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in the non-symbolic semantics. A procedure which computes the most general constraint

Key WorqS: . under which two agents are bisimilar is developed and proved correct.

Symbolic semantics . . . . . .

Bisimulation A psi-calculus is an extension of the pi-calculus with nominal data types for data struc-
Psi-calculi tures and for logical assertions representing facts about data. These can be transmitted

Full abstraction between processes and their names can be statically scoped using the standard pi-calculus
mechanism to allow for scope migrations. Psi-calculi can be more general than other pro-
posed extensions of the pi-calculus such as the applied pi-calculus, the spi-calculus, the
fusion calculus, or the concurrent constraint pi-calculus.

Symbolic semantics are necessary for an efficient implementation of the calculus in
automated tools exploring state spaces, and the full abstraction property means the symbolic
semantics makes exactly the same distinctions as the original.
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1. Introduction

A multitude of extensions of the pi-calculus have been defined, allowing higher-level data structures and operations on
them to be used as primitives when modelling applications. Ranging from integers, lists, or booleans to encryption/decryption
or hash functions, the extensions increase the applicability of the basic calculus. In order to implement automated tools for
analysis and verification using state space exploration (e.g. bisimilarity or model checking), each extended calculus needs a
symbolic semantics, where the state space of agents is reduced to a manageable size — the non-symbolic semantics typically
generates infinite state spaces even for very simple agents.

The extensions thus require added efforts both in developing the theory of the calculus for each variant, and in construct-
ing specialised symbolic semantics for them. As the complexity of the extensions increases, producing correct results in these
areas can be very hard. For example the labelled semantics of the applied pi-calculus [2] and of the concurrent constraint
pi-calculus [15] have both turned out to be non-compositional in the sense that agents with the same semantics may be-
come different when used in a parallel composition. Another example is the rather complex bisimulations which have been
developed for the spi-calculus [3] (see [12] for an overview of non-symbolic bisimulations, or [11,13,14] for symbolic ones).

The psi-calculi [7,24] improve the situation: a single framework allows a range of specialised calculi to be formulated
with a lean and compositional labelled semantics: with the parameters appropriately instantiated, the resulting calculus can
be used to model applications such as cryptographic protocols and concurrent constraints, but also more advanced scenarios
with polyadic synchronization or higher-order data and logics. The expressiveness and modelling convenience of psi-calculi
exceeds that of earlier pi-calculus extensions, while the purity of the semantics is on par with the original pi-calculus. Its
meta-theory has been proved using the theorem prover Isabelle [4,5].
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In this paper we develop a symbolic semantics for psi-calculi, admitting large parts of this range of calculi to be verified
more efficiently. We define symbolic versions of labelled bisimulation equivalence and its weak counterpart, and show that
they are fully abstract with respect to the corresponding bisimulation congruences in the original semantics. This means
that our new symbolic semantics does not change which processes are considered equivalent. This paper is an extended
version of [23] that adds clarifications and proofs, a symbolic treatment of weak bisimulation, and a procedure to compute
a constraint under which two agents are weakly bisimilar.

A symbolic semantics abstracts the values received in an input action. Instead of a possibly infinite branching of concrete
values, a single name is used to represent them all. When the received values are used in conditional constructions (e.g.
if-then-else) or as communication channels, we do not know their precise value, but need to record the constraints which
must be satisfied for a resulting transition to be valid.

A (non-symbolic) psi-calculus transition has the form ¥ ~ P % P’, with the intuition that P can perform « leading to P’
in an environment that asserts W. For example, suppose P cando an « to P’. If we can deduce prime(x) from the environment
then if prime(x) then P can make an «-transition to P/, e.g.

{x =3} > if prime(x) thenP % P

In the symbolic semantics where we might not have the precise value of x, we instead decorate the transition with its
requirement, so for any ¥ we have

o /

W > if prime(x) then P
CA{|Wkprime(x)|}

where C is the requirement for P to do an « to P’ in the environment W. Constraints also arise from communication between
parallel agents, where, in the symbolic case, the precise channels might not be known; instead we allow communication
over symbolic representations of channels and record the requirement in a transition constraint. As an example consider

ax).a(y).xx.P |y .Q)

which after its initial inputs only has symbolic values of x and y. The resulting agent has the symbolic transition

v >Yx.P|y(z).Q;>P|Q[Z:=x]
{{W=x<y)

where x <> y means that x and y represent the same channel.
Communication channels in psi-calculi may be structured data terms, not only names. This leads to a new possibility of
infinite branching: a subject in a prefix may be rewritten to another equivalent term before it is used in a transition. E.g.

when first(x, y) and x represent the same channel, P = first(a, b)c.P’ % P/, but also P M P’, etc. The possibility
of using structured channels gives significant expressive power (see [7]). Our symbolic semantics abstracts the equivalent
forms of channel subject by using a fresh name as subject, and adds a suitable constraint to the transition label.

Given the symbolic semantics we proceed to define symbolic bisimulations, both strong and weak, closely following [21].
A symbolic bisimulation is a ternary relation containing triples (C, P, Q), where C is a constraint that denotes under which
conditions P and Q are bisimilar. As an example, if

Q = ifx =3thenP elseP

we have that P and Q are bisimilar under the constraint true. To see this consider P %) P’ (eliding the environmental
P

assertion ). The definition of simulation allows a case analysis to partition Cp into an equivalent disjunction and requires
that Q can simulate for each disjunct, e.g.

G < (G A{x=3DV(CA{x#3D
PandQ —Z— P/
Cpnf{x=3}t CrA{x#£31

This partitioning is the key to a sound and complete symbolic semantics. Weak symbolic bisimulation is defined in
essentially the same way, but requires Q to simulate with weak transitions that treats t-transitions as invisible.

Finally we present a depth-first algorithm which computes the most general constraint under which a pair of agents are
bisimilar, again closely following [21]. It follows transitions from pairs of agents and adds them to a table that ultimately
will be a bisimulation. The algorithm assumes that the agents have finite symbolic transition graphs.

and Q

1.1. Comparison to related work

Symbolic bisimulations for process calculi have a long history. Our work is to a large extent based on the pioneering
work by Hennessy and Lin [21] for value-passing CCS, later specialised for the pi-calculus by Boreale and De Nicola [10] and
independently by Lin [26,27]. While [21] is parametrised by general boolean expressions on an underlying data signature
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it does not handle names and mobility; on the other hand [10,26,27] handle only names and no other data structures. The
number of follow-up works to these is huge, with applications ranging from pi-calculus to constraint programming; here
we focus on the relation to the ones for applied pi-calculus and spi-calculus.

The existing tools for calculi based on the applied pi-calculus (e.g. [1,8,9]), are not fully abstract with regards to bisim-
ulation. A symbolic semantics and bisimulation for applied pi-calculus has been defined in [17], but it is not complete. A
complete version is instead defined in [29], and an axiomatisation is given in [30]. The original labelled bisimulation of ap-
plied pi-calculus is however not compositional (see [7]). The situation for the spi-calculus is better: fully abstract symbolic
bisimulation for hedged bisimulation has been defined in [11], and for open hedged bisimulation in [14]. According to the
authors, neither is directly mechanizable. The only symbolic bisimulation which to our knowledge has been implemented
in a tool is not fully abstract [13].

It can be argued [13] that incompleteness is not a problem when verifying authentication and secrecy properties of
security protocols, which appears to have been the main application of the applied pi-calculus so far. When going beyond
security analysis we claim, based on experience from the Mobility Workbench [33], that completeness is very important:
when analysing agents with huge state spaces, a positive result (the agents are equivalent) may be more difficult to achieve
than a negative result (the agents differ). However, such a negative result can only be trusted if the analysis is fully abstract.

Our symbolic semantics is relatively simple compared to the ones presented for the applied pi-calculus or spi-calculus.
In relation to the former, we are helped significantly by the absence of structural equivalence rules, which in the applied pi-
calculus are rather complex. In [16,29] an intermediate semantics is used to handle the complexity, while in contrast we can
directly relate the original and symbolic semantics. In relation to the symbolic semantics for the spi-calculus, our semantics
has a straight-forward treatment of scope opening due to the simpler psi-calculi semantics. In addition, the complexities
of spi-calculus bisimulations are necessarily inherited by the symbolic semantics, introducing, e.g. explicit environment
knowledge representations with timestamps on messages and variables. In psi-calculi, bisimulation is much simpler and
the symbolic counterpart is not significantly more complex than the one for value-passing CCS.

Disposition: In the next section we review the basic definitions of syntax, semantics, and strong bisimulation of psi-calculi.
Section 3 presents the symbolic semantics and bisimulation, and illustrates the concrete and symbolic transitions and
bisimulations by examples. In Section 4 we turn to the weak semantics and bisimulation for psi-calculi, and Section 5
describes the symbolic counterparts. In Section 6 we show our main results: the correspondence between concrete and
symbolic transitions and the full abstraction of bisimulations. Section 7 presents and proves correct an algorithm to compute
a constraint under which two agents are bisimilar, while Section 8 concludes and presents plans and ideas for future work.
Detailed proofs of results in Sections 6 and 7 can be found in [25].

2. Psi-calculi

This section is a brief recapitulation of psi-calculi and nominal data types. Unless stated otherwise all definitions are
from [7], which contains a more extensive treatment including motivations and examples.

2.1. Nominal datatypes

We assume a countably infinite set of atomic names N ranged over by a, b, . . ., x, y, z. Intuitively, names will represent
the symbols that can be statically scoped, and also represent symbols acting as variables in the sense that they can be
subjected to substitution. A nominal set [18,31] is a set equipped with name swapping functions written (a b), for any names
a, b. An intuition is that for any member X of a nominal set it holds that (a b) - X is X with a replaced by b and b replaced
by a. One main point of this is that even though we have not defined any particular syntax we can define what it means
for a name to “occur” in an element: it is simply that it can be affected by swappings. The names occurring in this way in
an element X constitute the support of X, written n(X). As an example, consider the terms of a lambda-calculus quotiented
by alpha-equivalence in the ordinary sense, i.e. capture-avoiding renaming of bound names. Let X be such an equivalence
class. Then all members of X have the same set of free names, so we can unambiguously say that this set is the free names
of X itself, and this corresponds to the support of X. The advantage with this formulation is that it lets us reason directly in
terms of equivalence classes of alpha-conversion. In all definitions to come we identify alpha-variants of bound names in
this way, i.e. we implicitly consider equivalence classes of alpha-equivalence. We refer to [7] for the formal definitions and
more examples.

We write a#X, pronounced “a is fresh for X”, for a & n(X).If A is a set of names we write A#X to mean Va € A . a#X. We
require all elements to have finite support, i.e. n(X) is finite for all X.

A function f on nominal sets is equivariant if (a b) - f(X) = f((a b) - X) holds for all X, a, b, and similarly for functions
and relations of any arity. Intuitively, this means that all names are treated equally.

A nominal datatype is just a nominal set together with a set of functions on it. In particular we shall consider a substitution
function which intuitively substitutes elements for names. If X is an element of a datatype, a is a sequence of names without
duplicates and Y is an equally long sequence of elements of possibly another datatype, the substitution X[a := Y] is an
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element of the same datatype as X. We need not define exactly what a substitution does; it is enough to assume the
following properties:

1: if @€ n(X)andb € n(T) then b € n(X[d := T])

2: ifb#X, dthenX[d :=T] = ((bd) - X)[b := T]
The first says that a substitution X[@ := T] may not erase names in T, and the second is a kind of alpha-conversion; see [7]
for further explanations.
2.2. Agents

A psi-calculus is defined by instantiating three nominal data types and four operators:

Definition 1 (Psi-calculus parameters). A psi-calculus requires the three (not necessarily disjoint) nominal data types:

T the (data) terms, ranged over by M, N
C the conditions, ranged over by ¢

A the assertions, ranged over by W
and the four equivariant operators:

<:T x T — C Channel Equivalence
® : A x A — A Composition

1:A Unit

FCAXxC Entailment

and substitution functions [@ := M], substituting terms for names, on all of T, C, and A.

The binary functions above will be written in infix. Thus, if M and N are terms then M <> N is a condition, pronounced
“M and N are channel equivalent” and if W and W' are assertions then so is W@W’'. Also we write W - ¢, “W entails ¢”, for
(v, p) €.

The data terms are used to represent all kinds of data, including communication channels. Conditions are used as guards
in agents, and M <> N is a particular condition saying that M and N represent the same channel. The assertions will be
used to declare information necessary to resolve the conditions. Assertions can be contained in agents and thus represent
information postulated by that agent; they can contain names and thereby be syntactically scoped and thus represent
information known only to the agents within that scope. The intuition of entailment is that W F ¢ means that given the
information in W, it is possible to infer ¢. We say that two assertions are equivalent if they entail the same conditions:

Definition 2 (Assertion equivalence). Two assertions are equivalent, written W ~ W’ if for all ¢ we have that ¥ + ¢ <
v = .

Apsi-calculus is formed by instantiating the nominal data types and operators so that the following requisites are satisfied:
Definition 3 (Requisites on valid psi-calculus parameters).

Channel symmetry: WM< N — VEN< M
Channel transitivity: WM <N A VENSGL — VEHEM<SL

Composition: U~ = U ~ veu”
Identity: Ul >~ ¥

Associativity: (TRVHQU” ~ Ue(W'ew")
Commutativity: YRV ~ Qv

Weakening: Vg = UV o

Names areterms: N CT
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Our requisites on a psi-calculus are that the channel equivalence is a partial equivalence relation, that ® preserves
equivalence, and that the equivalence classes of assertions form an abelian monoid. The last two, Weakening and Names are
terms, are not required in our previous expositions of psi-calculi. Weakening means that non-monotonic logics cannot be
used. It simplifies our proofs in the present paper although we do not know if it is absolutely necessary. It is only used in one
place in the proof of Theorem 32. Furthermore it allows us to only consider the simpler definition of weak bisimulation from
[24] presented in Section 4. The requisite Names are terms simplifies the symbolic semantics; also here we do not know if
it is strictly necessary.

In the following @ means a finite (possibly empty) sequence of names, ay, . . ., a,. The empty sequence is written € and
the concatenation of & and b is written ab. When occurring as an operand of a set operator, @ means the corresponding set
of names {aq, ..., a,}. We also use sequences of terms, conditions, assertions etc. in the same way.

A frame can intuitively be thought of as an assertion with local names:

Definition 4 (Frame). A frame is of the form (vE)\I/ where b is a sequence of names that bind into the assertion W. We
identify alpha variants of frames.

We use F, G to range over frames. Since we identify alpha variants we can always choose the bound names freely.

Notational conventions: We write just W for (ve)W when there is no risk of confusing a frame with an assertion, and ®
to mean composition on frames defined by (vbl)\IJl ®(vb2)\112 = (vb1b2)(\Il1 ®W,) where b1 # bz, W, and vice versa. We
write (vc)((vb)W) to mean (vcb)\IJ

Intuitively a condition is entailed by a frame if it is entailed by the assertion and does not contain any names bound by
the frame. Two frames are equivalent if they entail the same conditions:

Definition 5 (Equivalence of frames). We define F I ¢ to mean that there exists an alpha variant (vE)\IJ of F such that E#go
and W I ¢. We also define F >~ G to mean that for all ¢ it holds that F - ¢ iff G - ¢.

Definition 6 (Psi-calculus agents). Given valid psi-calculus parameters as in Definitions 1 and 3, the psi-calculus agents,
ranged over by P, Q, .. ., are of the following forms.

0 Nil

MN.P Output
M(x).P Input

case @ : Py []--- [] ¢n : P, Case

(va)P Restriction
P|Q Parallel

P Replication
(2] Assertion

In the Input M(x) . P, x binds its occurrences in P. Restriction binds a in P. An assertion is guarded in an agent P if every
occurrence is in an Input or Output subexpression of P. An agent is well formed if in a replication !P there are no unguarded
assertions in P, and if in case ¢1 : Py [] - - - [] ¢ : P, there are no unguarded assertion in any P;.

In the Output and Input forms M is called the subject and N and x the objects, respectively. Output and Input are similar
to those in the pi-calculus, but arbitrary terms can function as both subjects and objects. ! The case construct works by
performing the action of any P; for which the corresponding g is true. So it embodies both an if (if there is only one branch)
and an internal non-deterministic choice (if the conditions are overlapping). It is sometimes written as case ¢ : P,orifn = 1
as if ¢ then P;. The input subject is underlined to facilitate parsing of complicated expressions; in simple cases we often
conform to a more traditional notation and omit the underline.

2.3. Operational semantics and bisimulation

In the standard pi-calculus the transitions from a parallel composition P | Q can be uniquely determined by the transitions
from its components, but in psi-calculi the situation is more complex. Here the assertions contained in P can affect the

' Our previous exposition [7] uses a more general form of input with pattern matching; as we discuss in Section 8 we here restrict attention to the traditional
input form with one bound name, M(x), for simplicity. The general form of input prefix in [7] is M(AX)N, where N is a term, and M(x) is simply a short hand for
the special case M (1x)x.
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Table 1

Late operational semantics. Symmetric versions of Com and Par are elided. In the rule Com we assume that 7(P) = (UEP)\IIP
and F(Q) = (UEQ)WQ where Ep is fresh for all of W, BQ, Q, M and P, and that BQ is correspondingly fresh. In the rule PAr
we assume that F(Q) = (\)EQ)\I}Q where BQ is fresh for W, P and «. In OPEN the expression va U {b} means the sequence a
with b inserted anywhere.

N VM<K o YFMSK
W Mkx).P K& p W MN.P KN p

VP 4P Wk

/

CASE

W case@:P % P

YRWpRWg = M <> K
V@V - P MOON p' gp@w > Q XX Q' _

Com — a#Q
v >PlQ & (vay(P'|Q'[x:=N]
Vo®W > P & P
Par &Y =P S P o
vePlQ 4 PR
NS A o
SCOPE — o, W
¥ > (vb)P & (vb)P
W p MOON p ~ WosP|lP 2 P
OPEN Pl —— _ b#d, W, M ben(N) Rep 2 PP 5P
W > (vh)p MAUBPN - p WP % P

conditions tested in Q and vice versa. For this reason we introduce the notion of the frame of an agent as the combination of
its top level assertions, retaining all the binders. It is precisely this that can affect a parallel agent.

Definition 7 (Frame of an agent). The frame F(P) of an agent P is defined inductively as follows:

F(0) = F(M(x).P) = F(MN.P) = F(case & : P) = F(!P) =1
Fv)) =v

F(P|Q) = FP)®FQ)

F((vb)P) = (vb)F(P)

Our previous presentation of psi-calculi [7] gives a semantics of an early kind, where input actions are of kind M N. In
the present paper we give an operational semantics of the late kind, meaning that the labels of input transitions contain
variables, in this case represented as names, for the object to be received. With this kind of semantics it is easier to establish
a relation to the symbolic semantics.

Definition 8 (Actions). The actions ranged over by «, B are of the following three kinds: M (va)N (Output, where @ C n(N)),
M(x) (Input), and 7 (Silent).

For actions we refer to M as the subject and N and x as the objects. We let subj (M (v@)N) = subj(M(x)) = M. We define
bn(M (va)N) = a, bn(M(x)) = {x}, and bn(t) = @. The support of « is the empty set for« = 7, and n(M) U n(N) U bn(«)
for Input and Output.

Definition 9 (Transitions). A transition is of the kind W ~ P % P’, meaning that when the environment contains the
assertion W the agent P can do an « to become P’. The transitions are defined inductively in Table 1.

We use alpha-conversion in its standard sense, i.e. a capture-avoiding swapping of bound names. Both agents and frames
are identified by alpha equivalence. This means that we can choose the bound names fresh in the premise of a rule. In a
transition the names in bn(« ) count as binding into both the action object and the derivative, and transitions are identified
up to alpha equivalence. This means that the bound names can be chosen fresh, substituting each occurrence in both the
object and the derivative. Therefore bn(w) is in the support of the output action: otherwise it could be alpha-converted in
the action alone. For the side conditions in ScoPE and OPEN it is important that bn(«w) € n(«). In rules PAR and Com, the
freshness conditions on the involved frames will ensure that if a name is bound in one agent its representative in a frame
is distinct from names in parallel agents, and also (in PAR) that it does not occur on the transition label. We defer a more
precise account of this to [7].

We proceed to define early bisimulation with the late semantics:
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Table 2
Early structured operational semantics. All other rules are as in the late semantics of Fig. 1.

v EM<K
IN
W > M(x).P KN Pp[x:=N]

WRWpRWg =M <> K
YoV > P MOON p" ypow » Q KN @ @#o0
vePlQ 5L )P Q)

Com

Definition 10 ((Early) Bisimulation). A bisimulation R is a ternary relation between assertions and pairs of agents such that
R(¥, P, Q) implies all of

(1) Static equivalence: Y®F(P) >~ V®F(Q)
(2) Symmetry: R(¥, Q, P)
(3) Extension of arbitrary assertion: V¥'. R(WY®W’, P, Q)
(4) Simulation: for all o, P’ such that bn()#¥, Q
(@) ifa =MKx): VP & P —
VIAQ . ¥ > Q % Q' and R(V, P'[x :=L], Q'[x :=L]).
(b) otherwise: ¥ > P % P=3Q" . ¥ >Q & Q andR(¥,P, Q).

We define P ~ Q to mean that there exists a bisimulation R such that R(1, P, Q). We also define P ~ Q to mean that
Po ~ Qo, for all o, where o is a sequence of substitutions [X; := L{][x2 := L] ... [Xn := Ly].

2.4. Relation to early semantics

In this subsection we formulate the relation between the semantics and bisimulation in the preceding subsection and
the original in [7].

Table 2 gives the rules for input and communication of an early kind used in [7]. The following lemma clarifies the relation
between the two semantics:

Lemma 11 (Late and early transitions).

(1) ¥ > P ﬂ) P’ in the early semantics iff there exist P”, and x such that ¥ > P % P in the late semantics, where
P’ = P"[x := N].
(2) Foroutput and T actions, ¥ > P %, Q in the early semantics iff the same transition can be derived in the late semantics.

The proof is by induction over the transition derivations. In the proof of (2), the case « = 7 needs both (1) and the case
where « is an output. See [22] for further details.

Lemma 12. A relation is a bisimulation according to Definition 10 precisely if it is a bisimulation according to [7].

The proof is straightforward using Lemma 11. As a corollary the algebraic properties of ~ established in [7] hold, notably
that it is a congruence. See [22] for further details.

3. Symbolic semantics and equivalence

The idea behind a symbolic semantics is to reduce the state space of agents. One standard way is to avoid infinite branching
in inputs by using a fresh name to represent whatever was received.

In psi-calculi there is an additional source of infinite branching: a subject in a prefix may get rewritten to many terms.
Also here we use a fresh name to represent these terms. This means that the symbolic actions are the same as the concrete
actions with the exception that only names are used as subjects.

A symbolic transition is of form

\IIDP%)P/

The intuition is that this represents a set of concrete transitions, namely those that satisfy the constraint C. Before the

formal definitions we here briefly explain the rationale. Consider a psi-calculus with integers and integer equations; for
example a condition can be “x = 3”. An example agent is P = casex = 3 : P..If P’ = P”, then there should clearly be
C/

a transition P ——> P” for some constraint C that captures that x must be 3. One context that can make this constraint
CAC!
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Table 3

Transition rules for the symbolic semantics. Symmetric versions of Com and PAR are elided. In the rule Com we assume that .7-'(P~) = (EBP)‘PP and
FQ) = (vbq)Wq where bp is fresh for all of W, bg , Q and P, and that b is correspondingly fresh. We also assume thaty, z#W, bp, P, by, Q. N, a.
In Com, Ceom = (vbp, 56){]\11’ = Mp < Mgl A (VBE)CP A (UB;)CQ. In the rule PAR we assume that F(Q) = (UEQ)\IIQ where EQ is fresh for W, P
and «. In OPEN the expression va U {b} means the sequence a with b inserted anywhere.

IN ® y#W, M, P, x
W > M(x).P

{w-M<yl

‘I/DPI'%)P/

CASE —
V> casep:P —— P
CAfWhgil}
out — y#W, M, N, P
W > MN.p —
WM<yl
V@Y & P — JODN P U@ b Q —— z(0) o a#Q,
Com (vbp) (W' FMp <>y ACH (Wb {IW'FMg <>z} ACo y#z
/
Yo PlQ > )P [Qlx=N) V= veWreW,
o /
\IJ®\I’Q > P ?) P bn(O{)#Q
PAR = _ ;
veP|Q » p1Q @ =T Vsubj(@)#Q
(vbo)C
VPSP
SCOPE < #o, W
¥ > (vh)P —— (vb)P’
(vbh)C
v o p YOON o N
OPEN P b € n(N) \IIDP\!P?P’
yOa a REP
v > (vb)P % p DOy WP S P
vb)C C

true is an input, as in a(x).P. The input will give rise to a substitution for x, and if the substitution sends x to 3 the constraint
is satisfied. In this way the constraints are similar to those for the pi-calculus [10,26]. In psi-calculi there is an additional
way that a context can enable the transition: it can contain an assertion as in (x = 3|) | P. Here we should have a transition

x=3)|P N (x = 3)) | P”. Therefore a solution of a constraint will contain both a substitution of terms for names
C/

(representing the effect of an input) and an assertion (representing the effect of a parallel component).

Definition 13. A solution is a pair (o, W) where ¢ is a substitution sequence of terms for names, and W is an assertion. The
transition constraints, ranged over by C, C; and corresponding solutions, sol(C) are defined by:

Constraint Solutions
C,C ::= true {(o, W) : o isasubstitution sequence A ¥ € A}
false 0
WV F ¢l {(o, V) : Fb.b(Ho, ¥, W, @) A
(@b) - ¥)o@¥' F (@h) - p)o}
CAC sol(C) N sol(C")

In (va){ ¥ F @[}, @ are binding occurrences into ¥ and ¢. We let (va)(C A C’) mean (va)C A (va)C’, and we let (v@)true
mean true, and similarly for false. We adopt the notation (o, ¥) = C to say that (o, W) € sol(C).

A transition constraint C defines a set of solutions sol(C), namely those where the entailment becomes true by applying
the substitution and adding the assertion. For example, the transition constraint {1 - x = 3|} has solutions ([x := 3], 1)
and (Id, x = 3), where Id is the identity substitution.

The purpose of the v-binder in constraints is just to exclude names for use in solutions; this motivates that (va) (CAC’) =
(va)CA(va)C'.In contrast, the v-binder on a frame or an agent postulates the existence of alocal name and does not distribute
over operators in that way.

— yN
The structured operational symbolic semantics is defined in Table 3. First consider the Out rule: ¥ > M N.P = P
WMy
This constraint means the transition can be taken in any solution that implies that the subject M of the syntactic prefix is
channel equivalent to y.
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The rule CoMm is of particular interest. The intuition is that the symbolic action subjects are placeholders for the values
Mp and Mgy. In the conclusion the constraint is that these are channel equivalent, while y and z will not occur again.

We will often write P %) P’ for1 > P %) P.

3.1. Symbolic bisimulation
In order to define a symbolic bisimulation we need additional kinds of constraints. If a process P does a bound output
¥ (va)N that is matched by a bound output y (va)N’ from Q we need constraints that keep track of the fact that N and N’
should be syntactically the same, and that @ is sufficiently fresh.
Definition 14. The constraints Cstr, ranged over by C, are of the forms
Constraint The solutions sol(C) are all pairs (o, ¥) such that
C, C/ = Ct (0, \IJ) '=Ct

{(M=N} Mo =No

{la#tX |} (a#X)o and a#dom(o)
CAC (o,¥) =Cand (0, V) =
cvc (o,¥) =Cor(o,¥) =C

C=C YU/ (o, Y QW) = Cimplies (o, YQWV') = C’
where C; are the transition constraints. In {a#X|}, X is any nominal data type.

Note that the assertion part of the solution is irrelevant for constraints of kind {M = N|} and {a#X|}, and that the
substitution does not affect a in {|a#X|}. The constraint {{M = N} is used in the bisimulation for matching output objects, and
thus must check for syntactic equivalence (cf. Definition 10). The constraint {a#X|} is used in the bisimulation for recording
what an opened name must be fresh for. This corresponds to distinctions in open bisimulation for the pi-calculus [32]. The
constraint C = C’ will only be used in the definition of bisimulation. The solutions are those where, for any extension of the
assertion, membership in sol(C) implies membership in sol(C’). This is to accommodate clause 3 of Definition 10. A similar
extension of arbitrary assertion for the other kinds of constraint is not necessary because of Weakening. We write {la#X, Y|}
for {|a#X|} A {la#Y|}, and we extend the notation to sets of names, e.g. {|a#X|}.

Before we can give the definition of symbolic bisimulation we need to define a symbolic variant of the concrete static
equivalence. Given a constraint C, two processes are symbolically statically equivalent if they are statically equivalent for all
solutions of the constraint.

Definition 15 (Symbolic static equivalence). Two processes P and Q are statically equivalent for C, written P ~¢ Q, if for
each (o, ¥) € sol(C) we have that WQ F(P)o >~ YRF(Q)o.

We now have everything we need to define symbolic bisimulation. This definition follows the corresponding one in [21]
closely.

Definition 16 ((Early) Symbolic bisimulation). A symbolic bisimulation S is a ternary relation between constraints and pairs
of agents such that S(C, P, Q) implies all of

(1) P ~¢c Q,and
(2) 8(C,Q, P),and
3) Ifp ci) P’ then there exists a set of constraints C such that C A Cp < V C and for all C’ € C there exists Q' and Co
P
such tt%at
(a) Q — Q’,and
G
(b) C" = Cq,and
(c) 8(C', P',Q")
)

y(x) - —~ ~
(4) 1fp ’C—> P, x#(P, Q, C, Cp,y) and y#(P, Q, C) then there exists C such that C A Cp < \/ C and for all C’ € C there

b
exists Q" and Cq such that
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yx)
a) Q =— Q/,and
Co

(

(b) C" = Cq,and

() S(Q/, 13/, Q)

(5) IfP y(Z—a)N> P, a#(P, Q, C, Cp, y) and y#(P, Q, C) then there exists C such that C A Cp A {G#P, Q|} < \/ C and for

p
all ¢’ € C there exists Q' and Cq such that
(@ Q J/(zﬂ) Q',and
0
(b) ' :/> C/Q A {N = N’}, and
(c) S(C, P, Q)

We write P ~; Q if S(true, P, Q) for some symbolic bisimulation S, and say that P is symbolically bisimilar to Q.

The set C allows a case analysis on the constraint solutions, as exemplified in the next section. The output objects need to
be equal in a solution to C’. Since the solutions of {{N = N’[} only depend on the substitutions, this constraint corresponds
to the fact that the objects must be identical in the concrete bisimulation. Note that bn(c«) may occur in C. Based on [10,26],
we conjecture that analogously to the case there, adding the requirement bn(a)#? would give late symbolic bisimulation.

Note that in [23], the case analysis is defined with an implication, e.g. C A Cp = \/ C, while here it is defined with
equivalence, C A Cp < \/ C. This is related to the completeness of the algorithm, as explained in Section 7.1.

In Section 6 we will show the correspondence between the symbolic and concrete semantics and equivalences.

3.2. Examples

We now look at a few examples to illustrate the concrete and symbolic transitions and bisimulations. First consider
a simple example from the pi-calculus. This can be expressed as a psi-calculus: let the only data terms be names, the
only assertion be 1, the conditions be equality and inequality tests on names, and entailment defined by Va.1 - a = aq,
Va,b : a # b1+ a # band Va.1 - a < a. For a more thorough discussion, see [7]. We use T . P as a shorthand for
(vb)(bb .0 | b(b) . P) for some b#P. In the following examples we drop a trailing . 0. Consider the two agents P; and Q;:

Py =a(x).P; where P} = t.ab

Q1 =a(x).Q) whereQ] = (casex=>b:7.ab [] x#b:1.ab)
These are bisimilar. A concrete bisimulation between these agents is

{1, P1,QD}U {1, P, Q{[x :==n])} U{(1,ab,ab)}
nexN

The bisimulation needs to be infinite because of the infinite branching in the input. In contrast, a symbolic bisimulation only
contains four triples:

[(true, P1, Q1). (true, P}, Q)). ({1+x=bl),ab,ab), ({1+x # b, ab,ab)}

When checking the second triple (true, P}, Q;), the transition of P} is matched by a case analysis: C in the definition of
symbolic bisimulation (Definition 16) is {{{1 - x = b[}, {1 - x # b[}}, and a matching transition for Q{ can be found for
each of these cases, so the agents are bisimilar. In contrast, they are not equivalent in the incomplete symbolic bisimulations
in [13,17].

In general, there is an additional reason for a psi-calculus bisimulation relation to be infinite: Definition 10 requires
extension of arbitrary assertions. In the example psi-calculus above, the only assertion is 1 and thus the only source of
infiniteness is the input action.

Next we look at an example where we have tuples of channels and projection, e.g. the entailment relation gives us that
1+ first(M, N) <> M. Consider the agent

R=MN.R
Concretely this agent has infinitely many transitions even in an empty frame: R @) R’,and equivalent actions first(M, K) N
- - . . " VN
for all K, and first(first(M, L), K) N for all L and K, etc. Symbolically, however, it has only one transition: R S AN
{1-M<y)

For another example, consider the two agents

P, =FN.P Q=0
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where F is a term such that for no W, M does it hold that ¥ - F <> M, i.e. F is not a channel. Then we have thatfz and Q»

are concretely bisimilar since neither one of them has a transition. But symbolically P, has the transition P, S AN

{1=F<yl
while Q; has no symbolic transition. Perhaps surprisingly they are still symbolically bisimilar: Definition 16 requires that we
find a disjunction C such that C A Cp < \/ C, or in this case such that true A {1 - F <> y} < V/ C. Since F is not channel
equivalent to anything, the left hand side has no solutions, which means that an empty C will do, since \/ ¥ = false. The
condition “for all C’ € C” in the definition becomes trivially true, so Q, does not have to mimic the transition.

4. Weak semantics and bisimulation

Weak bisimulation A for psi-calculi is introduced in [24], and in this section we briefly recapitulate some key ideas and
definitions. Since we adopt Weakening as a requisite we can use the definition which in that paper is notated Sﬁp .

As is standard, we define weak bisimulation by adjusting Definition 10 (strong bisimulation) so that T actions can be
inserted or removed when simulating a transition. We define weak transitions in the usual way:

Definition 17 (Weak transitions).

oy P =P
oifv > P % P'andV¥ > P” = P'thenV¥ > P = P/

eifU P = P WP % P and¥ >P” = Pthen¥ > P = P/,wherea = 7 orae = M (VA)N.

Note that we do not define a weak version of input transitions. In the late semantics, the definition becomes unnecessarily
complex, and instead we choose to spell out the transitions in Definition 19 below. We first define static implication, which
is simply a one-directional static equivalence.

Definition 18 (Static implication). P statically implies Q in W, written P <y Q, means that V. VQF(P) - ¢ =
YRF(Q) - ¢. We write P < Q for P <1 Q.

Definition 19 (Weak bisimulation). A weak bisimulation R is a ternary relation between assertions and pairs of agents such
that R(W¥, P, Q) implies all of

(1) Weak static implication: There exists Q" such that
V> Q = Q andP <y Q' and R(¥, P, Q).
(2) Symmetry: R(¥, Q, P)
(3) Extension of arbitrary assertion:
VU R(VQWY', P, Q)
(4) Weak simulation: for all o, P’ such that bn(a)#(¥, Q) and ¥ > P % P’ it holds

ifa=1: Q. ve>Q = Q ARW,P,Q)
ifoa =M@@N:3IQ. ¥ >Q = Q A R(Y,P,Q)
ifo =M(x): VLIQ”,Q",Q.

UeQ= Q"A

veQ” 4 Q' A

U Q'x:=L] = Q A

R, P[x:=1],Q)

We define P A&y Q to mean that there exists a weak bisimulation R such that R(¥, P, Q), and write P &~ Q for P 24 Q.

Comparing to strong bisimulation (Definition 10), clause 1 in the definition, that P and Q are statically equivalent, is
adjusted so that if P can make conditions true, then Q can make them true possibly after performing some 7 actions. Clauses
2 and 3 are unchanged. Clause 4 (simulation) is split in three parts. If the action « to be simulated is T then Q should simulate
by doing zero or more t actions. If it is an output or an input action then Q simulates by doing an arbitrary number of T
actions before and after the action.

One point which may not be immediately obvious is Clause 1, weak static implication, where the conjunct R(¥, P, Q')
may be surprising. It states that Q must evolve to a Q’ that is statically implied by P, and also bisimilar to P. This last



M. Johansson et al. / Journal of Logic and Algebraic Programming 81 (2012) 162-180 173

requirement may seem unnecessarily strong, but in fact without it the resulting weak bisimulation equivalence would not
be preserved by the parallel operator. See [24] for examples and further motivation.

In [24] this bisimulation is called simple weak bisimulation, and is defined with the early semantics. To ensure that all
results in [24] also hold for the definition in the present paper, we have the following result:

Lemma 20. A relation is a weak bisimulation according to Definition 19 precisely if it is a simple weak bisimulation according to
[24].

The proof is straightforward using Lemma 11 (see [22]).

Note that weak bisimulation is not preserved by the case construct. The reasoning is analogous to why weak bisimulation
is not preserved by the operator + in CCS or the pi-calculus: 7.0 ~ 0buta.0 + 7.0 7’% a.0 + 0. If the left-hand process
does its T action, the right-hand can only simulate by standing still. In the next step, the right-hand can do the action a which
the left-hand can no longer simulate. This problem is solved in a standard way: in the simulation clause of bisimulation
where @ = 7, Q must simulate the t action made by P with a T chain containing at least one 7 action.

Weak bisimulation is also not preserved by input prefixes, again for the same reason as in the pi-calculus. Closing the
relation under substitution in the same way as is done for strong bisimulation leads to the definition of weak congruence,
denoted ~.

Definition 21 (Weak congruence). P and Q are weakly t-bisimilar, written ¥ > P {’\V/ Q, if P Ay Q and they also satisfy
au

weak congruence simulation:
forall P’ such that & » P * P’itholds:

Q. ¥eQ=Q APAQ

and similarly with the roles of P and Q exchanged. We define P ~ Q to mean that for all ¥, and for all sequences of

substitutions o it holds that ¥ > Po t% Qo.
au

5. Weak symbolic semantics and bisimulation

In this section we define the weak symbolic semantics and bisimulation. We begin by defining weak symbolic transitions,
similarly to how we defined weak transitions in Definition 17.

Definition 22 (Weak symbolic transitions).

e VWP — P
true

e fU P> P AWEP = Pthen¥ > P —= P/
C c’ CAC!
o

o ifU >P ?} PPAV P — P'AV P = P
C/ C‘//

then ¥ > P —2— P/
CAC'NC”

The constraint of a weak transition is simply the conjunction of the individual steps of the transition. Note in passing that
here also the weak input transition is straightforward.

We also need the symbolic counterpart to static implication. A process statically implies another symbolically for a
constraint C if it statically implies it for all solutions of C.

Definition 23 (Symbolic static implication). A process P statically implies another process Q symbolically for C, written
P <c Q, iffor each (o, ¥) € sol(C) we have that Po <y Qo.

The weak symbolic bisimulation is a straight-forward modification of the strong symbolic bisimulation (Definition 16),
with the addition of Clause 1 matching the one of weak (non-symbolic) bisimulation (Definition 19).

Definition 24 (Weak symbolic bisimulation). A weak symbolic bisimulation S is a ternary relation between constraints and
pairs of agents such that S(C, P, Q) implies all of

(1) there exists a set of constraints C such that C < V Cand for all ¢’ € C there exists Q' and Cq such that
@Q = Q,
Q

(b) C' = Cq,
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(c) P <¢ Q',and
(d) s(C’,P,Q")
(2) s(c, Q P), and
3) IfP —> P’ then there exists C such that C A Cp &V C and for all ' € C there exists Q’ and Cq such that
(
(
(
)

a) Q C=> Q/,and
Q
b) ' = Cg,and
o) 8(C, P, Q)
y(x)
(4) IfP —> P, x#(P, Q, C, Cp,y) and y#(P, Q, C) then there exists C such that C A &V C and for all ' € C there

exists Q and Cq such that

a)QgQand

(

(b) (' = CQ,and
(c) S(C', P, Q)
) If

N _ L~ ~ ~
(5 —yﬂll—) P, a#(P, Q, C, Cp, y) and y#(P, Q, C) then there exists C such that C A Cp A {la#P, QJ} < V C and for

»
all ¢’ € C there exists Q" and Cq such that

@ Q =>y(”a)N Q’,and
(b) ' = CQ A{N = N'|}, and
(c) S(C', P, Q)

We write P %é Qif S(C, P, Q) for some symbolic bisimulation S. We write P A Q forP é:me Q, and say that P is symbolically
bisimilar to Q.

We also define the symbolic counterpart to weak congruence:

Definition 25 (Symbolic weak congruence). P and Q are symbolic weakly 7-bisimilar, written Ptéz Q,ifP %Z Q and they
au
also satisfy weak congruence simulation:
IfP Ci> P’ then there exists C such that C A Cp < \/ C and for all C’ € C there exists Q" and Cq such that
P

(1) Q = Q/,and
Co

(2) (" = Cq,and

3) P A Q

and similarly with the roles of P and Q exchanged. We define P ~° Q to mean Pt;@tsme Q.
u

6. Full abstraction

In this section we show that the symbolic and concrete equivalences coincide in both the strong and the weak case, but
first we make precise the form of the concrete agents we consider.

For relating the concrete equivalences presented in Sections 2 and 4 with the symbolic equivalences presented in Sec-
tions 3 and 5 it is convenient to write a concrete agent as Po, where ¢ is a possibly empty finite sequence of substitutions
denoting the values received so far by P. Since it is always possible to «-convert the input object to be fresh for previously
received values we only consider sequences of substitutions with the following property:

if [xq := L1]...[x; := Ly] is a substitution sequence then x;#L; for j < i. (1)
Two other properties of sequences of substitutions are:

if [x; := L] ... [ := Ly] is a substitution sequence then x;#L; for j > i. (2)
if [xq := L] ... [x; := Ly] is a substitution sequence then x;#x; for j # i. 3)
Property (2) states that a name in the domain of the sequence does not occur in the range of the rest of the sequence, while

property (3) states that a name in the domain only occurs once in the domain of the sequence. These properties are used in
the proofs of the results in this section.
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We assume that sch is injective, and we impose five additional requirements on the substitution function. They are needed
in various proofs, and all of them are natural. We require substitution to be homomorphic on sch and if X is a member of a
nominal set additionally that:

X[x:=x] =X
X[x:=M] =M
X[x := M] = Xif x#X
X[x := L]y := M] = X[y := M][x := L] if x#y, M and y#L

Definition 26 (Interference free). A substitution sequence is interference free if it has properties 1, 2, and 3.

Properties 2 and 3 can be derived for concrete agents:

Lemma 27. Let Po be an agent where o has property 1. Then there exists a permutation p and an interference free sequence of
substitutions o’ such that (p - P)o’ = Po.

Proof. The proof is by induction on the length of o. See [25]. O

The point of this lemma is that whenever we encounter a substitution applied to an agent, we can assume that the
substitution is interference-free by applying a suitable permutation. The substitutions sequences are generated either by
substituting arbitrarily chosen names (representing subjects) or names in input prefixes. With the help of Lemma 27 the
latter can be alpha-converted so that the only sequences we ever need consider are interference free.

We now turn to showing that the concrete and symbolic equivalences coincide. We define substitution on symbolic
actions by t[Z := M] = 7, (y(x))[Z := M] = y[Z := M](x[Z := M]), and (y (v@)N)Z := M] = y[Z := M] (v@)N[Z := M],
where x, G#M, Z.

The following two lemmas show the operational correspondence between the symbolic semantics and the concrete
semantics: given a symbolic transition where the transition constraint has a solution, there is always a corresponding
concrete transition (Lemma 28) and vice versa (Lemma 30).

Lemma 28 (Correspondence symbolic-concrete).

Y G@)a  pr
(1) IfP e P, (0, V) = C, and x#0 then ¥ > Po X% p'o,
(2) IfP M P, (0, V) |= C and G#o then W = Po TN p/s.

(3) IfP — P'and (0. V) [= Cthen ¥ > Po % Plo.

Proof. The proof is by induction on the length of the derivation of the transition. See [25]. [J
Lemma 29 (Weak correspondence symbolic-concrete).

(1) IfP = P and (o, V) = Cthen ¥ > Po = P'o.
y(x)
(2) IfP ? p’ p’ ’C—”> p”, p" ? P, (o[x :=L],¥) &= C, ACy ACY, and x#0, P,y then ¥ > Po = P’o,
P P P
Vs Plo YN p and W > P ox :=1] = Polx:=1L].
(3) IfP y—(%)—’ﬁ P, (o, W) k= C, and G#o, P,y then W > Po 229N pro

(4) IfP % P, (0, ¥) = Cthen¥ > Po = Plo.
Proof. The proof is by induction on the length of the transition. See [25]. O

Lemma 30 (Correspondence concrete-symbolic).

(1) If ¥ > Po ﬂx)} P'o, y#W,P, o, x, where x#0, P then there exists C such that
y(x)
P ’T> P and (o[y := M], ¥) = C.
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(2) If ¥ > Po M) P'o, y#WV,P,o,qa, anda#o, P then there exists C such that
7 (va)N
p % P and (o[y := M], @) = C.

(3) If ¥ > Po X, P'o then there exists C such that P % P and (o, ¥) = C.

Proof. The proofs are by induction over the transition derivation (one case for each rule); for the details see [25]. O
Lemma 31 (Weak correspondence concrete-symbolic).

(1) If ¥ > Po = P'o then there exists C such that P = P’ and (o, ¥) = C.
2)If¥ > Po = Plo, ¥ > Plo Y¥9 pVg p'glx :=1] = Polx:=1L], y#V,P,x andx#o, P then there
exists C such that P % P and (o[x :=L],¥) =C.

(3) f¥ > Po % P'o, y#WV,P,qa, and a#o, P then there exists C such that

p &C‘”'ﬁ P and (o, W) |= C.

(4) If U > Po = P'o then there exists C such that P % P and (o, ¥) = C.

Proof. The proof is by induction on the length of the transition. See [25] for details. O

Theorem 32 (Soundness (strong)). Assume S is a symbolic bisimulation and let R = {(V¥, Po,Qo) : AC.(o,¥) E
Cand (C, P, Q) € S}. Then R is a concrete bisimulation.

The full proof is in [25]. The proof idea to show that R is a concrete bisimulation is to assume (W, Po, Qo) € R and
that Po has a transition in environment W. We use Lemma 30 to find a symbolic transition from P, then the fact that Sis a
symbolic bisimulation to find a simulating symbolic transition from Q, and finally Lemma 28 to find the required concrete
transitions from Qo.

Similarly to [21] we need an extra assumption about the expressiveness of constraints. Say that the constraints Cstr are
bisimulation complete if for all R, P, Q, ¥, o such that R is a concrete bisimulation there exists a constraint C such that
(V,0) E C <= (¥, Po,Qo) € R.This property will be used in the proof of Theorem 33 below. In order to determine
symbolic bisimilarity in an efficient way we need to compute this constraint, which is easy for the pi-calculus [10,26,27] and
harder (but in many practical cases possible) for cryptographic signatures [11]. These results suggest that our constraints
are sufficiently expressive, but for other instances of psi-calculi we may have to extend the constraint language. We leave
this as an area of further research.

Theorem 33 (Completeness (strong)). Let R be a concrete bisimulation and define S = {(C, P, Q) : (o, ¥) |= C implies (¥,
Po, Qo) € R}. If the constraints Cstr are bisimulation complete then S is a symbolic bisimulation.

The full proof is in [25]. The proof idea is the converse of the proof for Theorem 32. The expressiveness assumption of
constraints mentioned above is needed in order to construct the disjunction of constraints in the symbolic bisimulation.
From these two theorems we get:

Corollary 34 (Full abstraction (strong)). P ~ Q ifand only if P ~5 Q.
We now turn to showing the correspondence between weak bisimulations.
Theorem 35 (Full abstraction (weak)). P ~ Q if and only if P ~° Q.
Proof. Soundness is proved by showing that if S is a weak symbolic congruence then R = {(¥, Pg, Qo) : 3C.(o, V)
= Cand S(C, P, Q)} is a weak concrete congruence.
Completeness is proved by showing that if R is a weak concrete congruence then S = {(C, P, Q) : (0, ¥) = C implies R

(¥, Po, Qo)} is a weak symbolic congruence.
The details are found in [25]. O

7. The bisimulation algorithm and its correctness

In Figs. 1-3 we present an algorithm that computes a constraint C such that P %(s; Q and a witnessing bisimulation.
The algorithm, adapted from [21], does a depth-first search of the underlying symbolic transition graph. The main function
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/* bisim(P, Q)
P and @ are agents. Returns a pair (C,T’) where C' is a constraint such
that P ~- Q and T is a table describing a witnessing bisimulation. */

bisim(P, Q) = close(P, Q, true, ()

/* close(P,Q,C, W)
P and @ are agents, C represents the constraints seen so far, and W is
a set of pairs of agents that have already been visited by the algorithm.
Returns a pair (C’,T'), where C” is a constraint necessary for P and @ to
be bisimilar, and 7" is a table describing a partial witnessing bisimulation.

*/

close(P, Q, C, W)

if (P, @) € W then

(true, 0)

else let (Cyyimp, Tstimp) = match-stimp(P, Q, C, W)
(C.étim}ﬁ rs/timp) = matCh_Stimp(Qs P: C«, LV)
(C;, T;) = match-7(P, Q, C, W)
(CL, T!) = match-7(Q, P, C, W)
(Cout, Tout) = match-out(P, Q, C, W)
s Thy) = match-out(Q, P, C, W)
(Cin, Tin) = match-in(P, Q, C, W)

(Cl,, T!) = match-in(Q, P, C, W)
in (Cstimp A Clip NCr A CL A Cour N Coyy A Cin A Cj,
T*‘fim['ur;tnnpuTT U T7/' U Tou U T‘rﬁut U Ty U Tlln U

{(P, Q) —={C A Csgimp N Cr N Cour N Cin}} U
{(@Q P)={C N C AN CLAN Chy NGt

stimp in

Fig. 1. bisimand close functions.

bisim(P, Q) calls close (P, Q, true, #). The first two arguments to close (P, Q, C, W) are the current agents being
compared, the third argument are the constraints accumulated so far, which are used to construct a witnessing bisimulation,
and the fourth argument contains the pairs of agents that have already been compared.

The function close calls match-stimp (P, Q, C, W), match-7 (P, Q, C, W), match-out (P, Q, C, W), and match-in
(P, Q, C, W) inorder to compute the constraints for staticimplication and matching t, output, and input actions respectively.
The functionmatch-stimp (P, Q, C, W) computes a constraint for which P statically implies Q, and a table that represents
a witnessing bisimulation. The other functions compute a constraint for which Q simulates P, and a table of the witnessing
bisimulation. The conjunction of these constraints is then returned as a constraint for which P and Q are bisimilar. These
functions correspond to the different clauses in the definition of weak bisimulation.

The algorithm assumes the presence of yet another type of constraint, F < G. This is used to capture static implication,
and its solutions are all pairs (o, ¥) such that Vo.WQ(Fo) F ¢ & YR(Go) - ¢. We define A ¥ = true and \/ ) = false.

Atable is a finite function from pairs of agents to constraints. We write T L T’ for the union of T and T’ defined only when
dom(T) N dom(T’) = @. We thus have that (T U T')(P, Q) = T(P, Q) if (P, Q) € dom(T) and (T LU T")(P, Q) = T'(P, Q) if
(P, Q) € dom(T’). The operator U is used instead of U in the algorithm since we work under the assumption that the graphs
are finite with a tree structure.

When choosing a fresh y in functions match-out and match-in, the function newName is used. It picks a name that is
fresh for all its arguments. The argument X' is the set of names that have been used as subjects previously in the algorithm,
and as a side effect, the newly choosen y is added to this set. This ensures that all such y are globally unique.

Note that nowhere in the algorithm the constraints are checked for consistency, they are only accumulated. This means
that the algorithm can be run also on psi-instances that are equipped with an undecidable entailment relation. However in
these cases it might be difficult to interpret the result.

7.1. Correctness

We now turn to show the correctness of the algorithm, and we follow [21] closely. Similarly to [21] we here restrict
ourselves to finite symbolic transition graphs, i.e. they are finitely branching and have a finite number of nodes. Like [21], for
simplicity we also assume that the graphs have a tree structure. Since every finite graph can be expanded to an equivalent
tree, this restriction is not too limiting.

We first look at termination of the algorithm. For each recursive call to close, the parameter W is increased by a pair
(P, Q) not already in W. For this reason, since we assume that the symbolic transition graphs are finite, eventually the test
(P, Q) € W will be true, and the recursion stops. Hence we have the following lemma:

Lemma 36 (Termination). If the symbolic transition graphs of P and Q are finite then bisim (P, Q) terminates.

We now state the soundness and completeness theorems for the algorithm:
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/* match-stimp(P,Q,C, W)
The parameters are as in close(P, Q,C, W). Returns a pair (C’,T) where
(" is a constraint that is necessary for P to statically imply @, and T is
a table describing a partial witnessing bisimulation. */

match-stimp (P, @, C, W)
let Qtr = {(Cqi, Qi) @ Q o Qi}
(C, T) =map NCgi, Q).
let (C;, T)) =
close(P, Q;, CACgi, WU{(P,Q)}
in (CoiNCiAN(CiNCoi = F(P)=F(Qi)), T
_Qur
in (true=\C, |1
/* match-7(P,Q,C, W)
The parameters are as in close(P, @, C,W). Returns a pair (C’,T) where
(" is a constraint that is necessary for @ to simulate P for 7-actions,
and T is a table describing a partial witnessing bisimulation. */

match-7(P, @, C, W)
let Ptr = {(Cp, Pl) P Pl}

Qir = {(Cay, @) + @ = Qi)
(C, T) = map (A(Cpi, P).
let (Ci, T) = map (A\(Cqj, Q)) -
let (Cz]', Ti) =
close(P;,Q;,C A Cp; ACqj, WU{(P,Q)}
in (CQ_,‘/\CI'_]', Ti)) Qtr
in (Cpi =\ Ci, UTD) Ptr
in (AC, D

Fig. 2. match-stimp and match-t functions.

Theorem 37 (Soundness of the algorithm). If C = bisim(P, Q) then P ¢ Q.

Theorem 38 (Completeness of the algorithm). IfP A¢ Q and bisim(P, Q, Cp, T) then C = Cp,.

Proof sketch: These theorems are proven by defining an invariant that is an approximation of bisimulation, and then showing
that the functions close and match-* maintain this invariant. The proofs follow [21] closely and are found in [25].

The completeness proof only works if the case analysis in the definition of symbolic bisimulation is defined with equality,
e.g.C A Cp & V C,instead of implication, C A Cp = \/ C, while the other proofs work with either definition. This is the
reason the definition of symbolic bisimulation has changed in this respect, compared to [23]. The same problem manifests
itself in [21], where the completeness proof of the algorithm uses a definition with equality instead of implication [28], not
found in the paper. The correct definition is given in a subsequent paper by the same authors [20].

7.2. Extensions

To compute the congruence of Definition 25 the algorithm in Fig. 4 is used. It calculates a constraint C such that Ptéé Q.
au

The additions are straight-forward. The function match-7-strict is essentially the same as match-T, but requires Q to
simulate with at least one 7 -transition. The function t -bisimcaptures the two requirements of Definition 25 that the agents
should be bisimilar and that they satisfy weak congruence simulation (match-t-strict).

The algorithm can easily be made to compute strong bisimulation instead of weak. The modification is to change match-t,
match-in,andmatch-out to use strong transitions instead, remove the call tomatch-stimpinfunction close, and replace
Cstimp in close with F(P) < F(Q), and Cgyp,, With F(Q) < F(P).

8. Conclusion and future work

We have defined a symbolic operational semantics for psi-calculi and both strong and weak symbolic bisimulations which
are fully abstract with regards to the original semantics. While the developments in [7,24] give meta-theory for a wide range
of calculi of mobile processes with nominal data and logic, the work presented in this paper gives a solid foundation for
automated tools for the analysis of systems modelled in such calculi.

As mentioned in the introduction, the purity of the original semantics of psi-calculi has made the symbolic semantics
easier to develop. There are no structural equivalence rules, which are a complication in the applied pi-calculus. The scope
opening rule is because of this straight-forward which makes knowledge representation simpler than in spi-calculi, and the
bisimulation less complex. Nevertheless, the technical challenges have not been absent: the precise design of the constraints
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/* match-out (P,Q,C, W)
The parameters are as in close(P, @, C, W). Returns a pair (C’,T) where
(" is a constraint that is necessary for @ to simulate P for outputs, and
T is a table describing a partial witnessing bisimulation. */

match-out (P, @, C, W)
let Ptr = {(§ (W@)N, Cpi, P) : P % P
o A y = newName (P,Q,.C,X) A a#P.,Q.C,Cp;,y}
(C, T) = map A\(y (va)N, Cpi, B).
let Qtr = {(z(VE)N', Cqgj, Qj) : Q

Z (VN 0,
A yjzz A a=c}
(Ci, T = map ANz (vO)N', Cgj. Q)
let (Cy, Ti) =
close (P, Q;.C ACpi ACq; AN = NI} Aa#tP, Q. WU {(P.Q)D)
in (CQj/\{lN=NI[}/\GLj, i) Qtr
in (Cp; AMa#P,Q = \/ Cy, [T Ptr
in (AC, D

/* match-in(P,Q,C, W)
The parameters are as in close(P, @, C, W). Returns a pair (C’,T) where
(" is a constraint that is necessary for @ to simulate P for inputs, and
T is a table describing a witnessing bisimulation. */

match-in(P, @, C, W)
let Pir = {(y(x), Cpi P) : P % P,

Pi
o A y = newName(P,Q,C,X) A z#P,Q,C,Cp;,y}
(C, T) =map Ay(z), Cpi, Pi).

let Qtr = {(z(2'), Cqj Q;) : Q
ANy=z A z=2a'}
@, T = map A(), Cajr @) -
let (Cy5,T35)
close(P;, Q;,C A Cpi ACqj, W U{(P,Q)})

in (Co; A Cij, Tip) Qtr

_in (Cpi= VG, UT) Pir
in (AC, UD

z(a')
— @

Fig. 3. match-out and match-in functions.

/* T7-bisim(P, Q)
P and @ are agents. Returns a pair (C,T) where C is a constraint such
that Ptés(; Q@ and T is a table describing a witnessing bisimulation. */
au

T-bisim(P, Q)
let (C, T) = bisim(P, Q)
(C;, T;) = match-7-strict(P, Q)
(CL, T!) = match-7-strict(Q, P)

in (C AN Cr ANCL, T UT UTY

/* match-7-strict (P, Q)
The parameters are as in close(P, Q) Returns a pair (C',T") where C’
is a constraint that is necessary for @ to simulate P with at least one
T-action, and T is a table describing a witnessing bisimulation. */

match-7-strict (P, Q)
let Ptr = {(P, Cp;, P) : P — P}

Cpi

Qtr = {(Q, Cqj, Q) : Q ﬁ Q;}

(6, T = map (/\(P’NCPL" P).
let (Ci, T) = map (\(Q. Coy. Q) -
let (Cyj, Tj) = close(F;, Qj, Cpi A CQ]'7 ()]
in (CQ]'/\CL']', E])) Qtr
in (Cpi =V Ci, UT)) Ptr
in (ANC, UD

Fig. 4. Congruence algorithm.
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and their solution has been delicate. Since assertions may occur under a prefix, the environment can change after a transition.
Keeping the assertion W in the transition constraints (on the form (va){{¥ F ¢|}) essentially keeps a snapshot of the
environment that gives rise to the transition. An alternative would be to use time stamps to keep track of which environment
made which condition true, but that approach seems more difficult. It is also worth mentioning the freshness constraints,
{la#X]}. They solve the problem of keeping track of which names have been opened in the bisimulation. Since this does
not need to be part of the partitioning in the bisimulation, another approach is to make this another parameter of the
bisimulation as done in [29], but since freshness constraints fit nicely into our formalism we chose this solution.

The original psi-calculi admit pattern matching in inputs. In a symbolic semantics this would lead to complications in the
COM-rule, which should introduce a substitution for the names bound in the pattern. This means introducing more fresh
names and constraints, and it is not clear that the convenience of pattern matching outweighs such an awkward semantic
rule. We leave this as an area for further study.

The algorithm amounts to a straightforward adaptation of the algorithmin [21]. A tool which implements the bisimulation
algorithm is currently in development [19]. The algorithm in itself only computes a constraint under which agents are
equivalent. In order to decide whether the constraint is satisfiable, a constraint solver for the parameters of the particular
psi-calculus is needed. Work is ongoing to create a generic constraint solver for psi-calculi with parameters that form free
algebras, and we intend to interface constraint solvers developed for specific application domains (e.g. security). We will
also produce mechanized proofs of the adequacy of the symbolic semantics, using the Isabelle theorem prover.

When typing schemes have been developed for psi-calculi, a natural progression would be to take advantage of those
also in the symbolic semantics, to further constrain the possible values and thus the size of state spaces.
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