Advanced Process
Calculi

Lecture 4: higher-order psi-calculi

Copenhagen, August 201 3

Joachim Parrow

(r)
T (Data) Terms M, N
A Assertions v,

Psi-calculi (e omm -

Channel ~ Object Pattern Test (aka guard)
M N.P Output
M(Ax)N.P Input
case o1 : Py || --- || on : P, Case
(va)P Restriction
P|Q Parallel
P Replication
(W) Assertion

To mean tell W

How to cook a Psi-calculus

1. Define names, data terms, assertions and conditions
can be absolutely anything

fredag 23 augusti 13

How to cook a Psi-calculus

1. Define names, data terms, assertions and conditions
can be absolutely anything

2. Define support and substitution
must satisty the axioms

fredag 23 augusti 13

How to cook a Psi-calculus

1. Define names, data terms, assertions and conditions
can be absolutely anything

2. Define support and substitution
must satisty the axioms

3. Define the morphisms <+, ®, 1,
must satisty the requisites

fredag 23 augusti 13

How to cook a Psi-calculus

1. Define names, data terms, assertions and conditions
can be absolutely anything

2. Define support and substitution
must satisty the axioms

3. Define the morphisms <>, ®, 1, -
D)

must satisty the requisites e
/8
Compositional seman, 'soq}_u
Algebraic laws Q@

Bisimulation theght

@%

fredag 23 augusti 13

* Can capture

*

)

) 4

*

)

Applied pi-calculus (Abadi, Fournet 2001)
Explicit fusion calculus (Wischik, Gardner 2005)
Concurrent constraint pi (Buscemi, Montanari 2007)

Polyadic synchronization (Carbone, Maffeis 2003)

Pattern matching and higher order values (Various)

+ And moreover

)

2 4

Higher-order concurrent constraints

Algebraic operators on communication channels

fredag 23 augusti 13

For every application there is a suitable psi-calculus?

fredag 23 augusti 13

Of course not

Current extensions

Higher-order psi:Agents can be sent
around as data objects.

Broadcast psi: an output action can be
received by many inputs

Sorted psi: A sort system regulates what
can be substituted, sent on channels etc

Priority psi: actions carry priorties, lower
are preempted by higher

Psi and sorts

Problem: Substitution must be total, and all
terms can act as both subjects and objects

fredag 23 augusti 13

Psi and sorts

Problem: Substitution must be total, and all
terms can act as both subjects and objects

Effect: over-expressiveness. It is difficult to

restrict a calculus to avoid useless agents,
aka junk

fredag 23 augusti 13

Psi and sorts

Example: polyadic pi. Objects of prefixes are
name tuples, as in a(x,,...,x.).P

Psi and sorts

Example: polyadic pi. Objects of prefixes are
name tuples, as in a(x,,...,x.).P

Corresponding psi-calculus: let data terms be
name tuples.VWVe then also get:

(21, Tn)y . P Tuples as channels

Psi and sorts

Example: polyadic pi. Objects of prefixes are
name tuples, as in a(x,,...,x.).P

Corresponding psi-calculus: let data terms be
name tuples.VWVe then also get:

(21, Tn)y . P Tuples as channels

7

(f,y, Z)[y = (uvw)] — (ZC, (uvw)v Z)

Nested tuples (aka trees)

Psi and sorts

Example: polyadic pi. Objects of prefixes are
name tuples, as in a(x,,...,x.).P

Corresponding psi-calculus: let data terms be
name tuples.VWVe then also get:

.\ Tuples as channels

= (2, (u,w), 2)

Nested tuples (aka trees)

fredag 23 augusti 13

Dealing with junk

Allow it, using (ad hoc) invariants
to ensure it never arises

or

Disallow it, using a formal sort system

fredag 23 augusti 13

Sorts

Assume a set of sorts S

Names and data terms have unique sort

fredag 23 augusti 13

Sorts

Assume a set of sorts S

Names and data terms have unique sort

S xS Can be used to receive
S xS C(Can be used to send
S x § Can be substituted by

A R R
IRRIANIA

fredag 23 augusti 13

Sorts

Assume a set of sorts S

Names and data terms have unique sort

S xS Can be used to receive
S xS C(Can be used to send
S x § Can be substituted by

A R R
IRRIANIA

Well-formedness criteria in writing agents, eg in

MN .P requires sort(M) x sort(V)

fredag 23 augusti 13

Sorts

Assume a set of sorts S

Names and data terms have unique sort

S xS Can be used to receive
S xS C(Can be used to send
S x § Can be substituted by

A R R
IRRIANIA

Well-formedness criteria in writing agents, eg in

MN .P requires sort(M) x sort(V)

Input rule: substitution conforms to <

fredag 23 augusti 13

Example: polyadic pi

Names N = a,b, ...
T=NuwN*

S = {chan, tup}
SORT(a) = chan
SORT(a) = tup
chan < tup

chan « tup

chan < chan

fredag 23 augusti 13

fredag 23 augusti 13

Righer-order psi

y
5 ‘ .,
: i :&""’

\J
A
-
‘4 L | P,

o \ \

D By — —)

. i T
>

5

Righer-order

logic: quantify over predicates

functions: can have functions as parameters

process calculi: agents can be transmitted in
communications

fredag 23 augusti 13

Righer-order pi
al . Q) Send the agent P along a and continue as Q

a(X).R Receive for the agent variable X along a and

continue as R
New syntactic category!

fredag 23 augusti 13

Righer-order pi
al . Q) Send the agent P along a and continue as Q

a(X).R Receive for the agent variable X along a and

continue as R
New syntactic category!

aP.Qla(X).R— Q| R[X := P]

Higher-order substitution!

fredag 23 augusti 13

Righer-order pi
al . Q) Send the agent P along a and continue as Q

a(X).R Receive for the agent variable X along a and

continue as R
New syntactic category!

aP.Q|a(X).R— Q| R[X := P]
Eg Higher-order substitution!
abP.Q|a(X). (R | X)

Variable used as agent

fredag 23 augusti 13

Righer-order pi
al . Q) Send the agent P along a and continue as Q

a(X).R Receive for the agent variable X along a and

continue as R
New syntactic category!

aP.Qla(X).R— Q| R[X := P]
E Higher-order substitution!
&
aP.Qla(X).(R|X)—Q|R|P

Variable used as agent

fredag 23 augusti 13

Higher-order psi already?

(r - .
T (Data) Tems M, NI Jerms can be any nominal set
A Assertions v, v

C Conditions ©, Q') .
> © Agents constitute a nominal set!

fredag 23 augusti 13

Higher-order psi already?

(r - .
T (Data) Tems M, NI Jerms can be any nominal set
A Assertions v, v

C Conditions ©, ') .
> © Agents constitute a nominal set!

So we choose T = the set of agents!

fredag 23 augusti 13

Higher-order psi already?

.

4 - .
T (Data) Tems M, NI Jerms can be any nominal set

A Assertions v,
C Conditions ©, '

© Agents constitute a nominal set!

So we choose T = the set of agents!

MP.Q|a(x).R— Q| Rz := P]

R receives the agent P, substituting x

fredag 23 augusti 13

MP.Q|a(z).R — Q| R[z := P]

Problem: How can R get to
‘execute’ the newly received P!

Where can x occur in R?

fredag 23 augusti 13

MP.Q|a(z).R — Q| R[z := P]

Problem: How can R get to

‘execute’ the newly received P!

Where can x occur in R?

M N.P
M(\Z)N.P
case p1 : P || ---
(va)P
PlQ
| P

()

| on : Py

Output
Input

Case
Restriction
Parallel
Replication
Assertion

fredag 23 augusti 13

MP.Q|a(z).R — Q| R[z := P]

Problem: How can R get to
‘execute’ the newly received P!

Where can x occur in R?

M N.P Output
M(M\z)N.P Input

case p1 : Py || --- || on : P, Case
(va)P Restriction
PlQ Parallel

P Replication
() Assertion

x can only occur in data terms,
assertions and conditions :(

fredag 23 augusti 13

The rub

The rub

® Psi already can accommodate agents as
data values

fredag 23 augusti 13

The rub

® Psi already can accommodate agents as
data values

® Psi lacks a notion of higher order variable
that can stand for agents and be
substituted.

fredag 23 augusti 13

The rub

® Psi already can accommodate agents as
data values

® Psi lacks a notion of higher order variable
that can stand for agents and be
substituted.

® Introducing that is more complicated
than you would think.

fredag 23 augusti 13

The rub

® Psi already can accommodate agents as
data values

® Psi lacks a notion of higher order variable
that can stand for agents and be
substituted.

® Introducing that is more complicated
than you would think.

® There is a way that is both easier and
more general'

fredag 23 augusti 13

Clauses

A clause is of the form ‘Z% = Pl

Means that the data term M can be
used as a handle for the agent P

The handle can be invoked in the

new agent form‘run M|

Intuition

Assume a clause M <« P

Sending P along a is then @M .(Q

Receiving a process along a is a(x). (R | run z)

fredag 23 augusti 13

Intuition

Assume a clause M <« P

Sending P along a is then @M .(Q

Receiving a process along a is a(x). (R | run z)

aM .Q |a(z).(R|runz) — Q| R|run M

fredag 23 augusti 13

»
a(X).(R| X)

New kind of variable
New kind of
substitution

Ho-pi vs HO-psi

pS|
a(x).(R | run x)

New syntactic construct
(Notion of clause)

Where do clauses live?

One possibility: introduce a new
instance parameter as a set of clauses

Where do clauses live?

One possibility: introduce a new
instance parameter as a set of clauses

Again, there is an easier
and more general way!

Hint: transitions always
depend on environmental

assertions.
(87
Up P — P/

fredag 23 augusti 13

Entailed by assertions

A clause can be entailed by assertions, as in

\IJI—M<:P|

Formally, clauses can be a subset of the conditions

Clearer terminology: extend I~ to also relate
assertions with conditions and clauses

fredag 23 augusti 13

Semantics of run

UVhH-M<«P Uvp>P = P

U >run M =5 P

Universal clauses

In some applications it might be sufficient with
universal clauses, entailed by all assertions

Example: universal clauses can express recursive
definitions!

VO. Uk M<a(x).bx.run M

cf pi-calculus

A<=a(x).bx. A

fredag 23 augusti 13

l ocal clauses

Clauses are entailed by assertions

Handles may contain names and be scoped

zen(M), VFM<«a(z).bx.run M

Pl (vz)((¥) | Q)

Here Q but not P can use run M

Mobile clauses

zen(M), UFM<«<a(z).bxr.run M
P (vz) (V) | Q)

The ability to use run M can be
transmitted by Q by sending 7

Or by sending M itself

In both cases extruding z

Multiple clauses

Nothing prevents the same handle
to occur in many clauses

M <= P
M <= Py

The rule for run M is applicable to all

Nondeterminism (can represent +)

fredag 23 augusti 13

Requirement on clauses

In any clause M < P

we require n(P) C n(M)

ie, the support of the handle contains at least
the support of the agent it represents.

Motivation: otherwise scope extension fails

Uh-M<«<bN.O

fredag 23 augusti 13

Motivation: otherwise scope extension fails

UHM<bN.O
b+ M violating n(EN .0) C{b} Cn(M)

fredag 23 augusti 13

Motivation: otherwise scope extension fails

U M<«<bN.O
b# M violating n(bN .0) C {b} C n(M)
b#run M

fredag 23 augusti 13

Motivation: otherwise scope extension fails

U M<«<bN.O
b# M violating n(bN .0) C {b} C n(M)
b#run M

(vb)run M ~ run M

fredag 23 augusti 13

Motivation: otherwise scope extension fails

U M<«<bN.O
b# M violating n(bN .0) C {b} C n(M)
b#run M

(vb)run M ~ run M

bN
Yprun M — ...

U > (vb)run M --- has no transition

fredag 23 augusti 13

Motivation: otherwise scope extension fails

U M<«<bN.O
b# M violating n(bN .0) C {b} C n(M)
b#run M

Vporun M —
U > (vb)run' Nl

fredag 23 augusti 13

Example: stacks

Let assertions be sets of parametrised clauses
M(MAz)N < P

MMNN <PecV¥ = U F M(N[Z:=L])<«< Pz :=1]

STACK(Az)x <= Push(Ay)y .run STACK(cons(y, x))
STACK(Az, y)cons(z,y) < Pop x.run STACK(y)

fredag 23 augusti 13

STACK(Az)x < Push(Ay)y . run STACK(cons(y, z))
STACK(Ax, y)cons(x,y) < Pop x.run STACK(y)

fredag 23 augusti 13

STACK(Az)x < Push(Ay)y . run STACK(cons(y, z))
STACK(Ax, y)cons(x,y) < Pop = .run STACK(y)

U F STACK(nil) <= Push(Ay)y . run STACK(cons(y, nil))

fredag 23 augusti 13

STACK(Az)x < Push(Ay)y . run STACK(cons(y, z))
STACK (Ax, y)cons(x,y) < Pop x.run STACK(y)

U F STACK(nil) <= Push(Ay)y . run STACK(cons(y, nil))

U > run STACK(nil) PUShM> run STACK(cons(M,nil))

fredag 23 augusti 13

STACK (Ax)x <= Push(Ay)y .run STACK(cons(y, z))
STACK (A, y)cons(z, y) < Pop = .run STACK(y)

U F STACK(nil) <= Push(Ay)y . run STACK(cons(y, nil))

U > run STACK(nil) PUShM> run STACK(cons(M,nil))

U > run STACK(cons(M, nil)) PUShM/>

run STACK(cons(M’, cons(M,nil)))

fredag 23 augusti 13

STACK (Ax)x <= Push(Ay)y .run STACK(cons(y, z))
STACK (A, y)cons(z, y) < Pop = .run STACK(y)

U F STACK(nil) <= Push(Ay)y . run STACK(cons(y, nil))

U > run STACK(nil) PUShM> run STACK(cons(M,nil))

U > run STACK(cons(M, nil)) PUShM/>

run STACK(cons(M’, cons(M,nil)))

Pop M

U > run STACK(cons(M, nil))
run STACK (nil)

fredag 23 augusti 13

STACK(Ax)x <= Push(Ay)y . run STACK(cons(y, x))
STACK(Ax, y)cons(x,y) < Pop x.run STACK(y)

fredag 23 augusti 13

STACK(Ax)x <= Push(Ay)y . run STACK(cons(y, x))
STACK(Ax, y)cons(x,y) < Pop x.run STACK(y)

A stack factory

'a STACK.O

fredag 23 augusti 13

STACK(Ax)x <= Push(Ay)y . run STACK(cons(y, x))
STACK(Ax, y)cons(x,y) < Pop x.run STACK(y)

A stack factory

'a STACK.O

But this uses the same push and
pop channels for all stacks

fredag 23 augusti 13

STACK(Ax)x <= Push(Ay)y . run STACK(cons(y, x))
STACK(Ax, y)cons(x,y) < Pop x.run STACK(y)

A stack factory

'a STACK.O

But this uses the same push and
pop channels for all stacks

Alternative:

STACK (A%, 0,), 0,z < i(Ay)y . run STACK(%, o, cons(y,))
STACK (A%, 0,x,Y)t,0,cons(z,y) < 0 x.run STACK(Z, 0,)

STACKSTART <= c¢(Push, Pop) . run STACK((Push, Pop, nil))

fredag 23 augusti 13

Canonical HO-calculi

The stack example can be generalised considerably

Thm (paraphrased, see paper for details) Any
ordinary psi-calculus of nontrivial expressiveness
can be systematically raised to a higher-order
calculus by letting assertions be sets of
parametrised clauses.

Representing replication

In HO-pi we can encode replication.
Can we do that in HO-psi!?

Yes - at least in enough expressive psi-calculi

Representing replication

In HO-pi we can encode replication.
Can we do that in HO-psi!?

Yes - at least in enough expressive psi-calculi

UM<=Fis 2 characteristic assertion for M and P if

1. V- M < @ implies n(M) C n(¥)
2. UUM=P ¢ iff (=M<«<P VvV Uk
3. n(TM=F) = n(M)

1. V- M < @Q implies n(M) C n(¥)

[2. VRQUMEP ¢ iff (=M<P V \wg)]

3. n(TM=P) = n(M)

fredag 23 augusti 13

1. V- M < @Q implies n(M) C n(¥)

[2. VRQUMEP ¢ iff (=M<P V \wg)]

3. n(TM=P) = n(M)

This means that the only effect of the characteristic
assertion is to entail the clause M < P

fredag 23 augusti 13

1. V- M < @Q implies n(M) C n(¥)

[2. VRQUMEP ¢ iff (=M<P V \wg)]

3. n(TM=P) = n(M)

This means that the only effect of the characteristic
assertion is to entail the clause M < P

Thm characteristic assertions always
exist in canonical higher-order calculi

fredag 23 augusti 13

Representing replication

Let a be fresh and a € n(M)
Let WM<P |run M 1o characteristic for M and P | run M

Then |!P ~ (va)(run M | (M =F e M)

fredag 23 augusti 13

Representing replication

Let a be fresh and a € n(M)
Let WM<P |run M 1o characteristic for M and P | run M

Then |!P ~ (va)(run M | (|\IJM<:1D e M|))

|dea:
run M (\IJM<:P runM)

(P | run M) (\I,M<:P runM)
(P | (P |run M)) | (@M< ran)

By the semantic rules these all
have the same transitions!

fredag 23 augusti 13

Representing replication

Let a be fresh and a € n(M)
Let WM<P |run M 1o characteristic for M and P | run M

Then|!P < @ run M | (|\IJM<:1D | r““MD)

——

|dea:
run M (\IJM<:P runM)

(P | run M) (\I,M<:P runM)
(P | (P |run M)) | (@M< ran)

By the semantic rules these all Why the (va)?
have the same transitions!

fredag 23 augusti 13

Representing replication

Let a be fresh and a € n(M)
Let WM<P |run M 1o characteristic for M and P | run M

Then|!P < @ run M | (|\IJM<:1D | r““MD)

———

|dea:
run M

(P | run M)

(

(

\IJM<:P

\IJM<:P

runM)

run M

(P | (P |run M)) | (A< Tran i)

Otherwise an

By the semantic rules these all environment might
have the same transitions!

bestow additional
clauses with M

fredag 23 augusti 13

Representing replication

Let a be fresh and a € n(M)
Let WM<P |run M 1o characteristic for M and P | run M

Then |!P ~ (va)(run M | (|\IJM<:1D e MD)I

Anyway, what is this in HO-Psi?

run M

(P | run M)

(

(

M <=F | run M)

pyM<=P | run M

(P | (P |run M)) | (A< Tran i)

Otherwise an

By the semantic rules these all environment might
have the same transitions! bestow additional

clauses with M

fredag 23 augusti 13

Bisimulation

Formally, the only new aspect of higher-order psi is the
inclusion of the run construct with accompanying rule!

No new syntactic categories, substitution etc

Just one more case when doing induction proofs

fredag 23 augusti 13

So perhaps we can just re-use the old definition!

R is a bistmulation if R(W, P, () implies
1. R(¥,Q, P)

2. Va.bn(a)#Q, V.
U > P = P implies ¥ >Q — Q" and R(¥, P, Q")

3. Y@ F(P)~V¥ R F(Q)
4. YU R(UW, P,Q)

fredag 23 augusti 13

So perhaps we can just re-use the old definition!

R is a bistmulation if R(W, P, () implies
1. R(V,Q, P)
2. Va.bn(a)#Q, V.
U > P = P implies ¥ >Q — Q" and R(¥, P, Q")
3. Y@ F(P) =¥ ® F(Q)
4. VU'. R(YQV’, P, Q)

Thm: all laws and congruence properties
that used to hold still hold!

Isabelle proof in approx one day!

fredag 23 augusti 13

So we are done?

fredag 23 augusti 13

So we are done?

Not quite.

fredag 23 augusti 13

So we are done?

Not quite.

In normal HO-calculi we would expect, as part of
compositionality, that

P~ = aP.R~aQ.R

fredag 23 augusti 13

So we are done?

Not quite.

In normal HO-calculi we would expect, as part of
compositionality, that

P~@ = aP.R~aQ.R
In HO-psi the counterpart could be
PXQ = aM.R|¥M=F L gM. . R|UM=@

You believe this?

fredag 23 augusti 13

PLQ = aM.R|UM=F L gM.R|IM=C

R is a bistmulation if R(V, P, Q) implies
1. R(V,Q,P)

2. Va.bn(a)#Q, V.
U > P = P implies ¥ >Q — Q" and R(¥, P, Q")

3. V@ F(P)~ V¥ ® F(Q)
4. YU R(UW, P,Q)

fredag 23 augusti 13

PLQ = aM.R|UM=F L gM.R|IM=C

R is a bistmulation if R(V, P, Q) implies
1. R(V,Q,P)

2. Va.bn(a)#Q, V.
U > P = P implies ¥ >Q — Q" and R(¥, P, Q")

[3. U@ F(P)~ V& F(Q) j
4. V. ROV, P,Q)

4)

aM .R| oM<=t 2+ gM . R| IM=C

since the frames are different

- J

fredag 23 augusti 13

The culprit

URF(P) ~ VF(Q)

UVRQF(P)F ¢ implies YRF(Q)F ¢

The culprit

URF(P) ~ VF(Q)

or in other words
UVRF(P)F

implies

URF(Q)F ¢

The culprit

VRF(P) ~VaF(Q)
or in other words

UVRF(P)F ¢ implies VYRF(Q)F ¢

Relax this condition so that for clauses it
suffices with bisimilar ones!

(a) Vo e C. YRF(P)Fp = VF(Q)F ¢

(b)

V(M < P)eCl UQF(P)FM <P =

_

1Q'. V& F(Q)

M<=Q N(1,PL,Q) e R

fredag 23 augusti 13

A strong HO-bisimulation R is a ternary relation between assertions and pairs
of agents such that (¥, P, Q) € R implies all of

1. Static equivalence:

(a) Vo € C. URF(P)F ¢ = URF(Q)F ¢
(b) V(M < P') € Cl. URF(P)FM < P = The only
1Q". VRF(Q)F M <=Q" AN(1,P,Q") e R new thing

2. Symmetry: (V,Q,P) € R
3. Extension of arbitrary assertion: V¥'. (VW' P Q) € R

4. Simulation: for all a, P’ such that bn(a)# WV, @) there exists a)’ such that
if U >P = PthenU >Q — QAP P,Q)eR

We define ¥ > P <~ @ to mean that there exists a strong HO-bisimulation R
such that ¢ > PR Q, and write P ~" Q for1 > P <~ Q.

fredag 23 augusti 13

fredag 23 augusti 13

Thm: all laws and congruence
properties that used to hold still holds!

The proof took forever to
complete (several months)

fredag 23 augusti 13

(a) Vpe C. VYRF(P)Fp = VYRQF(Q)tF ¢

(b) V(M < P') € Cl. UQF(P)-M <P =
Q. YRF(Q)F M < Q' (1, P, Q) € R

Why not instead [(\If, P, Q) € 72]

(a) Yo € C. URF(P)F ¢ = UaF(Q)F ¢

(b) V(M < P') € Cl. UQF(P)-M <P =
Q. YRF(Q)F M < Q' (1, P, Q) € R

Why not instead [(\If, P, Q) € 72]

With this we fail to prove compositionality
(still unknown if it holds)

Conclusion

Psi-calculi is a family of process calculi

Accommodates a wide variety of data
terms, functions and properties etc,
based on nominal sets

Meta-theory proved once and for all in
Isabelle

fredag 23 augusti 13

Outlook

® Extensions
® Combinations
® Applications

® Jool support

fredag 23 augusti 13

Thank you for your
attention

