstin fw K v 2 lqﬁ-w
x) Explained the motivation L el e

. Toe wll [e T f7s; meﬁa e
2) Gave most of the credit to B oraris, Wil 1o i £ i?‘mﬁ“;t))
ia.gm».j " ﬁ ’fler Syl Tk ety v (atets ye e tyhears
someone else s Gl o,
A4

tisdag 20 augusti 13

R ("l‘w’ i '

This 1 aw afﬁmﬁ’" + Sﬁw:}iz« M presTe fun 5’;/111
1A 4 Nféﬁ& A g{éjﬁaf o made Tre Techuint
MW i Shwies Rt CCS e &Q\a’d‘ﬁ"&&f}m;
T ok fg;gmj Gy } ﬂl ﬁ{bwc lanns o
Oii&w chae. ’fQ Vew) g\m%ig tﬁm«w Tht Coews % MJZ
‘ ’Ln‘,ﬁ erW ‘LWJQ M&”&‘&MW‘L --—d«.a!he |
Conslints (U be added bf~ we dor st ned an 17
gef fmﬁﬁg W:He) TW% ho Hempun el (il e add
Hlusion | we }mﬂmé’lj hive & add fw(tg muﬂ.g’f'
ln T veasim j foeTid 9,?/4*/57 éﬂ}, fmw,:) G
J wed poihe .1:_ neglie ey, x o rfk 0 b
oML Trackin Jines and aliioeed ol —vih « 4T

tisdag 20 augusti 13

C@ R hey '9F

iy %"‘f?”%e?ii%; g&}é‘w&{é %,fg Ww‘ i‘izg a\f {rvwmi mgz;;g'};

ﬁ.m P Gw s:aﬁ%wja + §*m}3h i prese ket é},”[ﬁ
\Aean ojL Nielen andk E*fbjéaf ho made Tre Techwind
MW i Shwwg RS CCS an W adade] 1 [ake! }«ssf
o Jotm v %7 } #JL ﬁé’&wc o< ‘

Thavw hoe Fo vy Snfia” fom Tl ooy £k
.‘&/ 1. !‘P ..V l& jﬁ = ﬂf} : >¢ ...é.frga 1o, A7, e |

"This is an attempt to simplify the presentation of the
ideas of Nielsen and Folkjaar [sic], who made the technical
breakthrough in showing that CCS can be extended to
label-passing without losing any of the algebraic laws”

A o :i %w ~ TTaf] £ me“) fond
ynm M jamw Wf@ < I

tisdag 20 augusti 13

Example

(vz)az.P
a(x).bz.Q

Output a local z along a

Input something on a,
then output it on b

Example

(VZ) az.pP Output a local z along a

1 Input something on a,
Cl(f) bCCQ then output it on b

(vz)az. Pl a(x).bx.Q

Example

(VZ) az.pP Output a local z along a

1. Input something on a,
CL($) bCCQ then output it on b
(vz)

P

S

2. ()
Q)

az. P|a(x).b

Example

(VZ> az.pP Output a local z along a

1 Input something on a,
a(m) be then output it on b

Because of Scope
Extrusion!

(vz)(P bz. Q)

az. P|a(x).bx.Q

Example

(VZ) az.pP Output a local z along a

1 Input something on a,
CL($) bCCQ then output it on b

Because of Scope
Extrusion!

(vz)az. P| a(x).bx.Q — (vz)(Plbz.Q)

Scope Extrusion Rules

Scope Opening

P2 pf
(vz) P 222, p!

a %+ 2

Scope Closing
p W2z pr g 2%

PlQ— (v2)(P'| Q)

2™

Scope Extrusion Rules

Scope Opening

= ; A new kind of action signifying an
P— P output of a scoped 7z along a

PTECS

Scope Closing
p W2z pr g 2%
P|Q— (v2)(P'| Q)

2™

tisdag 20 augusti 13

Scope Extrusion Rules

Scope Opening

P2 pf
(vz) P 2W2Z, p!

a % z

A new kind of action signifying an
output of a scoped 7 along a

Note that the scope has

Scope Closing

disappeared from the agent.
Instead it sits on the transition
label.

p A2z pr g o5 o

PlQ— (v2)(P'| Q)

2™

tisdag 20 augusti 13

Scope Extrusion Rules

Scope Opening

P2 pf
(vz) P 222, p!

a %+ 2

Scope Closing
p 2w2z pr g 2%

PlQ— (v2)(P'| Q)

2™

The scope reappears in
the agent.

Scope Extrusion Example

(vz)az. P| a(x).br.Q — (vz)(Plbz.Q)

Scope Extrusion Example

az. P az P .
au.P 5 P’

(vz)az. P| a(x).br.Q — (vz)(Plbz.Q)

Scope Extrusion Example

az.P X p P@;P’

T R Y

Scope Extrusion Example

az.P L& p o
_ a(z).P — P'lx := u
Q(Z)ZP () []
o

(v2)a=. PYa(x).be.Q— (v2)(P[b=.Q)

Scope Extrusion Example

©I= P;(l/z)z PE(Z)ZP Q%Q/
vz)az.P)"5 P =w2)(
(@) 523

2 b2.0Q

(v2)a=. PYa(x).be.Q— (v2)(P[b=.Q)

All the rules

au.P 2% p a(z). P = Plz := u
P&P’ au au
; bn(a)#Q L — P, @—Q
P|lQ—P|Q PlQ-P|Q
a(vz)z / az /
P > P, Q — Q)
n —— #Q
PlQ— (vz)(P | Q)
P P’ P P
(ko a + 2

(vu)P — (vu) P’ (vz)P avz)z, pr

tisdag 20 augusti 13

The first pi-calculus
semantics (May '87)!

'S Cle: e adm

i
/

FRLE ACTION

F-ACT: xtjp —33->P

CiLeNT ACT N

T$er: T.P =P

4,

(@a% mohd M hre ﬂfqmmé’:@ #\w\}

BoUND ACToN

B-ACT .’X@P 5—@ P{z/ﬁ
-z ¢ Fv(xup)

Sum

s

a

./

SU"’*‘- P] S— P} : { :

Z‘,P» =3 Pj .

CompPolrTioN
i'cm*: ’P, bt P,/
RIR 2 P/,
P, 7/

pIP <P,
FCom P,ﬂ-»P,’ ?1 339?1}
P! 'F?- ""19 P:: ,PL/

3
(oM !

g

EESRICTIN
/

p =P ()té‘a
P\x = P)

F 23

s
B<om: ﬂ:;gff_ (5 ¢FV(PL))
Pl ’P‘L i‘_’_; ?p/lpz.
o P 4P P 28p/
AL AL
RR-oM; P, _’EC”QP" 4 'i@’?;/

P[P, s (B 1P/Ny

PP ey,
P\y 2BPr zérvp\y

B-ReS

40

tisdag 20 augusti 13

The first pi-calculus
semantics (May '87)!

'S Cle: t’,}idaffm

FREE ACTION

F-ACT: 3(:43? —3—(3->P

CiLeNT ACT N

T$er: T.P =P

4,
(@akd mohd N here aS‘qmme@ 7(0\1'.1}

BoUND ACToN

B-ACT .’X@P 5—@ P{z/ﬁ
-z ¢ Fv(xup)

No

Som_
SUM*‘» Pj — Pj'/ l (t .

.~ |linput / output
CompPorTioN

i > / 5 x(wp/

<on _......._R — P’/_ B-(OM*: P! JP’» (5 ¢FV(PL))
P25)P, PIn =29/,

7-—(0M*: P, = P,/ FB—(OM%" P = P’/ Pl _,‘@Pz/
N2 AL AR

Fon s PSR P, 267 YR 1} i@’?’:

P! 'F?- —=> Pa: ’PL/

g

EESRICTIN
/

p =P ()té‘a
P\x = P)

F 23

P[P, s (B 1P/Ny

e

P — i (x*ﬂ >
P\y 2BPr zérvp\y
40

tisdag 20 augusti 13

The first pi-calculus
semantics (May '87)!

'S Cule: !,f;kacfm

FREE ACTION

F-ACT: xle -159?

CiLeNT ACT N

4,

(@aké mokd N hewe aiqmme:@ #\TAB

/

BoUND ACToN

B-ACT .'X@P 5—@ P{Z/ﬁ

-z ¢ Fv(xup)

. e . ; N
L i ton ew We hag ‘“«’{\u}ﬂ'{ tWe brid s E/’,{ ya ku-ﬁ'/t' (57&"~<""~_:7 .
’ i J
. i .
PN N) el I o / A - , > ;
xiuy, |~ O s v Lhv. d o wiihk /‘hgsf Oy i f,,w,\ 4 :A’{
- i

Js 0 b v J
Co) fie calaln 5673' C/ez?nff ad met Ccavpuad Wd{) Lt (4“)

p_rzé H xd:g)‘/kem x(y).P ~(x3-79)\g

Sum

ot

a

i Y,
Sum -

N

’Pj —— PQ : (4

ComPo’rTioN
’—»Cm‘k: P, :-3 P,/
P[5 2% PP
P, P/

PIp, = P,
Fam + P,EBD P 24P/
P! ’F’L ""'t'a Pa‘: ,PL/

pv
(oM !

g

EESRICTIN
/

p =P ()té‘a
P\x = P)

F 23

No
input / output;

A Surprise

Up to now we have included the two kinds
variable binding, x(y).P and P\y. Can we

%
B-toMm :

¥
FR~oM" .

B-ReS

. P, 249/

p x(p’
o ERGi Fv(,
Rl&l‘@%’}&(w ())
P X8p’

ARSI

p, 29,/
AN ALY

p 24 p/

e (3(Yy
P;\jj 2B P

2¢ ;V(P\ﬁ)

do with just one kind? If so, the calculus gets
cleaner and more “canonical”’. Well, we can!

Prop If x # y, then z(y).P ~ (zy.P)\y

40

tisdag 20 augusti 13

The first pi-calculus
semantics (May '87)!

p,\\ .
16 '}qi\‘é"‘t‘:%é
e ————————
4V’ {) ‘ -+ i] o
L3 Lohew we hae Inchded Tae Buids ff,f vl by
7 | J o)
i) S : oy e o y s o5
5" fkf,’.: L{IQCIM (@"*m makd ¥ hore a Sy el AM} x{uY, I” aws Y\ v, Chr e ol whh ,'{Mf e bvd 7 u};’{

= CO) fe calatun 567; Clecner and mot cavnved . W(({) Lot czm)
FLLE 1 T

nds

ets

P,}P;.Sg»?,’};’t PR SR Rl Prop If x # y, then x2(y).P ~ (zy.P)\y
FCom P,%P’, ?12’?1} RR-oM P; _’ﬁ@ﬁ’ Pz_ '3‘45‘2’?,,/
— RENCIYY
B fo::j\x 43 | B ———-——P«AP e,
P\y ZBPfst zervp\y
R - ' : £ 40

tisdag 20 augusti 13

Turned out to have:

- Wrong basic constructors
- Wrong definition of bisimulation
- No sensible algebraic laws

tisdag 20 augusti 13

Turned out to have:
- Wrong basic constructors

- Wrong definition of bisimulation
- No sensible algebraic laws

ﬁRevision |

tisdag 20 augusti 13

Turned out to have:

- Wrong basic constructors
- Wrong definition of bisimulation
- No sensible algebraic laws

Revision

Establish
properties

tisdag 20 augusti 13

Turned out to have:

- Wrong basic constructors
- Wrong definition of bisimulation
- No sensible algebraic laws

Revision

Establish
properties

tisdag 20 augusti 13

—T
S _Preas Deialls . PEap)P igm PEIAY, xpuerta),
b ;) 3 Thiy taie 3 inpesible Lare) ineokes A {ap), QMG'/ L’)’ch{‘)(P."A)‘Q‘>
rep £ (ele = (Pig) “~fFuq) FECOM , oy pop. A By FRces, P{g e p'IQ'$w/2} By RES,
(D(ea) Ty (H{r[ohvia}). By AY, ¥ed or
Lot 'R"?(i'l?m.,, (MPIRYY . X¥FPvie)]) v Iy y p.'_'.r'J Ahverfan), ()P -‘-‘—.{v)?' Q-‘—‘!!’Q', SEPviE). 1Y wez, Lhem bLhe derivabicnn #
P1Q T (IG5 an3. By Foien, (NPIQ mnd (O(PIG) cre idesbical , =ay iF
Wo powr B & guaisehiCuatotn, ip M. PR S Pla'sess By Res, (s)(ria) T NABVIR) lhey S s isave Fble
(.)(wq"&q‘}‘\,, Sivie e, ether way By 1 ‘ 7
Birgqries). MPig e ® Targ e N pasdivee wif Fvia') [lemee Av). s eidaer isie, line 9 ?s'.".v (')’%ri""}a &warls), FEMUNP),
S B Tyx, BAFVIGEMNE). Thes, Ar regeiies Q% (PIQ e P'i20piund Q) Ber
Frow P-Lo B, wrs, ans Ocon (Fa'sryy R (PN, $N5, Keatoudity...prop— A3, piare. P wsd .Q
Fion PR €5, ans Bcom € provias
e n’:,i'al‘; S y PEL ' wguaetat, (3PS
fiow P-Sob!, fei, QANQ «u Focem /

/

R u-.'l.-w‘koy Jive Qcileony .
. ’ ' A '
B QAL , (Mrla e ((p')Svii Gl 0 Q£ 2', 3rlaFe(r]Q, Then by
£ Fiom P2 0, 2es Q720" ans E3cOM / TNRgeom , Plg e B'ivs3lal. By Res, e
6 Frowm PU%E', Re:. 240" an 28coM / gt Fianyla’) . Make xgR) &y A4,
* Pismy P Ly f"‘ OFPEN, s Biem

; 10

q

5.0), Sé¥variy). By Otem,
ria L rle
avenelen L('}f')’u,;la R (‘l(f.‘&"v'W]
Faonm pL.r'__ orev, QENg' ay BEee /"‘

o by #Rs, teafplay L
FRoM

La (o) (015")
Nein <9ruie) 8, A, e o Tegeies,
COF R oeilrie)
g L e &l
Py, oeen, &-Ffen' ams ru ‘Ib (P" I 1 QYT Q, zeee(p), (IF1a 4T MG
10, Foam A des' ®as Dcom / ~ [LO(U(v]{”O? By AL ler dews B AFver) v be3, QWC':’:},_}
I Fro QWAQG Wy BeoM / 1" qa') By Bcen, PIRE plagays) . Oy ke,
/’ O e ® (oeei) =20 (el a§aad) o T 3emvied),
l. P-L.p" xduvarle) (.)p_"-o(‘;r" (=)flay Of pI
By Dcem, Pla Lo MUR. By RES (3 (M ~
As vegenes, OFQ R D(P). /

(PIQ)i} » P10 30m) ® (PlaF2A3)

\ W legeind | Lovie YRR AN
QI—' Ca] S APV (Q32YrE) ny AY s 2P
3 PP quar(un), WP gt [ﬁl" : b] : l[Jessictsntiincy
(ORI e (NI, gy Beom way {" S[Ve /
PIQS, Fiq. By RES and nyyf e S
(o) (Pra) S5 (D (P1QY. As teyey SC Ve]9
Sxq

7).
Qircian 2. (I{PIRY=T0 R The pusibiclios we |] GOS : Of ‘ e

- 1Y -
([]

By orev, (..)P‘-‘—“’op'fw.} Sar Sewme
Sresh W, 81 1o ﬁil Q&Q.i"h}. By
~ IO f BBcom, C(IP1Q—5 (o) (Paind |Q'fun3) .
J ""-. P*!. r" Dtom ELT] QE} 6 PE‘OP' O / S;.\“ R‘ FVCQ)' Ciner)(37 or ‘éf\,Ca'}'
2. Frem Qi”Q', beem mes RES (S(rla) ~Zo Lo / Iy eiiner cese, {ﬂ.,‘(?'iu,}]q"sqv}‘) =
: Frao= ?:‘}P", Bcom aqy Kp5 € Srmn . €4 P /_/ (x)(r'lQ’f‘NJ"/‘\}) = (& $rean) (%) (F'IQ'Q'/Y})
&—hrea—Q S Ree R By wéPvea) faltony (lom= / — (2"-) (=) (2 0'5'/ 3) whish 3 idenlicat
S K Pl 2R, Pecen_sas . KE3 Thes by RES, (8P M P / TR P T i PR
b Fom CENF, QD0 Am _ww kS (3 P1Q £+ (u) (13 M Ie) | G'fury}) ' fren '
1 Frow P&.F} Q‘_!." Fgcem «ad RES lonea 2 o) Ly ‘e) St
v ~ .) 1’ (VMxI(FIT') =g O ' ax - el Ty
£ Fom F"::P‘. Q‘il‘.a', Fhton was RES (W) (Phwiy | G BaAD), A taguioed (by q, P ==+ p $ Pig =»p]QI (x)(Pi Q) —i(? IQ_{WIA},
a2 Fram P-—:P , bism sns OPEN .66 2) s P iaiy | Q'Sakl ® (')(P',‘M_;XQ.!(AJ) Q‘Fv((.)(ﬁgbl x pvar (T . 01 orEN, (\)P—‘SP'.
(2. Fiewn Q8%0' boum o OPEV Vit EPUCEEA)) by AY s wox By Bcom an) xf Fuce), (9E[Q &), Pla
A ; Az reqeirnd, [Plafundixip =z PR 3icce
' 4 sl I % \ . . .
1. phar, ra s plg, (o) (Ha)~Ee (3 (PR), - PRy g3 sleSepiegle el ") uﬁ}{:v(l—}'iq) ’
.,“.(D'L B.'. Re, (aypLe (o, by o't;”l) 0Py S t(P'sen3lal), &, A, far '
corleLafie . A epen, GPIRR 3A1A). e Soosh ', PSB FSVAY. By Res = : TR
(a8 gﬂ‘c_?r‘;,-,,;_ Eute bah S, AR "8 Q= , Me=srir’, W(PlR)—>(PIQ)fwnl.
2 G_"G'- PlO-—'cPlQ‘ ‘."(“Q)lﬂ.){”a'); ad v‘F'ﬂll,\- r-m(n'l)- ‘17 FocemM BY leanay F"'f'3 “nd "":ucq)f (e 3
Mevalr), By Ocem, CUPIQ e ()FIQ R (A (orIR T (OPIAISIVEIG . S 2o impussibie fhed Qs @'
as ‘e Ny (nebe wgFucael by A") (L, Q-—‘—.Oa' and qct‘urq;) JRPTY IRV Py
At L e SN o () PivividendlQ' = Fnil Q' R Thizs concludes dilreciien 2 ané ithe
3 PEL , YéPela), an—!LP“, v hvar (aiyyl, (‘)("QP/v}IQ'J‘; oy refured (et SEPoe') by AY)L d ” IS O
(n} (P16) 5% cojcPlay. Dy LT:Y)P (P, v 4 Ptoos etally ot Frap.
By Brom , risie y gPuca), CAPJQ 29) MLg g pALM afig pla -Ee MQEey)
R eie) =3 e Guored GY(MA) ¢ (.)Lpia't,‘;v)_ &, QENQ and
') ' wfFolQ) w P ovaria). T .
1. Qﬁh’." G quﬂ. P19, Ko (), 1 >...:' ‘r'«...‘ ...i&:(:l:‘ b, RES aas
tisdag 20 augusti 13

Two years later...

Date: 12 Apr 89 15:13:18 BST

From: RM@ED.ECSVAX (Robin Milner)

Subject: How about this for a title and abstract?
To: jgp@ed.LFCS (N%"jgp@]Ifcs")

Message-Id: <"12-APR-1989 15:13:18">
Status: RO

Mobile processes (or the pi-calculus)

Robin Milner, Joachim Parrow, David Walker

Process calculi such as TCSP, ACP, CCS have not, on the whole, allowed for
shifting contiguity among agents (though they allow them to bifurcate and to
die). The purpose of this talk is to present a very basic calculus

in which shifting contiguity, modelled by the use of names to communicate

tisdag 20 augusti 13

Robin’s reply to my question “why pi’’?

[thought "process”, or "pointer”, or "parallel”, but I also thought it

a usable name -- if not too arrogant, and signifying that it aspires
to primitivity like the lambda-calculus. You could also think of it
as a near successor to the lambda calculus. Consider:

et

tisdag 20 augusti 13

Robin’s reply to my question “why pi’’?

[thought "process”, or "pointer”, or "parallel”, but I also thought it
a usable name -- if not too arrogant, and signifying that it aspires
to primitivity like the lambda-calculus. You could also think of it
as a near successor to the lambda calculus. Consider:

mu-calculus ... this significantly exists

et

tisdag 20 augusti 13

Robin’s reply to my question “why pi’’?

[thought "process”, or "pointer”, or "parallel”, but I also thought it
a usable name -- if not too arrogant, and signifying that it aspires
to primitivity like the lambda-calculus. You could also think of it
as a near successor to the lambda calculus. Consider:

mu-calculus ... this significantly exists
nu-calculus ... I thought we might have used this name,

(nu standing for "name"), but mu and nu
sound so alike.

et

tisdag 20 augusti 13

Robin’s reply to my question “why pi’’?

[thought "process”, or "pointer”, or "parallel”, but I also thought it
a usable name -- if not too arrogant, and signifying that it aspires
to primitivity like the lambda-calculus. You could also think of it
as a near successor to the lambda calculus. Consider:

mu-calculus ... this significantly exists
nu-calculus ... I thought we might have used this name,

(nu standing for "name"), but mu and nu

sound so alike.
omicron calculus ... who would want that?

et

tisdag 20 augusti 13

Robin’s reply to my question “why pi’’?

[thought "process”, or "pointer”, or "parallel”, but I also thought it
a usable name -- if not too arrogant, and signifying that it aspires
to primitivity like the lambda-calculus. You could also think of it
as a near successor to the lambda calculus. Consider:
mu-calculus ... this significantly exists
nu-calculus ... I thought we might have used this name,
(nu standing for "name"), but mu and nu
sound so alike.
omicron calculus ... who would want that?

which leads to
PI-CALCULUS
.. I putitin parentheses to try it out ..

et

tisdag 20 augusti 13

Exercise

® R represents a resource that can be
started by communicating along a

trigger port e.

® S represents a server controlling (ie
handing out access to) the resource.

® (represents a client requesting the
resource. There may be many clients.

® How ensure that the only clients who
can start R are those who have been
granted access by $?

tisdag 20 augusti 13

Exercise

R represents a resource that can be

started by communicating alonga R —¢. R’
trigger port e. S = (ve)(ae
C' = a(t)

S represents a server controlling (ie
handing out access to) the resource.

C represents a client requesting the
resource. There may be many clients.

How ensure that the only clients who
can start R are those who have been
granted access by $?

tisdag 20 augusti 13

Exercise

® [’ represent an agent enacting
a function. It receives some F=f(x)....Tv.0
value along a certain link and
produces (a link to) some
result:

® Acaller C calls F and waits ¢ = 7y . r(z)....
for the result. There may be
several callers.

® How make sure that that

only the C who called F will
receive the result of its call?

tisdag 20 augusti 13

Exercise

® [’ represent an agent enacting
a function. It receives some F=f(x)....T7v.0
value along a certain link and _
5 , F=f(x).g(r)....Tv.
produces (a link to) some
result:

® Acaller C calls F and waits ¢ = 7y . r(z)....
for the result. There may be

C = fu.(vr)gr.r(z).0
several callers. fu.(vr)gr.r(z)

® How make sure that that

only the C who called F will
receive the result of its call?

tisdag 20 augusti 13

Exercise

® [’ represent an agent enacting
a function. It receives some F=f(x)....T7v.0
value along a certain link and _
5 , F=f(x).g(r)....Tv.
produces (a link to) some
result:

® Acaller C calls F and waits ¢ = 7y . r(z)....
for the result. There may be

C = fu.(vr)gr.r(z).0
several callers. fu.(vr)gr.r(z)

® How make sure that that But do we really know
. that f gets both x and r
only the C who called F will from the same C ?

receive the result of its call?

tisdag 20 augusti 13

Exercise

® A world with one server S and several
clients C.

® § sends two names to any client who will
listen. But both names must end up with
the same client!

S:Enl.ang.o

C=a(x).aly). ...
s|Cc|C---|C

tisdag 20 augusti 13

Exercise

® A world with one server S and several
clients C.

® § sends two names to any client who will
listen. But both names must end up with
the same client!

S = (vp)(ap.pni .pnso.0)

C'=a(q)-q(z).q(y). ...
S|c|C---|C

tisdag 20 augusti 13

Additional operators

Sum: P + O means an agent behaving as
either P or (), resolved at the first action.

P -Zs p

P+ ==

Same kind of choice as in a
nondeterministic automaton: just says that
both branches are possible and nothing
about how the choice is resolved.

tisdag 20 augusti 13

Additional operators

match, mismatch:

'z = y|P means an agent behaving as P if x and y
are the same name, ow do nothing.

'z # y|P means an agent behaving as P if x and y
are not the same name, ow do nothing

P -2 P PP, z+y

= z]P =5 P (x # y|P = P

Additional operators

match, mismatch:

'z = y|P means an agent behaving as P if x and y
are the same name, ow do nothing.

'z # y|P means an agent behaving as P if x and y
are not the same name, ow do nothing

P =P P> P, x#y

= z]P =5 P (x # y|P = P

[©|P means “if ¢ then P” J

tisdag 20 augusti 13

Exercise

An agent receives a hame along a. If the
received name is u then it is forwarded
along b. Otherwise it is forwarded along c.

tisdag 20 augusti 13

Exercise

An agent receives a hame along a. If the
received name is u then it is forwarded
along b. Otherwise it is forwarded along c.

a(z) . ([x = ulbx.0 + [x # ulex . 0)

Additional operators

replication and recursion

means an agent behaving as an unlimited
number of copies of P

P
means that the agent identifier A
represents whatever P is. Note that A
can occur in P, leading to recursion.

A<« P

P|\P— P A<=P, PP

P %5 P A= P

tisdag 20 augusti 13

Exercise

Do the following agents behave the
same, or else how are they different?

A<=a(x).bx. A

la(x).bx .0

Exercise

Do the following agents behave the
same, or else how are they different?

A<=a(x).bx. A A bu. A

la(x).bx .0

tisdag 20 augusti 13

Exercise

Do the following agents behave the
same, or else how are they different?

A<=a(x).bx. A A bu. A

P|!'P —E
la(x).bx .0 p %y p/

tisdag 20 augusti 13

Exercise

Do the following agents behave the
same, or else how are they different?

A<=a(x).bx. A A bu. A
P|!'P —E
la(x) . bx . 0 p % p/

a(z).bx.0 == bu.0
a(z).bx.0|!la(z).bx.0 =5 bu.0 | la(z).bx.0

tisdag 20 augusti 13

Exercise

Do the following agents behave the
same, or else how are they different?

A<=a(x).bx. A A bu. A
P|!'P —E
la(x) . bx . 0 p %y p/

a(z).bx.0 == bu.0
a(z).bx.0|!la(z).bx.0 =5 bu.0 | la(z).bx.0

la(z) . bz .0 == bu .0 | la(z) . bx .0

tisdag 20 augusti 13

Exercise

® [’ represent an agent enacting
a function. It receives some
value along a certain link and
produces (a link to) some
result:

F

|
~~
N\
&
N——"
Q
7~ N\
=
N—"
S|
-

® A caller C calls F' and wait
for the result. There may be
several callers.

® How make sure that that C = fu.(vr)gr.r(z).0

only the C who called F will
receive the result of its call?

tisdag 20 augusti 13

Exercise

Can we make the function F
.))
callable several times! F=f(z).q(r)....70.

Can we make it reentrant!

C = fu.(vr)gr.r(z).0

tisdag 20 augusti 13

Exercise

Can we make the function F
:)
callable several times! F=fx).9(r)....T0.0

Can we make it reentrant! F<=f(z).g(r)....Tv. F

C = fu.(vr)gr.r(z).0

tisdag 20 augusti 13

Exercise

Can we make the function F
callable several times!? F=f(z).9(r)....70.0

Can we make it reentrant! F<=f(z).g(r)....Tv. F

C = fu.(vr)gr.r(z).0

This disregards that F' might
receive x and r from different C.

tisdag 20 augusti 13

Exercise

Can we make the function F
callable several times!? F=f(z).9(r)....70.0

Can we make it reentrant! F<=f(z).g(r)....Tv. F

F=If(x).g(r)....Tv.0

C = fu.(vr)gr.r(z).0

This disregards that F' might
receive x and r from different C.

tisdag 20 augusti 13

Bisimulation

When do two agents “behave the same™!

Bisimulation

When do two agents “behave the same™!

a.0 a.0+a.0

tisdag 20 augusti 13

Bisimulation

When do two agents “behave the same™!

a.0 a.0+a.0
P P+ P

tisdag 20 augusti 13

Bisimulation

When do two agents “behave the same™!

a.0 a.0+a.0

P P+ P
a.3.0+08.a.0 a.0|p3.0

tisdag 20 augusti 13

Bisimulation

When do two agents “behave the same™!

a.0 a.04+a.0
P P+ P
a.3.0+08.a.0 a.0|p3.0

P P | P

tisdag 20 augusti 13

Bisimulation

When do two agents “behave the same™!

a.0 a.0+a.0
P P+ P

a.3.0+08.a.0 a.0|p3.0
P \P | P

(P]Q) (PlQ)IQ

Bisimulation

When do two agents “behave the same™!

«.0 a.0+a.0
P P+ P
a.3.0+08.a.0 a.0|p3.0
P \P | P
(P Q) (P|Q)|Q

(P1Q)|R P1(Q|R)

Bisimulation

We seek an equivalence relation on agents such that

® Equivalent agents cannot possibly be
distinguished in any intuitive way by
following transitions

® |t is compositional

tisdag 20 augusti 13

Bisimulation

First idea: P and Q are equivalent
if they have the same actions.

a.0 a.0+a.0

tisdag 20 augusti 13

Bisimulation

First idea: P and Q are equivalent
if they have the same actions.

a.0 a.0+a.0

Not so good, consider
B.a.0 B.(ax.0+ «.0)

Bisimulation

a.0 a.0+a.0

Not so good, consider
B.a.0 B.(ax.0+ «.0)

Bisimulation

Refined idea: P and Q are
equivalent if they have the same
actions, leading to equivalent agents.

Bisimulation

Refined idea: P and Q are
equivalent if they have the same
actions, leading to equivalent agents.

Not so good, this definition is circular!

tisdag 20 augusti 13

Bisimulation

Not so good, this definition is circular!

Bisimulation

Not so good, this definition is circular!

Can we use induction?

tisdag 20 augusti 13

Bisimulation

Inductive definition? Does this work?

P is equivalent to Q if for all a such that P — P’

it holds that Q@ — Q' and P’ is equivalent to Q’
and vice versa

tisdag 20 augusti 13

Bisimulation

Inductive definition? Does this work?

P is equivalent to Q if for all a such that P — P’

it holds that Q@ — Q' and P’ is equivalent to Q’
and vice versa

We also need bn(a)#Q

tisdag 20 augusti 13

Bisimulation

Inductive definition? Does this work?

P is equivalent to Q if for all a such that P — P’

it holds that Q@ — Q' and P’ is equivalent to Q’
and vice versa

We also need bn(a)#Q

But — is not well founded!

tisdag 20 augusti 13

Bisimulation

Inductive definition? Does this work?

We also need bn(a)#Q

But — is not well founded!

Bisimulation

Correct definition is coinductive (due to Park 1981)

We seek the largest equivalence relation satisfying

P is equivalent to @) implies that Vo.bn(a)#Q and P — P’

it holds that Q — Q' and P’ is equivalent to Q’
and vice versa

A relation ~ satisfying this property is called
a bisimulation

tisdag 20 augusti 13

Bisimulation

A relation satisfying this property is not necessarily
an equivalence (for example the empty relation is a
bisimulation) so a better formulation is

The binary relation R is a bistmulation if, tor all P,):
P R @ implies that for all @ such that bn(a)#Q and P — P’

it holds that Q — Q' and P’ RQ’

and vice versa

tisdag 20 augusti 13

The binary relation R is a bistmulation if, tor all P, Q):
P R @ implies that for all o such that bn(a)#Q and P — P’

it holds that Q — Q' and P' RQ’

and vice versa

Three equivalent definitions:

P ~ () if there exists a bisimulation relating P and ()

~ 1s the union of all bisimulations

~ is the largest bisimulation

~ is called bisimilarity

tisdag 20 augusti 13

tisdag 20 augusti 13

Examples

a.0 a.0+a.0
P P+ P

(P1Q)I R P|(Q[R)

Examples

a.0 a.0+a.0 {(.0,00.0+ .0),(0,0)}

P P+ P

(P1Q)I R P|(Q[R)

Examples

a.0 a.0+a.0 {(.0,00.0+ .0),(0,0)}
P P+ P {(P,P+P)}Uld

(P1Q)I R P|(Q[R)

Examples

a.0 a.0+a.0 {(.0,00.0+ .0),(0,0)}
P P+ P {(P,P+P)}Uld

(P|Q)|R P|(Q|R) Surprisingly complicated:

W(var)---(va,) (P | Q) | R), ((va) --- (va,)(P [(Q [R))---}

Compositionality

If P~ (then

o

e PIR~Q|R

R~ Q

o !P ~I(Q)

® [x:y]Pf@[aj‘
o (v #y|P ~ |z # y|lQ

R

o au.P ~au.P

Compositionality

Does P ~ @) imply a(x).P ~ a(x).Q?

Compositionality

Does P ~ @) imply a(x).P ~ a(x).Q?
No!

Compositionality

Does P ~ @) imply a(x).P ~ a(x).Q?
No!

P =0, Q= r=yla.0

Compositionality

Does P ~ @) imply a(x).P ~ a(x).Q?
No!

P =0, Q= r=yla.0

Neither has any transition so they are bisimilar.
But

a(z).Q ~L [y =yla.0 =50

Compositionality
The input prefix a(x) means that x can

be substituted by something received

S0, for compositionality we also require that
agents are bisimilar under substitutions.

P ~ Q if for all #,7 it holds that P[Z :=] ~ Q[:=]

tisdag 20 augusti 13

Compositionality
~ is a congruence and satisfies several useful laws

There are several versions of bisimilarity. The one
presented here is called strong early bisimilarity.

There are also several alternative ways to present the
semantics.

tisdag 20 augusti 13

The End for now

® Read in "An introduction to the pi-
calculus™

® Work on the review questions. Tackle those
you think you can manage and interest you.

® See you after lunch!

tisdag 20 augusti 13

