
A Sorted Semantic Framework
for Applied Process Calculi

(extended abstract)

Johannes Borgström, Ramūnas Gutkovas, Joachim Parrow, Björn Victor and
Johannes Åman Pohjola

Department of Information Technology, Uppsala University, Sweden

Abstract. Applied process calculi include advanced programming con-
structs such as type systems, communication with pattern matching,
encryption primitives, concurrent constraints, nondeterminism, process
creation, and dynamic connection topologies. Several such formalisms,
e.g. the applied pi calculus, are extensions of the the pi-calculus; a grow-
ing number is geared towards particular applications or computational
paradigms.
Our goal is a unified framework to represent different process calculi
and notions of computation. To this end, we extend our previous work
on psi-calculi with novel abstract patterns and pattern matching, and
add sorts to the data term language, giving sufficient criteria for subject
reduction to hold. Our framework can accommodate several existing pro-
cess calculi; the resulting transition systems are isomorphic to the orig-
inals up to strong bisimulation. We also demonstrate different notions
of computation on data terms, including cryptographic primitives and a
lambda-calculus with erratic choice. Substantial parts of the meta-theory
of sorted psi-calculi have been machine-checked using Nominal Isabelle.

1 Introduction

There is today a growing number of high-level constructs in the area of con-
currency. Examples include type systems, communication with pattern match-
ing, encryption primitives, concurrent constraints, nondeterminism, and dynamic
connection topologies. Combinations of such constructs are included in a variety
of application oriented process calculi. For each such calculus its internal con-
sistency, in terms of congruence results and algebraic laws, must be established
independently. Our aim is a framework where many such calculi fit and where
such results are derived once and for all, eliminating the need for individual
proofs about each calculus.

Our effort in this direction is the framework of psi-calculi [1], which pro-
vides machine-checked proofs that important meta-theoretical properties, such
as compositionality of bisimulation, hold in all instances of the framework. In this
paper we introduce a novel generalization of pattern matching, decoupled from
the definition of substitution, and introduce sorts for data terms and names. The

generalized pattern matching is a new contribution that holds general interest;
here it allows us to directly capture computation on data in advanced process
calculi, without elaborate encodings. We evaluate our framework by providing
instances that are isomorphic to standard calculi, and by representing several dif-
ferent notions of computation. This is an advance over our previous work, where
we had to resort to nontrivial encodings with unclear formal correspondence to
the standard calculi.

1.1 Background: Psi-calculi

A psi-calculus has a notion of data terms, ranged over by K,L,M,N , and we
write M N .P to represent an agent sending the term N along the channel M
(which is also a data term), continuing as the agent P . We write K(λx̃)X .Q to
represent an agent that can input along the channel K, receiving some object
matching the pattern X, where x̃ are the variables bound by the prefix. These
two agents can interact under two conditions. First, the two channels must be
channel equivalent, as defined by the channel equivalence predicate M

.↔ K.
Second, N must match the pattern X.

Formally, a transition is of kind Ψ � P
α−→ P ′, meaning that in an environ-

ment represented by the assertion Ψ the agent P can do an action α to become
P ′. An assertion embodies a collection of facts used to infer conditions such as
the channel equivalence predicate

.↔. To continue the example, if N = X[x̃ := L̃]

we will have Ψ � M N .P | K(λx̃)X .Q
τ−→ P | Q[x̃ := L̃] when additionally

Ψ ` M .↔ K, i.e. when the assertion Ψ entails that M and K represent the
same channel. In this way we may introduce a parametrised equational theory
over a data structure for channels. Conditions, ranged over by ϕ, can be tested

in the if construct: we have that Ψ � if ϕ then P
α−→ P ′ when Ψ ` ϕ and

Ψ � P
α−→ P ′. In order to represent concurrent constraints and local knowl-

edge, assertions can be used as agents: LΨM stands for an agent that asserts Ψ
to its environment. Assertions may contain names and these can be scoped; for
example, in P | (νa)(LΨM | Q) the agent Q uses all entailments provided by Ψ ,
while P only uses those that do not contain the name a.

Assertions and conditions can, in general, form any logical theory. Also the
data terms can be drawn from an arbitrary set. One of our major contributions
has been to pinpoint the precise requirements on the data terms and logic for
a calculus to be useful in the sense that the natural formulation of bisimulation
satisfies the expected algebraic laws (see Section 2). It turns out that it is nec-
essary to view the terms and logics as nominal [2]. This means that there is a
distinguished set of names, and for each term a well defined notion of support,
intuitively corresponding to the names occurring in the term.

1.2 Extension: Generalized pattern matching

In our original definition of psi-calculi [1] (called “the original psi-calculi” below),
patterns are just terms and pattern matching is defined by substitution in the

usual way: the output object N matches the pattern X with binders x̃ iff N =
X[x̃ := L̃]. In order to increase the generality we now introduce a function match
which takes a term N , a sequence of names x̃ and a pattern X, returning a set
of sequences of terms; the intuition is that if L̃ is in match(N, x̃,X) then N

matches the pattern X by instantiating x̃ to L̃. The receiving agent K(λx̃)X .Q

then continues as Q[x̃ := L̃].

As an example we consider a term algebra with two function symbols: enc
of arity three and dec of arity two. Here enc(N,n, k) means encrypting N with
the key k and a random nonce n and and dec(N, k) represents symmetric key
decryption, discarding the nonce. Suppose an agent sends an encryption, as in
M enc(N,n, k) . P . If we allow all terms to act as patterns, a receiving agent
can use enc(x, y, z) as a pattern, as in c(λx, y, z)enc(x, y, z) . Q, and in this way
decompose the encryption and extract the message and key. Using the encryption
function as a destructor in this way is clearly not the intention of a cryptographic
model. With the new general form of pattern matching, we can simply limit
the patterns to not bind names in terms at key position. Together with the
separation between patterns and terms, this allows to directly represent dialects
of the spi-calculus as in Examples 4 and 5 in Section 3.

Moreover, the generalization makes it possible to safely use rewrite rules such
as dec(enc(M,N,K),K) → M . In the psi-calculi framework such evaluation is
not a primitive concept, but it can be part of the substitution function, with
the idea that with each substitution all data terms are normalized according to
rewrite rules. Such evaluating substitutions are dangerous for two reasons. First,
in the original psi-calculi they can introduce ill-formed input prefixes. The input
prefix M(λx̃)N is well-formed when x̃ ⊆ n(N), i.e. the names x̃ must all occur
in N ; a rewrite of the well-formed M(λy)dec(enc(N, y, k), k) . P to M(λy)N .P
yields an ill-formed agent when y does not appear in N . Such ill-formed agents
could also arise from input transitions in some original psi-calculi; with the
current generalization preservation of well-formedness is guaranteed.

Second, in the original psi-calculi there is a requirement that a substitution
of L̃ for x̃ in M must yield a term containing all names in L̃ whenever x̃ ⊆ n(M).
The reason is explained at length in [1]; briefly put, without this requirement the
scope extension law is unsound. If rewrites such as dec(enc(M,N,K),K)→M
are performed by substitutions this requirement is not fulfilled, since a substi-
tution may then erase the names in N and K. However, a closer examination
reveals that this requirement is only necessary for some uses of substitution. In
the transition

M(λx̃)N.P
K N [x̃:=L̃]−−−−−−−→ P [x̃ := L̃]

the non-erasing criterion is important for the substitution above the arrow
(N [x̃ := L̃]) but unimportant for the substitution after the arrow (P [x̃ := L̃]).
In the present paper, we replace the former of these uses by the match function,
where a similar non-erasing criterion applies. All other substitutions may safely
use arbitrary rewrites, even erasing ones.

1.3 Extension: Sorting

Applied process calculi often make use of a sort system. The applied pi-calculus [3]
has a name sort and a data sort; terms of name sort must not appear as sub-
terms of terms of data sort. It also makes a distinction between input-bound
variables (which may be substituted) and restriction-bound names (which may
not). The pattern-matching spi-calculus [4] uses a sort of patterns and a sort of
implementable terms; every implementable term can also be used as a pattern.

To represent such calculi, we admit a user-defined sort system on names,
terms and patterns. Substitutions are only well-defined if they conform to the
sorting discipline. To specify which terms can be used as channels, and which
values can be received on them, we use compatibility predicates on the sorts
of the subject and the object in input and output prefixes. The conditions for
preservation of sorting by transitions (subject reduction) are very weak, allowing
for great flexibility when defining instances.

The restriction to well-sorted substitution also allows to avoid “junk”: terms
that exist solely to make substitutions total. A prime example is representing
the polyadic pi-calculus as a psi-calculus. The terms that can be transmitted
between agents are tuples of names. Since a tuple is a term it can be substituted
for a name, even if that name is already part of a tuple. The result is that the
terms must admit nested tuples of names, which do not occur in the original
calculus.

1.4 Related work.

Pattern-matching is in common use in programming languages (e.g. Lisp, ML,
Scala, F#). LINDA [5] uses pattern-matching when receiving from a tuple space.
The pattern-matching spi-calculus limits which variables may be binding in a
pattern in order to match encrypted messages without binding unknown keys (cf.
Example 5). In all these cases, the pattern matching is defined by substitution
in the usual way.

Sorts for the pi-calculus were first described by Milner [6]. Hüttel’s typed
psi-calculi [7] admit a family of dependent type systems, capable of capturing a
wide range of earlier type systems for pi-like calculi formulated as instances of
psi-calculi. However, the term language of typed psi-calculi is required to be a
free term algebra (and without name binders); it uses only the standard notions
of substitution and matching, and does not admit any computation on terms.
The sophisticated type system of typed psi-calculi is intended for fine-grained
control of the behaviour of processes, while we focus on an earlier step: the
creation of a calculus that is as close to the modeller’s intent as possible. Indeed,
sorted psi-calculi gives a formal account of the separation between variables
and names in typed psi-calculi, and Hüttel’s claim that “the set of well-[sorted]
terms is closed under well-[sorted] substitutions, which suffices”. Furthermore, we
prove meta-theoretical results including preservation of well-formedness under
structural equivalence; no such results exist for typed psi-calculi.

In the applied pi-calculus [3] the data language is a term algebra modulo an
equational logic, which is suitable for modelling deterministic computation only.
ProVerif [8] is a specialised tool for security protocol verification in an extension
of applied pi, including a pattern matching construct. Its implementation allows
pattern matching of tagged tuples modulo a user-defined rewrite system; this
is strictly less general than the psi-calculus pattern matching described in this
paper (cf. Example 2).

Fournet et al. [9] add a general authentication logic to a process calculus
with destructor matching; the authentication logic is only used to specify pro-
gram correctness, and do not influence the operational semantics in any way.
A comparison of expressiveness to calculi with communication primitives other
than binary directed communication, such as the concurrent pattern calculus [10]
and the join-calculus [11], would be interesting. We here inherit positive results
from the pi calculus, such as the encoding of the join-calculus.

1.5 Results and outline

In Section 2 we define psi-calculi with the above extensions and explain the
necessary change to the semantics. A formal account of the whole operational
semantics and bisimulations can be found in an appendix. Our results are the
usual algebraic properties of bisimilarity, preservation of well-formedness, and
subject reduction.

We demonstrate the expressiveness of our generalization in Section 3 by di-
rectly representing calculi with advanced data structures and computations on
them, even nondeterministic reductions.

2 Definitions

Psi-calculi are based on nominal data types. A nominal data type is similar to
a traditional data type, but can also contain binders and identify alpha-variants
of terms. Formally, the only requirements are related to the treatment of the
atomic symbols called names as explained below. In this paper, we consider
sorted nominal datatypes, where names may have different sorts.

We assume a set of sorts S. Given a countable set of sorts for names SN ⊆ S,
we assume countably infinite pair-wise disjoint sets of atomic names Ns, where
s ∈ SN . The set of all names, N = ∪sNs, is ranged over by a, b, . . . , x, y, z. We
write x̃ for a tuple of names x1, . . . , xn and similarly for other tuples, and x̃
stands for the set of names {x1, . . . , xn} if used where a set is expected.

A sorted nominal set [2, 12] is a set equipped with name swapping functions
written (a b), for any sort s and names a, b ∈ Ns, i.e. name swappings must
respect sorting. An intuition is that for any member T it holds that (a b) ·T is T
with a replaced by b and b replaced by a. The support of a term, written n(T), is
intuitively the set of names affected by name swappings on T . This definition of
support coincides with the usual definition of free names for abstract syntax trees
that may contain binders. We write a#T for a 6∈ n(T), and extend this to finite

sets and tuples by conjunction. A function f is equivariant if (a b)(f(T)) =
f((a b)T) always. A nominal data type is a nominal set together with some
functions on it, for instance a substitution function.

2.1 Original Psi-calculi Parameters

Sorted psi-calculi is an extension of the original psi-calculi framework [1].

Definition 1 (Original psi-calculus parameters). The psi-calculus parame-
ters from the original psi-calculus include three nominal data types: (data) terms
M,N ∈ T, conditions ϕ ∈ C, and assertions Ψ ∈ A; and four equivariant opera-
tors: channel equivalence

.↔ : T×T→ C, assertion composition ⊗ : A×A→ A,
the unit assertion 1, and the entailment relation ` ⊆ A×C.

The binary functions
.↔,⊗ and the relation ` above will be used in infix form.

Two assertions are equivalent, written Ψ ' Ψ ′, if they entail the same condi-
tions, i.e. for all ϕ we have that Ψ ` ϕ ⇔ Ψ ′ ` ϕ. We impose certain requisites
on the sets and operators. In brief, channel equivalence must be symmetric and
transitive, the assertions with (⊗,1) must form an abelian monoid modulo ',
and ⊗ must be compositional w.r.t. ' (i.e. Ψ1 ' Ψ2 =⇒ Ψ ⊗ Ψ1 ' Ψ ⊗ Ψ2). For
details see [1].

2.2 New parameters for generalized pattern-matching

To the parameters of the original psi-calculi we add patterns X,Y , that are used
in input prefixes, a pattern-matching function match, which is used when the
input takes place, and a function vars which yields the possible combinations
of binding names in the pattern. Below, we use “variable” for names that can
be bound in a pattern.

Definition 2 (Psi-calculus parameters for pattern-matching). The psi-
calculus parameters for pattern-matching include the nominal data type X of
(input) patterns, ranged over by X,Y , and the two equivariant operators

match : T×N ∗ ×X→ P(T∗) Pattern matching
vars : X→ P(P(N)) Pattern variables

Intuitively, if L̃ ∈ match(N, x̃,X) then an output of the term N matches an
input with the pattern X, binding x̃, and the receiving agent continues after
substituting L̃ for x̃.

The vars operator gives the possible sets of names in a pattern which are
bound by an input prefix. For example, an input prefix with a pairing pattern
〈x, y〉 may bind both x and y, only one of them, or none, so vars(〈x, y〉) =
{{x, y}, {x}, {y}, {}}. This way, we can let the input prefix c(λx)〈x, y〉 only
match pairs where the second argument is the name y. To model a calculus
where input patterns cannot be selective in this way, we may instead define
vars(〈x, y〉) = {{x, y}}. This ensures that input prefixes that use the pattern

〈x, y〉 must be of the form M(λx, y)〈x, y〉, where both x and y are bound. An-
other use for vars is to exclude the binding of terms in certain positions, such
as the keys of cryptographic messages (cf. Example 5).

Requirements on vars and match are given below in Definition 5. Note that
the four data types T, C, A and X are not required to be disjoint. In most of
the examples in this paper, the patterns X is a subset of the terms T.

2.3 New parameters for sorting

To the parameters defined above we add a sorting function and four sort com-
patibility predicates.

Definition 3 (Psi-calculus parameters for sorting). The psi-calculus pa-
rameters for sorting include the sorting function sort : N] T]X → S, and
the four compatibility predicates

∝ ⊆ S × S Can be used to receive
∝ ⊆ S × S Can be used to send
� ⊆ S × S Can be substituted by
Sν ⊆ S Can be bound by name restriction

The sort operator gives the sort of a name, term or pattern; on names we
require that sort(a) = s iff a ∈ Ns. The sort compatibility predicates are used
to restrict where terms and names of certain sorts may appear in processes.
Terms of sort s can be used to send values of sort t if s ∝ t. Dually, a term of
sort s can be used to receive with a pattern of sort t if s ∝ t. A name a can
be used in a restriction (νa) if sort(a) ∈ Sν . If sort(a) � sort(M) we can
substitute the term M for the name a. In most of our examples, � is a subset of
the equality relation. These predicates can be chosen freely, although the set of
well-formed substitutions depends on �, as detailed in Definition 4 below.

2.4 Substitution and Matching

We require that each datatype is equipped with an equivariant substitution func-
tion, which intuitively substitutes terms for names. The requisites on substitution
differ from the original psi-calculi as indicated in the Introduction. Substitutions
must preserve or refine sorts, and bound pattern variables must not be removed
by substitutions.

We define a subsorting preorder ≤ on S as s1 ≤ s2 if s1 can be used as a
channel or message whenever s2 can be: formally s1 ≤ s2 iff ∀t ∈ S.(s2 ∝ t ⇒
s1 ∝ t) ∧ (s2 ∝ t ⇒ s1 ∝ t) ∧ (t ∝ s2 ⇒ t ∝ s1) ∧ (t ∝ s2 ⇒ t ∝ s1). This
relation compares sorts of terms, and so does not have any formal relationship
to � (which relates the sort of a name to the sort of a term).

Definition 4 (Substitution). If ã is a sequence of distinct names and Ñ is
an equally long sequence of terms such that sort(ai) � sort(Ni) for all i, we

say that [ã := Ñ] is a substitution. Substitutions are ranged over by σ.

For each data type among T,A,C we define substitution on elements T of
that data type as follows: we require that Tσ is an element of the same data
type, and that if (ã b̃) is a (bijective) name swapping such that b̃#T, ã then

T [ã := Ñ] = ((ã b̃).T)[̃b := Ñ] (alpha-renaming of substituted variables). For
terms we additionally require that sort(Mσ) ≤ sort(M).

For substitution on patterns X ∈ X, we require that if x̃ ∈ vars(X) and x̃#σ
then Xσ ∈ X and sort(Xσ) ≤ sort(X) and x̃ ∈ vars(Xσ) and alpha-
renaming of substituted variables (as above) holds.

Intuitively, the requirements on substitutions on patterns ensure that a sub-
stitution on a pattern with binders ((λx̃)X)σ with x̃ ∈ vars(X) and x̃#σ yields
a pattern (λx̃)Y with x̃ ∈ vars(Y). As an example, consider the pair patterns
discussed above with X = {〈x, y〉 : x 6= y} and vars(〈x, y〉) = {{x, y}}. We can
let 〈x, y〉σ = 〈x, y〉 when x, y#σ. Since vars(〈x, y〉) = {{x, y}} the pattern 〈x, y〉
in a well-formed agent will always occur directly under the binder (λx, y), i.e. in
(λx, y)〈x, y〉, and here a substitution for x or y will have no effect. It therefore
does not matter what e.g. 〈x, y〉[x := M] is, since it will never occur in deriva-
tions of transitions of well-formed agents. We could think of substitutions as
partial functions which are undefined in such cases; formally, since substitutions
are total, the result of this substitution can be assigned an arbitrary value.

Matching must be invariant under renaming of pattern variables, and the
substitution resulting from a match must not contain any names that are not
from the matched term or the pattern:

Definition 5 (Generalized pattern matching). For the function match we

require that if x̃ ∈ vars(X) are distinct and Ñ ∈ match(M, x̃,X) then it must

hold that [x̃ := Ñ] is a substitution, that n(Ñ) ⊆ n(M)∪ (n(X)\ x̃), and that for

all name swappings (x̃ ỹ) we have Ñ ∈ match(M, ỹ, (x̃ ỹ)X) (alpha-renaming
of matching).

In the original psi-calculi equivariance of matching is imposed as a require-
ment on substitution on terms, but there is no requirement that substitutions
preserve pattern variables. For this reason, the original psi semantics does not
preserve the well-formedness of agents (an input prefix M(λx̃)N .P is well-
formed when x̃ ⊆ n(N)), although this is assumed by the operational seman-
tics [1]. In contrast, the semantics of pattern-matching psi-calculi does preserve
well-formedness, as shown below in Theorem 1.

In many process calculi, and also in the symbolic semantics of psi [13], the
input construct binds a single variable. This is a trivial instance of pattern
matching where the pattern is a single bound variable, matching any term.

Example 1. Given values for the other requisites, we can take X = N with
vars(a) = {a}, meaning that the pattern variable must always occur bound,
and match(M,a, a) = {M} if sort(a) � sort(M). On patterns we define
substitution as aσ = a when a#σ.

2.5 Agents

Definition 6 (Agents). The agents, ranged over by P,Q, . . ., are of the fol-
lowing forms.

M N.P Output
M(λx̃)X.P Input
case ϕ1 : P1 [] · · · [] ϕn : Pn Case
(νa)P Restriction
P |Q Parallel
!P Replication
LΨM Assertion

In the Input any name in x̃ binds its occurrences in both X and P , and in
the Restriction a binds in P. An assertion is guarded if it is a subterm of an
Input or Output. An agent is well-formed if, for all its subterms, in a replication
!P there are no unguarded assertions in P , and in case ϕ1 : P1 [] · · · [] ϕn : Pn
there are no unguarded assertion in any Pi. Substitution on agents is defined
inductively on their structure, using the substitution function of each datatype
based on syntactic position, avoiding name capture.

In comparison to [1] we restrict the syntax of well-formed agents by imposing
requirements on sorts: the subjects and objects of prefixes must have compatible
sorts, and restrictions may only bind names of a sort in Sν .

Definition 7. In sorted psi-calculi, an agent is well-formed if additionally the
following holds for all its subterms. In an Output M N.P we require that sort(M) ∝
sort(N). In an Input M(λx̃)X.P we require that x̃ ∈ vars(X) is a tuple of dis-
tinct names and sort(M) ∝ sort(X). In a Restriction (νa)P we require that
sort(a) ∈ Sν .

The output prefix M N.P sends N on a channel that is equivalent to M . Dually,
M(λx̃)X.P receives a message matching the pattern X from a channel equivalent
to M . A non-deterministic case statement case ϕ1 : P1 [] · · · [] ϕn : Pn executes
one of the branches Pi where the corresponding condition ϕi holds, discarding
the other branches. Restriction (νa)P scopes the name a in P ; the scope of a may
be extruded if P communicates a data term containing a. A parallel composition
P |Q denotes P and Q running in parallel; they may proceed independently or
communicate. A replication !P models an unbounded number of copies of the
process P . The assertion LΨM contributes Ψ to its environment. We often write
if ϕ then P for case ϕ : P , and nothing or 0 for the empty case statement
case.

2.6 Semantics and Bisimulation

The semantics of a psi-calculus is defined inductively as a structural operation
semantics yielding a labelled transition relation. The full definition can be found
in our earlier work [1] and in the appendix of this paper. We here only comment

on the one change necessary to accommodate the generalized pattern matching.
The original input rule reads

Ψ `M .↔ K

Ψ � M(λỹ)X.P
K X[ỹ:=L̃]−−−−−−−→ P [ỹ := L̃]

and means that the instantiating substitution [ỹ := L̃] is applied both in the
transition label and in the agent after the transition. Our new input rule is

Ψ `M .↔ K L̃ ∈ match(N, ỹ,X)

Ψ � M(λỹ)X.P
K N−−−→ P [ỹ := L̃]

Here the matching with the transition label and the substitution applied to the
following agent may be different. The match predicate determines both the
former (by designating the term N) and the latter (by designating the substitu-
tion), but there is no requirement on how they relate. As explained in Section 1.2
this means we can introduce evaluation of terms in the substitution or in the
matching.

Theorem 1 (Preservation of well-formedness). If P is well-formed, then

Pσ is well-formed, and if Ψ � P
α−→ P ′ then P ′ is well-formed.

Note that well-formedness implies conformance to the sorting discipline; there-
fore this theorem implies a kind of subject reduction.

The definition of strong and weak bisimulation and their algebraic properties
are unchanged from our previous work [1]. The results can be summarized as
follows:

Theorem 2 (Properties of bisimulation). All results on bisimulation estab-
lished in [1] and [14] still hold in sorted psi-calculi with generalized matching.

Theorem 2 has been formally verified in Isabelle/Nominal by adapting our ex-
isting proof scripts. The main difference is in the input cases of inductive proofs.
This represents no more than two days of work, with the bulk of the effort going
towards proving a crucial technical lemma stating that transitions do not invent
new names with the new pattern matching. We have also machine-checked the
proof of Theorem 1. Unfortunately, in Isabelle/Nominal there are currently no
facilities to reason parametrically over the set of name sorts. Therefore the me-
chanically checked proofs only apply to psi-calculi with a trivial sorting (a single
sort that is admitted everywhere); we complement them with manual proofs to
extend these to arbitrary sortings.

3 Examples

Several well-known process algebras can be directly represented as a sorted psi-
calculus by instantiating the parameters in the right way. With this we mean

that the syntax is isomorphic and that the operational semantics is exactly
preserved in a strong operational correspondence modulo strong bisimulation.
There is no need for elaborate coding schemes and the correspondence proofs
are straightforward.

Theorem 3 (Process algebra representations). CCS with value passing [15],
the unsorted and the sorted polyadic pi-calculus [6, 16], and the polyadic synchro-
nization pi-calculus [17] can all be directly represented as sorted psi-calculi.

The list can certainly be made longer, though each process algebra currently has
a separate definition and therefore requires a separate formal proof. For example,
a version of LINDA [5] can easily be obtained as a variant of the polyadic pi-
calculus. To illustrate the technique, the only difference between polyadic pi-
calculus and polyadic synchronization pi-calculus is about admitting tuples of
names in prefix subjects. Details can be found in the appendix.

More interestingly we demonstrate that we can accommodate a variety of
structures for communication channels; in general these can be any kind of data,
and substitution can include any kind of computation on these structures. This
indicates that the word “substitution” may be a misnomer — a better word may
be “effect” — though we keep it to conform with our earlier work. The examples
below use default values for the parameters where A = {1}, C = {>,⊥} and
M

.↔ N = > iff M = N , otherwise ⊥. We let 1 ` > and 1 6` ⊥. We also let
∝ = ∝ = S × S, Sν = SN , and let � be the identity on S, unless otherwise
defined. Finally we let match(M, x̃,X) = ∅ where not otherwise defined, we
write � for the subterm (non-strict) partial order, and we use the standard
notion of simultaneous substitution unless otherwise stated.

Example 2 (Convergent rewrite system on terms). We here consider determin-
istic computations specified using a rewrite system on terms containing names.
This example highlights how a notion of substitution restricts the possible choices
for vars(X); see Example 3 and Example 4 for two concrete instances.

Let Σ be a sorted signature, and · ⇓ be normalization with respect to a
convergent rewrite system on the nominal term algebra over N generated by
the signature Σ. We write ρ for sort-preserving capture-avoiding simultaneous

substitutions {M̃/̃a} where every Mi is in normal form; here n(ρ) = n(M̃, ã). A
pattern (term) X is stable if for all ρ, Xρ⇓ = Xρ. The patterns include the
stable patterns Y and all instances X thereof (i.e., where X = Y ρ); such an X
can bind any names occurring in Y but not in ρ.

REWRITE(⇓)
T = X = range(⇓)

M [ỹ := L̃] = M{L̃/̃y}⇓
vars(X) =

⋃
{P(n(Y) \ n(ρ)) : Y stable ∧X = Y ρ}

match(M, x̃,X) = {L̃ : M = X{L̃/̃x}}

As a simple instance of Example 2, we may consider Peano arithmetic.

Example 3 (Peano arithmetic). Let S = SN = {nat, chan}. We take the signa-
ture consisting of the function symbols zero : nat, succ : nat→ nat and plus :
nat × nat → nat. The rewrite rules plus(K, succ(M)) → plus(succ(K),M)
and plus(K, zero)→ K induce a convergent rewrite system ⇓Peano.

The stable terms are those that do not contain any occurrence of plus. The
construction of Example 2 yields that x̃ ∈ vars(X) if x̃ = ε (which matches
only the term X itself), or if x̃ = a and X = succn(a).

Writing i for succi(zero), the agent (νa)(a 2 | a(λy)succ(y) . c plus(3, y))
of REWRITE(⇓Peano) has one visible transition, with the label c 4. In partic-
ular, the object of the label is plus(3, y)[y := 1] = plus(3, y){1/y}⇓Peano = 4.

Example 4 (Symmetric encryption). We can also consider variants on the con-
struction in Example 2, such as a simple Dolev-Yao style [18] cryptographic mes-
sage algebra for symmetric cryptography, where we ensure that the encryption
keys of received encryptions can not be bound in input patterns, in agreement
with cryptographic intuition.

Let S = SN = {message, key}, and consider the term algebra over the signa-
ture with the two function symbols enc, dec of sort message× key→ message.
The rewrite rule dec(enc(M,K),K)→M induces a convergent rewrite system
⇓enc, where the terms not containing dec are stable.

The construction of Example 2 yields that x̃ ∈ vars(X) if x̃ ⊆ n(X) are
pair-wise different and no xi occurs as a subterm of a dec in X. This construc-
tion would permit to bind the keys of an encrypted message upon reception,
e.g. a(λm, k)enc(m, k) . P would be allowed although it does not make crypto-
graphic sense. Therefore we further restrict vars(X) to those sets not containing
names that occur in key position in X, thus disallowing the binding of k above.

SYMSPI
As REWRITE(⇓enc), except
vars(X) = P(n(X) \ {a : a � dec(Y1, Y2) � X ∨

(a � Y2 ∧ enc(Y1, Y2) � X)})

As an example, the agent
(νa, k)(a enc(enc(M, l), k) | a(λy)enc(y, k) . c dec(y, l)) has a visible transition
with label c M .

Example 5 (Pattern-matching spi-calculus). A more advanced version of Exam-
ple 4 is the treatment of data in the pattern-matching spi-calculus [4], to which
we refer for more examples and motivations of the definitions below. Features
of the calculus includes a non-homomorphic definition of substitution that does
not preserve sorts, and a sophisticated way of computing permitted pattern vari-
ables. This example highlights the flexibility of sorted psi-calculi in that such a
specialized modelling language can be directly represented, in a form that is very
close to the original.

We start from the term algebra TΣ over the unsorted signature Σ consisting
of the function symbols (), (·, ·), eKey(·), dKey(·), enc(·, ·) and enc−1(·, ·). The

operation enc−1 is “encryption with the inverse key”, which is only permitted
to occur in patterns. We add a sort system on TΣ where impl denotes imple-
mentable terms not containing enc−1, and pat those that may only be used in
patterns. The sort ⊥ denotes ill-formed terms, which do not occur in well-formed
processes. Substitution is defined homomorphically on the term algebra, except
for enc−1(M1,M2)σ which is enc(M1σ, eKey(N)) when M2σ = dKey(N), and
enc−1(M1σ,M2σ) otherwise. We let ⊂ P(TΣ)×P(TΣ) be deducibility in the
Dolev-Yao message algebra (for the precise definition, see [4]). The definition of
vars(X) below allows to bind only those names that can be deduced from X
and the other names occurring in X. This excludes binding an unknown key, like
in Example 4.

PMSPI
T = X = TΣ
SN = {impl} S = {impl, pat,⊥}
� = ∝ = {(impl, impl)}
∝ = {(impl, impl), (impl, pat)}
sort(M) = impl if ∀N1, N2. enc

−1(N1, N2) 6�M
sort(M) = ⊥ if ∃N1, N2. enc

−1(N1, dKey(N2)) �M
sort(M) = pat otherwise

match(M, x̃,X) = {L̃ : M = X[x̃ := L̃]}
vars(X) = {S ⊆ n(X) : ((n(X) \ S) ∪ {X}) S}

As an example, consider the following transitions in PMSPI:

(νa, k, l)(a enc(dKey(l), eKey(k)).a enc(M, eKey(l))

| a(λy)enc(y, eKey(k)) . a(λz)enc−1(z, y) . c z)
τ−→ (νa, k, l)(a enc(M, eKey(l)) | a(λz)enc(z, eKey(l)) . c z)

τ−→ (νa, k, l)c M.

Note that σ = [y := dKey(l)] resulting from the first input changed the sort of
the second input pattern: sort(enc−1(z, y)) = pat, but sort(enc−1(z, y)σ) =
sort(enc(z, eKey(l))) = impl. However, this is permitted by Definition 4, since
impl ≤ pat.

Example 6 (Nondeterministic computation). The previous examples considered
total deterministic notions of computation on the term language. Here we con-
sider a data term language equipped with partial non-deterministic evaluation: a
lambda calculus with the erratic choice operator ·8·. Due to the non-determinism
and partiality, evaluation cannot be part of the substitution function. Instead,
the match function collects all evaluations of the received term, which are non-
deterministically selected from by the In rule. This example also highlights the
use of object languages with binders, a common application of nominal logic.

We let substitution on terms be the usual capture-avoiding syntactic replace-
ment, and define reduction contexts R ::= [] | R M | (λx.M) R. Reduction →

is the smallest pre-congruence for reduction contexts that contain the rules for
β-reduction (λx.M N → M [x := N]) and · 8 · (namely M1 8 M2 → Mi if
i ∈ {1, 2}). We use the single-name patterns of Example 1, but include evalua-
tion in matching.

NDLAM
SN = S = {s} X = N
M ::= a |M M | λx.M |M 8M

where x binds into M in λx.M
match(M,x, x) = {N : M →∗ N 6→}

As an example, the agent (νa)(a(y) . c y .0 | a ((λx.x x) 8 (λx.x)) .0) has two
visible transitions, with labels c λx.x x and c λx.x.

4 Conclusions and further work

We have described two features that taken together significantly improve the
precision of applied process calculi: generalised pattern matching and substitu-
tion, which allow us to model computations on an arbitrary data term language,
and a sort system which allows us to remove spurious data terms from con-
sideration and to ensure that channels carry data of the appropriate sort. The
well-formedness of processes is thereby guaranteed to be preserved by transitions.
We have given examples of these features, ranging from the simple polyadic pi-
calculus to the highly specialized pattern-matching spi-calculus, in the psi-calculi
framework.

The meta-theoretic results carry over from the original psi formulations, and
many have been machine-checked in Isabelle. We have also developed a tool
for sorted psi-calculi [20], the Psi-calculi Workbench (Pwb), which provides an
interactive simulator and automatic bisimulation checker. Users of the tool need
only implement the parameters of their psi-calculus instances, supported by a
core library.

Future work includes developing a symbolic semantics with pattern matching.
For this, a reformulation of the operational semantics in the late style, where
input objects are not instantiated until communication takes place, is necessary.
We also aim to extend the use of sorts and generalized pattern matching to
other variants of psi-calculi, including higher-order psi calculi [21] and reliable
broadcast psi-calculi [22]. As mentioned in Section 2.6, further developments in
Nominal Isabelle are needed for mechanizing theories with arbitrary but fixed
sortings.

References

[1] Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for
mobile processes with nominal data and logic. LMCS 7(1:11) (2011)

[2] Pitts, A.M.: Nominal logic, a first order theory of names and binding. Information
and Computation 186 (2003) 165–193

[3] Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: Proceedings of POPL ’01, ACM (January 2001) 104–115

[4] Haack, C., Jeffrey, A.: Pattern-matching spi-calculus. Information and Compu-
tation 204(8) (2006) 1195–1263

[5] Gelernter, D.: Generative communication in Linda. ACM TOPLAS 7(1) (January
1985) 80–112

[6] Milner, R.: The polyadic π-calculus: A tutorial. In Bauer, F.L., Brauer, W.,
Schwichtenberg, H., eds.: Logic and Algebra of Specification. Volume 94 of Series
F., NATO ASI, Springer (1993)

[7] Hüttel, H.: Typed psi-calculi. In Katoen, J.P., König, B., eds.: CONCUR 2011 –
Concurrency Theory. Volume 6901 of LNCS., Springer (2011) 265–279

[8] Blanchet, B.: Using Horn clauses for analyzing security protocols. In Cortier, V.,
Kremer, S., eds.: Formal Models and Techniques for Analyzing Security Protocols.
Volume 5 of Cryptology and Information Security Series. IOS Press (March 2011)
86–111

[9] Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization policies.
In Sagiv, M., ed.: Proc. of ESOP 2005. Volume 3444 of LNCS., Springer (2005)
141–156

[10] Given-Wilson, T., Gorla, D., Jay, B.: Concurrent pattern calculus. In Calude, C.,
Sassone, V., eds.: Theoretical Computer Science. Volume 323 of IFIP Advances
in Information and Communication Technology. Springer (2010) 244–258

[11] Fournet, C., Gonthier, G.: The reflexive CHAM and the join-calculus. In: Proc.
POPL. (1996) 372–385

[12] Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable
binding. Formal Aspects of Computing 13 (2001) 341–363

[13] Johansson, M., Victor, B., Parrow, J.: Computing strong and weak bisimulations
for psi-calculi. Journal of Logic and Algebraic Programming 81(3) (2012) 162–180

[14] Johansson, M., Bengtson, J., Parrow, J., Victor, B.: Weak equivalences in psi-
calculi. In: Proc. of LICS 2010, IEEE (2010) 322–331

[15] Milner, R.: Communication and Concurrency. Prentice-Hall, Inc. (1989)
[16] Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-

Order Paradigms. PhD thesis, University of Edinburgh (1993) CST-99-93 (also
published as ECS-LFCS-93-266).

[17] Carbone, M., Maffeis, S.: On the expressive power of polyadic synchronisation in
π-calculus. Nordic Journal of Computing 10(2) (2003) 70–98

[18] Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2) (1983) 198–208

[19] McCarthy, J.: A basis for a mathematical theory of computation. Computer
Programming and Formal Systems (1963) 33–70

[20] Borgström, J., Gutkovas, R., Rodhe, I., Victor, B.: A parametric tool for applied
process calculi. Accepted for publication in ACSD 2013. Available from http:

//www.it.uu.se/research/group/mobility/applied/psiworkbench.
[21] Parrow, J., Borgström, J., Raabjerg, P., Åman Pohjola, J.: Higher-order psi-

calculi (2012) Accepted for publication in MSCS. Available from http://www.it.

uu.se/research/group/mobility.
[22] Pohjola, J.Å., Borgström, J., Parrow, J., Raabjerg, P., Rodhe, I.: Negative

premises in applied process calculi. submitted (2013)
[23] Åman Pohjola, J.: Isabelle proof scripts for sorted psi-calculi (2012)

A Complete Definitions

A.1 Frames and transitions

Each agent affects other agents that are in parallel with it via its frame, which
may be thought of as the collection of all top-level assertions of the agent. A
frame F is an assertion with local names, written (νb̃)Ψ where b̃ is a sequence
of names that bind into the assertion Ψ . We use F,G to range over frames, and
identify alpha-equivalent frames. We overload ⊗ to frame composition defined
by (νb̃1)Ψ1⊗(νb̃2)Ψ2 = (νb̃1b̃2)(Ψ1⊗Ψ2) where b̃1#b̃2, Ψ2 and vice versa. We write

Ψ⊗F to mean (νε)Ψ⊗F , and (νc)((νb̃)Ψ) for (νcb̃)Ψ .

Intuitively a condition is entailed by a frame if it is entailed by the asser-
tion and does not contain any names bound by the frame, and two frames are
equivalent if they entail the same conditions. Formally, we define F ` ϕ to mean
that there exists an alpha variant (νb̃)Ψ of F such that b̃#ϕ and Ψ ` ϕ. We also
define F ' G to mean that for all ϕ it holds that F ` ϕ iff G ` ϕ.

Definition 8 (Frames and Transitions). The frame F(P) of an agent P is
defined inductively as follows:

F(M(λx̃)N .P) = F(M N .P) = 1

F(case ϕ̃ : P̃) = F(!P) = 1
F(LΨM) = (νε)Ψ F(P |Q) = F(P)⊗F(Q)
F((νb)P) = (νb)F(P)

The actions ranged over by α, β are of the following three kinds: Output
M (νã) N where ã ⊆ n(N), Input M N , and Silent τ . Here we refer to M as
the subject and N as the object. We define bn(M (νã)N) = ã, and bn(α) = ∅
if α is an input or τ . We also define n(τ) = ∅ and n(α) = n(M) ∪ n(N) for the
input and output actions. We write M〈N〉 for M (νε)N .

A transition is written Ψ � P
α−→ P ′, meaning that in the environment Ψ

the well-formed agent P can do an α to become P ′. The transitions are defined

inductively in Table 1. We write P
α−→ P ′ without an assertion to mean

1 � P
α−→ P ′.

The operational semantics is the same as for the original psi-calculi, except for
the use of match in rule In. We identify alpha-equivalent agents and transitions
(see [1] for details). In a transition the names in bn(α) bind into both the action
object and the derivative, therefore bn(α) is in the support of α but not in the
support of the transition. This means that the bound names can be chosen fresh,
substituting each occurrence in both the action and the derivative.

As shown in the introduction, well-formedness is not preserved by transitions
in the original psi-calculi. However, in sorted psi-calculi the usual well-formedness
preservation result holds.

In
Ψ `M .↔ K L̃ ∈ match(N, ỹ,X)

Ψ � M(λỹ)X.P
K N−−−→ P [ỹ := L̃]

Out
Ψ `M .↔ K

Ψ � M N.P
K〈N〉−−−−→ P

Com

ΨQ⊗Ψ � P
M (νã)N−−−−−−→ P ′

ΨP⊗Ψ � Q
K N−−−→ Q′ Ψ⊗ΨP⊗ΨQ `M

.↔ K

Ψ � P |Q τ−→ (νã)(P ′ |Q′)
ã#Q

Par
ΨQ⊗Ψ � P

α−→ P ′

Ψ � P | Q α−→ P ′ | Q
bn(α)#Q Case

Ψ � Pi
α−→ P ′ Ψ ` ϕi

Ψ � case ϕ̃ : P̃
α−→ P ′

Rep
Ψ � P | !P α−→ P ′

Ψ � !P
α−→ P ′

Scope
Ψ � P

α−→ P ′

Ψ � (νb)P
α−→ (νb)P ′

b#α, Ψ

Open
Ψ � P

M (νã)N−−−−−−→ P ′

Ψ � (νb)P
M (νã∪{b})N−−−−−−−−−→ P ′

b#ã, Ψ,M
b ∈ n(N)

Symmetric versions of Com and Par are elided. In the rule Com we assume that
F(P) = (νb̃P)ΨP and F(Q) = (νb̃Q)ΨQ where b̃P is fresh for all of Ψ, b̃Q, Q,M and P ,

and that b̃Q is correspondingly fresh. In the rule Par we assume that F(Q) = (νb̃Q)ΨQ

where b̃Q is fresh for Ψ, P and α. In Open the expression νã∪ {b} means the sequence
ã with b inserted anywhere.

Table 1. Operational semantics.

B Meta-theory

We begin by recollecting the definition of strong labelled bisimulation on well-
formed agents from Bengtson et al. [1], to which we refer for examples, intuitions
and the exact formulations of theorems.

Definition 9 (Strong bisimulation). A strong bisimulation R is a ternary
relation on assertions and pairs of agents such that R(Ψ, P,Q) implies the fol-
lowing four statements.

1. Static equivalence: Ψ⊗F(P) ' Ψ⊗F(Q).
2. Symmetry: R(Ψ,Q, P).
3. Extension with arbitrary assertion: ∀Ψ ′. R(Ψ⊗Ψ ′, P,Q).
4. Simulation: for all α, P ′ such that bn(α)#Ψ,Q

and Ψ � P
α−→ P ′, there exists Q′

such that Ψ � Q
α−→ Q′ and R(Ψ, P ′, Q′).

We define bisimilarity P
.∼Ψ Q to mean that there is a bisimulation R such that

R(Ψ, P,Q), and write
.∼ for

.∼1. Strong congruence is defined by P ∼Ψ Q iff for

all sequences σ̃ of substitutions it holds that Pσ̃
.∼Ψ Qσ̃. We write P ∼ Q for

P ∼1 Q.

There is also a notion of weak bisimilarity (
.
≈) where τ -transitions cannot be

observed; see [14] for its precise definition.
We seek to establish the following properties of bisimulation.

Theorem 4 (Congruence properties of
.∼). For all Ψ :

P
.∼Ψ Q =⇒ P |R .∼Ψ Q |R

a#Ψ ∧ P .∼Ψ Q =⇒ (νa)P
.∼Ψ (νa)Q

P
.∼Ψ Q =⇒ !P

.∼Ψ !Q

∀i.Pi
.∼Ψ Qi =⇒ case [] ϕ̃ : P̃

.∼Ψ case [] ϕ̃ : Q̃
P

.∼Ψ Q =⇒ M N .P
.∼Ψ M N .Q

(∀L̃. P [x̃ := L̃]
.∼Ψ Q[x̃ := L̃]) =⇒

M(λx̃)X .P
.∼Ψ M(λx̃)X .Q

Definition 10. P ∼Ψ Q means that for all sequences σ of substitutions it holds
that Pσ

.∼Ψ Qσ, and we write P ∼ Q for P ∼1 Q.

We seek to establish the following properties of bisimulation congruence.

Theorem 5. Strong congruence ∼Ψ is a congruence for all Ψ .

Theorem 6 (Structural equivalence). a#Q, x̃,M,N,X, ϕ̃ implies

case [] ϕ̃ : (̃νa)P ∼ (νa)case [] ϕ̃ : P̃
M(λx̃)X . (νa)P ∼ (νa)M(λx̃)X .P

M N . (νa)P ∼ (νa)M N .P
Q | (νa)P ∼ (νa)(Q | P)
(νb)(νa)P ∼ (νa)(νb)P

(νa)0 ∼ 0
!P ∼ P | !P

P | (Q |R) ∼ (P |Q) |R
P |Q ∼ Q | P

P ∼ P | 0

B.1 Trivially sorted calculi

A trivially sorted psi calculus is one where � = ∝ = ∝ = S ×S and Sν = S, i.e.,
the sorts do not affect how terms are used in communications and substitutions.
For technical reasons we here first establish the expected algebraic properties of
bisimilarity and its induced congruence in trivially sorted psi-calculi, and then
investigate how these results are lifted to arbitrary sorted calculi.

Theorem 7. Theorem 4, Theorem 5, and Theorem 6 hold for trivially sorted
psi-calculi.

Additionally, the corresponding results on the algebraic properties of weak
bisimilarity and its induced congruence as defined and presented in [14] also
hold for trivially sorted psi-calculi.

These results have all been machine-checked in Isabelle [23]. As indicated these
proof scripts apply only to trivially sorted calculi, meaning that the only exten-
sion to our previous formulation is in the input rule which now uses match. We
have also machine-checked Theorem 1 (preservation of well-formedness) in this
setting.

The restriction to trivially sorted calculi is a consequence of technicalities in
Nominal Isabelle: it requires every name sort to be declared individually, and
there are no facilities to reason parametrically over the set of name sorts. There is
also a discrepancy in that our definitions in Section 2 considers only well-sorted
alpha-renamings, while the mechanisation works with a single sort of names and
thus allows for ill-sorted alpha-renamings. This is only a technicality, since every
use of alpha-renaming in the formal proofs is to ensure that the bound names in
patterns and substitutions avoid other bound names—thus, whenever we may
work with an ill-sorted renaming, there would be a well-sorted renaming that
suffices for the task.

B.2 Arbitrary sorted psi-calculi

We here extend the results of Theorem 7 to arbitrary sorted psi-calculi. The idea
is to introduce an explicit error element ⊥ corresponding to an ill-sorted term,
pattern, condition and assertion. For technical reasons we must also include one
extra condition fail (in order to ensure the compositionality of ⊗) and in the
patterns we need different error elements with different support (in order to
ensure the preservation of pattern variables under substitution).

Let I = (T,X,C,A) be a sorted psi-calculus. We construct a trivially sorted
psi-calculus U(I) with one extra sort, error. The parameters of U(I) are defined
by U(I) = (T ∪ {⊥},X ∪ {(⊥, S) : S ⊂fin N},C ∪ {⊥, fail},A ∪ {⊥}). Here
⊥ and fail are constant symbols with empty support of sort error. ⊥ is not a
channel, never entailed, matches nothing and entails nothing but fail. fail is
entailed only by ⊥. We define Ψ⊗⊥ = ⊥⊗Ψ = ⊥ for all Ψ , and otherwise ⊗ is
as in I. match and

.↔ in U(I) are the same as in I, and for Ψ 6= ⊥ we let Ψ ` ϕ
in U(I) iff Ψ ` ϕ in I. Substitution is then defined in U(I) as follows:

T [ã := Ñ]U(I) =
T [ã := Ñ]I if sort(ai) �I sort(Ni) and

Ni 6= ⊥ for all i, and T 6= (⊥, S)
(⊥, S \ ã) if T = (⊥, S) is a pattern
(⊥,

⋃⋃
vars(T)) otherwise, if T is a pattern

⊥ otherwise

Lemma 1. Assume that P and Q are well-formed processes in I, and Ψ 6= ⊥.

1. U(I) as defined above is a sorted psi-calculus.
2. P and Q are well-formed when considered as processes of U(I).

3. Ψ � P
α−→ P ′ in U(I) iff Ψ � P

α−→ P ′ in I.
4. P

.∼Ψ Q in I iff P
.∼Ψ Q in U(I), and P

.
≈Ψ Q in I iff P

.
≈Ψ Q in U(I).

With Lemma 1, we can lift the congruence and the structural equivalence results
for trivially sorted psi-calculi to arbitrary sorted calculi:

Theorem 8. All clauses of Theorem 7 pertaining to strong bisimilarity, strong
congruence and weak bisimilarity are valid in all sorted psi-calculi.

Proof. We show only the proofs for strong congruence and commutativity of the
parallel operator. The other proofs are analogous.

Fix a sorted psi-calculus I. Assume P
.∼Ψ Q holds in I. By Lemma 1.4,

P
.∼Ψ Q holds in U(I). Theorem 7 thus yields P | R .∼Ψ Q | R in U(I), and

Lemma 1.4 yields the same in I.
Let P and Q be well-formed in I and Ψ 6= ⊥. By Theorem 7, P |Q ∼Ψ Q |P

holds in U(I). By Definition 9, (P | Q)σ̃
.∼Ψ (Q | P)σ̃ in U(I) for all σ̃. By

Theorem 1, when σ̃ is well-sorted then (P | Q)σ̃ and (Q | P)σ̃ are well-formed.
By Lemma 1.4, (P |Q)σ̃

.∼Ψ (Q | P)σ̃ in I. P |Q ∼Ψ Q | P follows by definition.
This approach does not yield a similar result for strong congruence, since

the closure of bisimilarity under well-sorted substitutions does not imply its
closure under ill-sorted substitutions. Consider a well-sorted instance I such that
0 ∼Ψ L1M. The corresponding property of U(I) does not follow: if σ is ill-sorted
then 1σ = ⊥, but 0

.∼Ψ L⊥M does not hold since only ⊥ entails fail. Instead,
we have performed a direct proof: it is identical, line by line, to the proof in the
trivially sorted case.

A direct manual proof would also be necessary to obtain similar results for
weak congruence for the same reasons as in the strong case. We have chosen not
to pursue this result since the weak case is less straight-forward and a manual
proof would be error-prone.

B.3 Pattern matching in original calculi

In many cases we can recover the pattern matching of the original psi-calculi.

Theorem 9. Suppose (T,C,A) is an original psi calculus [1] where pattern
variables are preserved by substitutions (n(Nσ) ⊇ n(N) \ n(σ)). Let X = T

and vars(X) = P(n(X)) and match(M, x̃,X) = {L̃ : M = X[x̃ := L̃]} and
S = SN = Sν = {s} and ∝ = ∝ = � = {(s, s)} and sort : N] T]X → {s};
then (T,X,C,A) is a sorted psi calculus.

This result has been machined-checked in Isabelle for trivially-sorted calculi.

C Process Calculi Examples

We here consider some variants of popular process calculi. One main point of
our work is that we can represent them directly as psi-calculi, without elaborate
coding schemes. In our original psi-calculi we could in this way directly represent
the monadic pi-calculus; for the other calculi presented below an unsorted psi-
calculus would contain terms with no counterpart in the represented calculus,

as explained in sections 1.2 and 1.3. We establish that our formulations enjoy
a strong operational correspondence with the original calculus, under trivial
mappings that merely specialise the original concrete syntax (e.g., the pi-calculus
prefix a(x) maps to a(λx)x in psi). This correspondence is significantly stronger
than standard correspondence results (cf. Gorla, I&C 208(9):1031-1053, 2010).
Because of the simplicity of the mapping and the strength of the correspondence
we use the phrasing that psi-calculi represent other process calculi, in contrast
to encoding them.

C.1 Unsorted Polyadic pi-calculus

In the polyadic pi-calculus [6] the only values that can be transmitted between
agents are tuples of names. Tuples cannot be nested. An input binds a tuple
of distinct names and can only communicate with an output of equal length,
resulting in a simultaneous substitution of all names. In the unsorted polyadic pi-
calculus there are no further requirements on agents, in particular a(x) | a〈y, z〉
is a valid agent. This agent has no communication action since the lengths of
the tuples mismatch.

PPI
T = N ∪ {〈ã〉 : ã ⊂fin N}
C = {>} ∪ {a = b | a, b ∈ N}
X = {〈ã〉 : ã ⊂fin N ∧ ã distinct}
.↔ = identity on names 1 ` a = a
vars(〈ã〉) = {ã}
match(〈ã〉, x̃, 〈x̃〉) = {ã} if |ã| = |x̃|
SN = {chan} S = {chan, tup}
sort(a) = chan sort(〈ã〉) = tup

Sν = {chan} � = {(chan, chan)}
∝ = ∝ = {(chan, tup)}

As an example the agent a(λx, y)〈x, y〉 . a 〈y〉 .0 is well-formed, since chan ∝
tup and chan ∝ tup, with vars(〈x, y〉) = {{x, y}}. This demonstrates that
PPI disallows anomalies such as nested tuples but does not enforce a sorting
discipline to guarantee that names communicate tuples of the same length.

PPI is a direct representation of the polyadic pi-calculus as presented by
Sangiorgi [16] (with replication instead of process constants). Let J·K be the
function that maps the polyadic pi-calculus to PPI processes, and analogously
for labels: it maps summation to>-guarded case statements, matching [x = y] to
x = y-guarded case statements, input prefix a(x̃) to a(λx̃)x̃, and is homomorphic
over all other operators.

We obtain a strong operational correspondence between the calculi:

Theorem 10. If P and Q are polyadic pi-calculus processes, then:

1. If P
α−→ P ′ then JP K JαK−−→ JP ′K

2. If JP K α′
−→ P ′′ then P

α−→ P ′ where JαK = α′ and JP ′K = P ′′

As it turns out, the representation of polyadic pi-calculus is surjective mod-
ulo strong bisimilarity. We show this by defining a translation P in the other
direction: it is defined homomorphically except for case statements, which are
mapped to a sum of possibly match-guarded processes, and L1M = 0.

Theorem 11. If P is a PPI process, then P
.∼ JP K.

A version of LINDA [5] can be obtained by adding a term • of a new sort ts
denoting the tuple space, letting ∝ = ∝ = {(ts, tup)} and defining match and
vars as in Theorem 9.

C.2 Sorted polyadic pi-calculus

Milner’s classic sorting [6] regime for the polyadic pi-calculus ensures that pat-
tern matching in inputs always succeeds, by enforcing that the length of the
pattern is the same as the length of the received tuple. This is achieved as fol-
lows. Milner assumes a countable set of subject sorts S ascribed to names, and
a partial function ob : S ⇀ S∗, assigning a sequence of object sorts to each sort.
The intuition is that if a has sort s then any communication along a must be a
tuple of sort ob(s). An agent is well-sorted if for any input prefix a(b1, . . . bn) it
holds that a has some sort s where ob(s) is the sequence of sorts of b1, . . . , bn
and similarly for output prefixes.

SORTEDPPI
Everything as in PPI except:
SN = Sν = S S = S∗

sort(a1, . . . , an) = sort(a1), . . . , sort(an)
match(ã, x̃, x̃) = {ã} if sort(ã) = sort(x̃)
� = {(s, s) : s ∈ S} ∝ = ∝ = {(s, ob(s)) : s ∈ S}

As an example, let sort(a) = s with ob(s) = t1, t2 and sort(x) = t1 with
ob(t1) = t2 and sort(y) = t2 then the agent a(λx, y)(x, y) . x y .0 is well-formed,
since s ∝ t1, t2 and t1 ∝ t2, with vars(x, y) = {{x, y}}.

A formal comparison with the system in [6] is complicated by the fact that
Milner uses so called concretions and abstractions as agents. Restricting atten-
tion to agents in the normal sense we have the following result, where J·K is the
function from the previous example.

Theorem 12. P is well-sorted iff JP K is well-formed.

Proof. A trivial induction over the structure of P , observing that the require-
ments are identical.

C.3 Polyadic synchronisation pi-calculus

Carbone and Maffeis [17] explore the so called pi-calculus with polyadic synchro-
nisation, eπ, which can be thought of as a dual to the polyadic pi-calculus. Here
action subjects are tuples of names, while the objects transmitted are just single
names. It is demonstrated that this allows a gradual enabling of communication
by opening the scope of names in a subject, results in simple representations
of localities and cryptography, and gives a strictly greater expressiveness than
standard pi-calculus.

In order to represent eπ, only minor modifications to the representation of
the polyadic pi-calculus in Example C.1 are necessary. To allow tuples in subject
position but not in object position, we invert the relations ∝ and ∝. Moreover,
eπ does not have name matching conditions a = b.

PSPI
Everything as in PPI except:
C = {>,⊥} X = N 1 6` ⊥
ã
.↔ b̃ is > if ã = b̃, and ⊥ otherwise

match(a, 〈x〉, x) = {a}
∝ = ∝ = {(tup, chan)}

In showing that this representation is fully abstract, for convenience we will
consider a dialect of eπ without the τ prefix. This has no cost in terms of expres-
siveness since the τ prefix can be encoded using a scoped communication. Let
the mapping J·K from eπ processes into PSPI be homomorphic on all operators
except sum, which is mapped to a >-guarded case statement.

The proofs are similar to the polyadic pi-calculus case. The main differences
are due to the fact that eπ is formulated in terms of a late semantics with a
structural congruence rule.

Lemma 2. Let ≡ be structural congruence on eπ processes. If P ≡ Q then
JP K ∼ JQK.

Proof. The relation R = {(P,Q) : JP K ∼ JQK} satisfies all the axioms defining ≡
and is also a process congruence. Since ≡ is the least such congruence, ≡ ⊆ R.

Theorem 13.

1. If P
x̃(y)−−−→ P ′ then for all z, JP K

〈x̃〉 z
−−−→ P ′′ where P ′′

.∼ JP ′K[y := z].

2. If P
α−→ P ′ and α is not an input, then JP K JαK−−→ P ′′ where P ′′

.∼ JP ′K.

3. If JP K
〈x̃〉 z
−−−→ P ′′ then for all y#P , P

x̃(y)−−−→ P ′ where JP ′{z/y}K = P ′′.

4. If JP K α′
−→ P ′′ and α is not an input, then P

α−→ P ′ where JαK = α′ and
JP ′K = P ′′.

Proof. By induction on the derivation of the transitions, using Lemma 2 in the
Struct cases.

Polyadic synchronization pi has only guarded choice. We say that a PSPI pro-
cess is case-guarded if in all its subterms of the form case ϕ1 : P1 [] · · · [] ϕn : Pn,
if ϕi = > then Pi = M N.Q or Pi = M(λx̃)X.Q. The case-guarded PSPI pro-
cesses correspond directly to polyadic synchronization pi processes with guarded
choice.

Theorem 14. For all case-guarded PSPI processes R there exists an eπ process
R such that R

.∼ JRK.

C.4 Value-passing CCS

We can also encode value-passing CCS [15], using substitution to perform eval-
uation of expressions.

Value-passing CCS [15] is an extension of pure CCS to admit arbitrary data
from some set V to be sent along channels; there is no dynamic connectivity
so channel names cannot be transmitted. When a value is received in a com-
munication it replaces the input variable everywhere, and where this results in
a closed expression it is evaluated, so for example a(x) . c(x + 3) can receive 2
along a and become c 5. There are conditional if constructs that can test if a
boolean expression evaluates to true, as in a(x) . if x > 3 then P .

To represent this as a psi-calculus we assume an arbitrary set of value ex-
pressions e ∈ E of sort exp, a subset of which is the boolean expressions b ∈ EB.
The names are either used as channels (and then have the sort chan) or expres-
sion variables (of sort exp); only the latter can appear in expressions and be
substituted by values. An expression is closed if it has no name of sort exp in
its support, otherwise it is open. The values v ∈ V have sort value, the boolean
values are {true, false}. We let E be an evaluation function on expressions, that
takes each closed expression to a value and leaves open expressions unchanged.
We write e{Ṽ /x̃} for the result of syntactically replacing all x̃ simultaneously by

Ṽ in the (boolean) expression e, and assume that the result is a valid (boolean)
expression. For example (x+3){2/x} = 2+3, and E(2+3) = 5. Evaluation takes
place in substitution: (x + 3)[x := 2] = E((x + 3){2/x}) = E(2 + 3) = 5. Since
patterns are single names we need to add a failure pattern ⊥ as explained in
Example 1.

VPCCS
N = NCh ∪NVar

T = N ∪E ∪V
C = EB

A = {1}
X = N ∪ {⊥}
1 ` true, 1 6` false
.↔ = identity on names
match(v, a, a) = {v} if v ∈ V
vars(a) = {a}

SN = {chan, exp}
S = SN ∪ {value}
e ∈ E⇒ sort(e) = exp

v ∈ V⇒ sort(v) = value

e ∈ E⇒ e[x̃ := M̃] = E(e{M̃/x̃})
� = {(exp, value)}
Sν = {chan}
∝ = ∝ = {(chan, exp), (chan, value)}

Closed value-passing CCS processes correspond to VPCCS agents P where
all free names are of sort chan, i.e., where sort(n(P)) ⊆ {chan}.

We show full abstraction with regards to value-passing CCS as defined by
Milner [15], with the following modifications: We use replication instead of pro-
cess constants, with the standard semantics. We consider only finite sums. Milner
allows for infinite sums without specifying exactly what infinite sets are allowed
and how they are represented, making a fully formal comparison difficult. In-
troducing infinite sums naively in psi-calculi means that agents might exhibit
infinite support and exhaust the set of names, rendering crucial operations such
as α-converting all bound names to fresh names impossible. We do not consider
relabellings at all. Relabelling has fallen out of fashion since the same effect can
be obtained by abstracting over channels, and it is not included in the psi-calculi
framework. Only a finite number of channels may be restricted by the set L in
a restriction P \ L. With finite sums, this results in no loss of expressivity since
agents have finite support.

Milner’s restrictions are sets of names, which we represent as a sequence
of ν-binders; for that reason we use a total ordering of any set of names (this
is always available since the set of names is countable). Formally we assume
an injective and support-preserving function σ : Pfin(Nchan) → (Nchan)

∗. The
mapping J·K from value-passing CCS into VPCCS is defined homomorphically
on all operators except the following:

JΣi PiK = case > : JP1K [] · · · [] > : Pi
Jif b then P K = case b : JP K

JP \ LK = (νσ(L))JP K

Lemma 3. If P is a closed VPCCS process and P
α−→ P ′, then P ′ is closed.

Theorem 15. If P and Q are closed value-passing CCS processes, then:

1. if P
α−→ P ′ then JP K JαK−−→ JP ′K.

2. if JP K α′
−→ P ′′ then P

α−→ P ′ where JαK = α′ and JP ′K = P ′′.

Proof. By induction on the derivations of P ′ and P ′′, respectively. The full proof
is given in Appendix D.4.

Theorem 16. For all closed value-passing CCS processes P and Q, P ∼ Q iff
JP K .∼ JQK

Proof. {(P,Q) : JP K .∼ JQK∧P,Q closed} is a bisimulation in value-passing CCS
by coinduction, using Theorem 15.

Symmetrically, {(1, JP K, JQK) : P ∼ Q ∧ P,Q closed} is a bisimulation in
VPCCS. The static equivalence and extension of arbitrary assertion cases are
vacuous since there’s only one frame. Symmetry follows from symmetry of ∼,
and simulation follows by Theorem 15 and the fact that ∼ is a bisimulation.

Value-passing pi-calculus To demonstrate the modularity of psi-calculi, as-
sume that we wish a variant of the pi-calculus enriched with values in the
same way as value-passing CCS. This is achieved with only a minor change
to VPCCS:

VPPI
Everything as in VPCCS except:
match(z, a, a) = {z} if z ∈ V ∪Nch
� = {(exp, value), (chan, chan)}
∝ = ∝ = {(chan, exp), (chan, value), (chan, chan)}

Here also channel names can substitute channel names, and they can be sent
and received along channel names.

D Full proofs for Appendix C

The following is full proofs of Appendix 3; we present them here, in a seperate
section, due to their length.

We will assume that the reader is acquainted with the relevant psi-calculi
presented in Section 3, as well as the definitions, notation and terminology of
Sangiorgi [16], Carbone and Maffeis [17], and Milner [15], respectively. We will
use their notation except as concerns the treatment of bound names, where we
will adopt our notation, e.g. we will write bn(α)#Q instead of bn(α)∩fn(Q) = ∅.

D.1 Auxiliary Lemma

The following lemma is used in the isomorphism proofs in the subsequent sec-
tions.

Lemma 4 (Flatten Case). Let I be a Psi instance. Suppose AI = {1} and
there is an equivariant condition > ∈ CI such that 1 ` >. Let R = case > :
(case ϕ̃ : P̃) [] φ̃ : Q̃ and R′ = case ϕ̃ : P̃ [] φ̃ : Q̃; Then R ∼ R′.

Proof. Let R =
⋃
σ{(1, Rσ,R′σ), (1, R′σ,Rσ)} ∪ ∼. We first show that R is a

bisimulation. We only consider the simulation cases as the other cases are trivial
(there is only one assertion). Suppose a transition from R is derived as follows

Case

Case
Piσ

α−→ P ′i 1 ` ϕiσ

case ϕ̃σ : P̃ σ
α−→ P ′i

case > : (case ϕ̃σ : P̃ σ) [] φ̃σ : Q̃σ
α−→ P ′i

then R′ can simulate this with the following

Case
Piσ

α−→ P ′i 1 ` ϕiσ

case ϕ̃σ : P̃ σ [] φ̃ : Q̃
α−→ P ′i

By reflexivity of ∼, we know P ′i ∼ P ′i . By noting ∼ ⊆ R, we can conclude this
case ∀σ.(1, P ′iσ, P ′iσ) ∈ R.

In case a transition of R is derived by

Case
Qiσ

α−→ Q′i 1 ` φiσ

case > : (case ϕ̃σ : P̃ σ) [] φ̃σ : Q̃σ
α−→ Q′i

R′ can simulate it with

Case
Qiσ

α−→ Q′i 1 ` φiσ

case ϕ̃σ : P̃ σ [] φ̃σ : Q̃σ
α−→ Q′i

Again by reflexivity of ∼ we find Q′i ∼ Q′i, and thus ∀σ.(1, Q′iσ,Q′iσ) ∈ ∼ ⊆
R.

By a similar argument, we can show that R simulates R′. Since R is a bisim-
ulation that is closed under all substitutions, R ⊆ ∼.

D.2 Polyadic Pi-Calculus

We follow the exposition of Polyadic Pi-Calculus given by Sangiorgi in [16] with
only departure being that we use replication in the labelled operational semantics
instead of process constant invocation.

For convenience, we give an explicit definition of the encoding function given
in Example C.1.

Definition 11 (Polyadic Pi-Calculus to PPi).
Agents:

JP +QK = case > : JP K [] > : JQK
J[x = y]P K = case x = y : JP K
Jx(ỹ).P K = x(λỹ)〈ỹ〉.JP K
Jx〈ỹ〉.P K = x〈ỹ〉.JP K

J0K = 0
JP |QK = JP K | JQK
JνxP K = (νx)JP K
J!P K = !JP K

Actions:

J(νỹ′)z〈ỹ〉K = z (νỹ′) 〈ỹ〉
Jx〈z̃〉K = x 〈z̃〉

JτK = τ

In output action ỹ′ do not bind into z.

Definition 12 (PPi to Polyadic Pi-Calculus).
Process:

L1M = 0
0 = case = 0

case ϕ1 : P1 [] . . . [] ϕn : Pn = ϕ1 : P1 + · · ·+ ϕn : Pn
!P = !P

(νx)P = νxP

P |Q = P |Q
x(λỹ)〈ỹ〉.P = x(ỹ).P

x〈ỹ〉.P = x〈ỹ〉.P
Case clause:

x = y : P = [x = y]P

> : P = P

The following is proof of the strong operational correspondence.

Proof (of Theorem 10).

1. We show P
α−→ P ′ ⇒ JP K JαK−−→ JP ′K by induction on the derivation of P ′.

Alp:
Trivial in nominal logic.

Out:
We have that x〈ỹ〉.P x〈ỹ〉−−−→ P . Since x

.↔ x, we can derive x 〈ỹ〉.JP K x 〈ỹ〉−−−→
JP K.

Inp:

We have that x(ỹ).P
x〈z̃〉−−−→ P{z̃/ỹ} with |z̃| = |x̃|, hence z̃ ∈ match(〈z̃〉, ỹ, 〈ỹ〉).

Using this and x
.↔ x we can derive x(λỹ)〈ỹ〉.JP K x 〈z̃〉−−−→ JP K[ỹ := z̃]. By

an easily checkable equality, JP K[ỹ := z̃] = JP{z̃/ỹ}K, which completes
the proof.

Sum:
Here P

α−→ P ′ and by induction, JP K JαK−−→ JP ′K. Thus we can derive

case > : JP K [] > : JQK JαK−−→ JP ′K.

Par:
Here P

α−→ P ′ and bn(α)#Q, and by induction, JP K JαK−−→ JP ′K. Then
we can choose an alpha-variant of the frame of JQK which is sufficiently

fresh to allow the derivation JP K | JQK JαK−−→ JP ′K | JQK.
Com:

Here P
(νỹ′)x〈ỹ〉−−−−−−→ P ′, Q

x〈ỹ〉−−−→ Q′ with ỹ′ ⊆ ỹ and ỹ′#Q. By induction,

JP K x (νỹ′) 〈ỹ〉−−−−−−→ JP ′K and JQK x 〈ỹ〉−−−→ JQ′K. Moreover, we note that
x
.↔ x. Finally, we can choose alpha-variants of the frames of JP K and

JQK which are sufficiently fresh to allow the derivation JP K | JQK τ−→
(νỹ′)(JP ′K | JQ′K).

Match:
Here P

α−→ P ′ and by induction, JP K JαK−−→ JP ′K. Thus we can derive

case x = x : JP K JαK−−→ JP ′K.

Rep:

Here P | !P
α−→ P ′ and by induction, JP K | !JP K JαK−−→ JP ′K. Thus we

can derive !JP K JαK−−→ JP ′K.

Res:
Here P

α−→ P ′ with x#α, and by induction, JP K JαK−−→ JP ′K. Hence we

derive (νx)JP K JαK−−→ (νx)JP ′K.

Open:

Here P
(νỹ′)z〈ỹ〉−−−−−−→ P ′ with x 6= z, x#ỹ′ and x ∈ ỹ. By induction,

JP K z (νỹ′) 〈ỹ〉−−−−−−→ JP ′K. Hence we derive (νx)JP K z (νỹ′∪x) 〈ỹ〉−−−−−−−−→ JP ′K.

2. We now show that if JP K α′
−→ P ′′ then P

α−→ P ′ where JαK = α′ and
JP ′K = P ′′. The proof is similar, by induction on the derivation of JP ′K. We
show only the “interesting” case:

Case:
Here JP K α′

−→ P ′′ and by induction, P
α−→ P ′ where JαK = α′ and

JP ′K = P ′′. Since PC = case ϕ̃ : P̃ is in the range of J·K, either PC = > :
JP K [] > : JQK, PC = > : JQK [] > : JP K or PC = case x = y : JP K. We
proceed by case analysis:

(a) When PC = > : JP K [] > : JQK, we note that JP + QK = PC and

imitate the derivation of P ′′ from PC with the derivation P +Q
α−→

P ′, using the Sum rule.
(b) The case when PC = > : JQK [] > : JP K is symmetric to the previous

case.
(c) When PC = case x = y : JP K, since 1 ` x = y by the induction

hypothesis, x = y. we note that J[x = x]P K = PC and imitate the

derivation of P ′′ from PC with the derivation [x = x]P
α−→ P ′,

using the Match rule.

Proof (of Theorem 11).

By structural induction on P . We only consider the case of case agent as
other cases are trivial.

case case ϕ1 : P1 [] . . . [] ϕn : Pn:
We get an induction hypothesis for every i ∈ {1..n}, IHi: Pi ∼ JPiK.
We proceed by induction on n.

base case n = 0:
JcaseK = J0K = 0. By reflexivity of ∼, 0 ∼ 0.

induction step n+ 1:
The IH for this case is

Jcase ϕ1 : P1 [] . . . [] ϕn : PnK ∼ case ϕ1 : P1 [] . . . [] ϕn : Pn = P ′

We need to show that Q ∼ JQK for Q = case ϕ1 : P1 [] . . . [] ϕn : Pn []
ϕn+1 : Pn+1.

We compute

JQK = Jϕ1 : P1 + · · ·+ ϕn : Pn + ϕn+1 : Pn+1K
= case > : Jϕ1 : P1K [] . . . [] > : Jϕn : PnK [] > : Jϕn+1 : Pn+1K
∼ (by Lemma 4)

case > : (case > : Jϕ1 : P1K [] . . . [] > : Jϕn : PnK) [] > : Jϕn+1 : Pn+1K
∼ (by IH)

case > : (case ϕ1 : P1 [] . . . [] ϕn : Pn) [] > : Jϕn+1 : Pn+1K
= case > : P ′ [] > : Jϕn+1 : Pn+1K
= Q′

We distinguishe the cases of ϕn+1:

case ϕn+1 = >:

Q′ = case > : P ′ [] > : J> : Pn+1K
= case > : P ′ [] > : JPn+1K
∼ (by IHn+1)

case > : P ′ [] > : Pn+1

∼ (by Lemma 4)
case ϕ1 : P1 [] . . . [] ϕn : Pn [] > : Pn+1 = Q

We conclude this case.

case ϕn+1 = x = y:

Q′ = case > : P ′ [] > : Jx = y : Pn+1K
= case > : P ′ [] > : (case x = y : JPn+1K)
∼ (by IHn+1)

case > : P ′ [] > : (case x = y : Pn+1)
∼ (by Lemma 4)

case ϕ1 : P1 [] . . . [] ϕn : Pn [] > : (case x = y : Pn+1)
∼ (by Lemma 4)

case ϕ1 : P1 [] . . . [] ϕn : Pn [] x = y : Pn+1 = Q

By concluding this case, we conclude the proof.

From the strong operational correspondence, we obtain full abstraction.

Theorem 17. P ∼e Q iff JP K .∼ JQK

Proof. {(P,Q) : JP K .∼ JQK} is an early bisimulation in the polyadic pi-calculus
by coinduction, using Theorem 10.

Symmetrically, {(1, JP K, JQK) : P ∼e Q} is a bisimulation in PPi. The static
equivalence and extension of arbitrary assertion cases are vacuous since there’s
only one frame. Symmetry follows from symmetry of ∼e, and simulation follows
by Theorem 10 and the fact that ∼e is an early bisimulation.

Lemma 5. J·K is injective, that is, for all P,Q, if JP K = JQK then P = Q.

Proof. By induction on P and Q while inspecting all the possible cases.

Lemma 6. J·K is surjective up to ∼, that is, for every P there is a Q such that
JQK ∼ P .

Proof. By structural induction on the well formed agent P .

case x(λỹ)〈ỹ〉.P ′:
IH tells us that, for some Q′, JQ′K ∼ P ′. Let Q = x(ỹ).Q′. Then, JQK =
Jx(ỹ).Q′K = x(λỹ)〈ỹ〉.JQ′K ∼ x(λỹ)〈ỹ〉.P ′. This is what we needed to derive.

case x〈ỹ〉.P ′:
By IH, we have for some Q′, JQ′K ∼ P ′. Let Q = x〈ỹ〉.Q′. Now JQK =
x〈ỹ〉.JQ′K ∼ x〈ỹ〉.P ′, which is what we wanted to derive.

case P | P ′:
By IH, we have that for some Q′, Q′′, JQ′K ∼ P and JQ′′K ∼ P ′. Then let
Q = Q′ |Q′′, thus JQK = JQ′K | JQ′′K ∼ P | P ′.

case (νx)P :
By IH, for someQ′, JQ′K ∼ P . LetQ = νxQ′. Then JQK = (νx)JQ′K ∼ (νx)P .

case !P :
By IH, for some Q′, JQ′K ∼ P . Let Q = !Q′. Then JQK = !JQ′K ∼ !P .

case L1M:
Let Q = 0. Then JQK = 0 ∼ L1M.

case case ϕ̃ : P̃ ′:
For induction hypothesis IHcase, we have for every i there is Q′i such that
JQ′iK ∼ P ′i . The proof goes by induction on the length of ϕ̃.

base case:
Let Q = 0, then JQK = 0 ∼ case.

induction step:
At this step, we get the following IH

JQ′′K ∼ case ϕ1 : P1 [] . . . [] ϕn : Pn

We need to show that there is some JQK such that

JQK ∼ case ϕ1 : P1 [] . . . [] ϕn : Pn [] ϕn+1 : Pn+1

First, we note that IHcase holds for every i and in particular i = n+ 1,
thus we get JQ′n+1K ∼ Pn+1. Second, we note that ϕn+1 has two forms,
thus we proceed by case analysis on ϕn+1.

case ϕn+1 = >:
Let Q = Q′′ +Q′n+1. Then

JQK = case > : JQ′′K [] > : JQ′n+1K
∼ case > : (case ϕ1 : P1 [] . . . [] ϕn : Pn)

[] > : JQ′n+1K
∼ case > : (case ϕ1 : P1 [] . . . [] ϕn : Pn)

[] > : Pn+1

∼ (by Lemma 4)
case ϕ1 : P1 [] . . . [] ϕn : Pn
[] > : Pn+1

This case is concluded.

case ϕn+1 = x = y:
Let Q = Q′′ + [x = y]Q′n+1. Then

JQK = case > : JQ′′K [] > : J[x = y]Q′n+1K
∼ case > : (case ϕ1 : P1 [] . . . [] ϕn : Pn)

[] > : (case x = y : JQ′n+1K)
∼ case > : (case ϕ1 : P1 [] . . . [] ϕn : Pn)

[] > : (case x = y : Pn+1)
∼ (by Lemma 4)

case ϕ1 : P1 [] . . . [] ϕn : Pn
[] > : (case x = y : Pn+1)

∼ (by permuting and applying Lemma 4)
case ϕ1 : P1 [] . . . [] ϕn : Pn [] x = y : Pn+1

This is the last part we needed to check, we conclude the proof.

Theorem 18. J·K is an isomorphism up to ∼.

Proof. Directly follows from Lemma 5 and Lemma 6

D.3 Polyadic Synchronisation Pi-Calculus

We follow the exposition of Polyadic Synchronisation Pi-Calculus, eπ, of Carbone
and Maffeis [17].

We give an explicit definition of encoding function defined in Example C.3.

Definition 13 (Polyadic synchronisation pi-calculus to PSPi).
Agents:

Jx̃(y).P K = 〈x̃〉(λy)y.JP K
Jx̃〈y〉.P K = 〈x̃〉 y.JP K
JP |QK = JP K | JQK
J(νx)P K = (νx)JP K

J!P K = !JP K
J0K = 0

JΣiαi.PiK = case >i : Jαi.PiK

Actions:
Jx̃〈νc〉K = 〈x̃〉 (νc) c

Jx̃〈c〉K = 〈x̃〉 c
JτK = τ

Jx̃(y)K = undefined

Because in [17] Carbone and Maffeis defines late style laballed semantics for
eπ the input action has no translation.

Definition 14 (PSPi to Polyadic synchronisation pi-calculus).

L1M = 0
0 = 0

!P = !P

(νx)P = (νx)P

P |Q = P |Q
〈ã〉y.P = a〈y〉.P

x̃(λy)y.P = x(y).P
τ.P = τ.P

case > : αi.Pi = Σiαi.Pi

Lemma 7 (Lemma 2). If P ≡ Q then JP K ∼ JQK

Proof. The relation R = {(P,Q) : JP K ∼ JQK} satisfies all the axioms defining ≡
and is also a process congruence. Since ≡ is the least such congruence, ≡ ⊆ R.

We give proof for the strong operational correspondence.

Proof (of Theorem 13).

1. By induction on the derivation of P ′, avoiding z.

Prefix:
Here Σix̃i(yi).Pi

x̃i(yi)−−−−→ Pi. We have that

JΣix̃i(yi).PiK = case > : 〈x̃〉(λy1)y1.JP1K []

· · · [] > : 〈x̃〉(λyi)yi.JPiK

Since match(z, 〈yi〉, yi) = {z}, we can use the Case and In rules to
derive the transition

case > : 〈x̃1〉(λy1)y1.JP1K [] · · · [] > : 〈x̃i〉(λyi)yi.JPiK
〈x̃〉 z−−−→

JPiK[yi := z]

Finally, we have P ′′ = JPiK[yi := z] and use reflexivity of
.∼.

Bang:

Here P | !P
x̃(y)−−→ P ′ and by induction, JP K | !JP K 〈x̃〉 z−−−→ P ′′ with

P ′′
.∼ JP ′K[y := z]. By rule Rep, we also have that !JP K 〈x̃〉 z−−−→ P ′′.

Par:
Here P

x̃(y)−−→ P ′, y#Q and by induction, JP K 〈x̃〉 z−−−→ P ′′ with P ′′
.∼

JP ′K[y := z]. Using the Par rule we derive JP K | JQK 〈x̃〉 z−−−→ P ′ | JQK.
Since

.∼ is closed under |, P ′′ | JQK .∼ JP ′K[y := z] | JQK. Finally, since
y#Q, JP ′K[y := z] | JQK = JP ′ | QK[y := z].

Struct:
Here P ≡ Q, Q

x̃(y)−−→ Q′ and Q′ ≡ P ′. By induction we obtain Q′′

such that JQK 〈x̃〉 z−−−→ Q′′ where Q′′
.∼ JQ′K[y := z]. By Lemma 2,

JP K ∼ JQK and JQ′K ∼ JP ′K, and by definition of ∼, JQ′K[y := z] ∼
JP ′K[y := z]. Since JP K ∼ JQK and JQK 〈x̃〉 z−−−→ Q′′, there exists P ′′ such

that JP K 〈x̃〉 z−−−→ P ′′ and Q′′
.∼ P ′′. By transitivity of

.∼ and the fact that
∼⊆ .∼, P ′′

.∼ JP ′K[y := z].

Res:
Here P

x̃(y)−−→ P ′, a 6= y, a 6= z a#x̃, and by induction, JP K 〈x̃〉 z−−−→ P ′′

with P ′′
.∼ JP ′K[y := z]. This gives us sufficient freshness conditions

to derive (νa)JP K 〈x̃〉 z−−−→ (νa)P ′′. Since
.∼ is closed under restriction,

(νa)P ′′
.∼ (νa)(JP ′K[y := z]). Finally, a is sufficiently fresh to so that

(νa)(JP ′K[y := z]) = ((νa)JP ′K)[y := z]

2. By induction on the derivation of P ′. The cases not shown here are similar
to the previous clause of this theorem, where P does an input.

Comm:
Here P

x̃〈y〉−−−→ P ′ and Q
x̃(z)−−→ Q′. By induction, JP K 〈x̃〉 y−−−→ P ′′ where

P ′′
.∼ JP ′K and by the previous clause of this theorem, JQK 〈x̃〉 y−−−→ Q′′

such that JQ′K[z := y]
.∼ Q′′. The Com rule lets us derive the transition

JP K | JQK τ−→ P ′′ | Q′′

To complete the induction case, we note that (νy)(P ′′ | Q′′) .∼ J(νy)(P ′ | Q′{y/z})K

Close:
Here P

x̃〈νy〉−−−→ P ′ and Q
x̃(y)−−→ Q′. We assume y#Q; if not, y can be

α-converted so that this holds. By induction, JP K 〈x̃〉 (νy) y−−−−−−→ P ′′ where

P ′′
.∼ JP ′K and by the previous clause of this theorem, JQK 〈x̃〉 y−−−→ Q′′

such that JQ′K[y := y] = JQ′K .∼ Q′′. The Com rule lets us derive the
transition

JP K | JQK τ−→ (νy)(P ′′ | Q′′)

To complete the induction case, we note that (νy)(P ′′ | Q′′) .∼ J(νy)(P ′ | Q′)K

Open:

Here P
x̃〈y〉−−−→ P ′ with y 6= x, and by induction, JP K 〈x̃〉 y−−−→ P ′′ where

P ′′
.∼ JP ′K. By Open, we derive (νy)JP K 〈x̃〉 (νy) y−−−−−−→ P ′′.

3. By induction on the derivation of P”, avoiding y.

Par:
Here JP K x 〈z̃〉−−−→ P ′′, y#P,Q, and by induction P

x̃(y)−−→ P ′ where

JP ′{z/y}K = P ′′. By Par using y#Q, we derive P | Q x̃(y)−−→ P ′ | Q.
Finally, we note that since y#Q, J(P ′ | Q){z/y}K = P ′′ | JQK.

Case:
Here PC

x̃ z−−→ P ′′, where PC = case ϕ̃ : Q̃ is in the range of J·K -
hence PC must be the encoding of some prefix-guarded sum, ie PC =
JΣiαi.PiK = case > : Jα1K.JP1K [] . . . [] > : JαiK.JPiK. By transition inver-
sion we can deduce that for some j, αj = x̃(y) and JPjK[y := z] = P ′′.

By the Prefix rule, Σiαi.Pi
x̃(y)−−→ Pj .

Out:
A special case of Case.

Rep:

Here JP K | !JP K x 〈z̃〉−−−→ P ′′ and by induction P | !P
x̃(y)−−→ P ′ where

JP ′{z/y}K = P ′′. By Bang we derive !P
x̃(y)−−→ P ′.

Scope:

Here JP K x 〈z̃〉−−−→ P ′′, y#P,Q, a#x̃, y, z and by induction P
x̃(y)−−→

P ′ where JP ′{z/y}K = P ′′. Since a#x̃, y, z, the Res rule admits the

derivation (νa)P
x̃(y)−−→ (νa)P ′, and J((νa)P ′){z/y}K = (νa)P ′′

4. By induction on the derivation of P”. The cases not shown are similar to the
previous clause of this theorem.

Com:
Here JP K 〈x̃〉 (νỹ′) y−−−−−−→ P ′′, JQK 〈x̃〉 y−−−→ Q′′ and y′#Q. Either ỹ′ = ε or
ỹ′ = y; we proceed by case analysis.

(a) If ỹ′ = ε, we have P
x̃〈y〉−−−→ P ′ where JP ′K = P ′′ by induction and, by

the previous clause of this theorem, Q
x̃(z)−−→ Q′ where JQ′{y/z}K =

Q′′. The Comm rule then lets us derive P | Q τ−→ P ′ | Q′{y/z}.

(b) If ỹ′ = y, we have P
x̃〈νy〉−−−→ P ′ where JP ′K = P ′′ by induc-

tion and, by the previous clause of this theorem, Q
x̃(y)−−→ Q′

where JQ′{y/y}K = JQ′K = Q′′. The Close rule then lets us de-

rive P | Q τ−→ (νy)(P ′ | Q′).

Open:

Here JP K 〈x̃〉 y−−−→ P ′′ with y 6= x. By induction, P
x̃〈y〉−−−→ P ′ where

JP ′K = P ′′. By rule Open, (νy)P
x̃〈νy〉−−−→ P ′.

We give the full abstraction result for this calculus.

Theorem 19. For all eπ processes P and Q, P
.∼ Q iff JP K .∼ JQK

Proof. R = {(P,Q) : JP K .∼ JQK} is an early bisimulation in the polyadic syn-
chronisation pi-calculus; if P R Q then

1. If P
x̃(y)−−→ P ′ and JP K .∼ JQK, since R is equivariant, we can assume that

y#P,Q without loss of generality. Fix z. By Theorem 13.1, JP K 〈x̃〉 z−−−→ P ′′

where P ′′
.∼ JP ′K[y := z] = JP ′{z/y}K. Hence, since JP K .∼ JQK, JQK 〈x̃〉 z−−−→

Q′′ where P ′′
.∼ Q′′. Hence, by Theorem 13.3 using y#Q, Q

x̃(y)−−→ Q′ where
JQ′{z/y}K = Q′′. By transitivity, JP ′{z/y}K .∼ JQ′{z/y}K.

2. If P
α−→ P ′ and JP K .∼ JQK, since R is equivariant, we can assume

that bn(α)#P,Q without loss of generality. By Theorem 13.2, we have that

JP K JαK−−→ P ′′ with P ′′
.∼ JP ′K. Hence, since JP K .∼ JQK and bn(α)#Q, there

is a Q′′ such that JQK JαK−−→ Q′′ and Q′′
.∼ P ′′. By Theorem 13.4, there is Q′

such that Q
α−→ Q′ and JQ′K = Q′′. By transitivity, JP ′K .∼ JQ′K.

Symmetrically, we show that R = {(1, JP K, JQK) : P
.∼ Q} is a bisimulation

up to
.∼ in PSPi:

Static equivalence:
Vacuous since there’s only one frame.

Symmetry:
By symmetry of

.∼

Simulation:
Here JP K α′

−→ P ′′ and P
.∼ Q. We proceed by case analysis on α′:

1. If α′ = 〈x̃〉 z, then by Theorem 13.3 and a sufficiently fresh y, P
x̃(y)−−→ P ′

where JP ′{z/y}K = P ′′. Since P
.∼ Q, there exists Q′ such that Q

x̃(y)−−→
Q′ and P ′{z/y} .∼ Q′{z/y}. Hence, by Theorem 13.1, JQK 〈x̃〉 z−−−→ Q′′

where Q′′
.∼ JQ′K[y := z] = JQ′{z/y}K. We have that P ′′ = JP ′{z/y}K R

JQ′{z/y}K .∼ Q′′, which suffices.

2. If α′ is not an input, sinceR is equivariant, we can assume that bn(α′)#P,Q

without loss of generality. Since JP K α′
−→ P ′′, by Theorem 13.4 we have

that P
α−→ P ′ where JαK = α′ and JP ′K = P ′′. Since P

.∼ Q, there is

Q′ such that Q
α−→ Q′ and P ′

.∼ Q′. By Theorem 13.2, JQK JαK−−→ Q′′,
where Q′′

.∼ JQ′K. Hence P ′′ = JP ′K R JQ′K .∼ Q′′, which suffices.

Extension of arbitrary assertion:
Vacuous since there’s only one frame.

Lemma 8. J·K is surjective up to ∼ on the set of case-guarded processes, that
is, for every case-guarded P there is a Q such that JQK ∼ P .

Proof. By induction on a well formed agent P .

case 〈x̃〉(λy)y.P ′:
It is valid to consider only this form, since {y} ∈ vars(y). The IH is for some
Q′, JQ′K ∼ P ′. Let Q = x̃(y).Q′. Then JQK = 〈x̃〉(λy)y.JQ′K ∼ 〈x̃〉(λy)y.P ′.

case 〈x̃〉 y.P ′:
From IH, we get for some Q′, JQ′K ∼ P ′. Let Q = x̃〈y〉.Q′. Then JQK =
〈x̃〉 y.JQ′K ∼ 〈x̃〉 y.P ′.

case P ′ | P ′′:
From IH, for some Q′, Q′′, we have JQ′K ∼ P ′ and JQ′′K ∼ P ′′. Let Q =
Q′ |Q′′. Then JQK = JQ′K | JQ′′K ∼ P ′ | P ′′.

case (νx)P ′:
Let Q = νxQ′, then by induction hypothesis JQK = (νx)JQ′K ∼ (νx)P ′.

case !P ′:
Let Q =!Q′ (Q′ from IH). JQK = !JQ′K ∼ !P ′.

case 0:
Then J0K = 0 ∼ 0.

case L1M:
Then J0K = 0 ∼ L1M.

case case ϕ̃ : P̃ ′:
For induction hypothesis IHcase, we have for every i there is Q′i such that
JQ′iK ∼ P ′i . The proof goes by induction on the length of ϕ̃.

base case:
Let Q = 0, then JQK = 0 ∼ case.

induction step:
At this step, we get the following IH

JQ′′K ∼ case ϕ1 : P1 [] . . . [] ϕn : Pn

We need to show that there is some JQK such that

JQK ∼ case ϕ1 : P1 [] . . . [] ϕn : Pn [] ϕn+1 : Pn+1 = P

First, we note that IHcase holds for every i and in particular i = n+ 1,
thus we get JQ′n+1K ∼ Pn+1. Second, we note that ϕn+1 has two forms,
thus we proceed by case analysis on ϕn+1.

case ϕn+1 = ⊥:
Let Q = Q′′. Then

JQK = JQ′′K
∼ case ϕ1 : P1 [] . . . [] ϕn : Pn
∼ case ϕ1 : P1 [] . . . [] ϕn : Pn [] ⊥ : Pn+1

This case is concluded.

case ϕn+1 = >:
From the assumption, we know that Pn+1 is of form α.P ′n+1 and that
JQ′n+1K ∼ α.P ′n+1. By investigating the construction of Q′n+1 we can
conclude that Q′n+1 = α.Q′′n+1 where JQ′′n+1K ∼ P ′n+1. The agent
from IH Q′′ is either 0, or prefixed agent, or a mixed sum.
In case Q′′ = 0, let Q = Q′n+1, then JQK = JQ′n+1K ∼ P .
In case Q′′ is prefixed agent, let Q = Q′′+Q′n+1. Since Q′′ and Q′n+1

are prefixed, Q is well formed. Then JQK = case > : JQ′′K [] > :
JQ′n+1K ∼ case ϕ1 : P1 [] . . . [] ϕn : Pn [] > : Pn+1.
In case Q′′ is a sum, let Q = Q′′ +Q′n+1. Since Q′n+1 is guarded, Q
is well formed. Then

JQK = case > : JQ′′K [] > : JQ′n+1K
∼ case > : (case ϕ1 : P1 [] . . . [] ϕn : Pn)

[] > : JQ′n+1K
∼ (by Lemma 4)

case ϕ1 : P1 [] . . . [] ϕn : Pn
[] > : JQ′n+1K

∼ case ϕ1 : P1 [] . . . [] ϕn : Pn
[] > : P ′n+1

This concludes the proof.

Lemma 9. J·K is injective, that is, for all P,Q, if JP K = JQK then P = Q.

Proof. By induction on P and Q while inspecting all the possible cases.

Theorem 20. J·K is an isomorphism up to ∼ between eπ and the case-guarded
processes in PSPI.

Proof. Directly follows from Lemma 9 and Lemma 8

D.4 Value-passing CCS

Lemma 10. If P is a VPCCS process such that P
M (νx̃)N−−−−−−→ P ′′ then x̃ = ε

Proof. By induction on the derivation of P ′. Obvious in all cases except Open,
where we derive a contradiction since only values can be transmitted yet only
channels can be restricted - hence the name a is both a name and a value.

Strong operational correspondence:

Proof (of Theorem 15).

1. By induction on the derivation of P ′.

Act:
We have that α.P

α−→ P . Since α.P is in the range of ·̂, there must
be x and v such that either α = x(v) (for if α was an input, α.P would
be outside the range of ·̂). The Out rule then admits the derivation

x v.JP K x v−−→ JP K

Sum:
There are two cases to consider: either ΣiPi is the encoding of an input,
or a summation.
(a) If ΣiPi = Σvx(v).P{v/y} = x̂(y).P we have that α = x(v). Then for

each v, we can derive x(λy)y.JP K x v−−→ JP{v/yK using the In rule.

(b) Otherwise, we have that Pj
α−→ P ′ and by induction,

JPjK
JαK−−→ JP ′K

The Case rule lets us derive

case > : JP1K [] · · · [] > : Pi
JαK−−→ JP ′K

This suffices since JΣiPiK = case > : JP1K [] · · · [] > : Pi.

Com1:
Here P

α−→ P ′ and by induction, JP K JαK−−→ JP ′K. The Par rule admits

derivation of the transition JP K | JQK JαK−−→ JP ′K | JQK, using Lemma 10
to discharge the freshness side condition.

Com2:
Symmetric to Com1.

Com3:
Here P

α−→ P ′, Q
α−→ Q′. Since α is in the range of ·̂, there are x

and v such that α = x(v) and α = x(v) (or vice versa, in which case
read the next sentence symmetrically). By the induction hypotheses,

JP K x v−−→ JP ′K and JQK x v−−→ JQ′K - hence JP K | JQK τ−→ JP ′K | JQ′K by
the Com rule, using Lemma 10 to discharge the freshness side condition.

Res:
Here P

α−→ P ′ with L#α - hence σ(L)#α. By induction, JP K JαK−−→
JP ′K. Then we use the Res rule |L| times to derive (νσ(L))JP K JαK−−→
(νσ(L))JP ′K.

Rep:

Here P | !P
α−→ P ′. By induction, JP K | !JP K JαK−−→ JP ′K, and by the

Rep rule, !JP K JαK−−→ JP ′K
2. By induction on the derivation of P ′.

In:
Here x(λy)y.JP K x v−−→ JP{v/y}K. We match this by deriving x̂(y).P

x(v)−−→
P̂{v/y} using the Act and Sum rules.

Out:
Here x v.JP K x v−−→ JP K. We match this by deriving x̂(v).P

x(v)−−→ P̂
using the Act rule.

Com:
Here JP K x (νỹ) v−−−−−→ P ′′, JQK x v−−→ Q′′. By Lemma 10, ỹ = ε, and by

induction, P
x(v)−−→ P ′ and Q

x(v)−−→ Q′where JP ′K = P ′′ and JQ′K = Q′′.

Using the Com3 rule we derive P | Q τ−→ P ′ | Q′

Par:
Easy.

Case:
Our case statement can either be the encoding of either a summation or
an if statement. We proceed by case analysis:

(a) Here JPjK
α′
−→ P ′′. By induction, Pj

α−→ P ′ where JαK = α′. By

Sum, ΣiPi
α−→ P ′.

(b) Here JP K α′
−→ P ′′ and 1 ` b. By induction, P

α−→ P ′ where

JαK = α′ and JP ′K = P ′′. Since b evaluates to true, ̂if b then P = P̂

- hence if b then P
α−→ P ′.

Rep:
Easy.

Scope:

Here JP K α′
−→ P ′′ with x]α′ and by induction, P

α−→ P ′ where α′ = JαK
and P ′′ = JP ′K. Hence we can derive P \ {x} α−→ P ′ \ {x} by the Res
rule.

Open:
Opening is not possible.

