Advanced Process Calculi

Lecture 3: bisimulation in psi-calculi

Copenhagen, August 2013
Joachim Parrow

Psi-calculi

\mathbf{T}	(Data) Terms	M, N
\mathbf{A}	Assertions	Ψ, Ψ^{\prime}
\mathbf{C}	Conditions	$\varphi, \varphi^{\prime}$

Channel Object Pattern Test (aka guard)

$$
\begin{array}{ll}
M N . P & \text { Output } \\
M(\lambda \widetilde{x}) N \cdot P & \text { Input } \\
\text { case } \varphi_{1}: P_{1} \square \cdots \square \varphi_{n}: P_{n} & \text { Case } \\
(\nu a) P & \text { Restriction } \\
P \mid Q & \text { Parallel } \\
!P & \text { Replication } \\
(\mid \Psi \|) & \text { Assertion } \\
\hline
\end{array}
$$

Instance parameters

$X[\widetilde{x}:=\widetilde{T}]$
Equivariance:
Freshness:
Alpha-equivalence:
$p \cdot(X[\tilde{x}:=\tilde{T}])=(p \cdot X)[(p \cdot \tilde{x}):=(p \cdot \tilde{T})]$
if $\tilde{x} \subseteq \mathrm{n}(X)$ and $a \# X[\tilde{x}:=\tilde{T}]$ then $a \# \tilde{T}$
if $p \subseteq \tilde{x} \times(p \cdot \tilde{x})$ and $(p \cdot \tilde{x}) \# X$ then $X[\tilde{x}:=\tilde{T}]=(p \cdot X)[(p \cdot \tilde{x}):=\tilde{T}]$
$\stackrel{\leftrightarrow}{\leftrightarrow}: \mathbf{T} \times \mathbf{T} \rightarrow \mathbf{C}$
$\otimes: \mathbf{A} \times \mathbf{A} \rightarrow \mathbf{A}$
1 : A
$\vdash \subseteq \mathbf{A} \times \mathbf{C}$

Channel Symmetry: $\quad \Psi \vdash M \dot{\leftrightarrow} N \Longrightarrow \Psi \vdash N \dot{\leftrightarrow} M$
Channel Transitivity: $\quad \Psi \vdash M \dot{\leftrightarrow} N \wedge \Psi \vdash N \dot{\leftrightarrow} L$ $\Longrightarrow \Psi \vdash M \dot{\hookrightarrow} L$

Composition:
Identity:
Associativity:
Commutativity:
$\Psi \simeq \Psi^{\prime} \Longrightarrow \Psi \otimes \Psi^{\prime \prime} \simeq \Psi^{\prime} \otimes \Psi^{\prime \prime}$ $\Psi \otimes \mathbf{1} \simeq \Psi$
$\left(\Psi \otimes \Psi^{\prime}\right) \otimes \Psi^{\prime \prime} \simeq \Psi \otimes\left(\Psi^{\prime} \otimes \Psi^{\prime \prime}\right)$
$\Psi \otimes \Psi^{\prime} \simeq \Psi^{\prime} \otimes \Psi$

All the rules

$$
\begin{aligned}
& \text { In } \frac{\Psi \vdash M \dot{\leftrightarrow} K}{\Psi \triangleright \underline{M}(\lambda \widetilde{y}) N . P \xrightarrow{\underline{K} N[\tilde{y}:=\widetilde{L}]} P[\widetilde{y}:=\widetilde{L}]} \quad \text { Out } \frac{\Psi \vdash M \dot{\leftrightarrow} K}{\Psi \triangleright \bar{M} N . P \xrightarrow{\bar{K} N} P} \quad \text { Case } \frac{\Psi \triangleright P_{i} \xrightarrow{\alpha} P^{\prime} \quad \Psi \vdash \varphi_{i}}{\Psi \triangleright \operatorname{case} \widetilde{\varphi}: \widetilde{P} \xrightarrow{\alpha} P^{\prime}} \\
& \operatorname{Com} \frac{\Psi_{Q} \otimes \Psi \triangleright P \xrightarrow{\bar{M}(\nu \widetilde{a}) N} P^{\prime} \quad \Psi_{P} \otimes \Psi \triangleright Q \stackrel{\underline{K} N}{\longrightarrow} Q^{\prime} \quad \Psi \otimes \Psi_{P} \otimes \Psi_{Q} \vdash M \dot{\leftrightarrow} K}{} \widetilde{a} \# Q \\
& \operatorname{PAR} \frac{\Psi_{Q} \otimes \Psi \triangleright P \xrightarrow{\alpha} P^{\prime}}{\Psi \triangleright P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q} \operatorname{bn}(\alpha) \# Q \\
& \text { SCOPE } \frac{\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}}{\Psi \triangleright(\nu b) P \xrightarrow{\alpha}(\nu b) P^{\prime}} b \# \alpha, \Psi \\
& \text { OPEN } \frac{\Psi \triangleright P \xrightarrow{\bar{M}(\nu \widetilde{a}) N} P^{\prime}}{\Psi \triangleright(\nu b) P \xrightarrow{\bar{M}(\nu \widetilde{a} \cup\{b\}) N} P^{\prime}} \quad \begin{array}{c}
b \# \widetilde{a}, \Psi, M \\
b \in \mathrm{n}(N)
\end{array} \\
& \operatorname{ReP} \frac{\Psi \triangleright P \mid!P \xrightarrow{\alpha} P^{\prime}}{\Psi \triangleright!P \xrightarrow{\alpha} P^{\prime}}
\end{aligned}
$$

+ freshness conditions in Par and Com
 + symmetric variants

Correctness

How can we prove beyond doubt that we have made no mistake similar to applied pi and CC-pi?

Correctness

How can we prove beyond doubt that we have made no mistake similar to applied pi and CC-pi?
I.e., prove that if P and Q have the same transitions then so do $P \mid R$ and $Q \mid R$?

Correctness

How can we prove beyond doubt that we have made no mistake similar to applied pi and CC-pi?
I.e., prove that if P and Q have the same transitions then so do $P \mid R$ and $Q \mid R$?
...and that it satisfies the scoping laws, eg scope extension, that $(\nu a) P \mid Q$ and $(\nu a)(P \mid Q)$ have the same transitions if $a \# Q$

Strategy

Define an intuitive equivalence from the semantics

Prove that it is a congruence
Prove that it is satisfies universal
laws like scope extension
ie exactly the same strategy as in the pi-calculus

Different instances may have different laws!

Different instances may have different laws!

Different instances may have different laws!

if φ then $\tau . P$
if φ then τ. if φ then P
only has a transition in an environment Ψ such that $\Psi \vdash \varphi$

Different instances may have different laws!

if φ then $\tau . P$
if φ then τ. if φ then P
only has a transition in an environment Ψ such that $\Psi \vdash \varphi$
lead to P if φ then.P

Different instances may have different laws!

if φ then $\tau . P$
if φ then τ. if φ then P
only has a transition in an environment Ψ such that $\Psi \vdash \varphi$
lead to P if φ then.P
The environment used to satisfy φ
Will it always do this?
Can it change to make φ false?

The environment is any agent, and this can evolve!

$$
\begin{aligned}
& \text { Eg: } \quad Q=(\Psi \mid) \mid \tau \cdot\left(\Psi^{\prime}\right) \\
& \mathcal{F}(Q)=\Psi
\end{aligned}
$$

The environment is any agent, and this can evolve!
Eg: $\quad Q=(\Psi \mid) \mid \tau .\left(\mid \Psi^{\prime}\right)$
$\mathcal{F}(Q)=\Psi$
Q can evolve to Q^{\prime} with $\mathcal{F}\left(Q^{\prime}\right)=\Psi \otimes \Psi^{\prime}$

The environment is any agent, and this can evolve!
Eg: $\quad Q=(\Psi \Psi) \mid \tau .\left(\mid \Psi^{\prime}\right)$
$\mathcal{F}(Q)=\Psi$
Q can evolve to Q^{\prime} with $\mathcal{F}\left(Q^{\prime}\right)=\Psi \otimes \Psi^{\prime}$
$Q \mid$ if φ then $\tau . P \quad Q \mid$ if φ then τ.if φ then P

The environment is any agent, and this can evolve!
Eg: $\quad Q=(\Psi \Psi) \mid \tau .\left(\mid \Psi^{\prime}\right)$
$\mathcal{F}(Q)=\Psi$
Q can evolve to Q^{\prime} with $\mathcal{F}\left(Q^{\prime}\right)=\Psi \otimes \Psi^{\prime}$
$Q \mid$ if φ then $\tau . P \quad Q \mid$ if φ then τ. if φ then P
$(\mid \Psi)\left|\left(\mid \Psi^{\prime}\right)\right| P \quad\left(\Psi\left|\left|\left(\Psi^{\prime}\right)\right|\right.\right.$ if φ then P
$(\Psi \Psi)\left|\left(\Psi^{\prime}\right)\right| P$
$(\Psi)\left|\left(\Psi^{\prime}\right)\right|$ if φ then P

$$
(\Psi \mid)\left|\left(\mid \Psi^{\prime}\right)\right| P \quad(\mid \Psi)\left|\left(\Psi^{\prime}\right)\right| \text { if } \varphi \text { then } P
$$

Do these behave similarly? We know that $\Psi \vdash \varphi$

$$
(|\Psi|)\left|\left(\mid \Psi^{\prime}\right)\right| P \quad(\mid \Psi)\left|\left(\mid \Psi^{\prime}\right)\right| \text { if } \varphi \text { then } P
$$

Do these behave similarly? We know that $\Psi \vdash \varphi$
Do we then also know that $\Psi \otimes \Psi^{\prime} \vdash \varphi$?
If so the agents behave the same

$$
(\Psi \mid)\left|\left(\mid \Psi^{\prime}\right)\right| P \quad(\mid \Psi)\left|\left(\mid \Psi^{\prime}\right)\right| \text { if } \varphi \text { then } P
$$

Do these behave similarly? We know that $\Psi \vdash \varphi$
Do we then also know that $\Psi \otimes \Psi^{\prime} \vdash \varphi$?
If so the agents behave the same
If not they are different since only the left can act as P

$$
(\Psi \mid)\left|\left(\mid \Psi^{\prime}\right)\right| P \quad(\mid \Psi)\left|\left(\Psi^{\prime}\right)\right| \text { if } \varphi \text { then } P
$$

Do these behave similarly? We know that $\Psi \vdash \varphi$
Do we then also know that $\Psi \otimes \Psi^{\prime} \vdash \varphi$?
If so the agents behave the same
If not they are different since only the left can act as P
The crucial question is if the psi-calculus satisfies

$$
\Psi \vdash \varphi \Rightarrow \Psi \otimes \Psi^{\prime} \vdash \varphi \quad \text { monotonicity }
$$

The only thing we know for sure about any psi-calculus:

$X[\widetilde{x}:=\widetilde{T}]$
Equivariance:
Freshness:
Alpha-equivalence:
$p \cdot(X[\tilde{x}:=\tilde{T}])=(p \cdot X)[(p \cdot \tilde{x}):=(p \cdot \tilde{T})]$
if $\tilde{x} \subseteq \mathrm{n}(X)$ and $a \# X[\tilde{x}:=\tilde{T}]$ then $a \# \tilde{T}$
if $p \subseteq \tilde{x} \times(p \cdot \tilde{x})$ and $(p \cdot \tilde{x}) \# X$ then $X[\tilde{x}:=\tilde{T}]=(p \cdot X)[(p \cdot \tilde{x}):=\tilde{T}]$
$\stackrel{\leftrightarrow}{\leftrightarrow}: \mathbf{T} \times \mathbf{T} \rightarrow \mathbf{C}$
$\otimes: \mathbf{A} \times \mathbf{A} \rightarrow \mathbf{A}$
1 : A
$\vdash \subseteq \mathbf{A} \times \mathbf{C}$

Channel Symmetry: $\quad \Psi \vdash M \dot{\leftrightarrow} N \Longrightarrow \Psi \vdash N \dot{\leftrightarrow} M$
Channel Transitivity: $\quad \Psi \vdash M \dot{\leftrightarrow} N \wedge \Psi \vdash N \dot{\leftrightarrow} L$ $\Longrightarrow \Psi \vdash M \dot{\leftrightarrow} L$

Composition:
Identity:
Associativity:
Commutativity:
$\Psi \simeq \Psi^{\prime} \Longrightarrow \Psi \otimes \Psi^{\prime \prime} \simeq \Psi^{\prime} \otimes \Psi^{\prime \prime}$ $\Psi \otimes \mathbf{1} \simeq \Psi$
$\left(\Psi \otimes \Psi^{\prime}\right) \otimes \Psi^{\prime \prime} \simeq \Psi \otimes\left(\Psi^{\prime} \otimes \Psi^{\prime \prime}\right)$
$\Psi \otimes \Psi^{\prime} \simeq \Psi^{\prime} \otimes \Psi$

It turns out this does not imply monotonicity!
So there are psi-calculi where this does not hold

It turns out this does not imply monotonicity!
So there are psi-calculi where this does not hold

Good: this means we can have psi-calculi describing concurrent constraints with retracts!

It turns out this does not imply monotonicity!
So there are psi-calculi where this does not hold

Good: this means we can have psi-calculi describing concurrent constraints with retracts!

Bad: this means that some natural looking laws are not valid in these calculi

if φ then $\tau . P \quad \stackrel{?}{\sim} \quad$ if φ then τ. if φ then P

This law is only valid if assertion composition is monotonic

if φ then $\tau . P \quad \stackrel{?}{\sim} \quad$ if φ then τ. if φ then P

This law is only valid if assertion composition is monotonic

In fact this is expected: if the environment can evolve to retract facts the law should not be valid!

Universal laws

Universal laws are those valid in all psi-calculi We should at least expect something like

$$
\begin{aligned}
P & \sim P \mid \mathbf{0} & & \\
P \mid(Q \mid R) & \sim(P \mid Q) \mid R & & \\
P \mid Q & \sim Q \mid P & & \\
(\nu a) \mathbf{0} & \sim \mathbf{0} & & \\
P \mid(\nu a) Q & \sim(\nu a)(P \mid Q) & & \text { if } a \# P \\
\bar{M} N .(\nu a) P & \sim(\nu a) \bar{M} N . P & & \text { if } a \# M, N \\
\underline{M}(\lambda \widetilde{x}) N .(\nu a) P & \sim(\nu a) \underline{M}(\lambda \widetilde{x})(N) . P & & \text { if } a \# M, N \\
\text { case } \widetilde{\varphi}: \widetilde{(\nu a) P} & \sim(\nu a) \operatorname{case} \widetilde{\varphi}: \widetilde{P} & & \text { if } a \# \widetilde{\varphi} \\
(\nu a)(\nu b) P & \sim(\nu b)(\nu a) P & & \\
!P & \sim P \mid!P & &
\end{aligned}
$$

Universal laws

Universal laws are those valid in all psi-calculi If any of thee fail something is wrong with our definitions!

$$
\begin{aligned}
P & \sim P \mid \mathbf{0} & & \\
P \mid(Q \mid R) & \sim(P \mid Q) \mid R & & \\
P \mid Q & \sim Q \mid P & & \\
(\nu a) \mathbf{0} & \sim \mathbf{0} & & \\
P \mid(\nu a) Q & \sim(\nu a)(P \mid Q) & & \text { if } a \# P \\
\bar{M} N .(\nu a) P & \sim(\nu a) \bar{M} N . P & & \text { if } a \# M, N \\
\underline{M}(\lambda \widetilde{x}) N .(\nu a) P & \sim(\nu a) \underline{M}(\lambda \widetilde{x})(N) . P & & \text { if } a \# M, N \\
\text { case } \widetilde{\varphi}:(\nu a) P & \sim(\nu a) \text { case } \widetilde{\varphi}: \widetilde{P} & & \text { if } a \# \widetilde{\varphi} \\
(\nu a)(\nu b) P & \sim(\nu b)(\nu a) P & & \\
!P & \sim P \mid!P & &
\end{aligned}
$$

Universal laws

We also want compositionality
le the equivalence is a congruence

Bisimulation

First attempt, can we as in the pi-calculus define bisimulation only in terms of transitions?

The binary relation R is a bisimulation if

1. R is symmetric
2. $P R Q$ implies that $\forall \alpha \cdot \operatorname{bn}(\alpha) \# Q$. $P \xrightarrow{\alpha} P^{\prime}$ implies $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} R Q^{\prime}$

The binary relation R is a bisimulation if

1. R is symmetric
2. $P R Q$ implies that $\forall \alpha \cdot \operatorname{bn}(\alpha) \# Q$. $P \xrightarrow{\alpha} P^{\prime}$ implies $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} R Q^{\prime}$

The binary relation R is a bisimulation if

1. R is symmetric
2. $P R Q$ implies that $\forall \alpha \cdot \operatorname{bn}(\alpha) \# Q$.

$$
P \xrightarrow{\alpha} P^{\prime} \text { implies } Q \xrightarrow{\alpha} Q^{\prime} \text { and } P^{\prime} R Q^{\prime}
$$

Bad News:

This is clearly inadequate since also the frames of P and Q must be related

The binary relation R is a bisimulation if

1. R is symmetric
2. $P R Q$ implies that $\forall \alpha \cdot \operatorname{bn}(\alpha) \# Q$.

$$
P \xrightarrow{\alpha} P^{\prime} \text { implies } Q \xrightarrow{\alpha} Q^{\prime} \text { and } P^{\prime} R Q^{\prime}
$$

Bad News:

This is clearly inadequate since also the frames of P and Q must be related

This would equate all agents of form (Ψ) since these have no transitions!

Bad News:

This is clearly inadequate since also the frames of P and Q must be related

This would equate all agents of form (Ψ) since these have no transitions!

Remedy(?) Also take account of the frames

The binary relation R is a bisimulation if

1. R is symmetric
2. $P R Q$ implies that $\forall \alpha \cdot \operatorname{bn}(\alpha) \# Q$. $P \xrightarrow{\alpha} P^{\prime}$ implies $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} R Q^{\prime}$
3. $\mathcal{F}(P) \simeq \mathcal{F}(Q)$

Remedy(?) Also take account of the frames

The binary relation R is a bisimulation if

1. R is symmetric
2. $P R Q$ implies that $\forall \alpha \cdot \operatorname{bn}(\alpha) \# Q$. $P \xrightarrow{\alpha} P^{\prime}$ implies $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} R Q^{\prime}$
3. $\mathcal{F}(P) \simeq \mathcal{F}(Q)$
"Can be alpha-converted to each other"
$F \vdash$ means $\begin{aligned} & F:=\begin{array}{l}\because \vdots \\ \\ \\ \\ \widetilde{b} \# \varphi\end{array}(\nu \widetilde{b}) \Psi \\ & \end{aligned}$
$\Psi \vdash \varphi$

The binary relation R is a bisimulation if

1. R is symmetric
2. $P R Q$ implies that $\forall \alpha \cdot \operatorname{bn}(\alpha) \# Q$. $P \xrightarrow{\alpha} P^{\prime}$ implies $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} R Q^{\prime}$
3. $\mathcal{F}(P) \simeq \mathcal{F}(Q)$

The binary relation R is a bisimulation if

1. R is symmetric
2. $P R Q$ implies that $\forall \alpha \cdot \operatorname{bn}(\alpha) \# Q$. $P \xrightarrow{\alpha} P^{\prime}$ implies $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} R Q^{\prime}$

$$
\text { 3. } \mathcal{F}(P) \simeq \mathcal{F}(Q)
$$

Bad News:

This is not even well formed.
Transitions depend on environment.
Must require this for all possible environments?

Bad News:

This is not even well formed.
Transitions depend on environment.
Must require this for all possible environments?

The binary relation R is a bisimulation if

1. R is symmetric
2. $P R Q$ implies that $\forall \alpha, \Psi \cdot \operatorname{bn}(\alpha) \# Q, \Psi$.
$\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}$ implies $\Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} R Q^{\prime}$
3. $\mathcal{F}(P) \simeq \mathcal{F}(Q)$

The binary relation R is a bisimulation if

1. R is symmetric
2. $P R Q$ implies that $\forall \alpha, \Psi \cdot \operatorname{bn}(\alpha) \# Q, \Psi$. $\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}$ implies $\Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} R Q^{\prime}$
3. $\mathcal{F}(P) \simeq \mathcal{F}(Q)$

Actually this is a bit too strong: requires derivatives to bisimulate for all environments even though some may not be reachable!

The binary relation R is a bisimulation if

1. R is symmetric
2. $P R Q$ implies that $\forall \alpha, \Psi \cdot \operatorname{bn}(\alpha) \# Q, \Psi$. $\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}$ implies $\Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} R Q^{\prime}$
3. $\mathcal{F}(P) \simeq \mathcal{F}(Q)$

Actually this is a bit too strong: requires derivatives to bisimulate for all environments even though some may not be reachable!
if φ then $\tau . P \quad \underset{\sim}{\sim}$ if φ then τ. if φ then P

The binary relation R is a bisimulation if

1. R is symmetric
2. $P R Q$ implies that $\forall \alpha, \Psi \cdot \operatorname{bn}(\alpha) \# Q, \Psi$. $\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}$ implies $\Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} R Q^{\prime}$
3. $\mathcal{F}(P) \simeq \mathcal{F}(Q)$

Actually this is a bit too strong: requires derivatives to bisimulate for all environments even though some may not be reachable!
if φ then $\tau . P \quad \stackrel{?}{\sim} \quad$ if φ then τ. if φ then P
This will not hold in any psi-calculus Not even in monotonic ones!

Better: A bisimulation is a ternary relation, relating an assertion and two agents.
$R(\Psi, P, Q)$ means that P and Q are bisimilar if the environment of both is Ψ

Better: A bisimulation is a ternary relation, relating an assertion and two agents.
$R(\Psi, P, Q)$ means that P and Q are bisimilar if the environment of both is Ψ
R is a bisimulation if $R(\Psi, P, Q)$ implies

1. $R(\Psi, Q, P)$
2. $\forall \alpha . b n(\alpha) \# Q, \Psi$. $\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}$ implies $\Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime}$ and $R\left(\Psi, P^{\prime}, Q^{\prime}\right)$
3. $\Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)$

Better: A bisimulation is a ternary relation, relating an assertion and two agents.
$R(\Psi, P, Q)$ means that P and Q are bisimilar if the environment of both is Ψ
R is a bisimulation if $R(\Psi, P, Q)$ implies

1. $R(\Psi, Q, P)$
2. $\forall \alpha \cdot \mathrm{bn}(\alpha) \# Q, \Psi$. $\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}$ implies $\Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime}$ and $R\left(\Psi, P^{\prime}, Q^{\prime}\right)$
3. $\Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)$
$P \dot{\sim} Q$ if for some bisimulation R it holds $\forall \Psi . R(\Psi, P, Q)$
R is a bisimulation if $R(\Psi, P, Q)$ implies
4. $R(\Psi, Q, P)$
5. $\forall \alpha \cdot \operatorname{bn}(\alpha) \# Q, \Psi$.
$\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}$ implies $\Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime}$ and $R\left(\Psi, P^{\prime}, Q^{\prime}\right)$
6. $\Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)$
R is a bisimulation if $R(\Psi, P, Q)$ implies
7. $R(\Psi, Q, P)$
8. $\forall \alpha \cdot \operatorname{bn}(\alpha) \# Q, \Psi$.

$$
\Psi \triangleright P \xrightarrow{\alpha} P^{\prime} \text { implies } \Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime} \text { and } R\left(\Psi, P^{\prime}, Q^{\prime}\right)
$$

3. $\Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)$

We are almost there, but not quite!
This definition will not satisfy compositionality!

$$
\begin{aligned}
& P=\beta . \beta . \mathbf{0}+\beta . \mathbf{0}+\beta . \text { if } \varphi \text { then } \beta . \mathbf{0} \\
& Q=\beta \cdot \beta . \mathbf{0}+\beta . \mathbf{0} \\
& T=\tau .(\Psi \Psi) \\
& \Psi \vdash \varphi
\end{aligned}
$$

$$
\begin{aligned}
& P=\beta . \beta . \mathbf{0}+\beta . \mathbf{0}+\beta . \text { if } \varphi \text { then } \beta . \mathbf{0} \\
& Q=\beta . \beta . \mathbf{0}+\beta . \mathbf{0} \\
& T=\tau .(|\Psi|) \\
& \begin{array}{ll}
\\
\Psi=\varphi & \text { is a bisimulation if } R(\Psi, P, Q) \text { implies } \\
& \text { 1. } R(\Psi, Q, P) \\
& \text { 2. } \forall \alpha . \operatorname{bn}(\alpha) \# Q, \Psi . \\
& \Psi \triangleright P \xrightarrow{\alpha} P^{\prime} \text { implies } \Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime} \text { and } R\left(\Psi, P^{\prime}, Q^{\prime}\right) \\
& \text { 3. } \Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& P=\beta . \beta .0+\beta .0+\beta . \text { if } \varphi \text { then } \beta .0 \\
& Q=\beta . \beta . \mathbf{0}+\beta .0 \\
& T=\tau .(|\Psi|) \\
& \Psi \vdash \varphi \\
& R \text { is a bisimulation if } R(\Psi, P, Q) \text { implies } \\
& \text { 1. } R(\Psi, Q, P) \\
& \text { 2. } \forall \alpha \cdot \operatorname{bn}(\alpha) \# Q, \Psi \text {. } \\
& \Psi \triangleright P \xrightarrow{\alpha} P^{\prime} \text { implies } \Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime} \text { and } R\left(\Psi, P^{\prime}, Q^{\prime}\right) \\
& \text { 3. } \Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q) \\
& R=\{\quad(\Psi, P, Q), \quad(\mathbf{1}, P, Q), \\
& (\Psi, \beta . \mathbf{0}, \beta . \mathbf{0}), \quad(\mathbf{1}, \beta . \mathbf{0}, \beta . \mathbf{0}), \\
& (\Psi, \mathbf{0}, \mathbf{0}), \quad(\mathbf{1}, \mathbf{0}, \mathbf{0}), \\
& (\Psi, \text { if } \varphi \text { then } \beta .0, \beta .0) \text {, } \\
& (1, \text { if } \varphi \text { then } \beta .0,0)\}
\end{aligned}
$$

$$
\begin{aligned}
& P=\beta . \beta .0+\beta .0+\beta . \text { if } \varphi \text { then } \beta .0 \\
& Q=\beta . \beta .0+\beta .0 \\
& T=\tau .(\Psi) \\
& \Psi \vdash \varphi \\
& R \text { is a bisimulation if } R(\Psi, P, Q) \text { implies } \\
& \text { 1. } R(\Psi, Q, P) \\
& \text { 2. } \forall \alpha \cdot \operatorname{bn}(\alpha) \# Q, \Psi \text {. } \\
& \Psi \triangleright P \xrightarrow{\alpha} P^{\prime} \text { implies } \Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime} \text { and } R\left(\Psi, P^{\prime}, Q^{\prime}\right) \\
& \text { 3. } \Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q) \\
& R=\{\quad(\Psi, P, Q), \quad(\mathbf{1}, P, Q), \\
& (\Psi, \beta . \mathbf{0}, \beta . \mathbf{0}), \quad(\mathbf{1}, \beta . \mathbf{0}, \beta . \mathbf{0}), \\
& (\Psi, \mathbf{0}, \mathbf{0}), \quad(\mathbf{1}, \mathbf{0}, \mathbf{0}) \text {, } \\
& (\Psi, \text { if } \varphi \text { then } \beta .0, \beta .0) \text {, } \\
& (1, \text { if } \varphi \text { then } \beta .0,0)\}
\end{aligned}
$$

Proves $P \sim Q$

$$
\begin{aligned}
& P=\beta . \beta . \mathbf{0}+\beta . \mathbf{0}+\beta . \text { if } \varphi \text { then } \beta . \mathbf{0} \\
& Q=\beta . \beta . \mathbf{0}+\beta . \mathbf{0} \\
& T=\tau .(|\Psi|) \\
& \Psi \vdash \varphi
\end{aligned}
$$

$$
\begin{aligned}
& P=\beta . \beta . \mathbf{0}+\beta . \mathbf{0}+\beta . \text { if } \varphi \text { then } \beta . \mathbf{0} \\
& Q=\beta . \beta . \mathbf{0}+\beta . \mathbf{0} \\
& T=\tau .(|\Psi|) \\
& \Psi \vdash \varphi
\end{aligned}
$$

$1 \triangleright T|P \xrightarrow{\beta} T|$ if φ then $\beta .0 \xrightarrow{\tau}(|\Psi|) \mid$ if φ then $\beta .0$

$$
\begin{aligned}
& P=\beta . \beta . \mathbf{0}+\beta . \mathbf{0}+\beta . \text { if } \varphi \text { then } \beta . \mathbf{0} \\
& Q=\beta . \beta . \mathbf{0}+\beta . \mathbf{0} \\
& T=\tau .(|\Psi|) \\
& \Psi \vdash \varphi
\end{aligned}
$$

$1 \triangleright T|P \xrightarrow{\beta} T|$ if φ then $\beta .0 \xrightarrow{\tau}(|\Psi|) \mid$ if φ then $\beta .0$ $1 \triangleright T|Q \xrightarrow{\beta} T| ? ?$

$$
\begin{aligned}
& P=\beta . \beta . \mathbf{0}+\beta . \mathbf{0}+\beta . \text { if } \varphi \text { then } \beta . \mathbf{0} \\
& Q=\beta . \beta . \mathbf{0}+\beta . \mathbf{0} \\
& T=\tau .(|\Psi|) \\
& \Psi \vdash \varphi
\end{aligned}
$$

$1 \triangleright T|P \xrightarrow{\beta} T|$ if φ then $\beta .0 \xrightarrow{\tau}(|\Psi|) \mid$ if φ then $\beta .0$
$1 \triangleright T|Q \xrightarrow{\beta} T| ? ?$

$$
\mathbf{1} \triangleright T|Q \xrightarrow{\beta} T| \beta . \mathbf{0}
$$

$$
\begin{aligned}
& P=\beta . \beta . \mathbf{0}+\beta . \mathbf{0}+\beta . \text { if } \varphi \text { then } \beta .0 \\
& Q=\beta \cdot \beta . \mathbf{0}+\beta . \mathbf{0} \\
& T=\tau .(|\Psi|) \\
& \Psi \vdash \varphi
\end{aligned}
$$

$1 \triangleright T|P \xrightarrow{\beta} T|$ if φ then $\beta .0 \xrightarrow{\tau}(|\Psi|) \mid$ if φ then $\beta .0$ $1 \triangleright T|Q \xrightarrow{\beta} T| ? ?$

$$
\mathbf{1} \triangleright T|Q \xrightarrow{\beta} T| \beta . \mathbf{0}
$$

$$
\begin{aligned}
& P=\beta . \beta . \mathbf{0}+\beta . \mathbf{0}+\beta . \text { if } \varphi \text { then } \beta . \mathbf{0} \\
& Q=\beta . \beta . \mathbf{0}+\beta . \mathbf{0} \\
& T=\tau .(|\Psi|) \\
& \Psi \vdash \varphi
\end{aligned}
$$

$1 \triangleright T|P \xrightarrow{\beta} T|$ if φ then $\beta .0 \xrightarrow{\tau}(|\Psi|) \mid$ if φ then $\beta .0$ $1 \triangleright T|Q \xrightarrow{\beta} T| ? ?$
$\mathbf{1} \triangleright T|Q \xrightarrow{\beta} T| \beta . \mathbf{0}$
No, since $T \mid$ if φ then $\beta . \mathbf{0}$ has no action β

$$
\begin{aligned}
& P=\beta . \beta . \mathbf{0}+\beta . \mathbf{0}+\beta . \text { if } \varphi \text { then } \beta . \mathbf{0} \\
& Q=\beta . \beta . \mathbf{0}+\beta . \mathbf{0} \\
& T=\tau .(|\Psi|) \\
& \Psi \vdash \varphi
\end{aligned}
$$

$1 \triangleright T|P \xrightarrow{\beta} T|$ if φ then $\beta .0 \xrightarrow{\tau}(|\Psi|) \mid$ if φ then $\beta .0$ $1 \triangleright T|Q \xrightarrow{\beta} T| ? ?$
$\mathbf{1} \triangleright T|Q \xrightarrow{\beta} T| \beta . \mathbf{0}$
No, since $T \mid$ if φ then $\beta . \mathbf{0}$ has no action β
$\mathbf{1} \triangleright T|Q \xrightarrow{\beta} T| \mathbf{0}$

$$
\begin{aligned}
& P=\beta . \beta . \mathbf{0}+\beta . \mathbf{0}+\beta . \text { if } \varphi \text { then } \beta . \mathbf{0} \\
& Q=\beta . \beta . \mathbf{0}+\beta . \mathbf{0} \\
& T=\tau .(|\Psi|) \\
& \Psi \vdash \varphi
\end{aligned}
$$

$1 \triangleright T|P \xrightarrow{\beta} T|$ if φ then $\beta .0 \xrightarrow{\tau}(|\Psi|) \mid$ if φ then $\beta .0$ $1 \triangleright T|Q \xrightarrow{\beta} T| ? ?$
$\mathbf{1} \triangleright T|Q \xrightarrow{\beta} T| \beta . \mathbf{0}$
No, since $T \mid$ if φ then $\beta . \mathbf{0}$ has no action β
$\mathbf{1} \triangleright T|Q \xrightarrow{\beta} T| \mathbf{0}$
No, since $T \mid \mathbf{0}$ has no action β

$$
\begin{aligned}
& P=\beta . \beta . \mathbf{0}+\beta . \mathbf{0}+\beta . \text { if } \varphi \text { then } \beta . \mathbf{0} \\
& Q=\beta . \beta . \mathbf{0}+\beta . \mathbf{0} \\
& T=\tau .(|\Psi|) \\
& \Psi \vdash \varphi
\end{aligned}
$$

$1 \triangleright T|P \xrightarrow{\beta} T|$ if φ then $\beta .0 \xrightarrow{\tau}(|\Psi|) \mid$ if φ then $\beta .0$ $1 \triangleright T|Q \xrightarrow{\beta} T| ? ?$
$\mathbf{1} \triangleright T|Q \xrightarrow{\beta} T| \beta . \mathbf{0}$
No, since $T \mid$ if φ then $\beta . \mathbf{0}$ has no action β
$\mathbf{1} \triangleright T|Q \xrightarrow{\beta} T| \mathbf{0}$
No, since $T \mid \mathbf{0}$ has no action β
Ergo, $P \dot{\sim} Q$ but not $P|T \dot{\sim} Q| T$

Bisimulation graphically

In the environment Ψ, P and Q behave similarly. If P^{\prime} changes to P^{\prime} then Q can mimic this to Q^{\prime}

Bisimulation graphically

In the environment Ψ, P and Q behave similarly. If P^{\prime} changes to P^{\prime} then Q can mimic this to Q^{\prime}

Bisimulation graphically

In the environment Ψ, P and Q behave similarly. If P^{\prime} changes to P^{\prime} then Q can mimic this to Q^{\prime}

Bisimulation graphically

In the environment Ψ, P and Q behave similarly. If P^{\prime} changes to P^{\prime} then Q can mimic this to Q^{\prime} If the environment changes they should still be bisimilar!

Q^{\prime}

Bisimulation graphically

In the environment Ψ, P and Q behave similarly. If P^{\prime} changes to P^{\prime} then Q can mimic this to Q^{\prime} If the environment changes they should still be bisimilar!

Q^{\prime}

Bisimulation graphically

In the environment Ψ, P and Q behave similarly. If P^{\prime} changes to P^{\prime} then Q can mimic this to Q^{\prime} If the environment changes they should still be bisimilar!

P^{\prime}
Q^{\prime}
The only way an agent in the environmnent can change the environmental assertion is to add more assertions to it!

Bisimulation graphically

In the environment Ψ, P and Q behave similarly. If P^{\prime} changes to P^{\prime} then Q can mimic this to Q^{\prime} If the environment changes they should still be bisimilar!

P^{\prime}
Q^{\prime}
The only way an agent in the environmnent can change the environmental assertion is to add more assertions to it!
R is a bisimulation if $R(\Psi, P, Q)$ implies

1. $R(\Psi, Q, P)$
2. $\forall \alpha \cdot \operatorname{bn}(\alpha) \# Q, \Psi$.
$\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}$ implies $\Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime}$ and $R\left(\Psi, P^{\prime}, Q^{\prime}\right)$
3. $\Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)$
R is a bisimulation if $R(\Psi, P, Q)$ implies
4. $R(\Psi, Q, P)$
5. $\forall \alpha \cdot \operatorname{bn}(\alpha) \# Q, \Psi$.
$\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}$ implies $\Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime}$ and $R\left(\Psi, P^{\prime}, Q^{\prime}\right)$
6. $\Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)$
7. $\forall \Psi^{\prime} . R\left(\Psi \otimes \Psi^{\prime}, P, Q\right)$
R is a bisimulation if $R(\Psi, P, Q)$ implies
8. $R(\Psi, Q, P)$
9. $\forall \alpha \cdot \operatorname{bn}(\alpha) \# Q, \Psi$.
$\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}$ implies $\Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime}$ and $R\left(\Psi, P^{\prime}, Q^{\prime}\right)$
10. $\Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)$
11. $\forall \Psi^{\prime} . R\left(\Psi \otimes \Psi^{\prime}, P, Q\right)$
R is a bisimulation if $R(\Psi, P, Q)$ implies
12. $R(\Psi, Q, P)$
13. $\forall \alpha \cdot \operatorname{bn}(\alpha) \# Q, \Psi$.
$\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}$ implies $\Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime}$ and $R\left(\Psi, P^{\prime}, Q^{\prime}\right)$
14. $\Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)$
15. $\forall \Psi^{\prime} . R\left(\Psi \otimes \Psi^{\prime}, P, Q\right)$
$\dot{\sim}$ is the largest bisimulation.
$P \sim Q$ If for all sequences of substitutions $\sigma, P \sigma \dot{\sim} Q \sigma$

Alternative definition

A binary relation R is a context bisimulation if $R(P, Q)$ implies

1. $R(Q, P)$
2. $\forall \alpha \cdot \operatorname{bn}(\alpha) \# Q$
$1 \triangleright P \xrightarrow{\alpha} P^{\prime}$ implies $1 \triangleright Q \xrightarrow{\alpha} Q^{\prime}$ and $R\left(P^{\prime}, Q^{\prime}\right)$
3. $\mathcal{F}(P) \simeq \mathcal{F}(Q)$
4. $\forall \Psi . R((|\Psi|)|P,(|\Psi|)| Q)$

Comparison

$$
\mathcal{R}(P, Q)
$$

$\mathcal{R}(\Psi, P, Q)$

Comparison

$\mathcal{R}(P, Q)$

$\begin{aligned} P \xrightarrow{\alpha} P^{\prime} \Longrightarrow & Q \xrightarrow{\alpha} Q^{\prime} \\ & \wedge \mathcal{R}\left(P^{\prime}, Q^{\prime}\right)\end{aligned}$
$\Psi \triangleright P \xrightarrow{\alpha} P^{\prime} \Longrightarrow \quad Q \xrightarrow{\alpha} Q^{\prime}$
$\wedge \mathcal{R}\left(\Psi, P^{\prime}, Q^{\prime}\right)$

Comparison

$\mathcal{R}(P, Q)$
$\begin{aligned} P \xrightarrow{\alpha} P^{\prime} \Longrightarrow & Q \stackrel{\alpha}{\rightarrow} Q^{\prime} \\ & \wedge \mathcal{R}\left(P^{\prime}, Q^{\prime}\right)\end{aligned}$
$\mathcal{F}(P) \simeq \mathcal{F}(Q)$
$\mathcal{R}(\Psi, P, Q)$
$\Psi \triangleright P \xrightarrow{\alpha} P^{\prime} \Longrightarrow \quad Q \xrightarrow{\alpha} Q^{\prime}$
$\wedge \mathcal{R}\left(\Psi, P^{\prime}, Q^{\prime}\right)$
$\Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)$

Comparison

$\mathcal{R}(P, Q)$
$\begin{aligned} P \xrightarrow{\alpha} P^{\prime} \Longrightarrow & Q \stackrel{\alpha}{\rightarrow} Q^{\prime} \\ & \wedge \mathcal{R}\left(P^{\prime}, Q^{\prime}\right)\end{aligned}$
$\mathcal{F}(P) \simeq \mathcal{F}(Q)$
$\forall \Psi . \mathcal{R}(|\Psi||P,(\Psi \mid)| Q)$
$\mathcal{R}(\Psi, P, Q)$
$\Psi \triangleright P \xrightarrow{\alpha} P^{\prime} \Longrightarrow \quad Q \xrightarrow{\alpha} Q^{\prime}$
$\wedge \mathcal{R}\left(\Psi, P^{\prime}, Q^{\prime}\right)$
$\Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)$
$\forall \Psi^{\prime} . \mathcal{R}\left(\Psi^{\prime} \otimes \Psi, P, Q\right)$

Comparison

$$
\begin{aligned}
& \mathcal{R}(P, Q) \quad \mathcal{R}(\Psi, P, Q) \\
& P \xrightarrow{\alpha} P^{\prime} \Longrightarrow Q \xrightarrow{\alpha} Q^{\prime} \quad \Psi \triangleright P \xrightarrow{\alpha} P^{\prime} \Longrightarrow Q \xrightarrow{\alpha} Q^{\prime} \\
& \wedge \mathcal{R}\left(P^{\prime}, Q^{\prime}\right) \quad \wedge \mathcal{R}\left(\Psi, P^{\prime}, Q^{\prime}\right) \\
& \mathcal{F}(P) \simeq \mathcal{F}(Q) \\
& \Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q) \\
& \forall \Psi . \mathcal{R}((|\Psi|)|P,(|\Psi|)| Q) \quad \forall \Psi^{\prime} . \mathcal{R}\left(\Psi^{\prime} \otimes \Psi, P, Q\right)
\end{aligned}
$$

$\mathcal{R}(P, Q) \quad$ iff $\quad \forall \Psi . \mathcal{R}(\Psi, P, Q)$

Comparison

$$
\begin{aligned}
& \mathcal{R}(P, Q) \quad \mathcal{R}(\Psi, P, Q) \\
& P \xrightarrow{\alpha} P^{\prime} \Longrightarrow Q \xrightarrow{\alpha} Q^{\prime} \quad \Psi \triangleright P \xrightarrow{\alpha} P^{\prime} \Longrightarrow Q \xrightarrow{\alpha} Q^{\prime} \\
& \wedge \mathcal{R}\left(P^{\prime}, Q^{\prime}\right) \\
& \mathcal{F}(P) \simeq \mathcal{F}(Q) \\
& \forall \Psi \cdot \mathcal{R}((|\Psi|)|P,(|\Psi|)| Q) \quad \forall \Psi^{\prime} \cdot \mathcal{R}\left(\Psi^{\prime} \otimes \Psi, P, Q\right) \\
& \Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)
\end{aligned}
$$

Manual proof: 1-2 hours, 70 lines Isabelle proof: 1 day, 450 lines

$$
\mathcal{R}(P, Q) \quad \text { iff } \quad \forall \Psi . \mathcal{R}(\Psi, P, Q)
$$

Results

- Standard Semantics
- Symbolic Semantics
- Compositionality
- Strong and Weak Bisimulation
- Barbed Congruence
- Algebraic Laws

Results

- Standard Semantics \longleftarrow Definition of behaviour
- Symbolic Semantics
- Compositionality
- Strong and Weak Bisimulation
- Barbed Congruence
- Algebraic Laws

Results

- Standard Semantics \longleftarrow Definition of behaviour
- Symbolic Semantics - More "computable"
- Compositionality
- Strong and Weak Bisimulation
- Barbed Congruence
- Algebraic Laws

Results

- Standard Semantics \longleftarrow Definition of behaviour
- Symbolic Semantics More "computable"
- Compositionality \longleftarrow If P and Q behave
- Strong and Weak Bisimulation the same, then $P \mid R$ and $Q \mid R$
- Barbed Congruence behave the same
- Algebraic Laws

Efficient proof

Results

Standard Semantics Definition of behaviour

- Symbolic Semantics More "computable"
- Compositionality

- Strong and Weak Bisimulation the same, then $P \mid R$ and $Q \mid R$
- Barbed Congruence behave the same
- Algebraic Laws

Correctness: the holy grail

Theory Development in a Theorem Prover

Benefit I: Certainty (no false assertions)
Benefit 2: Good proof structure (clarity of arguments)

Theory Development in a Theorem Prover

Benefit I: Certainty (no false assertions)
Benefit 2: Good proof structure (clarity of arguments)
Benefit 3: Flexibility (easy to change details)
Benefit 4: Generality (easy to keep track of assumptions)

Flexibility

- Theory development is like programming:
It almost never starts from scratch. You continually add, improve, amend, adjust...

Flexibility

- Theory development is like programming:
1+ nlmant manan ntarts from Please change nually this one aajust... nd,

- Programming: Every amendment needs a program recompilation.
- Theory development: Every amendment needs a re-check of all proofs. A huge error source.
- Mechanised proofs means we have a proof repository and can quickly assess ramifications of changes.

Generality '"hmm, some need grease, some need oil, I better give both to all...

...otherwise I would have to remember who needs what."

Generality

"hmm, some need grease, Weakening some need 气il, Idempotence I better give both to all...
...otherwise I would have to remember who needs what."

A binary relation R on agents is an MJbisim if $R(P, Q)$ implies

1. $F(P)=F(Q)$ (static equiv)
2. $R(Q, P)$
3. Forall Psi. R(\{Psi\}|P, \{Psi\}|Q)
4. Forall a s.t. bn(a)\#Q. $P-a->P^{\prime} \Rightarrow Q-a->Q^{\prime}$ and $R\left(P^{\prime}, Q^{\prime}\right)$
(here transitions without assertion means bottom assertion)

Example from Psi

Conjecture 1.
a) P si $l>P$-a-> P^{\prime} implies $\{P s i\}|P-a->\{P s i\}| P^{\prime}$.
b) $\{$ Psi\} $\} P$-a-> T implies exists $P^{\prime} . T=\{P s i\} \mid P^{\prime}$ and $P s i l>P-a->P$

Proof: For a : by the PAR rule and $F(\{P s i\})=P s i$. For b: case analysis on deirivation of $\{P s i\} P-a->T$, and here only PAR can be used. Details are left as an exercise for the reader :)

Conjecture 2.

$\{$ Psi\}|\{Psi'\} ~ \{Psi+Psi'\}
Proof: Directly from definitions. Obvious :)
Conjecture 3. If R is an MJbisim up to \sim and $R(P, Q)$ then there is an MJbisim R^{\prime} such that $R^{\prime}(P, Q)$
Proof: By intimidation :)
Lemma 1
If R is an MJbisim then $R^{*}=\operatorname{def}\{(P s i, P, Q): R(\{P s i\}|P,\{P s i\}| Q)\}$ is a bisimulation up to \sim Proof. We need to check 4 conditions. Assume R*(Psi,P.Q). Then R(\{Psi\}|P, \{Psi\}|Q).

1. $P s i+F(P)=P s i+F(Q)$. Follows from $F(\{P s i\} \mid P)=F(\{P s i\} \mid Q)$
2. $\mathrm{R}^{\star}(\mathrm{Psi}, \mathrm{Q}, \mathrm{P})$. Follows from $\mathrm{R}(\{\mathrm{Psi}\}|\mathrm{Q},\{\mathrm{Psi}\}| \mathrm{P})$.
3. All Psi' . R*(Psi+Psi', P, Q). Follows from All Psi' . R(\{Psi'\}|\{Psi\}|P, \{Psi'\}|\{Psi\}|Q), and Conjecture 2. Note that here we probably need associativity.
4. Psi $l>P-a->P^{\prime}$ implies exists Q^{\prime}. Psi $l>Q-a->Q^{\prime}$ and $R\left(P s i, P^{\prime}, Q^{\prime}\right)$. So assume Psi $I>P-a->P^{\prime}$. Then by Conjecture $1 a\{P s i\} P-a->\{P s i\} P P^{\prime}$. By Condition 4 on MJbisim and $R(\{P$ si\} $\} P,\{$ $\{P s i\} \mid Q-a->T$ with $R\left(\{P s i\} \mid P^{\prime}, T\right)$. Conjecture $1 b$ then gives that there exists a Q^{\prime} such that $T=\{P s i\} \mid Q^{\prime}$ and $\{P s i\} \mid>Q-a->Q^{\prime}$. Also $R\left(\{P s i\}\left|P^{\prime},\{P s i\}\right| Q '\right)$ by definition implies $R^{*}\left(P s i, P^{\prime}, Q^{\prime}\right)$, a QED

Lemma 2.
If R^{*} is a bisimulation then $R=\operatorname{def}\left\{(\{P s i\}|P,\{P s i\}| Q): R^{*}(P s i, P, Q)\right\}$ is an MJbisim up to \sim
Proof. We need to check 4 conditions. Assume $R(T, U)$. By definition there are Psi,P,Q s.t. $T=\{P s i\}|P, U=\{P s i\}| Q, R^{*}(P s i, P, Q)$.

1. $F(T)=F(U)$. Follows from $R^{*}(P s i, P, Q)$ and thus $P s i+F(P)=P s i+F(Q)$.
2. $R(U, T)$. Follows from $R^{*}(P s i, Q, P)$ and definitions.
3. Forall Psi' . R(\{Psi'\}IT, \{Psi'\}|U). Follows from Forall Psi' . R*(Psi'+Psi,P,Q), Definitions and Conjecture 2.
4. $T-a>T$ implies exists U^{\prime}. $U-a->U^{\prime}$ and $R\left(T^{\prime}, U^{\prime}\right)$: So assume $T-a->T^{\prime}$. Then by $T=\{P s i\} \mid P$ and Conjecture $1 b$ we get P^{\prime} such that $P s i l>P-a->P^{\prime}$. By $R^{*}(P s i, P, Q)$ we get $P s i l>Q-a->$ $R^{*}\left(P s i, P^{\prime}, Q^{\prime}\right)$. By conjecture 1a we get $\{P s i\}|Q-a->\{P s i\}| Q^{\prime}$. So choose $U^{\prime}=\{P s i\} \mid Q^{\prime}$. We thus have $U-a->U^{\prime}$, and by $R^{*}\left(P s i, P^{\prime}, Q^{\prime}\right)$ and definition also $R\left(T^{\prime}, U^{\prime}\right)$.
QED
Corollary
$P \sim Q$ iff there exists an MJbisim R such that $R(P, Q)$
Proof.
\Rightarrow : Suppose $P \sim Q$. Then there is a bisimulation R^{*} such that $R^{*}($ bot $, P, Q)$. Define R as in Lemma 2 , using this R^{*}. It follows that R is an $M J b i s i m$ and $R(0 I P, 0 I Q)$, and therefore $R \cup\{(P$ MJ-bisimulation up to \sim. By Conjecture 3 there is than an MJbisim as required.
$<=$: Suppose R is an MJ-bisimulation up to \sim and $R(P, Q)$. Then $R(O I P, O \mid Q)$. By Conjecture 3 there is an MJbisim R^{\prime} such that R'(OIP,OIQ). So by Lemma 1 there is a bisimulation (up to $\mathrm{R}^{*}($ bot $\mathrm{P}, \mathrm{Q})$, which implies $\mathrm{P} \sim \mathrm{Q}$.
5. $R(Q, P)$
6. Forall Psi. R(\{Psi\}|P, \{Psi\}|Q)
7. Forall a st. bn(a)\#Q. $P-a->P^{\prime} \Rightarrow Q-a->Q^{\prime}$ and $R\left(P^{\prime}, Q^{\prime}\right)$
(here transitions without assertion means bottom assertion)

Example from Psi

Conjecture 1.
a) $\mathrm{Psi} \mathrm{l}>\mathrm{P}$-a-> P^{\prime} implies $\{\mathrm{Psi}\}|\mathrm{P}-\mathrm{a}->\{\mathrm{Psi}\}| \mathrm{P}$ '.
b) $\{P s i\} \mid P-a->T$ implies exists $P^{\prime} . T=\{P s i\} \mid P^{\prime}$ and $P s i l>P-a->P^{\prime}$

Proof: For a: by the PAR rule and $F(\{P s i\})=P$ si. For b: case analysis on derivation of $\{P s i\} \mid P-a->T$, and here only $P A R$ can be used
Conjecture 2.
$\{$ Psi\}$\}\{P s i '\} \sim\{P s i+P s i '\}$
Proof: Directly from definitions. Obvious :)
Conjecture 3. If R is an MJbisim up to \sim and $R(P, Q)$ then there is an MJbisim R^{\prime} such that $R^{\prime}(P, Q)$ Proof: By intimidation :)

Lemma 1

If R is an MJbisim then $R^{*}=\operatorname{def}\{(P s i, P, Q): R(\{P s i\}|P,\{P s i\}| Q)\}$ is a bisimulation up to ~ Proof. We need to check 4 conditions. Assume R*(Psi,P.Q). Then R(\{Psi\}|P, \{Psi\}|Q).

1. $P s i+F(P)=P s i+F(Q)$. Follows from $F(\{P s i\} \mid P)=F(\{P s i\} \mid Q)$
2. $R^{\star}(P s i, Q, P)$. Follows from $R(\{P s i\}|Q,\{P s i\}| P)$.

3. All Psi' . R* (Psi+Psi', P, Q). Follows from All Psi' . R(\{Psi'\}$\}\{P s i\}|P,\{P s i '\}\{P s i\}| Q)$, and Conjecture 2. Note that here we probarnaneed associativity.

QED

Lemma 2.
If R^{*} is a bisimulation then $R=\operatorname{def}\left\{(\{P s i\}|P,\{P s i\}| Q): R^{*}(P s i, P, Q)\right\}$ is an MJbisim up to \sim
Proof. We need to check 4 conditions. Assume $R(T, U)$. By definition there are Psi,P,Q st. $T=\{P s i\}|P, U=\{P s i\}| Q, R^{*}(P s i, P, Q)$.

1. $F(T)=F(U)$. Follows from $R^{*}(P s i, P, Q)$ and thus Psi $+F(P)=P s i+F(Q)$.
2. $R(U, T)$. Follows from $R^{*}(P s i, Q, P)$ and definitions.
3. Forall Psi' . R(\{Psi'\} I T , ~ \ { P s ~ i ' \ } | U) . ~ F o l l o w s ~ f r o m ~ F o r a l l ~ P s i ' ~ . ~ R * (P s i ' + P s i , P , Q) , ~ D e f i n i t i o n s ~ a n d ~ C o n j e c t u r e ~ 2.
4. $T-a>T$ implies exists U^{\prime}. $U-a->U^{\prime}$ and $R\left(T^{\prime}, U^{\prime}\right)$: So assume $T-a->T^{\prime}$. Then by $T=\{P s i\} \mid P$ and Conjecture $1 b$ we get P^{\prime} such that $P s i l>P-a->P^{\prime}$. By $R^{\star}(P s i, P, Q)$ we get $P s i l>Q-a->$ $R^{*}\left(P s i, P^{\prime}, Q^{\prime}\right)$. By conjecture la we get $\{P s i\}|Q-a->\{P s i\}| Q^{\prime}$. So choose $U^{\prime}=\{P s i\} \mid Q^{\prime}$. We thus have $U-a->U^{\prime}$, and by $R^{*}\left(P s i, P^{\prime}, Q^{\prime}\right)$ and definition also $R\left(T^{\prime}, U^{\prime}\right)$.
QED
Corollary
$P \sim Q$ iff there exists an MJbisim R such that $R(P, Q)$
Proof.
\Rightarrow : Suppose $P \sim Q$. Then there is a bisimulation R^{*} such that $R^{*}($ bot $, P, Q)$. Define R as in Lemma 2 , using this R^{*}. It follows that R is an $M J b i s i m$ and $R(0 I P, 0 I Q)$, and therefore $R \cup\{(P$ MJ-bisimulation up to \sim. By Conjecture 3 there is than an MJbisim as required.
$<=$: Suppose R is an $M J$-bisimulation up to \sim and $R(P, Q)$. Then $R(O I P, O \mid Q)$. By Conjecture 3 there is an MJbisim R' such that R'(OIP,OIQ). So by Lemma 1 there is a bisimulation (up to $\mathrm{R}^{*}($ bot $, \mathrm{P}, \mathrm{Q})$, which implies $\mathrm{P} \sim \mathrm{Q}$.

A binary relation R on agents is an MJbisim if $R(P, Q)$ implies

1. $F(P)=F(Q)$ (static equiv)
2. $R(Q, P)$
3. Forall Psi. R(\{Psi\}|P, \{Psi\}|Q)
4. Forall a s.t. bn(a)\#Q. $P-a->P^{\prime} \Rightarrow Q-a->Q^{\prime}$ and $R\left(P^{\prime}, Q^{\prime}\right)$ (here transitions without assertion means bottom assertion)

Conjecture 1.
a) $\mathrm{Psi} \mathrm{l}>\mathrm{P}-\mathrm{a}->\mathrm{P}^{\prime}$ implies $\{\mathrm{Psi}\}|\mathrm{P}-\mathrm{a}->\{\mathrm{Psi}\}| \mathrm{P}^{\prime}$.
b) $\{P s i\} \mid P-a->T$ implies exists $P^{\prime} . T=\{P s i\} \mid P^{\prime}$ and $P s i l>P-a->P^{\prime}$

Proof: For a: by the PAR rule and $\mathrm{F}(\{\mathrm{Psi}\})=$ Psi. For b: case analysis on deirivation of $\{\mathrm{Psi}\} \mid \mathrm{P}$
Conjecture 2.
\{Psi\}$\}\{$ Psi' $\} \sim\{$ Psi+Psi' $\}$
Proof: Directly from definitions. Obvious :)
Conjecture 3. If R is an MJbisim up to \sim and $R(P, Q)$ then there is an MJbisim R^{\prime} such that R Proof: By intimidation :)

Lemma 1
If R is an $M J b i s i m$ then $R^{*}=\operatorname{def}\{(P s i, P, Q): R(\{P s i\}|P,\{P s i\}| Q)\}$ is a bisimulation up to \sim Proof. We need to check 4 conditions. Assume $\mathrm{R}^{*}(\mathrm{Psi}, \mathrm{P} . \mathrm{Q})$. Then $\mathrm{R}(\{\mathrm{Psi}\}|\mathrm{P},\{\mathrm{Psi}\}| \mathrm{Q})$.

1. Psi $+F(P)=P s i+F(Q)$. Follows from $F(\{P s i\} \mid P)=F(\{P s i\} \mid Q)$.
lemma bisimContextBisimPar:

assumes "X \& P \& Q"
shows " $\{\Psi\}\left\|P \sim_{C}\{\Psi\}\right\| Q "$

proof -

from assms have " $(\{\Psi\}||\mathrm{P},\{\Psi\}|| Q) \in$?X" by blast
thus ?thesis
proof (coinduct rule: contextBisimWeakCoinduct)
case (cStatEq P Q)
thus ?case by (auto dest: bisimE)
next
case(cSim P Q)
have "equt $\mathrm{XX}^{\prime \prime}$ by (force dest: bisimclosed simp add: eqvt_def)
hence "equt $(\{(T, P, Q) \mid P Q \quad(E, Q) \in ? X\})$ "
by (auto simp add: eqvt_def permBottom)
thus ?case using cSim by (blast dest: bisime intro: contextsimhssertionId)
next
case (cExt Ψ PsiP PsiQ)
from (PsiP, PsiQ) $\in P X$ obtain Ψ ' $P Q$ where " Ψ ' $D P \sim Q "$ and A : "PsiP $=\{\Psi '\} \| P$ "
from ' Ψ ' $>P \sim Q$ have " Ψ ' $Q \Psi D P \sim Q$ " by (rule bisimE)
hence " $\Psi \otimes \Psi$ ' $D P \sim Q$ " by (metis statEqBisim Commutativity)
hence " $\Psi \square\left\{\Psi^{\prime}\right\}\left\|P \sim\left\{\Psi^{\prime}\right\}\right\| Q^{\prime}$ by (Iule_tac bisimParPresAuxSym) auto
with A B show ?case by blast
next
case (cSym P Q)
thus ?case by (blast dest: bisimE)
qed
qed
lemma bisimContextBisimPar:
fixes $\Psi:: ~ ' b$

lin $_{\text {es }}$ text
assumes "x $Q P \infty Q^{\prime}$
shows " $\{\Psi\}\left\|P \sim_{C}\{\Psi\}\right\| Q "$

proof -

from assms have " $(\{\Psi\}||\mathrm{P},\{\Psi\}|| Q) \in$?X" by blast
thus ?thesis
proof (coinduct rule: contextBisimWeakCoinduct)
case (cStatEq P Q)
thus ?case by (auto jest: bisimE)
next
case (cSim P Q)
have "equt $7 \mathrm{X}^{\prime \prime}$ by (force dest: bisimclosed simp add: eqvt_def)
hence "eqvt $(\{(T, P, Q) \mid P Q \quad(B, Q) E P X\})$ "
by (auto simp add: eqvt_def permBottom)
thus ?case using cSim by (blast dest: bisime intro: contextsimhssertionId)
next
case (cErt Ψ Psi Psi)
from (Psi, Psi) E PX obtain Ψ ' P Q where " Ψ ' $D P \sim Q "$ and $A: ~ " P s i P=\{\Psi '\} \| P$ " End B: "Psid = \{ $\left.\Psi^{\prime}\right\}\left\|\left\|\|^{\prime}\right.\right.$ by auto
from ' Ψ ' $>P \sim Q$ have " Ψ ' $Q \Psi D P \sim Q$ " by (rule bisimE)
hence $" \Psi \otimes \Psi$ ' $D P \sim Q$ " by (metis statEqBisim Commutativity)
hence " $\Psi \triangleright\left\{\Psi \Psi^{\prime}\right\}\left\|P \sim\left\{\Psi^{\prime}\right\}\right\| Q^{\prime}$ by (Iule_tac bisimParPresAuxSym) auto
with A B show ?case by blast
next
case (cSym P Q)
thus ?case by (blast dest: bisimE)
qed

Different syntax Same structure

Lemma 2.

If R^{\star} is a bisimulation then $R=\left\{(\{P s i\}|P,\{P s i\}| Q): R^{\star}(P s i, P, Q)\right\}$ is an MJbisim up to \sim.
Proof. We need to check 4 conditions. Assume $\mathrm{R}(\mathrm{T}, \mathrm{U})$. By definition there are Psi,P,Q s.t. T=\{Psi\}|P, U=\{Psi\}|Q, R*(Psi,P,Q).

1. $F(T)=F(H)$. Follo from $P^{*}(P s i, P, Q)$ and thus Psi+F(P) $=P s i+F(Q)$. $2 R(U, T)$. Follows from $R^{*}($ Psi, $Q, P)$ and definitions.
2. Forall PSI' . R(\{Psi\}ff, (Psi\}H). Follows from Forall Psi' . $\mathrm{R}^{\star}($ Psi'+Psi, P, Q), Definitions and Conjecture 2.
3. $T-a>T$ implies exists $U^{\prime} . ~ U-a->U^{\prime}$ and $R\left(T^{\prime}, U^{\prime}\right)$: So assume $T-a->T^{\prime}$. Then by $T=\{P s i\} \mid P$ and Conjecture $1 b$ we get P^{\prime} such that $P s i l>P-a->P^{\prime}$. By $R^{*}(P s i, P, Q)$ we get Psi $1>Q-a->Q^{\prime}$ and $R^{*}\left(P s i, P^{\prime}, Q^{\prime}\right)$. By conjecture 1a we get $\{P s i\}|Q-a->\{P s i\}| Q '$. So choose $U^{\prime}=\{P s i\} \mid Q '$. We thus have $U-a->$ U^{\prime}, and by $R^{\star}\left(P s i, P^{\prime}, Q^{\prime}\right)$ and definition also $R\left(T^{\prime}, U^{\prime}\right)$.

QED

proof -

thus ?thesis
proof (coinduct rule: contextBisimWeakCoinduct)
case (cStatEq P Q)
thus ?case by (auto dest: bisimE)
next
case(csim P Q)
have "equt $7 \mathrm{~K}^{\prime \prime}$ by (force dest: bisimclosed simp add: eqvt_def)
hence "eqvt $\left\{\left(\begin{array}{l}(T, P, Q) \mid P Q\end{array}(E, Q) E ? X\right\}\right)$ "
by (auto simp add: eqvt def permBottom)
thus ?case using cSim by (blast dest: bisime intro: contextSimassertionId)
next
case (cExt Ψ PsiP PsiQ)
from (PsiP, PsiQ) $\in P X$ obtain Ψ ' P Q where " Ψ ' $D P \sim Q "$ and A : "PsiP = \{Y'\} || P "
Bnd B: "Psi0 = \{ E' $\left.^{\prime}\right\} \|$ " by auto
from ' Ψ ' $\geqslant P \sim$ Q have " Ψ " $Q \Psi \mathbb{P} \sim Q$ " by (rule bisimE)
hence " $\Psi \otimes \Psi$ " $D P \sim Q^{\prime \prime}$ by (metis statEqBisim Commutativity)
hence $" \Psi \triangleright\{\Psi '\}\|P \sim\{\Psi '\}\| Q^{\prime}$ by (工ule_tac bisimParPresAuxSym) auto
with A B show ?case by blast
next
case (cSym P Q)
thus ?case by (blast dest: bisimE)
qed

The cost?

One measure of effort:"manhours"

This particular proof: Isabelle effort is four times the manual proof

In general
This factor varies wildly

The cost?

One measure of effort:"manhours"

Theory development is not exclusively

- not even mainly -
about writing down proofs.
So the factor is not so important.

The cost?

Study of time spent by 4 persons over 25 months on developing the Psi framework

The cost?

Study of time spent by 4 persons over 25 months on developing the Psi framework

1/3 of the effort went into Isabelle formalisation

2/3 of the total effort has been fully formalised

