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Channel ~ Object  Pattern Test (aka guard)
M N.P Output
M(Ax)N.P Input
case o1 : Py || --- || on : P, Case
(va)P Restriction
P|Q Parallel
P Replication
(W) Assertion
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How to cook a Psi-calculus

1. Define names, data terms, assertions and conditions
can be absolutely anything
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How to cook a Psi-calculus

1. Define names, data terms, assertions and conditions
can be absolutely anything

2. Define support and substitution
must satisty the axioms

3. Define the morphisms <>, ®, 1, -
D)

must satisty the requisites e
/8
Compositional seman, 'soq}_u
Algebraic laws Q@

Bisimulation theght

@%
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* Can capture

*

)

) 4

*

)

Applied pi-calculus (Abadi, Fournet 2001)
Explicit fusion calculus (Wischik, Gardner 2005)
Concurrent constraint pi (Buscemi, Montanari 2007)

Polyadic synchronization (Carbone, Maffeis 2003)

Pattern matching and higher order values (Various)

+ And moreover

)

2 4

Higher-order concurrent constraints

Algebraic operators on communication channels
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For every application there is a suitable psi-calculus?
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Of course not




Current extensions

Higher-order psi:Agents can be sent
around as data objects.

Broadcast psi: an output action can be
received by many inputs

Sorted psi: A sort system regulates what
can be substituted, sent on channels etc

Priority psi: actions carry priorties, lower
are preempted by higher




Psi and sorts

Problem: Substitution must be total, and all
terms can act as both subjects and objects
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Psi and sorts

Problem: Substitution must be total, and all
terms can act as both subjects and objects

Effect: over-expressiveness. It is difficult to

restrict a calculus to avoid useless agents,
aka junk
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Psi and sorts
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name tuples, as in a(x,,...,x.).P
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Psi and sorts

Example: polyadic pi. Objects of prefixes are
name tuples, as in a(x,,...,x.).P

Corresponding psi-calculus: let data terms be
name tuples.VWVe then also get:

(21, Tn)y . P Tuples as channels

7

(f,y, Z)[y = (uvw)] — (ZC, (uvw)v Z)

Nested tuples (aka trees)




Psi and sorts

Example: polyadic pi. Objects of prefixes are
name tuples, as in a(x,,...,x.).P

Corresponding psi-calculus: let data terms be
name tuples.VWVe then also get:

.\ Tuples as channels

= (2, (u,w), 2)

Nested tuples (aka trees)
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Dealing with junk

Allow it, using (ad hoc) invariants
to ensure it never arises

or

Disallow it, using a formal sort system
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Sorts

Assume a set of sorts S

Names and data terms have unique sort
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Sorts

Assume a set of sorts S

Names and data terms have unique sort

S xS Can be used to receive
S xS C(Can be used to send
S x § Can be substituted by

A R R
IRRIANIA
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Sorts

Assume a set of sorts S

Names and data terms have unique sort

S xS Can be used to receive
S xS C(Can be used to send
S x § Can be substituted by

A R R
IRRIANIA

Well-formedness criteria in writing agents, eg in

MN .P requires sort(M) x sort(V)
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Sorts

Assume a set of sorts S

Names and data terms have unique sort

S xS Can be used to receive
S xS C(Can be used to send
S x § Can be substituted by

A R R
IRRIANIA

Well-formedness criteria in writing agents, eg in

MN .P requires sort(M) x sort(V)

Input rule: substitution conforms to <

fredag 23 augusti 13



Example: polyadic pi

Names N = a,b, ...
T=NuwN*

S = {chan, tup}
SORT(a) = chan
SORT(a) = tup
chan < tup

chan « tup

chan < chan
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Righer-order

logic: quantify over predicates

functions: can have functions as parameters

process calculi: agents can be transmitted in
communications
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Righer-order pi
al . Q) Send the agent P along a and continue as Q

a(X).R Receive for the agent variable X along a and

continue as R
New syntactic category!
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Righer-order pi
al . Q) Send the agent P along a and continue as Q

a(X).R Receive for the agent variable X along a and

continue as R
New syntactic category!

aP.Qla(X).R— Q| R[X := P]

Higher-order substitution!
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Righer-order pi
al . Q) Send the agent P along a and continue as Q

a(X).R Receive for the agent variable X along a and

continue as R
New syntactic category!

aP.Q|a(X).R— Q| R[X := P]
Eg Higher-order substitution!
abP.Q|a(X). (R | X)

Variable used as agent
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Righer-order pi
al . Q) Send the agent P along a and continue as Q

a(X).R Receive for the agent variable X along a and

continue as R
New syntactic category!

aP.Qla(X).R— Q| R[X := P]
E Higher-order substitution!
&
aP.Qla(X).(R|X)—Q|R|P

Variable used as agent
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Higher-order psi already?

(r - .
T (Data) Tems M, NI Jerms can be any nominal set
A Assertions v, v

C Conditions ©, Q' ) .
> © Agents constitute a nominal set!
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Higher-order psi already?

(r - .
T (Data) Tems M, NI Jerms can be any nominal set
A Assertions v, v

C Conditions ©, ' ) .
> © Agents constitute a nominal set!

So we choose T = the set of agents!

fredag 23 augusti 13



Higher-order psi already?

.

4 - .
T (Data) Tems M, NI Jerms can be any nominal set

A Assertions v,
C Conditions ©, '

© Agents constitute a nominal set!

So we choose T = the set of agents!

MP.Q|a(x).R— Q| Rz := P]

R receives the agent P, substituting x
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MP.Q|a(z).R — Q| R[z := P]

Problem: How can R get to
‘execute’ the newly received P!

Where can x occur in R?
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MP.Q|a(z).R — Q| R[z := P]

Problem: How can R get to

‘execute’ the newly received P!

Where can x occur in R?

M N.P
M(\Z)N.P
case p1 : P || ---
(va)P
PlQ
| P

()

| on : Py

Output
Input

Case
Restriction
Parallel
Replication
Assertion
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MP.Q|a(z).R — Q| R[z := P]

Problem: How can R get to
‘execute’ the newly received P!

Where can x occur in R?

M N.P Output
M(M\z)N.P Input

case p1 : Py || --- || on : P, Case
(va)P Restriction
PlQ Parallel

P Replication
() Assertion

x can only occur in data terms,
assertions and conditions :(
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The rub




The rub

® Psi already can accommodate agents as
data values
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The rub

® Psi already can accommodate agents as
data values

® Psi lacks a notion of higher order variable
that can stand for agents and be
substituted.
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The rub

® Psi already can accommodate agents as
data values

® Psi lacks a notion of higher order variable
that can stand for agents and be
substituted.

® Introducing that is more complicated
than you would think.
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The rub

® Psi already can accommodate agents as
data values

® Psi lacks a notion of higher order variable
that can stand for agents and be
substituted.

® Introducing that is more complicated
than you would think.

® There is a way that is both easier and
more general'
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Clauses

A clause is of the form ‘Z% = Pl

Means that the data term M can be
used as a handle for the agent P

The handle can be invoked in the

new agent form‘run M|




Intuition

Assume a clause M <« P

Sending P along a is then @M .(Q

Receiving a process along a is a(x). (R | run z)
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Intuition

Assume a clause M <« P

Sending P along a is then @M .(Q

Receiving a process along a is a(x). (R | run z)

aM .Q |a(z).(R|runz) — Q| R|run M
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»
a(X).(R| X)

New kind of variable
New kind of
substitution

Ho-pi vs HO-psi

pS|
a(x).(R | run x)

New syntactic construct
(Notion of clause)




Where do clauses live?

One possibility: introduce a new
instance parameter as a set of clauses




Where do clauses live?

One possibility: introduce a new
instance parameter as a set of clauses

Again, there is an easier
and more general way!

Hint: transitions always
depend on environmental

assertions.
(87
Up P — P/
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Entailed by assertions

A clause can be entailed by assertions, as in

\IJI—M<:P|

Formally, clauses can be a subset of the conditions

Clearer terminology: extend I~ to also relate
assertions with conditions and clauses
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Semantics of run

UVhH-M<«P Uvp>P = P

U >run M =5 P




Universal clauses

In some applications it might be sufficient with
universal clauses, entailed by all assertions

Example: universal clauses can express recursive
definitions!

VO. Uk M<a(x).bx.run M

cf pi-calculus

A<=a(x).bx. A
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l ocal clauses

Clauses are entailed by assertions

Handles may contain names and be scoped

zen(M), VFM<«a(z).bx.run M

Pl (vz)((¥) | Q)

Here Q but not P can use run M




Mobile clauses

zen(M), UFM<«<a(z).bxr.run M
P (vz) (V) | Q)

The ability to use run M can be
transmitted by Q by sending 7

Or by sending M itself

In both cases extruding z




Multiple clauses

Nothing prevents the same handle
to occur in many clauses

M <= P
M <= Py

The rule for run M is applicable to all

Nondeterminism (can represent +)
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Requirement on clauses

In any clause M < P

we require n(P) C n(M)

ie, the support of the handle contains at least
the support of the agent it represents.




Motivation: otherwise scope extension fails

Uh-M<«<bN.O
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Motivation: otherwise scope extension fails

UHM<bN.O
b+ M violating n(EN .0) C{b} Cn(M)
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Motivation: otherwise scope extension fails

U M<«<bN.O
b# M violating n(bN .0) C {b} C n(M)
b#run M
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Motivation: otherwise scope extension fails

U M<«<bN.O
b# M violating n(bN .0) C {b} C n(M)
b#run M

(vb)run M ~ run M
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Motivation: otherwise scope extension fails

U M<«<bN.O
b# M violating n(bN .0) C {b} C n(M)
b#run M

(vb)run M ~ run M

bN
Yprun M — ...

U > (vb)run M --- has no transition
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Motivation: otherwise scope extension fails

U M<«<bN.O
b# M violating n(bN .0) C {b} C n(M)
b#run M

Vporun M —
U > (vb)run' Nl
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Example: stacks

Let assertions be sets of parametrised clauses
M(MAz)N < P

MMNN <PecV¥ = U F M(N[Z:=L])<«< Pz :=1]

STACK(Az)x <= Push(Ay)y .run STACK(cons(y, x))
STACK(Az, y)cons(z,y) < Pop x.run STACK(y)
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STACK(Az)x < Push(Ay)y . run STACK(cons(y, z))
STACK(Ax, y)cons(x,y) < Pop x.run STACK(y)
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STACK(Az)x < Push(Ay)y . run STACK(cons(y, z))
STACK(Ax, y)cons(x,y) < Pop = .run STACK(y)

U F STACK(nil) <= Push(Ay)y . run STACK(cons(y, nil))
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STACK(Az)x < Push(Ay)y . run STACK(cons(y, z))
STACK (Ax, y)cons(x,y) < Pop x.run STACK(y)

U F STACK(nil) <= Push(Ay)y . run STACK(cons(y, nil))

U > run STACK(nil) PUShM> run STACK(cons(M,nil))
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STACK (Ax)x <= Push(Ay)y .run STACK(cons(y, z))
STACK (A, y)cons(z, y) < Pop = .run STACK(y)

U F STACK(nil) <= Push(Ay)y . run STACK(cons(y, nil))

U > run STACK(nil) PUShM> run STACK(cons(M,nil))

U > run STACK(cons(M, nil)) PUShM/>

run STACK(cons(M’, cons(M,nil)))

fredag 23 augusti 13



STACK (Ax)x <= Push(Ay)y .run STACK(cons(y, z))
STACK (A, y)cons(z, y) < Pop = .run STACK(y)

U F STACK(nil) <= Push(Ay)y . run STACK(cons(y, nil))

U > run STACK(nil) PUShM> run STACK(cons(M,nil))

U > run STACK(cons(M, nil)) PUShM/>

run STACK(cons(M’, cons(M,nil)))

Pop M

U > run STACK(cons(M, nil))
run STACK (nil)

fredag 23 augusti 13



STACK(Ax)x <= Push(Ay)y . run STACK(cons(y, x))
STACK(Ax, y)cons(x,y) < Pop x.run STACK(y)
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STACK(Ax)x <= Push(Ay)y . run STACK(cons(y, x))
STACK(Ax, y)cons(x,y) < Pop x.run STACK(y)

A stack factory

'a STACK.O
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STACK(Ax)x <= Push(Ay)y . run STACK(cons(y, x))
STACK(Ax, y)cons(x,y) < Pop x.run STACK(y)

A stack factory

'a STACK.O

But this uses the same push and
pop channels for all stacks
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STACK(Ax)x <= Push(Ay)y . run STACK(cons(y, x))
STACK(Ax, y)cons(x,y) < Pop x.run STACK(y)

A stack factory

'a STACK.O

But this uses the same push and
pop channels for all stacks

Alternative:

STACK (A%, 0, ), 0,z < i(Ay)y . run STACK(%, o, cons(y, ))
STACK (A%, 0,x,Y)t,0,cons(z,y) < 0 x.run STACK(Z, 0, )

STACKSTART <= c¢(Push, Pop) . run STACK(( Push, Pop, nil))
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Canonical HO-calculi

The stack example can be generalised considerably

Thm (paraphrased, see paper for details) Any
ordinary psi-calculus of nontrivial expressiveness
can be systematically raised to a higher-order
calculus by letting assertions be sets of
parametrised clauses.




Representing replication

In HO-pi we can encode replication.
Can we do that in HO-psi!?

Yes - at least in enough expressive psi-calculi




Representing replication

In HO-pi we can encode replication.
Can we do that in HO-psi!?

Yes - at least in enough expressive psi-calculi

UM<=Fis 2 characteristic assertion for M and P if

1. V- M < @ implies n(M) C n(¥)
2. UUM=P ¢ iff (=M<«<P VvV Uk
3. n(TM=F) = n(M)




1. V- M < @Q implies n(M) C n(¥)

[2. VRQUMEP ¢ iff (=M<P V \wg)]

3. n(TM=P) = n(M)
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1. V- M < @Q implies n(M) C n(¥)

[2. VRQUMEP ¢ iff (=M<P V \wg)]

3. n(TM=P) = n(M)

This means that the only effect of the characteristic
assertion is to entail the clause M < P
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1. V- M < @Q implies n(M) C n(¥)

[2. VRQUMEP ¢ iff (=M<P V \wg)]

3. n(TM=P) = n(M)

This means that the only effect of the characteristic
assertion is to entail the clause M < P

Thm characteristic assertions always
exist in canonical higher-order calculi
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Representing replication

Let a be fresh and a € n(M)
Let WM<P |run M 1o characteristic for M and P | run M

Then |!P ~ (va)(run M | (M =F e M)
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Representing replication

Let a be fresh and a € n(M)
Let WM<P |run M 1o characteristic for M and P | run M

Then |!P ~ (va)(run M | (|\IJM<:1D e M|))

|dea:
run M (\IJM<:P runM)

(P | run M) (\I,M<:P runM)
(P | (P |run M)) | (@M< ran )

By the semantic rules these all
have the same transitions!
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Representing replication

Let a be fresh and a € n(M)
Let WM<P |run M 1o characteristic for M and P | run M

Then|!P < @ run M | (|\IJM<:1D | r““MD)

——

|dea:
run M (\IJM<:P runM)

(P | run M) (\I,M<:P runM)
(P | (P |run M)) | (@M< ran )

By the semantic rules these all Why the (va)?
have the same transitions!
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Representing replication

Let a be fresh and a € n(M)
Let WM<P |run M 1o characteristic for M and P | run M

Then|!P < @ run M | (|\IJM<:1D | r““MD)

———

|dea:
run M

(P | run M)

(

(

\IJM<:P

\IJM<:P

runM)

run M

(P | (P |run M)) | (A< Tran i)

Otherwise an

By the semantic rules these all  environment might
have the same transitions!

bestow additional
clauses with M
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Representing replication

Let a be fresh and a € n(M)
Let WM<P |run M 1o characteristic for M and P | run M

Then |!P ~ (va)(run M | (|\IJM<:1D e MD)I

Anyway, what is this in HO-Psi?

run M

(P | run M)

(

(

M <=F | run M)

pyM<=P | run M

(P | (P |run M)) | (A< Tran i)

Otherwise an

By the semantic rules these all  environment might
have the same transitions! bestow additional

clauses with M
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Bisimulation

Formally, the only new aspect of higher-order psi is the
inclusion of the run construct with accompanying rule!

No new syntactic categories, substitution etc

Just one more case when doing induction proofs
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So perhaps we can just re-use the old definition!

R is a bistmulation if R(W, P, () implies
1. R(¥,Q, P)

2. Va.bn(a)#Q, V.
U > P = P implies ¥ >Q — Q" and R(¥, P, Q")

3. Y@ F(P)~V¥ R F(Q)
4. YU R(UW, P,Q)
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So perhaps we can just re-use the old definition!

R is a bistmulation if R(W, P, () implies
1. R(V,Q, P)
2. Va.bn(a)#Q, V.
U > P = P implies ¥ >Q — Q" and R(¥, P, Q")
3. Y@ F(P) =¥ ® F(Q)
4. VU'. R(YQV’, P, Q)

Thm: all laws and congruence properties
that used to hold still hold!

Isabelle proof in approx one day!
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So we are done?
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So we are done?

Not quite.
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So we are done?

Not quite.

In normal HO-calculi we would expect, as part of
compositionality, that

P~ = aP.R~aQ.R
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So we are done?

Not quite.

In normal HO-calculi we would expect, as part of
compositionality, that

P~@ = aP.R~aQ.R
In HO-psi the counterpart could be
PXQ = aM.R|¥M=F L gM. . R|UM=@

You believe this?
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PLQ = aM.R|UM=F L gM.R|IM=C

R is a bistmulation if R(V, P, Q) implies
1. R(V,Q,P)

2. Va.bn(a)#Q, V.
U > P = P implies ¥ >Q — Q" and R(¥, P, Q")

3. V@ F(P)~ V¥ ® F(Q)
4. YU R(UW, P,Q)
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PLQ = aM.R|UM=F L gM.R|IM=C

R is a bistmulation if R(V, P, Q) implies
1. R(V,Q,P)

2. Va.bn(a)#Q, V.
U > P = P implies ¥ >Q — Q" and R(¥, P, Q")

[ 3. U@ F(P)~ V& F(Q) j
4. V. ROV, P,Q)

4 )

aM .R| oM<=t 2+ gM . R| IM=C

since the frames are different

- J
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The culprit

URF(P) ~ VF(Q)

UVRQF(P)F ¢ implies YRF(Q)F ¢




The culprit

URF(P) ~ VF(Q)

or in other words
UVRF(P)F

implies

URF(Q)F ¢




The culprit

VRF(P) ~VaF(Q)
or in other words

UVRF(P)F ¢ implies VYRF(Q)F ¢

Relax this condition so that for clauses it
suffices with bisimilar ones!

(a) Vo e C. YRF(P)Fp = VF(Q)F ¢

(b)

V(M < P)eCl UQF(P)FM <P =

\_

1Q'. V& F(Q)

M<=Q N(1,PL,Q) e R
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A strong HO-bisimulation R is a ternary relation between assertions and pairs
of agents such that (¥, P, Q) € R implies all of

1. Static equivalence:

(a) Vo € C. URF(P)F ¢ = URF(Q)F ¢
(b) V(M < P') € Cl. URF(P)FM < P = The only
1Q". VRF(Q)F M <=Q" AN(1,P,Q") e R new thing

2. Symmetry: (V,Q,P) € R
3. Extension of arbitrary assertion: V¥'. (VW' P Q) € R

4. Simulation: for all a, P’ such that bn(a)# WV, @) there exists a )’ such that
if U >P = PthenU >Q — QAP P,Q)eR

We define ¥ > P <~ @ to mean that there exists a strong HO-bisimulation R
such that ¢ > PR Q, and write P ~" Q for1 > P <~ Q.
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Thm: all laws and congruence
properties that used to hold still holds!

The proof took forever to
complete (several months)
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(a) Vpe C. VYRF(P)Fp = VYRQF(Q)tF ¢

(b) V(M < P') € Cl. UQF(P)-M <P =
Q. YRF(Q)F M < Q' (1, P, Q) € R

Why not instead [(\If, P, Q) € 72]




(a) Yo € C. URF(P)F ¢ = UaF(Q)F ¢

(b) V(M < P') € Cl. UQF(P)-M <P =
Q. YRF(Q)F M < Q' (1, P, Q) € R

Why not instead [(\If, P, Q) € 72]

With this we fail to prove compositionality
(still unknown if it holds)




Conclusion

Psi-calculi is a family of process calculi

Accommodates a wide variety of data
terms, functions and properties etc,
based on nominal sets

Meta-theory proved once and for all in
Isabelle
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Outlook

® Extensions
® Combinations
® Applications

® Jool support
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Thank you for your
attention




