Advanced Process Calculi

Lecture 4: higher-order psi-calculi
Copenhagen, August 2013
Joachim Parrow

Psi-calculi

\mathbf{T}	(Data) Terms	M, N
\mathbf{A}	Assertions	Ψ, Ψ^{\prime}
\mathbf{C}	Conditions	$\varphi, \varphi^{\prime}$

Channel Object Pattern Test (aka guard)

$$
\begin{array}{ll}
M N . P & \text { Output } \\
M(\lambda \widetilde{x}) N \cdot P & \text { Input } \\
\text { case } \varphi_{1}: P_{1} \square \cdots \square \varphi_{n}: P_{n} & \text { Case } \\
(\nu a) P & \text { Restriction } \\
P \mid Q & \text { Parallel } \\
!P & \text { Replication } \\
(\mid \Psi \|) & \text { Assertion } \\
\hline
\end{array}
$$

How to cook a Psi-calculus

1. Define names, data terms, assertions and conditions can be absolutely anything

How to cook a Psi-calculus

1. Define names, data terms, assertions and conditions can be absolutely anything
2. Define support and substitution must satisfy the axioms

How to cook a Psi-calculus

1. Define names, data terms, assertions and conditions can be absolutely anything
2. Define support and substitution must satisfy the axioms
3. Define the morphisms $\dot{\leftrightarrow}, \otimes, \mathbf{1}, \vdash$ must satisfy the requisites

How to cook a Psi-calculus

1. Define names, data terms, assertions and conditions can be absolutely anything
2. Define support and substitution must satisfy the axioms
3. Define the morphisms $\dot{\leftrightarrow}, \otimes, \mathbf{1}, \vdash$ must satisfy the requisites

Compositional semanties Algebraic laws Bisimulation themrya

- Can capture
- Applied pi-calculus (Abadi, Fournet 2001)
- Explicit fusion calculus (Wischik, Gardner 2005)
- Concurrent constraint pi (Buscemi, Montanari 2007)
- Polyadic synchronization (Carbone, Maffeis 2003)
- Pattern matching and higher order values (Various)
- And moreover
- Higher-order concurrent constraints
- Algebraic operators on communication channels

For every application there is a suitable psi-calculus?

Of course not

Current extensions

- Higher-order psi:Agents can be sent around as data objects.
- Broadcast psi: an output action can be received by many inputs
- Sorted psi:A sort system regulates what can be substituted, sent on channels etc
- Priority psi: actions carry priorties, lower are preempted by higher

Psi and sorts

Problem: Substitution must be total, and all terms can act as both subjects and objects

Psi and sorts

Problem: Substitution must be total, and all terms can act as both subjects and objects

Effect: over-expressiveness. It is difficult to restrict a calculus to avoid useless agents, aka junk

Psi and sorts

Example: polyadic pi. Objects of prefixes are name tuples, as in $a\left(x_{1}, \ldots, x_{n}\right) . P$

Psi and sorts

Example: polyadic pi. Objects of prefixes are name tuples, as in $a\left(x_{1}, \ldots, x_{n}\right) . P$

Corresponding psi-calculus: let data terms be name tuples. We then also get:

$$
\overline{\left(x_{1}, x_{n}\right)} y \cdot P
$$

Tuples as channels

Psi and sorts

Example: polyadic pi. Objects of prefixes are name tuples, as in $a\left(x_{1}, \ldots, x_{n}\right) . P$

Corresponding psi-calculus: let data terms be name tuples. We then also get:

$$
\begin{aligned}
& \overline{\left(x_{1}, x_{n}\right)} y \cdot P \quad \text { Tuples as channels } \\
& (x, y, z)[y:=(u, w)] \quad \stackrel{?}{=} \quad(x,(u, w), z)
\end{aligned}
$$

Nested tuples (aka trees)

Psi and sorts

Example: polyadic pi. Objects of prefixes are name tuples, as in $a\left(x_{1}, \ldots, x_{n}\right) . P$

Corresponding psi-calculus: let data terms be name tuples. We then also get:

Dealing with junk

Allow it, using (ad hoc) invariants to ensure it never arises

or

Disallow it, using a formal sort system

Sorts

Assume a set of sorts S
Names and data terms have unique sort

Sorts

Assume a set of sorts S
Names and data terms have unique sort

$$
\begin{array}{llll}
\underline{\propto} & \subseteq \mathcal{S} \times \mathcal{S} & \text { Can be used to receive } \\
\bar{\alpha} & \subseteq \mathcal{S} \times \mathcal{S} & \text { Can be used to send } \\
\prec & \subseteq \mathcal{S} \times \mathcal{S} & \text { Can be substituted by }
\end{array}
$$

Sorts

Assume a set of sorts S
Names and data terms have unique sort

$$
\begin{array}{llll}
\underline{\propto} & \subseteq \mathcal{S} \times \mathcal{S} & \text { Can be used to receive } \\
\bar{\propto} & \subseteq \mathcal{S} \times \mathcal{S} & \text { Can be used to send } \\
\prec & \subseteq \mathcal{S} \times \mathcal{S} & \text { Can be substituted by }
\end{array}
$$

Well-formedness criteria in writing agents, eg in
$\bar{M} N . P \quad$ requires $\quad \operatorname{sort}(M) \bar{\propto} \operatorname{sort}(N)$

Sorts

Assume a set of sorts S
Names and data terms have unique sort

$$
\begin{array}{llll}
\underline{\propto} & \subseteq \mathcal{S} \times \mathcal{S} & \text { Can be used to receive } \\
\bar{\propto} & \subseteq \mathcal{S} \times \mathcal{S} & \text { Can be used to send } \\
\prec & \subseteq \mathcal{S} \times \mathcal{S} & \text { Can be substituted by }
\end{array}
$$

Well-formedness criteria in writing agents, eg in

$$
\bar{M} N . P \quad \text { requires } \quad \operatorname{sort}(M) \bar{\propto} \operatorname{sort}(N)
$$

Input rule: substitution conforms to

Example: polyadic pi

Names $\mathcal{N}=a, b, \ldots$
$\mathbf{T}=\mathcal{N} \uplus \mathcal{N}^{*}$
$\mathcal{S}=\{$ chan, tup $\}$
$\operatorname{SORT}(a)=$ chan
$\operatorname{SORT}(\tilde{a})=\operatorname{tup}$
$\operatorname{chan} \bar{\propto} \operatorname{tup}$
$\operatorname{chan} \propto \operatorname{tup}$
chan \prec chan

Higher-order psi

Higher-order

logic: quantify over predicates
functions: can have functions as parameters
process calculi: agents can be transmitted in communications

Higher-order pi

$\bar{a} P . Q \quad$ Send the agent P along a and continue as Q
$a(X) . R \quad$ Receive for the agent variable X along a and continue as R

New syntactic category!

Higher-order pi

$\bar{a} P . Q \quad$ Send the agent P along a and continue as Q
$a(X) . R \quad$ Receive for the agent variable X along a and continue as R

New syntactic category!

$$
\bar{a} P \cdot Q|a(X) \cdot R \xrightarrow{\tau} Q| R[X:=P]
$$

Higher-order substitution!

Higher-order pi

$\bar{a} P . Q \quad$ Send the agent P along a and continue as Q
$a(X) . R \quad$ Receive for the agent variable X along a and continue as R

New syntactic category!

$$
\bar{a} P \cdot Q|a(X) \cdot R \xrightarrow{\tau} Q| R[X:=P]
$$

Eg
Higher-order substitution!

$$
\bar{a} P \cdot Q \mid a(X) \cdot\left(R^{\prime} \mid X\right)
$$

Variable used as agent

Higher-order pi

$\bar{a} P . Q \quad$ Send the agent P along a and continue as Q
$a(X) . R \quad$ Receive for the agent variable X along a and continue as R

New syntactic category!

$$
\bar{a} P \cdot Q|a(X) \cdot R \xrightarrow{\tau} Q| R[X:=P]
$$

Eg
Higher-order substitution!

$$
\bar{a} P . Q\left|a(X) \cdot\left(R^{\prime} \mid X\right) \xrightarrow{\tau} Q\right| R^{\prime} \mid P
$$

Variable used as agent

Higher-order psi already?

Terms can be any nominal set
Agents constitute a nominal set!

Higher-order psi already?

Terms can be any nominal set
Agents constitute a nominal set!

So we choose $\mathbf{T}=$ the set of agents!

Higher-order psi already?

Terms can be any nominal set
Agents constitute a nominal set!

So we choose $\mathbf{T}=$ the set of agents!

$$
\bar{M} P \cdot Q|a(x) . R \xrightarrow{\tau} Q| R[x:=P]
$$

R receives the agent P, substituting x

$$
\bar{M} P . Q|a(x) . R \xrightarrow{\tau} Q| R[x:=P]
$$

Problem: How can R get to 'execute' the newly received P ?

Where can x occur in R ?

$$
\bar{M} P \cdot Q|a(x) . R \xrightarrow{\tau} Q| R[x:=P]
$$

Problem: How can R get to 'execute' the newly received P ?

Where can x occur in R ?

$\bar{M} N . P$	Output
$\underline{M}(\lambda \widetilde{x}) N . P$	Input
case $\varphi_{1}: P_{1} \square \cdots \square \varphi_{n}: P_{n}$	Case
$(\nu a) P$	Restriction
$P \mid Q$	Parallel
$!P$	Replication
$(\Psi \mid)$	Assertion

$$
\bar{M} P . Q|a(x) . R \xrightarrow{\tau} Q| R[x:=P]
$$

Problem: How can R get to 'execute' the newly received P ?

Where can x occur in R ?

$\bar{M} N \cdot P$	Output
$\underline{M}(\lambda \tilde{x}) N . P$	Input
case $\varphi_{1}: P_{1} \rrbracket \cdots \square \varphi_{n}: P_{n}$	Case
$(\nu a) P$	Restriction
$P \mid Q$	Parallel
$!P$	Replication
(Ψ)	Assertion

x can only occur in data terms, assertions and conditions :(

The rub

The rub

- Psi already can accommodate agents as data values

The rub

- Psi already can accommodate agents as data values
- Psi lacks a notion of higher order variable that can stand for agents and be substituted.

The rub

- Psi already can accommodate agents as data values
- Psi lacks a notion of higher order variable that can stand for agents and be substituted.
- Introducing that is more complicated than you would think.

The rub

- Psi already can accommodate agents as data values
- Psi lacks a notion of higher order variable that can stand for agents and be substituted.
- Introducing that is more complicated than you would think.
- There is a way that is both easier and more general!

Clauses

A clause is of the form $M \Leftarrow P$
Means that the data term M can be used as a handle for the agent P

The handle can be invoked in the new agent form run M

Intuition

Assume a clause $M \Leftarrow P$

Sending P along a is then $\quad \bar{a} M . Q$
Receiving a process along a is $a(x) \cdot(R \mid$ run $x)$

Intuition

Assume a clause $M \Leftarrow P$

Sending P along a is then $\quad \bar{a} M . Q$
Receiving a process along a is $a(x) \cdot(R \mid$ run $x)$
$\bar{a} M . Q|a(x) .(R \mid \operatorname{run} x) \xrightarrow{\tau} Q| R \mid$ run M

Ho-pi vs HO-psi

pi

$$
a(X) \cdot(R \mid X)
$$

New kind of variable New kind of substitution

New syntactic construct (Notion of clause)

Where do clauses live?

One possibility: introduce a new instance parameter as a set of clauses

Where do clauses live?

One possibility: introduce a new instance parameter as a set of clauses

Again, there is an easier and more general way!

Hint: transitions always depend on environmental assertions.

$$
\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}
$$

Entailed by assertions

A clause can be entailed by assertions, as in

```
\Psi \vdash M \Leftarrow P
```

Formally, clauses can be a subset of the conditions

Clearer terminology: extend \vdash to also relate assertions with conditions and clauses

Semantics of run

$$
\frac{\Psi \vdash M \Leftarrow P \quad \Psi \triangleright P \xrightarrow{\alpha} P^{\prime}}{\Psi \triangleright \operatorname{run} M \xrightarrow{\alpha} P^{\prime}}
$$

Universal clauses

In some applications it might be sufficient with universal clauses, entailed by all assertions
Example: universal clauses can express recursive definitions!

$$
\forall \Psi . \quad \Psi \vdash M \Leftarrow a(x) . \bar{b} x . \operatorname{run} M
$$

cf pi-calculus

$$
A \Leftarrow a(x) . \bar{b} x . A
$$

Local clauses

Clauses are entailed by assertions
Handles may contain names and be scoped

$$
\begin{aligned}
& z \in \mathrm{n}(M), \quad \Psi \vdash M \Leftarrow a(x) \cdot \bar{b} x \cdot \operatorname{run} M \\
& P \mid(\nu z)((\mid \Psi) \mid Q)
\end{aligned}
$$

Here Q but not P can use run M

Mobile clauses

$$
\begin{aligned}
& z \in \mathrm{n}(M), \quad \Psi \vdash M \Leftarrow a(x) . \bar{b} x \cdot \operatorname{run} M \\
& P \mid(\nu z)((\mid \Psi) \mid Q)
\end{aligned}
$$

The ability to use run M can be transmitted by Q by sending z

Or by sending M itself
In both cases extruding z

Multiple clauses

Nothing prevents the same handle to occur in many clauses

$$
\begin{aligned}
& M \Leftarrow P_{1} \\
& M \Leftarrow P_{2}
\end{aligned}
$$

The rule for run M is applicable to all

Nondeterminism (can represent +)

Requirement on clauses

In any clause $M \Leftarrow P$
we require $\mathrm{n}(P) \subseteq \mathrm{n}(M)$
ie, the support of the handle contains at least the support of the agent it represents.

Motivation: otherwise scope extension fails

$$
\Psi \vdash M \Leftarrow \bar{b} N . \mathbf{0}
$$

Motivation: otherwise scope extension fails

$$
\begin{aligned}
& \Psi \vdash M \Leftarrow \bar{b} N .0 \\
& b \# M \quad \text { violating } \mathrm{n}(\bar{b} N .0) \subseteq\{b\} \subseteq \mathrm{n}(M)
\end{aligned}
$$

Motivation: otherwise scope extension fails

$$
\begin{aligned}
& \Psi \vdash M \Leftarrow \bar{b} N . \mathbf{0} \\
& b \# M \quad \text { violating } \mathrm{n}(\bar{b} N .0) \subseteq\{b\} \subseteq \mathrm{n}(M)
\end{aligned}
$$

$b \#$ run M

Motivation: otherwise scope extension fails

$$
\begin{aligned}
& \Psi \vdash M \Leftarrow \bar{b} N . \mathbf{0} \\
& b \# M \quad \text { violating } \mathrm{n}(\bar{b} N .0) \subseteq\{b\} \subseteq \mathrm{n}(M) \\
& b \# \text { run } M \\
& (\nu b) \text { run } M \sim \operatorname{run} M
\end{aligned}
$$

Motivation: otherwise scope extension fails

$$
\begin{aligned}
& \Psi \vdash M \Leftarrow \bar{b} N .0 \\
& b \# M \quad \text { violating } \mathrm{n}(\bar{b} N .0) \subseteq\{b\} \subseteq \mathrm{n}(M) \\
& b \# \text { run } M \\
& \begin{array}{l}
(\nu b) \text { run } M \sim \operatorname{run} M \\
\Psi \triangleright \operatorname{run} M \xrightarrow{b} N \\
\Psi \triangleright(\nu b) \text { run } M \cdots \quad \text { has no transition }
\end{array}
\end{aligned}
$$

Motivation: otherwise scope extension fails

$$
\begin{aligned}
& \Psi \vdash M \Leftarrow \bar{b} N . \mathbf{0} \\
& b \# M \quad \text { violating } \mathrm{n}(\bar{b} N .0) \subseteq\{b\} \subseteq \mathrm{n}(M) \\
& b \# \text { run } M \\
& (\nu b) \text { run } M \sim \operatorname{run} M \\
& \Psi \triangleright \operatorname{run} M \frac{\bar{b} N}{\text { contr } 2 d i} \\
& \Psi \triangleright(\nu b) \text { run } \text { has no transition }
\end{aligned}
$$

Example: stacks

Let assertions be sets of parametrised clauses $M(\lambda \tilde{x}) N \Leftarrow P$

$$
M(\lambda \tilde{x}) N \Leftarrow P \in \Psi \quad \Longrightarrow \quad \Psi \vdash M\langle N[\tilde{x}:=\tilde{L}]\rangle \Leftarrow P[\tilde{x}:=\tilde{L}]
$$

$\operatorname{Stack}(\lambda x) x \Leftarrow \underline{\text { Push }}(\lambda y) y$. run Stack $\langle\operatorname{cons}(y, x)\rangle$ $\operatorname{Stack}(\lambda x, y) \operatorname{cons}(x, y) \Leftarrow \overline{P o p} x \cdot$ run Stack $\langle y\rangle$
$\operatorname{StaCk}(\lambda x) x \Leftarrow \underline{\text { Push }}(\lambda y) y$. run Stack $\langle\operatorname{cons}(y, x)\rangle$ $\operatorname{Stack}(\lambda x, y) \operatorname{cons}(x, y) \Leftarrow \overline{P o p} x \cdot$ run Stack $\langle y\rangle$
$\operatorname{StaCk}(\lambda x) x \Leftarrow \underline{\text { Push }}(\lambda y) y$. run Stack $\langle\operatorname{cons}(y, x)\rangle$ $\operatorname{Stack}(\lambda x, y) \operatorname{cons}(x, y) \Leftarrow \overline{P o p} x \cdot$ run Stack $\langle y\rangle$

$\Psi \vdash \operatorname{StaCK}\langle\operatorname{nil}\rangle \Leftarrow \underline{\text { Push}}(\lambda y) y$. run $\operatorname{StaCK}\langle\operatorname{cons}(y, \operatorname{nil})\rangle$

$\operatorname{Stack}(\lambda x) x \Leftarrow \underline{\text { Push }}(\lambda y) y$. run $\operatorname{StaCK}\langle\operatorname{cons}(y, x)\rangle$ $\operatorname{StaCk}(\lambda x, y) \operatorname{cons}(x, y) \Leftarrow \overline{P o p} x \cdot$ run $\operatorname{Stack}\langle y\rangle$
$\Psi \vdash \operatorname{StaCK}\langle\operatorname{nil}\rangle \Leftarrow \underline{P u s h}(\lambda y) y$. run $\operatorname{STACK}\langle\operatorname{cons}(y, \operatorname{nil})\rangle$
$\Psi \triangleright \operatorname{run} \operatorname{StaCK}\langle$ nil $\rangle \xrightarrow{\text { Push } M} \operatorname{run} \operatorname{StaCK}\langle\operatorname{cons}(M$, nil $)\rangle$

```
Stack}(\lambdax)x\Leftarrow\underline{Push}(\lambday)y.run StaCk <cons(y,x)
```


$\Psi \vdash \operatorname{StaCK}\langle$ nil $\rangle \Leftarrow \underline{P u s h}(\lambda y) y$. run $\operatorname{StaCK}\langle\operatorname{cons}(y$, nil $)\rangle$
$\Psi \triangleright \operatorname{run} \operatorname{StaCK}\langle$ nil $\rangle \xrightarrow{\text { Push } M} \operatorname{run} \operatorname{StaCK}\langle\operatorname{cons}(M$, nil $)\rangle$
$\Psi \triangleright \operatorname{run} \operatorname{StaCK}\langle\operatorname{cons}(M$, nil $)\rangle \xrightarrow{\text { Push } M^{\prime}}$ run $\operatorname{StaCk}\left\langle\operatorname{cons}\left(M^{\prime}, \operatorname{cons}(M, \operatorname{nil})\right)\right\rangle$

```
STACK}(\lambdax)x\Leftarrow\underline{Push}(\lambday)y.run StaCK <cons (y,x)
StaCk}(\lambdax,y)\operatorname{cons}(x,y)\Leftarrow\overline{Pop}x.run Stack \langley
```

$\Psi \vdash \operatorname{StaCK}\langle\operatorname{nil}\rangle \Leftarrow \underline{P u s h}(\lambda y) y$. run $\operatorname{StaCK}\langle\operatorname{cons}(y$, nil $)\rangle$
$\Psi \triangleright \operatorname{run} \operatorname{STACK}\langle$ nil $\rangle \xrightarrow{\text { Push } M} \operatorname{run} \operatorname{STACK}\langle\operatorname{cons}(M$, nil $)\rangle$
$\Psi \triangleright \operatorname{run} \operatorname{StaCK}\langle\operatorname{cons}(M$, nil $)\rangle \xrightarrow{\text { Push } M^{\prime}}$ run $\operatorname{StaCK}\left\langle\operatorname{cons}\left(M^{\prime}, \operatorname{cons}(M, \operatorname{nil})\right)\right\rangle$
$\Psi \triangleright \operatorname{run} \operatorname{StaCK}\langle\operatorname{cons}(M$, nil $)\rangle \xrightarrow{\overline{P o p} M}$ run Stack〈nil〉
$\operatorname{STACK}(\lambda x) x \Leftarrow \underline{\text { Push }}(\lambda y) y$. run Stack $\langle\operatorname{cons}(y, x)\rangle$ $\operatorname{Stack}(\lambda x, y) \operatorname{cons}(x, y) \Leftarrow \overline{P o p} x \cdot$ run $\operatorname{Stack}\langle y\rangle$
$\operatorname{STACK}(\lambda x) x \Leftarrow \underline{\text { Push }}(\lambda y) y$. run Stack $\langle\operatorname{cons}(y, x)\rangle$ $\operatorname{Stack}(\lambda x, y) \operatorname{cons}(x, y) \Leftarrow \overline{P o p} x \cdot$ run Stack $\langle y\rangle$

A stack factory

$!\bar{a}$ Stack. 0
$\operatorname{STACK}(\lambda x) x \Leftarrow \underline{\text { Push }}(\lambda y) y \cdot \underline{\text { run } \operatorname{StaCK}\langle\operatorname{cons}(y, x)\rangle}$ $\operatorname{StaCk}(\lambda x, y) \operatorname{cons}(x, y) \Leftarrow \overline{P o p} x \cdot$ run Stack $\langle y\rangle$

A stack factory
$!\bar{a}$ Stack. 0
But this uses the same push and pop channels for all stacks
$\operatorname{StaCK}(\lambda x) x \Leftarrow \underline{\text { Push }}(\lambda y) y$. run Stack $\langle\operatorname{cons}(y, x)\rangle$ $\operatorname{Stack}(\lambda x, y) \operatorname{cons}(x, y) \Leftarrow \overline{P o p} x$. run $\operatorname{StaCk}\langle y\rangle$

A stack factory

! \bar{a} Stack. 0
But this uses the same push and pop channels for all stacks

Alternative:
$\operatorname{StaCk}(\lambda i, o, x) i, o, x \Leftarrow \underline{i}(\lambda y) y \cdot \operatorname{run} \operatorname{StaCk}\langle i, o, \operatorname{cons}(y, x)\rangle$
$\operatorname{Stack}(\lambda i, o, x, y) i, o, \operatorname{cons}(x, y) \Leftarrow \bar{o} x \cdot$ run $\operatorname{StaCK}\langle i, o, y\rangle$
StackStart $\Leftarrow c($ Push, Pop $)$. run Stack $\langle($ Push, Pop, nil $)\rangle$

Canonical HO-calculi

The stack example can be generalised considerably

Thm (paraphrased, see paper for details) Any ordinary psi-calculus of nontrivial expressiveness can be systematically raised to a higher-order calculus by letting assertions be sets of parametrised clauses.

Representing replication

In HO-pi we can encode replication.
Can we do that in HO-psi?
Yes - at least in enough expressive psi-calculi

Representing replication

In HO-pi we can encode replication.
Can we do that in HO -psi?
Yes - at least in enough expressive psi-calculi
$\Psi^{M \Leftarrow P}$ is a characteristic assertion for M and P if

1. $\Psi \vdash M \Leftarrow Q$ implies $\mathrm{n}(M) \subseteq \mathrm{n}(\Psi)$
2. $\Psi \otimes \Psi^{M \Leftarrow P} \vdash \xi \quad$ iff $\quad(\xi=M \Leftarrow P \quad \vee \quad \Psi \vdash \xi)$
3. $\mathrm{n}\left(\Psi^{M \Leftarrow P}\right)=\mathrm{n}(M)$
4. $\Psi \vdash M \Leftarrow Q$ implies $\mathrm{n}(M) \subseteq \mathrm{n}(\Psi)$
5. $\Psi \otimes \Psi^{M \leftarrow P} \vdash \xi \quad$ iff $\quad(\xi=M \Leftarrow P \quad \vee \Psi \vdash \xi)$
6. $\mathrm{n}\left(\Psi^{M \Leftarrow P}\right)=\mathrm{n}(M)$

$$
\text { 1. } \Psi \vdash M \Leftarrow Q \text { implies } \mathrm{n}(M) \subseteq \mathrm{n}(\Psi)
$$

$$
\text { 2. } \Psi \otimes \Psi^{M \Leftarrow P} \vdash \xi \quad \text { iff } \quad(\xi=M \Leftarrow P \quad \vee \quad \Psi \vdash \xi)
$$

3. $\mathrm{n}\left(\Psi^{M \Leftarrow P}\right)=\mathrm{n}(M)$

This means that the only effect of the characteristic assertion is to entail the clause $M \Leftarrow P$

1. $\Psi \vdash M \Leftarrow Q$ implies $\mathrm{n}(M) \subseteq \mathrm{n}(\Psi)$

$$
\text { 2. } \Psi \otimes \Psi^{M \Leftarrow P} \vdash \xi \quad \text { iff } \quad(\xi=M \Leftarrow P \quad \vee \quad \Psi \vdash \xi)
$$

3. $\mathrm{n}\left(\Psi^{M \Leftarrow P}\right)=\mathrm{n}(M)$

This means that the only effect of the characteristic assertion is to entail the clause $M \Leftarrow P$

Thm characteristic assertions always exist in canonical higher-order calculi

Representing replication

Let a be fresh and $a \in \mathrm{n}(M)$
Let $\Psi^{M \Leftarrow P \mid \text { run } M}$ be characteristic for M and $P \mid$ run M
Then $!P \dot{\sim}(\nu a)\left(\right.$ run $M \mid\left(\Psi^{M \Leftarrow P \mid \operatorname{run} M} D\right)$

Representing replication

Let a be fresh and $a \in \mathrm{n}(M)$
Let $\Psi^{M \Leftarrow P \mid \text { run } M}$ be characteristic for M and $P \mid$ run M
Then $!P \dot{\sim}(\nu a)\left(\right.$ run $M \mid\left(\Psi^{M \Leftarrow P \mid \text { run } M} D\right)$
Idea:

$$
\begin{array}{r}
\text { run } M \mid\left(\Psi^{M \Leftarrow P \mid \operatorname{run} M}\right) \\
(P \mid \operatorname{run} M) \mid\left(\Psi^{M \Leftarrow P \mid \operatorname{run} M}\right) \\
(P \mid(P \mid \operatorname{run} M)) \mid\left(\Psi^{M \Leftarrow P \mid \operatorname{run} M}\right)
\end{array}
$$

By the semantic rules these all have the same transitions!

Representing replication

Let a be fresh and $a \in \mathrm{n}(M)$
Let $\Psi^{M \Leftarrow P \mid \text { run } M}$ be characteristic for M and $P \mid$ run M
Then $!P \dot{\sim}(\nu a)$ run $M \mid\left(\Psi^{M \Leftarrow P \mid \text { run } M} D\right)$
Idea:

$$
\begin{array}{r}
\operatorname{run} M \mid\left(\Psi^{M \Leftarrow P \mid \operatorname{run} M}\right) \\
(P \mid \operatorname{run} M) \mid\left(\Psi^{M \Leftarrow P \mid \operatorname{run} M}\right) \\
(P \mid(P \mid \operatorname{run} M)) \mid\left(\Psi^{M \Leftarrow P \mid \operatorname{run} M}\right)
\end{array}
$$

By the semantic rules these all Why the ($\nu a)$? have the same transitions!

Representing replication

Let a be fresh and $a \in \mathrm{n}(M)$
Let $\Psi^{M \Leftarrow P \mid \text { run } M}$ be characteristic for M and $P \mid$ run M
Then $!P \dot{\sim}(\nu a)$ run $M \mid\left(\Psi^{M \Leftarrow P \mid \operatorname{run} M} D\right)$
Idea:

$$
\begin{array}{r}
\operatorname{run} M \mid\left(\Psi^{M \Leftarrow P \mid \operatorname{run} M}\right) \\
(P \mid \operatorname{run} M) \mid\left(\Psi^{M \Leftarrow P \mid \operatorname{run} M}\right) \\
(P \mid(P \mid \operatorname{run} M)) \mid\left(\Psi^{M \Leftarrow P \mid \operatorname{run} M}\right)
\end{array}
$$

Otherwise an environment might bestow additional clauses with M

Representing replication

Let a be fresh and $a \in \mathrm{n}(M)$
Let $\Psi^{M \Leftarrow P \mid \text { run } M}$ be characteristic for M and $P \mid$ run M
Then $!P \dot{\sim}(\nu a)\left(\right.$ run $M \mid\left(\Psi^{M \Leftarrow P \mid \operatorname{run} M} D\right)$
Anyway, what is this in HO-Psi?

$$
\begin{array}{r}
\text { run } M \mid\left(\mid \Psi^{M E P \mid \operatorname{run} M}\right) \\
(P \mid \operatorname{run} M) \mid\left(\Psi^{M \Leftarrow P \mid \operatorname{run} M}\right) \\
(P \mid(P \mid \operatorname{run} M)) \mid\left(\Psi^{M \Leftarrow P \mid \operatorname{run} M}\right)
\end{array}
$$

Otherwise an
By the semantic rules these all have the same transitions! environment might bestow additional clauses with M

Bisimulation

Formally, the only new aspect of higher-order psi is the inclusion of the run construct with accompanying rule!

No new syntactic categories, substitution etc

Just one more case when doing induction proofs

So perhaps we can just re-use the old definition!

R is a bisimulation if $R(\Psi, P, Q)$ implies

1. $R(\Psi, Q, P)$
2. $\forall \alpha . b n(\alpha) \# Q, \Psi$. $\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}$ implies $\Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime}$ and $R\left(\Psi, P^{\prime}, Q^{\prime}\right)$
3. $\Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)$
4. $\forall \Psi^{\prime} . R\left(\Psi \otimes \Psi^{\prime}, P, Q\right)$

So perhaps we can just re-use the old definition!
R is a bisimulation if $R(\Psi, P, Q)$ implies

1. $R(\Psi, Q, P)$
2. $\forall \alpha \cdot \mathrm{bn}(\alpha) \# Q, \Psi$.
$\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}$ implies $\Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime}$ and $R\left(\Psi, P^{\prime}, Q^{\prime}\right)$
3. $\Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)$
4. $\forall \Psi^{\prime} . R\left(\Psi \otimes \Psi^{\prime}, P, Q\right)$

Thm: all laws and congruence properties that used to hold still hold!

Isabelle proof in approx one day!

So we are done?

So we are done?

Not quite.

So we are done?

Not quite.
In normal HO-calculi we would expect, as part of compositionality, that
$P \dot{\sim} Q \quad \Rightarrow \quad \bar{a} P . R \dot{\sim} \bar{a} Q . R$

So we are done?

Not quite.
In normal HO-calculi we would expect, as part of compositionality, that

$$
P \dot{\sim} Q \quad \Rightarrow \quad \bar{a} P . R \dot{\sim} \bar{a} Q . R
$$

In HO-psi the counterpart could be

$$
P \dot{\sim} Q \Rightarrow \bar{a} M . R\left|\Psi^{M \Leftarrow P} \dot{\sim} \bar{a} M . R\right| \Psi^{M \Leftarrow Q}
$$

You believe this?

$$
P \dot{\sim} Q \quad \Rightarrow \quad \bar{a} M . R\left|\Psi^{M \Leftarrow P} \dot{\sim} \bar{a} M . R\right| \Psi^{M \Leftarrow Q}
$$

R is a bisimulation if $R(\Psi, P, Q)$ implies

1. $R(\Psi, Q, P)$
2. $\forall \alpha \cdot \operatorname{bn}(\alpha) \# Q, \Psi$.
$\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}$ implies $\Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime}$ and $R\left(\Psi, P^{\prime}, Q^{\prime}\right)$
3. $\Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)$
4. $\forall \Psi^{\prime} . R\left(\Psi \otimes \Psi^{\prime}, P, Q\right)$

$$
P \dot{\sim} Q \Rightarrow \bar{a} M . R\left|\Psi^{M \Leftarrow P} \dot{\sim} \bar{a} M \cdot R\right| \Psi^{M \Leftarrow Q}
$$

R is a bisimulation if $R(\Psi, P, Q)$ implies

1. $R(\Psi, Q, P)$
2. $\forall \alpha \cdot \operatorname{bn}(\alpha) \# Q, \Psi$.
$\Psi \triangleright P \xrightarrow{\alpha} P^{\prime}$ implies $\Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime}$ and $R\left(\Psi, P^{\prime}, Q^{\prime}\right)$
3. $\Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)$
4. $\forall \Psi^{\prime} . R\left(\Psi \otimes \Psi^{\prime}, P, Q\right)$
$\bar{a} M . R\left|\Psi^{M \Leftarrow P} \dot{\chi} \bar{a} M . R\right| \Psi^{M \Leftarrow Q}$
since the frames are different

The culprit

$$
\Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)
$$

$$
\Psi \otimes \mathcal{F}(P) \vdash \varphi \quad \text { implies } \quad \Psi \otimes \mathcal{F}(Q) \vdash \varphi
$$

The culprit

$$
\Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)
$$

or in other words

$$
\Psi \otimes \mathcal{F}(P) \vdash \varphi \quad \text { implies } \quad \Psi \otimes \mathcal{F}(Q) \vdash \varphi
$$

The culprit

$$
\Psi \otimes \mathcal{F}(P) \simeq \Psi \otimes \mathcal{F}(Q)
$$

or in other words

$$
\Psi \otimes \mathcal{F}(P) \vdash \varphi \quad \text { implies } \quad \Psi \otimes \mathcal{F}(Q) \vdash \varphi
$$

Relax this condition so that for clauses it suffices with bisimilar ones!
(a) $\forall \varphi \in \mathbf{C} . \quad \Psi \otimes \mathcal{F}(P) \vdash \varphi \Rightarrow \Psi \otimes \mathcal{F}(Q) \vdash \varphi$
(b) $\forall\left(M \Leftarrow P^{\prime}\right) \in \mathbf{C l} . \quad \Psi \otimes \mathcal{F}(P) \vdash M \Leftarrow P^{\prime} \Rightarrow$ $\exists Q^{\prime} . \Psi \otimes \mathcal{F}(Q) \vdash M \Leftarrow Q^{\prime} \wedge\left(\mathbf{1}, P^{\prime}, Q^{\prime}\right) \in \mathcal{R}$

A strong HO-bisimulation \mathcal{R} is a ternary relation between assertions and pairs of agents such that $(\Psi, P, Q) \in \mathcal{R}$ implies all of

1. Static equivalence:

$$
\begin{aligned}
& \text { (a) } \forall \varphi \in \mathbf{C} . \quad \Psi \otimes \mathcal{F}(P) \vdash \varphi \Rightarrow \Psi \otimes \mathcal{F}(Q) \vdash \varphi \\
& \text { (b) } \forall\left(M \Leftarrow P^{\prime}\right) \in \mathbf{C l} . \quad \Psi \otimes \mathcal{F}(P) \vdash M \Leftarrow P^{\prime} \Rightarrow \Rightarrow \\
& \exists Q^{\prime} . \Psi \otimes \mathcal{F}(Q) \vdash M \Leftarrow Q^{\prime} \wedge\left(\mathbf{1}, P^{\prime}, Q^{\prime}\right) \in \mathcal{R}
\end{aligned}
$$

The only new thing

2. Symmetry: $(\Psi, Q, P) \in \mathcal{R}$
3. Extension of arbitrary assertion: $\forall \Psi^{\prime} .\left(\Psi \otimes \Psi^{\prime}, P, Q\right) \in \mathcal{R}$
4. Simulation: for all α, P^{\prime} such that $\operatorname{bn}(\alpha) \# \Psi, Q$ there exists a Q^{\prime} such that

$$
\text { if } \Psi \triangleright P \xrightarrow{\alpha} P^{\prime} \text { then } \Psi \triangleright Q \xrightarrow{\alpha} Q^{\prime} \wedge\left(\Psi, P^{\prime}, Q^{\prime}\right) \in \mathcal{R}
$$

We define $\Psi \triangleright P \dot{\sim}^{\text {по }} Q$ to mean that there exists a strong HO-bisimulation \mathcal{R} such that $\Psi \triangleright P \mathcal{R} Q$, and write $P \dot{\sim}^{\text {но }} Q$ for $1 \triangleright P \dot{\sim}^{\text {но }} Q$.

Thm

Thm

$$
P \dot{\sim}^{\text {но }} Q \quad \Rightarrow \quad \Psi^{M \Leftarrow P} \dot{\sim}^{\text {но }} \Psi^{M \Leftarrow Q}
$$

Thm: all laws and congruence properties that used to hold still holds!

The proof took forever to complete (several months)
(a) $\forall \varphi \in \mathbf{C} . \quad \Psi \otimes \mathcal{F}(P) \vdash \varphi \Rightarrow \Psi \otimes \mathcal{F}(Q) \vdash \varphi$
(b) $\forall\left(M \Leftarrow P^{\prime}\right) \in \mathbf{C l} . \quad \Psi \otimes \mathcal{F}(P) \vdash M \Leftarrow P^{\prime} \Rightarrow$

$$
\exists Q^{\prime} . \Psi \otimes \mathcal{F}(Q) \vdash M \Leftarrow Q^{\prime} \wedge\left(1, P^{\prime}, Q^{\prime}\right) \in \mathcal{R}
$$

Why not instead $\left(\Psi, P^{\prime}, Q^{\prime}\right) \in \mathcal{R}$
(a) $\forall \varphi \in \mathbf{C} . \quad \Psi \otimes \mathcal{F}(P) \vdash \varphi \Rightarrow \Psi \otimes \mathcal{F}(Q) \vdash \varphi$

$$
\text { (b) } \begin{aligned}
& \forall\left(M \Leftarrow P^{\prime}\right) \in \mathbf{C l} . \quad \Psi \otimes \mathcal{F}(P) \vdash M \Leftarrow P^{\prime} \Rightarrow \\
& \quad \exists Q^{\prime} . \Psi \otimes \mathcal{F}(Q) \vdash M \Leftarrow Q^{\prime} \wedge\left(\mathbf{1}, P^{\prime}, Q^{\prime}\right) \in \mathcal{R}
\end{aligned}
$$

Why not instead $\left(\Psi, P^{\prime}, Q^{\prime}\right) \in \mathcal{R}$

With this we fail to prove compositionality (still unknown if it holds)

Conclusion

Psi-calculi is a family of process calculi

Accommodates a wide variety of data terms, functions and properties etc, based on nominal sets

Meta-theory proved once and for all in Isabelle

Outlook

- Extensions
- Combinations
- Applications
- Tool support

Thank you for your attention

