Advanced Process Calculi

Introduction to Psi-Calculi Workbench

Copenhagen, August 2013
Ramūnas Gutkovas

Psi-Calculi Workbench (Pwb)

homepage: http://goo.g|/ZJPu9

- Tool for modeling concurrency
- Parametric:
- Data, Logics, Logical Assertions
- Based on psi-calculi framework
- Free software

Features

Communication Primitives

Wireless Broadcast

Parametric On

Data Structures e.g., Names, Bits, Vectors, ADTs, Trees, ...
Logics
e.g., EUF, FOL, Equational Theory, ...

Logical Assertions
e.g., Knows a secret, Connectivity, Constraints...

Functionality

Symbolic Execution

$$
\Psi \triangleright P \underset{C^{\prime}}{\underset{ }{\alpha}} P^{\prime}
$$

Symbolic Behavioral Equivalence Checking

$$
P \sim Q
$$

Tool Factory

Pwb sim
 bisim cmd

Tool Factory

My-calculus workbench

My-calculus
parameters:
TAC $+$
Solvers
Pwb
sim
bisim
cmd

Two Users

Two Users

User

who is interested in a particular instance

Two Users

User
 Implementer

who is interested in a particular instance
who writes instances

Two Users

User

Implementer

who interested in a particular instance

who writes
instances

Two Users

Semantics

User
who interested in a particular instance

Implementer

who writes
instances

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Use Case: WSN

- Network consists of a set of nodes and one distinguished node sink
- Protocol has two phases:
I. Establishment of a routing tree (rooted at sink): nodes wirelessly broadcast a special initialization message.

2. Data collection: nodes send and forward data via established route using (reliable) unicast messages

Specification in Pwb

Node Behavior

```
Sink(nodeId, sinkChan) <=
    '"init(nodeId)"! <sinkChan> .
    ! "data(sinkChan)"(x). ProcData<x> ;
Node(nodeId, nodeChan, datum) <=
    "init(nodeId)"? (chan) .
    '"init(nodeId)"! <nodeChan> .
    '"data(chan)"<datum> .
    ! "data(nodeChan)"(x).
        '"data(chan)"<x> ;
```


Specification in Pwb

Node Behavior

Specification in Pwb

Node Behavior

Specification in Pwb

Node Behavior

Sink(nodeId, sinkChan) <=
'"init(nodeId)"! <sinkChan> .
! "data(sinkChan)"(x). ProcData<x> ;
Node(nodeId, nodeChan, datum) <=
"init(nodeId)"? (chan)
'"init(nodeId)"! <nodeChan> .
'"data(chan)"<datum> .
! "data(nodeChan)" (x).
'"data(chan)"<x> ;

Node Connectivity for Broadcasting

graph represented as edge list

$$
(0,1),(0,2),(1,2)
$$

Specification in Pwb

Node Behavior

Sink(nodeId, sinkChan) <=
'"init(nodeId)"! <sinkChan> .
! "data(sinkChan)"(x). ProcData<x> ;

Node(nodeId, nodeChan, datum) <=
"init(nodeId)"? (chan) .
'"init(nodeId)"! <nodeChan> .
'"data(chan)"<datum> .
! "data(nodeChan)"(x).
'"data(chan)"<x> ;

System

Node Connectivity for Broadcasting

Sink

Node

Node
graph represented as edge list
$(0,1),(0,2),(1,2)$

Establishment of a Routing Tree (I)

(new sinkChan)
(new chan1)
(new chan2)

true

Sink

Node

\&-- broadcasts \&.....can unicast

Establishment of a Routing Tree (I)

\&-.. broadcasts
a.....can unicast

Establishment of a Routing Tree (I)

D connectivity as current assertion
"init(0)"!(new sinkChan)sinkChan
 (((new chan1) (
'"init(1)"!<chan1>.
'"data(sinkChan)"<datum1>.
! ("data(chan1)"(gnb).
'"data(sinkChan)"<gnb>))) |
((new chan2))
'"init(2)"!<chan2>.
'"data(sinkChan)"<datum2>.

! ("data (chan2)"(gnb).
'"data(sinkChan)"<gnb>))))

Establishment of a Routing Tree (2)

```
(!("data(sinkChan)"(gnb). ProcData<gnb>)) |
(((new chan1)(
            '"init(1)"!<chan1>.
            '"data(sinkChan)"<datum1>.
            !("data(chan1)"(gnb).
                '"data(sinkChan)"<gnb>))) |
    ((new chan2)(
            '"init(2)"!<chan2>.
            '"data(sinkChan)"<datum2>.
                !("data(chan2)"(gnb).
                '"data(sinkChan)"<gnb>))))
```

 true

\&-- broadcasts
«....can unicast

Establishment of a Routing Tree (2)

(! ("data(sinkChan)"(gnb). ProcData<gnb>)) | (((new chan1) (
'"init(1)"!<chan1>。
'"data(sinkChan)"<datum1>.
! ("data (chan1)" (gnb) .
'"data(sinkChan)"<gnb>))) |
((new chan2) (
'"init(2)"!<chan2>.
'"data(sinkChan)"<datum2>.
! ("data (chan2)" (gnb) .
'"data(sinkChan)"<gnb>))))
"init(1)"! (new chan1)chan1
true
(!("data(sinkChan)"(gnc). ProcData<gnc>)) |
((' "data (sinkChan) "<datum1>.
Sink

! ("data(chan1)"(gnc). " "data(sinkChan)"<gnc>)) |
((new chan2) (
\&-..-broadcasts
'"init(2)"!<chan2>.
'"data(sinkChan)"<datum2>.
\&.....can unicast ! ("data (chan2)" (gnc).
'"data(sinkChan)"<gnc>))))

Data Collection

\triangleright
(!("data(sinkChan)"(gnc). ProcData<gnc>)) | (('"data (sinkChan)"<datum1>.

\&- - broadcasts
$<\cdots$ can unicast
\leftarrow unicasts

Data Collection

\triangleright

Weak Bisimulation Checking

psi> $a(x)^{\sim}$ *tau*. $a(x)$;
$([], 1)$
psi> $a(x) \mid b(x) \sim$ case $T: d(x) \cdot b(x)[] T: b(x) \cdot a(x) ;$
([d := a], 1)

Pwb

User's perspective

Command Interpreter Syntax Layers

- Commands
- Processes
- Parameters

Commands

psi> <command> ;

Commands

sstep <process>
wsstep <process>

command terminator

symbolic execution interpreter weak symbolic execution
<process> ~ <process> weak symbolic bisimulation checking input "<file name>" reads commands from file

+ commands altering the process environment

Commands

> sstep <process>
> wsstep <process>
> enter their own command interpreter
> [0-9]+ - selecting
> q - exiting
> b-backtracking

<process> ~ <process> weak symbolic bisimulation checking
input "<file name>" reads commands from file

+ commands altering the processenvironment

<process> Synta

$\mathrm{M}\left(\mathrm{X}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) . \mathrm{P}$
, $\mathrm{M}<\mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{n}}>. \mathrm{P}$
$\mathrm{M} \boldsymbol{P}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) . \mathrm{P}$
$, \mathrm{M}!<\mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{n}}>. \mathrm{P}$

Unicast Input
Unicast Output
Broadcast Input
Broadcast Output

<process> Synta.

Polyadic

$M\left(X_{1}, \ldots, x_{n}\right) . P$
${ }^{\prime} \mathrm{M} \leqslant \mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{n}}>. \mathrm{P}$
$\mathrm{M} \boldsymbol{?}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) . \mathrm{P}$
, $\mathrm{M}!\in \mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{n}}>. \mathrm{P}$

Unicast Input
Unicast Output
Broadcast Input
Broadcast Output

<process> Synta.

Polyadic
$\mathrm{M}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right) . \mathrm{P}$
, $\mathrm{M} \leqslant \mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{n}}>. \mathrm{P}$
$\mathrm{M} \boldsymbol{P}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) . \mathrm{P}$
${ }^{\prime} \mathrm{M}!<\mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{n}}>. \mathrm{P}$

Unicast Input
Unicast Output
Broadcast Input
Broadcast Output

Not patterns :(

<process> Synta.

Polyadic
$\mathrm{M}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right) . \mathrm{P}$
, $\mathrm{M} \leqslant \mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{n}}>. \mathrm{P}$
$\mathrm{M} \boldsymbol{?}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \cdot \mathrm{P}$
$, \mathrm{M}!\in \mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{n}}>. \mathrm{P}$
tau. P

Unicast Input
Unicast Output
Broadcast Input
Broadcast Output
Silent Prefix

Not patterns :(

<process> Synta

$$
\begin{array}{cl}
P & \text { process } \\
\mathrm{M}, \mathrm{~N} & \text { terms } \\
\mathrm{X} & \text { names }
\end{array}
$$

Polyadic
$\mathrm{M}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right) . \mathrm{P}$
, $\mathrm{M} \leqslant \mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{n}}>. \mathrm{P}$
$\mathrm{M} \boldsymbol{?}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \cdot \mathrm{P}$
, $\mathrm{M}!\leqslant \mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{n}}>. \mathrm{P}$
tau . P

Unicast Input
Unicast Output
Broadcast Input
Broadcast Output
Silent Prefix
Useful, e.g., guarding assertions
$\operatorname{IVI}!\left(x_{1}, \ldots, x_{n}\right) \cdot r$
, $\mathrm{M}!<\mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{n}}>. \mathrm{P}$
tau. P

Broaocast Ir
P process
Broadcast C M,N terms
Psi assertion phi condition
x, a names
case phi ${ }_{l}: P$ [] ... [] phin $: P$
Case
(new a) P
Restriction
$P \mid Q$
Parallel
(| Psi |)
Assertion
! P
Replication

IVI $!\left(X_{1}, \ldots, x_{n}\right) \cdot P$
, $\mathrm{M}!<\mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{n}}>. \mathrm{P}$
tau. P

Broadcast Ir
P process
Broadcast C
Silent Prefix
M,N terms
Psi assertion phi condition
x, a names
case phi ${ }_{1}: P$ [] ... [] phin $: P$
Case
(new a) P
Restriction
$P \mid Q$
Parallel
(| Psi |)
Assertion
! P
Replication

$$
\mathrm{A}<\mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{n}}>
$$

Process Invocation

case phi $1: P[] \ldots[]$ phin $_{n}: P$
Case
(new a) P
Restriction
$P \mid Q \quad$ Parallel
(| Psi |)
Assertion
! P
Replication

$$
\mathrm{A}<\mathbb{M}_{1}, \ldots, \mathbb{M}_{\mathrm{n}}>
$$

Process Invocation
Similar to HO-Psi's run

IVI $\%\left(x_{1}, \ldots, x_{n}\right) \cdot r$
broaocast Ir
, $\mathrm{M}!<\mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{n}}>. \mathrm{P}$
tau. P
P process
Broadcast (M,N terms
Psi assertion phi condition x, a names
case phi ${ }_{1}: P$ [] ... [] phin $: P$
Case

Process constant

$$
==
$$

identifier in a process
environment

$$
!P
$$

$$
\text { A }<\mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{n}}>
$$

Restriction
Parallel
Assertion
Replication
Process Invocation

Similar to HO-Psi's run

Process Environment

is an environment of processes

Process Environment

is an environment of processes process clauses

$$
\mathrm{A}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)<=\mathrm{P}
$$

Process Environment

is an environment of processes process clauses

$$
\mathrm{A}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)<=\mathrm{P}
$$

Req. $\quad \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ must be in the support of P assertions must be guarded in P

Process Environment

is an environment of processes process clauses

$$
\mathrm{A}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)<=\mathrm{P}
$$

Req. $\quad X_{1}, \ldots, X_{n}$ must be in the support of P assertions must be guarded in P

Ex. $\sqrt{\operatorname{Proc} 2(c h a n)}<=\operatorname{chan}(x) .0$

$$
\begin{array}{cc}
\mathbf{x} & \operatorname{Procl}()<=\operatorname{chan}(\mathrm{x}) \cdot 0 \\
\mathbf{v} & \operatorname{Proc} 3(\operatorname{chan}) \\
\mathbf{x} & <=\operatorname{chan}(\mathrm{x}) \cdot(\mid \text { Psi } \mid) \\
\operatorname{Procl}() & <=(|\operatorname{Psi}|)
\end{array}
$$

Process Environment

is an environment of processes process clauses

$$
\mathrm{A}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)<=\mathrm{P}
$$

Req. $\quad \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ must be in the support of P assertions must be guarded in P

Ex. $\sqrt{ } \operatorname{Proc} 2(c h a n)<=\operatorname{chan}(x) 0$

Pwb accepts them by giving a warning, however you won't produce transitions

Process Environment

is an environment of processes process clauses

Process Invocation

Non-determinism

invocation
Proc<chan>
has two transitions

Mutually Recursive

```
def {
    Proc(x) <= x(x).Agnt<x>;
    Agnt(x) <= 'x<x>.Proc<x>;
}
```


Cycles are not allowed

$$
\operatorname{Proc}(x)<=\operatorname{Proc}<\mathrm{x}>
$$

has not transtitions

Parameter Syntax

The params. M, N, phi, Psi and names X, a
are anything that the implementer intended
however
non alpha-numeric strings need to be quoted

```
M( }\mp@subsup{\textrm{x}}{1}{},\ldots,\mp@subsup{\textrm{x}}{n}{}).
, M < N N1, .., N N > . P
M ? ( }\mp@subsup{\textrm{x}}{1}{},\ldots,\mp@subsup{\textrm{x}}{n}{}).\textrm{P
, M! < N N , .., N N N > . P
case phin : P [] ... [] phin : P
(new a) P
P|Q
(| Psi |)
! P
A< M M , .., MM M
```


Parameter Syntax

The params. M, N, phi, Psi and names X, a
are anything that the implementer intended
however
non alpha-numeric strings need to be quoted
ex. X 'addr:port<cons(I, nil)>. 0
$\sqrt{ }{ }^{\prime}$ "addr:port">"cons(I, nil)">. 0

```
M( }\mp@subsup{\textrm{X}}{1}{},\ldots,\mp@subsup{x}{n}{\prime}).
'M
M ? ( }\mp@subsup{\textrm{X}}{1}{},\ldots,\mp@subsup{\textrm{X}}{n}{}).\textrm{P
, M! < NN , .., , N
case phin : P [] ... [] phin : P
(new a) P
P|Q
(| Psi |)
! P
A< M
```

ex. X 'addr:port<cons(I, nil)>. 0
$\sqrt{ }$ '"addr:port">"cons(I, nil)">. 0

Pwb

Intersection: Semantics

Symbolic Semantics

- More abstract
- No infinite branching
- Sound and complete wrt ordinary semantics

Case for Symbolic

In pi-calculus

$$
\overline{a(x) . P \xrightarrow{a y} P[x:=y]} \ln
$$

Any problems computing this rule?

A Case for Symbolic

infinite domain

In pi-calculus

$$
a(x) \cdot P \xrightarrow{\text { ay }} P[x:=y] \ln
$$

Any problems computing this rule?

Thus
 Infinitely many transitions

Late Symbolic Semantics

$$
\begin{aligned}
& \text { In } \frac{y \# M, P, x}{\underline{M}(\lambda x) x \cdot P \xrightarrow[\{1+M \dot{\leftrightarrow}\}\}]{\underline{y}(x)} P} \\
& \text { Out } \frac{y \# M, N, P}{\bar{M} N \cdot P \underset{\{1 \vdash M \dot{\triangleleft}\}\}}{ } P}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{PAR} \frac{P \xrightarrow[C]{\stackrel{\alpha}{\longrightarrow}} P^{\prime}}{P\left|Q \xrightarrow[\mathcal{F}(Q) \otimes C]{ } P^{\prime}\right| Q} \operatorname{bn}(\alpha) \# Q \\
& P \xrightarrow[\left(\nu \widetilde{c_{P}}\right)\left\{\Psi_{P}^{\prime} \vdash M_{P} \dot{\leftrightarrow} y\right\} \wedge C_{P}]{\bar{y}(\nu \widetilde{a}) N} P^{\prime} \\
& \text { Com-New } \frac{Q \underset{\left(\nu \widetilde{c_{Q}}\right)\left\{\Psi_{Q}^{\prime} \vdash M_{Q} \dot{A} \dot{z} \wedge \wedge C_{Q}\right.}{\longrightarrow}}{P \mid Q \underset{C_{\text {com }}}{\tau}(\nu \widetilde{a})\left(P^{\prime} \mid Q^{\prime}[x:=N]\right)} Q^{\prime} \widetilde{a} \# Q \\
& \operatorname{SCOPE} \frac{P \underset{(\nu b) P \underset{(\nu b) C}{\xrightarrow{\longrightarrow}}}{\stackrel{\alpha}{\longrightarrow}} P^{\prime}}{(\nu b) P^{\prime}} b \# \alpha \\
& \text { Open } \frac{P \xrightarrow[(\nu) P]{(\nu b) P \xrightarrow[(\nu b) C]{C}} P^{\prime}}{\substack{\bar{y}(\nu \widetilde{a} \cup\{b\}) N}} \begin{array}{l}
b \in \mathrm{n}(N) \\
b \# \widetilde{a}, y
\end{array}
\end{aligned}
$$

Late Symbolic Semantics

$$
\operatorname{IN} \frac{y \# M, P, x}{\underline{M}(\lambda x) x . P \xrightarrow[\{1 \vdash M \dot{\leftrightarrow} y\}]{\underline{y}(x)} P} \quad \quad \text { OUT } \frac{y \# M, N, P}{\bar{M} N . P \xrightarrow[\{1 \vdash M \leftrightarrow y\}]{\longrightarrow} P}
$$

$$
\operatorname{PAR} \xrightarrow[{P\left|Q \underset{\mathcal{F}(Q) \otimes C}{\xrightarrow[C]{\alpha}} P^{\prime}\right|} Q]{ } \begin{aligned}
& \operatorname{bn}(\alpha) \# Q \\
& \operatorname{subj}(\alpha) \# Q
\end{aligned}
$$

CASE
$\xrightarrow[{\text { case } \widetilde{\varphi}: \widetilde{P} \xrightarrow[C \wedge\left\{1 \vdash \varphi_{i}\right\}]{C} P^{\prime}}]{C} \operatorname{subj}(\alpha) \# \varphi_{i}$
$\operatorname{REP} \frac{C}{!P \underset{C}{\underset{C}{\alpha}} P^{\prime}}$

$$
\begin{gathered}
P \xrightarrow[\left(\nu \widetilde{c_{P}}\right)\left\{\Psi_{P}^{\prime} \vdash M_{P} \dot{\leftrightarrow} y\right\} \wedge C_{P}]{\underline{y}(\nu \widetilde{a}) N} P^{\prime} \\
\text { Com-NEW } \frac{\underline{z}(x)}{\xrightarrow[\left(\nu \widetilde{c_{Q}}\right)\left\{\Psi_{Q}^{\prime} \vdash M_{Q} \dot{\leftrightarrow} z\right\} \wedge C_{Q}]{\longrightarrow}} Q^{\prime} \\
P \mid Q \underset{C_{\text {com }}}{ }(\nu \widetilde{a})\left(P^{\prime} \mid Q^{\prime}[x:=N]\right) \\
\widetilde{a} \# Q \\
\operatorname{subj}(\alpha) \# Q
\end{gathered}
$$

$$
C_{\mathrm{com}}=
$$

$$
\left(\left(\nu \widetilde{c_{P}} \widetilde{c_{Q}}\right)\left\{\Psi_{P}^{\prime} \otimes \Psi_{Q}^{\prime} \vdash M_{P} \dot{\leftrightarrow} M_{Q}\right\}\right) \wedge\left(\left(\left(\nu \widetilde{c_{Q}}\right) \Psi_{Q}^{\prime}\right) \otimes C_{P}\right) \wedge\left(\left(\left(\nu \widetilde{c_{P}}\right) \Psi_{P}^{\prime}\right) \otimes C_{Q}\right)
$$ composes the frame with each conjunct

Transition Constraints and Solutions

$$
\begin{aligned}
& \begin{array}{l}
\text { Constraint Solutions } \\
C, C^{\prime}::= \\
\\
\text { true }
\end{array}\{(\sigma, \Psi): \sigma \text { is a subst. sequence } \wedge \Psi \in \mathbf{A}\} \\
& (\nu a) C
\end{aligned} \quad \emptyset \quad\{(\sigma, \Psi): b \# \sigma, \Psi \wedge(\sigma, \Psi) \in \operatorname{sol}((a b) \cdot C)\}
$$

Solution is a set of substitution and assertion pairs

Transition Constraints and Solutions

$$
\begin{aligned}
& \text { Constraint Solutions } \\
C, C^{\prime}::= & \text { true } \\
& \text { false } \\
& (\nu a) C
\end{aligned} \quad\{(\sigma, \Psi): \sigma \text { is a subst. sequence } \wedge \Psi \in \mathbf{A}\}
$$

Solution is a set of substitution and assertion pairs
ex. nextFreq $(f)(x) . x(y) .0 \mid \overline{\text { nextFreq }(g)}\langle$ nextFreq $(a)\rangle .0$
$\xrightarrow[\{\text { nextFreq }(f) \stackrel{\leftrightarrow}{\leftrightarrow} \operatorname{nextFreq}(g)\}]{\tau} \xrightarrow{\text { nextFreq }(\mathrm{a})}(y) .0$

Transition Constraints and Solutions

$$
\begin{aligned}
& \text { Constraint Solutions } \\
& \begin{aligned}
C, C^{\prime}::= & \text { true } \\
& \text { false } \\
& (\nu a) C
\end{aligned}
\end{aligned}
$$

Solution is a set of substitution and assertion pairs
ex. nextFreq $(f)(x) . x(y) .0 \mid \overline{\text { nextFreq }(g)}\langle$ nextFreq $(a)\rangle .0$ $\underset{\{\text { nextFreq }(f) \dot{\leftrightarrow} \operatorname{nextFreq}(g)\}}{\tau} \xrightarrow{\text { nextFreq }(\mathrm{a})}(y) .0$
$\operatorname{sol}(\{\operatorname{nextFreq}(f) \dot{\leftrightarrow} \operatorname{nextFreq}(g)\})=\{([f:=g], 1),([g:=f], 1), \ldots$

Transition Constraints and Solutions

$$
\quad\{(\sigma, \Psi): b \# \sigma, \Psi \wedge(\sigma, \Psi) \in \operatorname{sol}((a b) \cdot C)\},
$$

Solution is a set of substitution and assertion pairs
ex. nextFreq $(f)(x) . x(y) .0 \mid \overline{\text { nextFreq }(g)}\langle$ nextFreq $(a)\rangle .0$ $\xrightarrow[\{\text { nextFreq }(f) \stackrel{\leftrightarrow}{\leftrightarrow} \operatorname{nextFreq}(g)\}]{\tau} \xrightarrow{\text { nextFreq }(a)}(y) .0$
$\operatorname{sol}(\{\operatorname{nextFreq}(f) \dot{\leftrightarrow} \operatorname{nextFreq}(g)\})=\{([f:=g], 1),([g:=f], 1), \ldots$
Finding a solution \sim solving sat. problem

Bisim Constraints

$$
\begin{array}{lll}
& \text { Constraint } & \text { The solutions } \operatorname{sol}(C) \text { are all pairs }(\sigma, \Psi) \text { such that } \\
C, C^{\prime}::= & (\sigma, \Psi) \models C_{t} \\
\{|M=N|\} & M \sigma=N \sigma \\
\{|a \# X|\} & (a \# X) \sigma \text { and } a \# \operatorname{dom}(\sigma) \\
C \wedge C^{\prime} & (\sigma, \Psi) \models C \text { and }(\sigma, \Psi) \models C^{\prime} \\
C \vee C^{\prime} & (\sigma, \Psi) \models C \text { or }(\sigma, \Psi) \models C^{\prime} \\
C \Rightarrow C^{\prime} & \forall \Psi^{\prime} .\left(\sigma, \Psi \otimes \Psi^{\prime}\right) \models C \text { implies }\left(\sigma, \Psi \otimes \Psi^{\prime}\right) \models C^{\prime} \\
\forall x . C & \bigcap \operatorname{sol}(C[x:=M])
\end{array}
$$

Pwb

Implementer's perspective

Instance Parameters

Definition 1 (Psi-calculus parameters). A psi-calculus requires the three (not necessarily disjoint) nominal data types:

T the (data) terms, ranged over by M, N
\mathbf{C} the conditions, ranged over by φ
A the assertions, ranged over by Ψ
and the four equivariant operators:

$$
\begin{array}{ll}
\dot{\leftrightarrow}: \mathbf{T} \times \mathbf{T} \rightarrow \mathbf{C} & \text { Channel Equivalence } \\
\otimes: \mathbf{A} \times \mathbf{A} \rightarrow \mathbf{A} & \text { Composition } \\
\mathbf{1}: \mathbf{A} & \text { Unit } \\
\vdash \subseteq \mathbf{A} \times \mathbf{C} & \text { Entailment }
\end{array}
$$

and substitution functions $[\tilde{a}:=\tilde{M}]$, substituting terms for names, on all of \mathbf{T}, \mathbf{C}, and \mathbf{A}.

Instance Requisites

Channel symmetry:

$$
\Psi \vdash M \dot{\leftrightarrow} N \Longrightarrow \Psi \vdash N \dot{\leftrightarrow} M
$$

Channel transitivity:
$\Psi \vdash M \dot{\leftrightarrow} N \wedge \Psi \vdash N \dot{\leftrightarrow} L \Longrightarrow \Psi \vdash M \dot{\leftrightarrow} L$
Composition:
Identity:
Associativity:
Commutativity:

$$
\Psi \simeq \Psi^{\prime} \Longrightarrow \Psi \otimes \Psi^{\prime \prime} \simeq \Psi^{\prime} \otimes \Psi^{\prime \prime}
$$

$\Psi \otimes 1 \simeq \Psi$
$\left(\Psi \otimes \Psi^{\prime}\right) \otimes \Psi^{\prime \prime} \simeq \Psi \otimes\left(\Psi^{\prime} \otimes \Psi^{\prime \prime}\right)$
$\Psi \otimes \Psi^{\prime} \simeq \Psi^{\prime} \otimes \Psi$
Weakening:
$\Psi \vdash \varphi \Longrightarrow \Psi \otimes \Psi^{\prime} \vdash \varphi$
Names are terms:
$\mathcal{N} \subseteq \mathbf{T}$

Instance Requisites

Channel symmetry: $\Psi \vdash M \dot{\leftrightarrow} N \Longrightarrow \Psi \vdash N \dot{\leftrightarrow} M$
Channel transitivity:
$\Psi \vdash M \dot{\leftrightarrow} N \wedge \Psi \vdash N \dot{\leftrightarrow} L \Longrightarrow \Psi \vdash M \dot{\leftrightarrow} L$
Composition:
Identity:
Associativity:
Commutativity:

$$
\Psi \simeq \Psi^{\prime} \Longrightarrow \Psi \otimes \Psi^{\prime \prime} \simeq \Psi^{\prime} \otimes \Psi^{\prime \prime}
$$

$\Psi \otimes 1 \simeq \Psi$
$\left(\Psi \otimes \Psi^{\prime}\right) \otimes \Psi^{\prime \prime} \simeq \Psi \otimes\left(\Psi^{\prime} \otimes \Psi^{\prime \prime}\right)$
$\Psi \otimes \Psi^{\prime} \simeq \Psi^{\prime} \otimes \Psi$
Weakening:
Names are terms:

$$
\Psi \vdash \varphi \Longrightarrow \Psi \otimes \Psi^{\prime} \vdash \varphi
$$

$$
\text { Names are terms: } \quad \mathcal{N} \subseteq \mathbf{T}
$$

Instance Requisites

Channel symmetry: $\Psi \vdash M \dot{\leftrightarrow} N \Longrightarrow \Psi \vdash N \dot{\leftrightarrow} M$
Channel transitivity:
$\Psi \vdash M \dot{\leftrightarrow} N \wedge \Psi \vdash N \dot{\leftrightarrow} L \Longrightarrow \Psi \vdash M \dot{\leftrightarrow} L$
Composition:
Identity:
Associativity:
Commutativity:

$$
\Psi \simeq \Psi^{\prime} \Longrightarrow \Psi \otimes \Psi^{\prime \prime} \simeq \Psi^{\prime} \otimes \Psi^{\prime \prime}
$$

$\Psi \otimes \mathbf{1} \simeq \Psi$
$\left(\Psi \otimes \Psi^{\prime}\right) \otimes \Psi$ Only for bisimulation alg.
$\Psi \otimes \Psi^{\prime} \simeq \Psi^{\prime} \otimes \Psi^{\prime}$

Weakening:	$\Psi \vdash \varphi \Longrightarrow \Psi \otimes \Psi^{\prime} \vdash \varphi$
Names are terms:	$\mathcal{N} \subseteq \mathbf{T}$

+ Substitution

Substitution:

$$
\begin{aligned}
& (\forall X \in\{\mathbf{T}, \mathbf{A}, \mathbf{C}\}) \tilde{b} \# X, \tilde{a} \Longrightarrow X[\tilde{a}:=\tilde{M}]=((\tilde{a} \tilde{b}) \cdot X)[\tilde{b}:=\tilde{M}] \\
& \text { Can lose names! }
\end{aligned}
$$

$$
\begin{aligned}
X[x:=x] & =X \\
x[x:=M] & =M \\
X[x:=M] & =X \text { if } x \# X \\
X[x:=L][y:=M] & =X[y:=M][x:=L] \text { if } x \# y, M \text { and } y \# L
\end{aligned}
$$

Architecture

Pwb

Command Interpreter

Symbolic Equivalence

 CheckerSymbolic Execution

Psi Calculi Core

\section*{| Supporting library of | Solvers | Nominal Parser Printer etc. |
| :--- | :--- | :--- | :--- |}

Architecture

Pwb
 User Supplied

Architecture

\$ pwb load-instance <instance>.ML

Architecture
 \$ pwb load-instance <instănce>.ML

Included Constraint Solvers

Simple SMT

```
signature PWB_SMT_THEORY =
sig
    type literal
    val neg : literal -> literal
    val eqL : literal -> literal -> bool
    type model
    val empty : model
    val extend : model -> literal -> model
    val forget : model -> literal list -> model
    val isConsistent : model -> PwbSMTTypes.strength -> bool
    val models : model -> literal -> bool
end;
```

ILP

```
signature ILP =
sig
    type var = string
    datatype rel = Eq | Lt | Gt | LtE | GtE
    type equation =
        ((int * string) list) * rel * ((int * string) list)
    type equation_system= equation list
    type solution = (var * int) list
    val solve : equation_system -> (string, solution) Either.eit
end;
```


Example Implementation

$$
\begin{aligned}
\mathbf{T} & \stackrel{\text { def }}{=} \mathcal{N} \cup\{\operatorname{nextFreq}(M): M \in \mathbf{T}\} \\
\mathbf{C} & \stackrel{\text { def }}{=}\{M=N: M, N \in \mathbf{T}\} \cup\{\mathbf{T}\} \\
\mathbf{A} & \stackrel{\text { def }}{=}\{1\} \\
\mathbf{1} & \stackrel{\text { def }}{=} 1 \\
\dot{\rightarrow} & \stackrel{\text { def }}{=}= \\
\otimes & \stackrel{\text { def }}{=} \lambda\left\langle\Psi_{1}, \Psi_{2}\right\rangle \cdot 1 \\
\vdash & \stackrel{\text { def }}{=}\{\langle 1, M=M\rangle: M \in \mathbf{T}\} \cup\{\langle 1, \mathrm{~T}\rangle\}
\end{aligned}
$$

Ex. $\underline{\operatorname{nextFreq}(x)}(f) . P|\overline{\operatorname{nextFreq}(x)}\langle\operatorname{nextFreq}(y)\rangle \xrightarrow{\tau} P[f:=\operatorname{nextFreq}(y)]| \mathbf{0}$

Parameters

```
type name = string
datatype term = Name of name
    | NextFreq of term
datatype condition = Eq of term * term | True
datatype assertion = Unit
val unit = Unit
val chaneq = Eq
fun compose _ = Unit
```



```
fun var a = Name a
```


Substitution

```
fun substT sigma (Name a) =
    (case List.find (fn \(\left.(b,)^{\text {) }}=>a=b\right)\) sigma of
        NONE \(\quad>\) Name a
        | SOME (_, t) => t)
    substT sigma (NextFreq \(n\) ) = NextFreq (substT sigma \(n\) )
fun substC s True \(=\) True
    | substC \(s(E q(t 1, t 2))=E q\) (substT \(s t 1\), substT \(s t 2)\)
fun substA _ _ = Unit
```


Nominal

```
fun new xvec = StringName.generateDistinct xvec
fun newBasedOn _ xvec = new xvec
fun swap_name (a,b) n = StringName.swap_name (a,b) n
fun supportT (Name n) = [n]
    supportT (NextFreq m) = supportT m
fun supportC (Eq (m, n)) = supportT m @ supportT n
    supportC True = []
fun supportA _
    = []
fun swapT pi (Name n) = Name (swap_name pi n)
    swapT pi (NextFreq t) = NextFreq (swapT pi t)
fun swapC _ True = True
    swapC pi (Eq (t1, t2)) = Eq (swapT pi t1, swapT pi t2)
fun swapA _ _ = Unit
fun eqT _ (a,b) = a = b
fun eqC _ (a,b) = a = b
fun eqA _ (a,b) = a = b
```


Constraint Solving

$$
\begin{align*}
& (\nu \widetilde{a})\{\operatorname{nextFreq}(N) \dot{\leftrightarrow} \operatorname{nextFreq}(M)\} \wedge C \longmapsto(\nu \widetilde{a})\{N \dot{\leftrightarrow} M\} \wedge C \\
& \text { (Decom) } \\
& (\nu \widetilde{a})\{\operatorname{nextFreq}(N) \dot{\leftrightarrow} a\} \wedge C \mapsto(\nu \widetilde{a})\{a \dot{\leftrightarrow} \operatorname{nextFreq}(N)\} \wedge C \\
& \text { (SWAP) } \\
& (\nu \widetilde{a})\{\top\} \wedge C \multimap C \tag{TRT}\\
& (\nu \widetilde{a})\{a \dot{\leftrightarrow} a\} \wedge C \longmapsto C \\
& (\nu \widetilde{a})\{a \dot{\leftrightarrow} N\} \wedge C \stackrel{[a:=N]}{\longmapsto} C[a:=N] \tag{TREQ}\\
& \text { if } a, N \# \widetilde{a} \wedge a \# N \tag{Elim}\\
& (\nu \widetilde{a})\{a \dot{\leftrightarrow} \rightarrow N\} \wedge C \mapsto \square \\
& \text { if } a \neq N \wedge(a \in n(N) \vee a \in \widetilde{a} \vee n(N) \subseteq \widetilde{a}) \tag{FAIL}
\end{align*}
$$

Either.LEFT [(Eq (Name a, n))]
fun explode (avec, psi, phis
fun solve cs =
case mgu (Lst.flatmapmix explode cs) [] of
Either.RIGHT sigma => Either.RIGHT [(sigma, Unit)]
| Either.LEFT phi $\quad>$ Either.LEFT [phi]
type constraint = (name list * assertion * condition list) list
type solution $=$
(condition list list, ((name * term) list * assertion) list)
either
val solve : constraint -> solution

Constraint Solver

```
fun mgu [] sigma = Either.RIGHT sigma
    | mgu ((avec, Unit, [True] )::cs) sigma =
        mgu cs sigma
    | mgu ((avec, Unit, [Eq (NextFreq a, NextFreq b)])::cs)
        sigma =
            mgu ((avec, Unit, [Eq (a,b)])::cs) sigma
    | mgu ((avec, Unit, [Eq (NextFreq a, Name b)])::cs)
            sigma =
            mgu ((avec, Unit, [Eq (Name b, NextFreq a)])::cs)
                sigma
    | mgu ((avec, Unit, [Eq (Name a, n)])::cs) sigma =
        if Name \(a=n\) then mgu cs sigma
        else
        if L.fresh a avec andalso
                freshL avec (supportT n) andalso
                L.fresh a (supportT n)
            then
                mgu (Constraint.subst \([(a, n)] c s)\)
                        (composeSubst sigma (a. n))
```


Print ...

```
fun printN \(\mathrm{n}=\mathrm{n}\)
fun printT (Name \(n\) ) \(=n\)
    | printT (NextFreq t) = "nextFreq(" ^ printT t ^ ")"
fun printC True = "T"
    | printC (Eq (t1, t2)) =
        (printT t1) ^ " = " ^ (printT t2)
    fun printA _ = "1"
```


Parse

```
fun term () =
            (stok "nextFreq" >> stok "(" >>
            (delayed term) >>=
            (fn t => stok ")" >> return (NextFreq t)))
    </choice/>
            (Lex.identifier >>= return o Name)
```

")"

$$
\begin{aligned}
& \text { fun name }()=\text { (Lex.identifier) } \\
& \text { fun cond }()=\text { (stok "T" >> return True) } \\
& \text { fun assr () }=\text { (stok " } 1 \text { " >> return Unit) }
\end{aligned}
$$

```
psi> sstep "nextFreq(x)"(f).P<f> | '"nextFreq(x)"<"nextFreq(y)">;
```

```
3---
    | |>
        -- |tau|-->
```

 Source:
 ("nextFreq(x)"(f). P<f>) |
 ('"nextFreq(x)"<"nextFreq(y)">)
 Constraint:
 \(\{\mid\) "nextFreq(x) \(=\operatorname{nextFreq}(x)\) " |\}
 Solution:
 ([], 1)
 Derivative:
 (P<"nextFreq(y)">) |

Left overs

- Symbolic Broadcast Semantics
- Bisimulation algorithm
- Sorts

