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Abstract—Psi-calculi extend the pi-calculus with nominal
datatypes to represent data, communication channels, and
logics for facts and conditions. This general framework admits
highly expressive formalisms such as concurrent higher-order
constraints and advanced cryptographic primitives. We here
establish the theory of weak bisimulation, where the τ actions
are unobservable. In comparison to other calculi the presence of
assertions poses a significant challenge in the definition of weak
bisimulation, and although there appears to be a spectrum
of possibilities we show that only a few are reasonable. We
demonstrate that the complications mainly stem from psi-
calculi where the associated logic does not satisfy weakening.

We prove that weak bisimulation equivalence has the ex-
pected algebraic properties and that the corresponding obser-
vation congruence is preserved by all operators. These proofs
have been machine checked in Isabelle. The notion of weak
barb is defined as the output label of a communication action,
and weak barbed equivalence is bisimilarity for τ actions and
preservation of barbs in all static contexts. We prove that
weak barbed equivalence coincides with weak bisimulation
equivalence.

I. INTRODUCTION

In our earlier work [4] we introduced psi-calculi: a
framework for advanced mobile process calculi. These ac-
commodate applications with complex data structures and
their operations, and high level logics for use in conditional
constructs. Extensions of the pi-calculus are not new as
such, but psi-calculi provide a single general and parametric
framework with a clean theory and machine-checked proofs.
In [4] we presented the labelled semantics, strong bisimula-
tion congruence and algebraic properties; its implementation
in the theorem prover Isabelle was presented in [5]; a fully
abstract symbolic semantics appeared in [17].

In the present paper we establish the theory of weak (or
observational) equivalences for psi-calculi. These equiva-
lences abstract from the internal behaviour of the processes
and are essential for applications, e.g. in simplifying descrip-
tions in a modular way, and in verifying implementations
against more abstract specifications. Interactions between
internal components are disregarded unless they affect the
externally visible behaviour. If the weak equivalence is
compositional then the abstract specification can also be
used as a part when building even larger systems, and this
facilitates modular construction and reasoning.

The canonical weak equivalence is often considered to
be barbed bisimulation congruence [18], [21] which is
defined using the possible interactions, often called barbs,

and reductions, closing under all contexts to form a con-
gruence. Although natural and easy to understand this uni-
versal quantification of contexts makes the relation hard
to use in proofs. It is a known hard problem to define
weak equivalences that abstract from as much detail as
possible and yet are both compositional and computationally
tractable. A standard approach is to use weak bisimulations,
where a single transition a−→ is simulated by a sequence
of transitions where the internal τ actions are considered
invisible, a so called weak transition a==⇒ . In the pi-
calculus several alternatives have been investigated for weak
bisimulation, e.g. open, late and early; the latter coincides
with barbed equivalence [21].

Weak bisimulation has been studied for some extensions
of the pi-calculus, but the results are not conclusive and a
general framework is lacking. In the case of spi-calculus [2]
the weak labelled bisimulations are rather complex and the
spectrum of equivalences includes framed [2], alley [7],
[8], [6], fenced [13], trellis [7], and hedged [9], where
framed coincides with hedged [6], [9] and fenced with
trellis [14]. For the applied pi-calculus, the weak labelled
bisimulation defined in [1] does not coincide with barbed
equivalence and turns out to be non-compositional unless
further restrictions on the calculus are imposed (as remarked
in [4]). The explicit fusion calculus [23] defines weak barbed
equivalence which is compositional but computationally
awkward because of a universal quantification over contexts.
Extensions of the pi-calculus for constraint programming
have been defined e.g. in [12] (the π+-calculus) and [11] (the
CC-Pi calculus). The first defines only barbed equivalence;
the second defines only (strong) labelled bisimulation which
turns out to be non-compositional (also as remarked in [4]).

In this paper we present a labelled weak bisimulation for
psi-calculi and its associated congruence, without a universal
quantification of contexts. We formally establish its algebraic
properties, including compositionality. All results have been
verified in nominal Isabelle.

The general framework of psi-calculi allows non-
monotonic logics where a formula which holds at one point
may be falsified by a transition, as in e.g. the “retract”
construct of CC-Pi [10]. While adding expressive power, the
non-monotonicity also poses new and unexpected challenges
for weak bisimulation. With the possibility of new assertions
(statements about data) appearing after any transition, “ob-



vious” laws such as P
.
≈ τ.P become invalid. Intuitively

this is because P may contain a retract that invalidates an
action of its environment. As an example, consider an agent
P which through a retract jams an internal communication in
Q, so that P | Q cannot progress. The agent τ . P represents
a state where the jamming has not yet started. Consequently
Q can progress in the constellation τ . P | Q. In other
words, P and τ . P have demonstrably different effects on
their environment: the τ prefix might postpone a jamming
and thereby allow other actions. This is in contrast to the
situation in the standard pi-calculus where τ . P | Q can have
no more actions than P | Q. We prove that if monotonicity is
enforced, by a logical weakening law saying that whatever is
true stays true, this situation cannot arise and the definition
of weak bisimulation can be significantly simplified.

We finally introduce a weak barbed bisimulation where
the observations, or barbs, are simply the immediately
available output actions. This results in a more intuitively
obvious definition. We prove that it coincides with weak
labelled bisimulation. In this way the intuitively attractive
barbed equivalence is given the powerful proof technique of
labelled bisimulation which does not require closure under
all contexts.

In the next section we review the basic definitions of
syntax, semantics, and strong bisimulation of psi-calculi. In
Section III we present the first variant of weak bisimulation.
This is intended for psi-calculi where logical weakening
holds, and results in a relatively traditional bisimulation
definition. In Section IV we present the second more general
variant of weak bisimulation, applicable to all psi-calculi,
and explain and motivate it by examples. Section V presents
our results on algebraic properties and compositionality,
and the related notion of weak congruence. In Section VI
we introduce the notions of barb and barbed bisimulation
equivalences, and prove that this equivalence coincides with
weak bisimilarity. Finally in Section VII we conclude and
describe ongoing and future work.

II. PSI-CALCULI

This section is a brief recapitulation of psi-calculi; for a
more extensive treatment including motivations and exam-
ples see [4].

We assume a countably infinite set of atomic names N
ranged over by a, b, . . . , z. Intuitively, names will represent
the symbols that can be scoped, and also represent symbols
acting as variables in the sense that they can be subject to
substitution. A nominal set [20], [15] is a set equipped with
a formal notion of what it means for a name a to occur in an
element X of the set, written a ∈ n(X) (often pronounced
as “a is in the support of X”). We write a#X , pronounced
“a is fresh for X”, for a 6∈ n(X), and if A is a set of names
we write A#X to mean ∀a ∈ A . a#X . A nominal data
type is a nominal set equipped with a set of operators on it.

A psi-calculus is defined by instantiating three nominal
data types and four operators:

Definition 1 (Psi-calculus parameters). A psi-calculus re-
quires the three (not necessarily disjoint) nominal data
types: the (data) terms T, ranged over by M,N , the
conditions C, ranged over by ϕ, the assertions A, ranged
over by Ψ, and the four operators:

.↔: T×T→ C Channel Equivalence
⊗ : A×A→ A Composition
1 : A Unit
`⊆ A×C Entailment

We assume that there exists a simultaneous substitution
function X[ã := M̃ ] for any term, assertion or condition X .
The binary functions above will be written in infix. Thus, if
M and N are terms then M .↔ N is a condition, pronounced
“M and N are channel equivalent” and if Ψ and Ψ′ are
assertions then so is Ψ⊗Ψ′. We say that a term is a channel if
it is channel equivalent to something. Also we write Ψ ` ϕ,
“Ψ entails ϕ”, for (Ψ, ϕ) ∈ `.

We say that two assertions are equivalent, written Ψ ' Ψ′

if they entail the same conditions, i.e. for all ϕ we have
that Ψ ` ϕ ⇔ Ψ′ ` ϕ. We impose certain requisites on
the sets and operators. In brief, channel equivalence must
be symmetric and transitive, ⊗ must be compositional with
regard to ', and the assertions with (⊗,1) form an abelian
monoid. For details see [4].

In the following ã means a finite (possibly empty) se-
quence of names, a1, . . . , an. The empty sequence is written
ε and the concatenation of ã and b̃ is written ãb̃. When
occurring as an operand of a set operator, ã means the
corresponding set of names {a1, . . . , an}. We also use
sequences of terms, conditions, assertions, etc., in the same
way.

A frame F can intuitively be thought of as an assertion
with local names: it is of the form (νb̃)Ψ where b̃ is a
sequence of names that bind into the assertion Ψ. We use
F,G to range over frames. We overload Ψ to also mean
the frame (νε)Ψ and ⊗ to mean composition on frames
defined by (νb̃1)Ψ1⊗(νb̃2)Ψ2 = (νb̃1b̃2)(Ψ1⊗Ψ2) where
b̃1#b̃2,Ψ2 and vice versa. We also write (νc)((νb̃)Ψ) to
mean (νcb̃)Ψ.

Alpha equivalent frames are identified. We define F ` ϕ
to mean that there exists an alpha variant (νb̃)Ψ of F such
that b̃#ϕ and Ψ ` ϕ. We also define F ' G to mean that for
all ϕ it holds that F ` ϕ iff G ` ϕ. Intuitively a condition is
entailed by a frame if it is entailed by the assertion and does
not contain any names bound by the frame. Two frames are
equivalent if they entail the same conditions.



Definition 2 (Psi-calculus agents). Given valid psi-calculus
parameters as in Definition 1, the psi-calculus agents,
ranged over by P,Q, . . ., are of the following forms.

0 Nil
M N.P Output
M(λx̃)N.P Input
case ϕ1 : P1 [] · · · [] ϕn : Pn Case
(νa)P Restriction
P |Q Parallel
!P Replication
(|Ψ|) Assertion

In the Input M(λx̃)N.P we require that x̃ ⊆ n(N) is
a sequence without duplicates, and the names x̃ bind oc-
currences in both N and P . Restriction binds a in P . An
assertion is guarded if it is a subterm of an Input or Output.
In a replication !P there may be no unguarded assertion
in P , and in case ϕ1 : P1 [] · · · [] ϕn : Pn there may be no
unguarded assertion in any Pi. We identify alpha-equivalent
agents.

Some notational conventions: We sometimes abbreviate
the agent case ϕ1 : P1 [] · · · [] ϕn : Pn as case ϕ̃ : P̃ , or if
n = 1 as if ϕ1 then P1. In psi-calculi where a condition
> exists such that Ψ ` > for all Ψ we write P + Q to
mean case > : P [] > : Q. We introduce the prefix form τ.P
through a communication over a restricted channel.1

The frame F(P ) of an agent P is defined inductively as
follows:

F(M(λx̃)N.P ) = F(M N.P ) = F(0)
= F(case ϕ̃ : P̃ ) = F(!P ) = 1

F((|Ψ|)) = (νε)Ψ
F(P |Q) = F(P ) ⊗ F(Q)
F((νb)P ) = (νb)F(P )

A consequence is that F(τ . P ) ' 1.
The actions ranged over by α, β are of the following three

kinds: Output M (νã)N where α ⊆ n(N), Input M N , and
Silent τ . Here we refer to M as the subject and N as the
object. We define bn(M (νã)N ) = ã, and bn(α) = ∅ if α
is an input or τ . We also define n(τ) = ∅ and n(α) =
n(M)∪n(N) for the input and output actions. As in the pi-
calculus, the output M (νã)N represents an action sending
N along M and opening the scopes of the names ã. Note
in particular that the support of this action includes ã. Thus
M (νa)a and M (νb)b are different actions.

Definition 3 (Transitions). A transition is of the kind
Ψ B P

α−→ P ′, meaning that in the environment Ψ the
agent P can do an α to become P ′. The transitions are

1Formally, let Ma be a term that contains the name a. Define τ.P =
(νa)(Ma.P |Ma.0) for a#P in psi-calculi where ∀Ψ.Ψ ` Ma

.↔ Ma

and for all other terms N we have that ∀Ψ.Ψ 0 Ma
.↔ N . This is the gen-

eralisation of the usual definition of τ in pi-calculus: τ.P = (νa)(a.P |a.0)
for a#P .

defined inductively in Table I. We write P α−→ P ′ without
an assertion to mean 1 B P

α−→ P ′.

Agents, frames and transitions are identified by alpha
equivalence. In a transition the names in bn(α) bind into
both the action object and the derivative, therefore bn(α) is
in the support of α but not in the support of the transition.
This means that the bound names can be chosen fresh,
substituting each occurrence in both the object and the
derivative.

Definition 4 (Strong bisimulation). A strong bisimulation R
is a ternary relation between assertions and pairs of agents
such that R(Ψ, P,Q) implies all of

1) Static equivalence: Ψ⊗F(P ) ' Ψ⊗F(Q)
2) Symmetry: R(Ψ, Q, P )
3) Extension of arbitrary assertion:
∀Ψ′. R(Ψ⊗Ψ′, P,Q)

4) Simulation: for all α, P ′ such that bn(α)#Ψ, Q there
exists a Q′ such that

Ψ B P
α−→ P ′ =⇒ Ψ B Q

α−→ Q′ ∧R(Ψ, P ′, Q′)

We define P .∼Ψ Q to mean that there exists a bisimulation
R such that R(Ψ, P,Q), and write .∼ for .∼1.

Definition 5 (Strong congruence). P ∼Ψ Q means that for
all x̃, M̃ it holds P [x̃ := M̃ ] .∼Ψ Q[x̃ := M̃ ], and we write
P ∼ Q for P ∼1 Q.

In [4] we explore the algebraic properties of ∼, in
particular we prove it a congruence for any psi-calculus.

III. WEAK BISIMULATION

We introduce weak bisimulation equivalence,
.
≈, with the

intuition that τ actions are invisible. This notion is standard
in many variants of the pi-calculus, but in our framework it
poses unexpected challenges. As an example, consider the
law P

.
≈ τ.P . This law looks obvious and indeed holds for

weak bisimulation in the pi-calculus. But in psi-calculi in
general it would imply that parallel composition does not
preserve

.
≈. Consider a situation where it holds that 1 ` ϕ

and F(P ) 6` ϕ. In other words, F(P ) makes condition ϕ
false. Now consider

P | if ϕ then Q and τ.P | if ϕ then Q

Here only the right hand side has the possibility of acting
like Q. Therefore the left and right hand sides are not in
general equivalent. If parallel preserves

.
≈ then it follows

that P and τ.P are not always equivalent.
The root of this issue is that the frame of P can falsify the

condition ϕ. There are some circumstances where this might
happen; an example is if the assertions represent constraint
stores and the constraint system admits retracts. Suppose
that P represents a retract of ϕ. A system sitting in parallel
with P cannot infer ϕ, and therefore if ϕ then Q will have



IN
Ψ `M .↔ K

Ψ B M(λey)N.P
KN [ey:=eL]−−−−−−−→ P [ey := eL]

OUT
Ψ `M .↔ K

Ψ B M N.P
KN−−−→ P

CASE
Ψ B Pi

α−→ P ′ Ψ ` ϕi
Ψ B case eϕ : eP α−→ P ′

COM
Ψ⊗ΨP⊗ΨQ `M

.↔ K ΨQ⊗Ψ B P
M (νea)N−−−−−−→ P ′ ΨP⊗Ψ B Q

KN−−−→ Q′

Ψ B P |Q τ−→ (νea)(P ′ |Q′)
ea#Q

PAR
ΨQ⊗Ψ B P

α−→ P ′

Ψ B P |Q α−→ P ′|Q
bn(α)#Q SCOPE

Ψ B P
α−→ P ′

Ψ B (νb)P
α−→ (νb)P ′

b#α,Ψ OPEN
Ψ B P

M (νea)N−−−−−−→ P ′

Ψ B (νb)P
M (νea∪{b})N−−−−−−−−−→ P ′

b#ea,Ψ,M
b ∈ n(N)

REP
Ψ B P | !P α−→ P ′

Ψ B !P
α−→ P ′

Table I
Structured operational semantics. Symmetric versions of COM and PAR are elided. In the rule COM we assume that F(P ) = (νebP )ΨP and

F(Q) = (νebQ)ΨQ where ebP is fresh for all of Ψ,ebQ, Q,M and P , and that ebQ is similarly fresh. In the rule PAR we assume that F(Q) = (νebQ)ΨQ
where ebQ is fresh for Ψ, P and α. In OPEN the expression ã ∪ {b} means the sequence ã with b inserted anywhere.

no action. But a system in parallel with τ . P might infer
ϕ. Only when this agent executes its action τ and asserts
the retract will if ϕ then Q become blocked. Thus P and
τ . P cannot be deemed equivalent: the parallel context of
if ϕ then Q can tell the difference by proceeding only in
company with the latter.

In many natural instances of psi-calculi this situation can-
not arise. For example, if the logics involved are monotonic
there can be nothing similar to a retract: formally, frame
composition ⊗ is interpreted as conjunction of information,
and a logical weakening law is assumed, saying that a
conjunction cannot entail less than its conjuncts. In our
framework this is represented as an extra requisite:

weakening: Ψ ` ϕ ⇒ Ψ⊗Ψ′ ` ϕ

Since (⊗,1) is a monoid we have 1⊗Ψ ' Ψ for all Ψ,
and with weakening this implies 1 ` ϕ ⇒ Ψ ` ϕ, in
other words, no assertion can falsify any condition. With this
requisite the law P

.
≈ τ . P indeed holds, and it turns out that

the definition of weak bisimulation is significantly simpler.
We shall therefore begin by exploring weak bisimulation
for psi-instances with weakening, and later generalise to the
situation without weakening.

Our approach is to adjust Definition 4 (strong bisimu-
lation) so that τ actions can be inserted or removed when
simulating a transition. Clause 1 in the definition, that P and
Q are statically equivalent, is adjusted so that if P can make
conditions true, then Q can make them true possibly after
performing some τ actions. Clauses 2 and 3 are unchanged.
Clause 4 (simulation) is split in two parts. If the action α to
be simulated is τ then Q should simulate by doing zero or
more τs. If it is a visible (i.e. non-τ ) action then Q simulates
by doing an arbitrary number of τ actions before and after
the α action.

We define Ψ B P ==⇒ P ′ to mean that there exist
P1, . . . Pn where P = P1, P ′ = Pn, and Ψ B Pi

τ−→ Pi+1

for all i in [1, n − 1], allowing the case where n = 1 and
P = P ′. The weak transition Ψ B P

α==⇒ P ′ is defined as
Ψ B P ==⇒ P ′′ and Ψ B P ′′

α−→ P ′′′ and Ψ B P ′′′ ==⇒
P ′. We also define P ≤Ψ Q, pronounced P statically implies
Q, to mean that ∀ϕ. Ψ⊗F(P ) ` ϕ ⇒ Ψ⊗F(Q) ` ϕ. We
write P ≤ Q for P ≤1 Q.

Definition 6 (Simple weak bisimulation). A simple weak
bisimulation R is a ternary relation between assertions and
pairs of agents such that R(Ψ, P,Q) implies all of

1) Weak static implication: There exists Q′ such that
Ψ B Q ==⇒ Q′ and P ≤Ψ Q′ and R(Ψ, P,Q′).

2) Symmetry: R(Ψ, Q, P )
3) Extension of arbitrary assertion:
∀Ψ′. R(Ψ⊗Ψ′, P,Q)

4) Weak simulation: for all α, P ′ such that bn(α)#Ψ, Q
and Ψ B P

α−→ P ′ it holds

if α = τ : ∃Q′. Ψ B Q ==⇒ Q′ ∧ R(Ψ, P ′, Q′)

if α 6= τ : ∃Q′. Ψ B Q
α==⇒ Q′ ∧ R(Ψ, P ′, Q′)

We define P
.
≈

smpΨ

Q to mean that there exists a simple weak

bisimulation R such that R(Ψ, P,Q), and write P
.
≈

smp
Q

for P
.
≈

smp1

Q.

The one point which may not be immediately obvious
is Clause 1, weak static implication, where the conjunct
R(Ψ, P,Q′) may be surprising. It states that Q must evolve
to a Q′ that is statically implied by P , and also bisimilar
to P . This last requirement may seem unnecessarily strong,
but in fact without it the resulting simple weak bisimulation
equivalence would not be preserved by the parallel operator.
To prove this, let

.
≈
′

be defined as simple weak bisimulation
above but without the conjunct R(Ψ, P,Q′) in Clause 1. Let



there be an assertion Ψ and condition ϕ such that Ψ ` ϕ and
1 6` ϕ, and let L,M,N be distinct terms. Here and in the
following we elide unimportant prefix objects. Consider the
following agents (the diagrams illustrate agents informally):

P = (|Ψ|) | (τ.M.0 + τ.N.0)
Q = τ.((|Ψ|)|M.0) + τ.((|Ψ|)|N.0)
R = if ϕ then L.0

The transitions from P and Q are identical, only their frames
differ in that F(P ) = Ψ and F(Q) = 1. With our original
definition P 6

.
≈

smp
Q, since there is no appropriate Q′ for

Clause 1. In contrast we have P
.
≈
′
Q since Q τ−→ Q′

implies F(Q′) = F(P ). But to simulate P |R L−→ P |0
from Q|R the only possibilities are Q|R L==⇒ (|Ψ|)|M.0|0
and Q|R L==⇒ (|Ψ|)|N.0|0. Neither of these can continue
to simulate P |0 which can perform both actions M and N .
Therefore P |R 6

.
≈
′
Q|R.

Simple weak bisimulation is the natural weak counterpart
of Definition 4. For all psi-calculi that satisfy the weakening
requisite it is sufficient. As we demonstrate in the following
section, without weakening the simple weak bisimulation is
in general not preserved by parallel composition and also not
transitive; therefore a more elaborate definition is required
in these cases.

IV. PSI-CALCULI WITHOUT WEAKENING

We now generalise to psi-calculi without the weakening
requisite. It turns out that the definition of weak labelled
bisimulation needs to be adjusted in Clauses 1 and 4, where
the interplay of assertions and transitions is quite subtle.
We proceed to give the full definition of weak labelled
bisimulation and a proof that it coincides with

.
≈

smp
for psi-

calculi with weakening, followed by a series of examples
motivating the need for the added complexities.

Definition 7 (Weak bisimulation). A weak bisimulation R
is a ternary relation between assertions and pairs of agents
such that R(Ψ, P,Q) implies all of

1) Weak static implication:

∀Ψ′∃Q′′, Q′.
Ψ B Q ==⇒ Q′′ ∧ P ≤Ψ Q′′ ∧
Ψ⊗Ψ′ B Q′′ ==⇒ Q′ ∧ R(Ψ⊗Ψ′, P,Q′)

2) Symmetry: R(Ψ, Q, P )
3) Extension of arbitrary assertion:
∀Ψ′. R(Ψ⊗Ψ′, P,Q)

4) Weak simulation: for all α, P ′ such that bn(α)#Ψ, Q
and Ψ B P

α−→ P ′ it holds

if α = τ : ∃Q′. Ψ B Q ==⇒ Q′ ∧ R(Ψ, P ′, Q′)
if α 6= τ : ∀Ψ′∃Q′′, Q′′′.

Ψ B Q ==⇒ Q′′′ ∧ P ≤Ψ Q′′′ ∧
Ψ B Q′′′

α−→ Q′′ ∧
∃Q′. Ψ⊗Ψ′ B Q′′ ==⇒ Q′ ∧ R(Ψ⊗Ψ′, P ′, Q′)

We define P
.
≈Ψ Q to mean that there exists a weak

bisimulation R such that R(Ψ, P,Q) and write P
.
≈ Q

for P
.
≈1 Q.

Theorem 8. For psi-calculi that satisfy weakening,
.
≈

smp
and

.
≈ coincide.

The proof has been verified in Isabelle. Proof sketch for
Clause 4: In one direction, every weak bisimulation with
weakening is also a simple weak bisimulation (just take
Ψ′ = 1). For the other direction we must show that in psi-
calculi that satisfy weakening, every simple weak bisimula-
tion is a weak bisimulation. We explain how the additional
requirements of clause 4 in weak bisimulation are satisfied.
First, use Clause 1 to find Q† such that Ψ B Q ==⇒ Q†

and P ≤Ψ Q† and R(Ψ, P,Q†). Using the latter with
Clause 4 we get that Ψ B Q†

α==⇒ Q′ with R(Ψ, P ′, Q′),
and since Ψ B Q ==⇒ Q† we get a corresponding
Ψ B Q

α==⇒ Q′, where the first part of the weak transition
passes through Q†. Now use the lemma (which requires
weakening) P ≤Ψ Q and Ψ B Q

α−→ Q′ ⇒ P ≤Ψ Q′.
This gives the conjunct P ≤Ψ Q′′′ in Clause 4. Next use
the lemma Ψ B P

α−→ P ′ ⇒ Ψ⊗Ψ′ B P
α−→ P ′

(which also requires weakening). This means that the part
“Ψ⊗Ψ′ BQ′′ . . .” follows from the simpler Clause 4 (which
has the same without “⊗Ψ′ ”). Finally the last conjunct
R(Ψ⊗Ψ′, P ′, Q′) follows from R(Ψ, P ′, Q′) of the simpler
Clause 4, and Clause 3.

We now proceed to motivate the added complexity of
Clause 4.

Example: the use of P ≤Ψ Q′′′.: We shall demonstrate
that with a simplification omitting P ≤Ψ Q′′′ in Clause 4,
i.e., if we do not take into account the conditions that hold
at the point of executing the visible part of a simulation,
then equivalence is not in general preserved by parallel. Let.
≈
′

be defined with this simplification. Choose an instance
with an assertion Ψ and condition ϕ such that Ψ 6` ϕ and
1 ` ϕ, i.e., Ψ makes ϕ false. Consider the agents

P = τ.((|Ψ|) |M.0) +M.(|Ψ|)
Q = τ.((|Ψ|) |M.0)
R = if ϕ then M.N.0



Here P
.
≈
′
Q. To see this, consider the only transition that

differs between the agents, namely P
M−→ (|Ψ|). This can

be simulated by Q
τ−→ (|Ψ|) |M.0 = Q′′′ and Q′′′

M−→
(|Ψ|)|0. But in composition with R, we have through the
second branch of P that P |R τ−→ (|Ψ|)|N.0. This cannot
be weakly simulated by Q|R since Q|R τ−→ (|Ψ|) |M.0 |R
which has no N transition. Therefore P |R 6

.
≈
′
Q|R and

.
≈
′

is not preserved by parallel.
Example: the quantification ∀Ψ′.: Next we motivate

the quantification of Ψ′ in the subclause α 6= τ of weak
simulation, showing that without it, again equivalence would
not be preserved by parallel. Let

.
≈
′

be defined with this
simplification. Let Ψ and ϕ be such that 1 ` ϕ and Ψ 6` ϕ
and let

P = M. if ϕ then τ.P ′

Q = P + if ϕ then M.P ′

R = M.(|Ψ|)

Here P
.
≈
′
Q. Clearly we have Q|R τ−→ P ′|(|Ψ|)

through the second branch of Q. This cannot be weakly
simulated by P |R. Here the only transition is P |R τ−→
if ϕ then τ.P ′ | (|Ψ|) which has no further transition. There-
fore P |R 6

.
≈
′
Q|R and

.
≈
′

is not preserved by parallel.
Example: quantifier order of Ψ′ and Q′.: Next we

motivate the order of the quantifiers, showing that if we
commute the quantifiers ∀Ψ′ and ∃Q′ the resulting “equiv-
alence” would not be transitive. Let

.
≈
′

be defined with
these quantifiers commuted. Let all Qi for i = 1, 2, 3
be distinct but weakly equivalent, and let ϕ,¬ϕ be two
conditions that partition the assertions in two disjoint sets
{Ψ. Ψ ` ϕ ∧ Ψ 6` ¬ϕ} and {Ψ. Ψ 6` ϕ ∧ Ψ ` ¬ϕ}. Let >
be a condition that is entailed by all assertions, and let

U = case ϕ : τ.Q1 [] ¬ϕ : τ.Q2

V = case ϕ : τ.Q1 [] ¬ϕ : τ.Q2 [] > : τ.Q3

Here U
.
≈ V . The rightmost branch in Ψ B V

τ−→ Q3

is simulated by one of the two branches in U (which one

depends on Ψ). Let

P = M.Q1 +M.U
Q = M.U
R = M.V

Our point is that although P
.
≈ R

.
≈ Q we have P

.
≈
′
R and

R
.
≈
′
Q, but not P

.
≈
′
Q. The crucial difference between the

equivalences is explained as follows. P
.
≈ Q holds because

the only nontrivial simulation is for Q to simulate the first
branch of P . This is done by first doing M leading to U ,
and then for all Ψ′ continuing to either Q1 or Q2, depending
on whether Ψ′ ` ϕ or not. Here the quantification order
is important. If the final bisimulation clause would read
∃Q′∀Ψ′ . . . then Q cannot simulate the first branch of P
and therefore P 6

.
≈
′
Q. Note that P

.
≈
′
R since the only

nontrivial case is again for R to simulate the first branch of
P . This can be done through the third branch leading to Q3.
This holds for any Ψ′.

Example: quantifier order of Ψ′ and Q′′.: In Clause
4, the quantifier order is ∀Ψ′∃Q′′. Let

.
≈
′

be defined with
the alternative order ∃Q′′∀Ψ′. The difference is highlighted
by the following example. Let ϕ and ¬ϕ be two conditions
such that for any assertion exactly one of them is entailed,
as in the previous example. Let

P = M.Q′ +Q
Q = M.if ϕ then τ.Q′

+M.if ¬ϕ then τ.Q′

Here P
.
≈ Q and P 6

.
≈
′
Q. To see this consider how Q can

simulate P M−→ Q′. Using
.
≈, for all Ψ′ we must find a Q′′

such that Q M−→ Q′′ and Q′′ ==⇒ Q′. This holds, since
the choice of Q′′ may depend on Ψ′. Using

.
≈
′

we must find
one Q′′ suitable for all Ψ′, and there is none.

As it turns out
.
≈
′

is a viable definition, in the sense that it
is transitive and preserves parallel. But from an observational
point of view it is hard to argue that P and Q should
be different — in essence that would give the observer
the power to observe that a conditional branch has been



passed. The difference between
.
≈ and

.
≈
′

is reminiscent of
the difference between late and early equivalence, and as
we shall see in Section VI the weak barbed bisimulation
corresponds to

.
≈ and not to

.
≈
′
.

Example: quantifiers in Clause 1.: Keeping the simpler
Clause 1 from Definition 6 will also yield an equivalence

.
≈
′

that preserves parallel. A distinguishing example is similar
to the one above. Again, let ϕ and ¬ϕ be two conditions
such that for any assertion exactly one of them is entailed.
Let Ψ be an assertion such that 1 ≤ Ψ and Ψ 6≤ 1 and
Ψ⊗Ψ ' 1.

P = (|Ψ|) | (τ . if ϕ then τ.Q′ + τ . if ¬ϕ then τ.Q′)
Q = τ . ((|Ψ|) | if ϕ then τ.Q′)

+ τ . ((|Ψ|) | if ¬ϕ then τ.Q′)

Here we assume that Q′ is weakly bisimilar to (|Ψ|) | Q.
Then P

.
≈ Q. The critical argument is that in Clause 1,

depending on whether Ψ′⊗Ψ ` ϕ or not, Q can evolve to
either (|Ψ|) | if ϕ then τ.Q′ or (|Ψ|) | if ¬ϕ then τ.Q′, in
either case reaching an agent with a frame Ψ. It can then
continue to (|Ψ|) | Q′

.
≈ (|Ψ⊗Ψ|) | Q

.
≈ Q. In contrast

P 6
.
≈
′
Q, since Q cannot evolve to an agent that both has

Ψ as frame and is bisimilar to P . Again, it is hard to argue
that they should be different from an observational point of
view, and they are indeed weakly barbed equivalent.

V. ALGEBRAIC PROPERTIES

In this section we establish results about weak bisimula-
tion equivalence and the related congruence. First, note that
weak bisimulation is not preserved by the case construct.
The reasoning is analogous to why weak bisimulation is
not preserved by the operator + in CCS or the pi-calculus:
τ .0

.
≈ 0 but a .0 + τ .0 6

.
≈ a .0 + 0. If the left-hand

process does its τ action, the right-hand can only simulate
by standing still. In the next step, the right-hand can do the
action a which the left-hand can no longer simulate. This
problem is solved in a standard way: in the simulation clause
of bisimulation where α = τ , Q must simulate the τ action
made by P with a τ chain containing at least one τ action.

Weak bisimulation is also not preserved by input prefixes,
again for the same reason as in the pi-calculus. Closing
the relation under substitution in the same way as is done
for strong bisimulation leads to the definition of weak
congruence, denoted ≈.

Definition 9 (Weak congruence). P and Q are weakly τ -
bisimilar, written Ψ B P

.
≈
tau

Q, if P
.
≈Ψ Q and they also

satisfy weak congruence simulation:
for all P ′ such that Ψ B P

τ−→ P ′ it holds:

∃Q′. Ψ B Q
τ==⇒ Q′ ∧ P ′

.
≈Ψ Q′

and similarly with the roles of P and Q exchanged. We
define P ≈ Q to mean that for all Ψ, and for all x̃, M̃ of
equal length it holds that Ψ B P [x̃ := M̃ ]

.
≈
tau

Q[x̃ := M̃ ].

An expected result is:

Theorem 10. If P ∼ Q then P ≈ Q.

With this and the results in [4] it is straightforward to
infer:

Theorem 11 (Structural laws).
P ≈ P | 0

P | (Q |R) ≈ (P |Q) |R
P |Q ≈ Q | P
(νa)0 ≈ 0

P | (νa)Q ≈ (νa)(P |Q) if a#P
M N.(νa)P ≈ (νa)M N.P if a#M,N

M(λx̃)N.(νa)P ≈ (νa)M(λx̃)(N).P if a#x̃,M,N

case ϕ̃ : (̃νa)P ≈ (νa)case ϕ̃ : P̃ if a#ϕ̃
(νa)(νb)P ≈ (νb)(νa)P

!P ≈ P | !P
As noted, weak bisimilarity preserves all operators except

case and input prefix:

Theorem 12. For all Ψ such that a, ã#Ψ:
1) P

.
≈Ψ Q =⇒ P |R

.
≈Ψ Q |R.

2) P
.
≈Ψ Q =⇒ (νa)P

.
≈Ψ (νa)Q.

3) P
.
≈Ψ Q =⇒ !P

.
≈Ψ !Q.

4) P
.
≈Ψ Q =⇒M N.P

.
≈Ψ M N.Q.

5) (∀L̃. P [ã := L̃]
.
≈Ψ Q[ã := L̃]) =⇒

M(λã)N.P
.
≈Ψ M(λã)N.Q.

Weak congruence is aptly named:

Theorem 13. Weak congruence ≈ is preserved by all
operators.

We have also proved the usual τ laws:

Theorem 14.
1) P

.
≈ τ . P in psi-calculi with weakening.

2) P + τ . P ≈ τ . P .
3) α . τ . P ≈ α . P in psi-calculi with weakening.
4) α . P + α . (τ . P +Q) ≈ α . (τ . P +Q).

As noted in the beginning of Section III, Theorem 14(1)
is not valid in general for psi-calculi that do not satisfy
weakening. The same holds for Theorem 14(3), for a similar
reason. In contrast, the remaining τ laws (2 and 4) are valid
also in calculi without weakening.

The results in this section have been proved using the
interactive theorem prover Isabelle [3] with its nominal
datatype package [22].



VI. BARBED EQUIVALENCE

We here introduce a straightforward notion of barbed
equivalence, and demonstrate that it coincides with weak
labelled bisimilarity. The barbed equivalence is defined in a
traditional manner [18], [21] and is more intuitively obvious
than the technically intricate Definition 7. At the same time,
the barbed equivalence definition is not very practical for
proofs since it embodies an explicit universal quantification
over contexts. The result that the equivalences coincide
means that we bestow the intuitively correct notion with
the practical proof method of labelled bisimulations.

Barbed equivalence is derived from a few basic principles
based on an informal notion of an observer. The first is to
identify what are the barbs, or immediate observations, of
an agent. In this paper the barbs will simply be the output
actions: an agent has the barb K (νã)N precisely if it has
a transition with that label. The second is to identify what
it means for an agent to reduce, or evolve, to another agent.
We choose the transitions τ−→ to represent this. In other
words, for the purpose of barbed equivalence we use the
same semantics as in Table I. Finally we identify what kind
of contexts an observer may use. We here follow the work
on barbed equivalence in the applied pi-calculus [1] and
consider the static contexts, aka evaluation contexts, built
from parallel composition and restriction. This motivates the
following definitions:

Definition 15 (Barbs and reductions).

1) P has the barb K (νã)N , written P ↓K (νea)N , if

∃P ′. 1 B P
K (νea)N−−−−−→ P ′. Here names in ã bind

occurrences in N , and alpha equivalent barbs are
identified.

2) P reduces to P ′, written P −→ P ′, if P τ−→ P ′,
and P ==⇒ P ′ means 1 B P ==⇒ P ′ (so ==⇒ is
the reflexive transitive closure of −→ ).

3) P has the weak barb K (νã)N , written P ⇓K (νea)N ,

if ∃P ′. P ==⇒ P ′ and P ′ ↓K (νea)N .

Definition 16 (Weak barbed equivalence). Weak barbed
equivalence, written

.
≈

barb
, is the largest equivalence relation

on agents satisfying:

1) Barb similarity: P ↓K (νea)N ⇒ Q ⇓K (νea)N

2) Reduction simulation:
P −→ P ′ ⇒ ∃Q′. Q ==⇒ Q′ and P ′

.
≈

barb
Q′.

3) Closed under static contexts:
∀R, ã. (νã)(P | R)

.
≈

barb
(νã)(Q | R).

The main theorem of this section is :

Theorem 17. P
.
≈

barb
Q if and only if P

.
≈ Q.

Proof sketch: The (⇐)-direction is immediate. Barb simi-
larity and reduction simulation follow directly from Clause 4
in the definition of weak bisimulation, and closure under
static contexts is proved using Theorem 12(1) and (2).
The (⇒)-direction is more involved. The idea is to show.
≈

barb
to be a weak bisimulation by constructing contexts

which expose transitions. The proof requires a minimum
of expressiveness for the psi-calculus. It uses a set of
channels written Ma that do not occur in any process under
consideration. In other words, Ψ ` Ma

.↔ Ma, and for all
other terms N we have that Ψ 0 Ma

.↔ N . The proof also
uses conditions ϕP for agents P with the property F ` ϕP
if and only if F(P ) ≤ F , for any frame F . In other words,
ϕP is a condition that can be used to test if the environment
is exactly the frame of P . If the terms Ma and conditions
ϕP are not available in a psi-calculus, then they must be
added for the proof of the theorem to hold. The details are
found in [16].

We here comment briefly on alternatives for the definition
of weak barbed equivalence. As far as we know, previous
barbed equivalences do not include the object of an action in
the barb. In contrast, we include the whole label including
the object. The necessity for this is illustrated by a psi-
calculus where there are no assertions except 1 and no
conditions, and where both k and f(k) are terms but not
channels, and M is a channel. Consider:

R = (νk)M f(k) + (νk)Mk
S = (νk)M f(k)

R and S are not bisimilar since S cannot simulate
R

M (νk)k−−−−−→ 0. But if objects are not included in the barbs
they are barbed bisimilar: there is no context C[·] such that
C[R] and C[S] have different barbs. The only thing a context
could do is interact with R or S by performing an input of
kind M(λx̃)N.T . The only input pattern that matches (νk)k
is (λx)x and this also matches (νk)f(k). Observe that the
pattern (λε)k does not match (νk)k because of the side
condition ã#Q in the COM rule.

An alternative to including objects in the barbs could
be to require a condition name(x) that is entailed only
if x is a name. In that case a parallel composition with
M(x) . if name(x) then . . . distinguishes between P and
Q.

Note that input actions are not needed as barbs. Including
such barbs would not change the proof of the theorem. We
conjecture that the output subjects can be excluded in barbs,
but removing them complicates the proof.

A consequence of Definition 16 is that the closure under
static contexts recurs: after a reduction the agents are re-
quired to be barbed bisimilar and again satisfy Clause 3.
In this we have followed [1]. An alternative is to close



under contexts at top level, i.e., Clause 3 is omitted from
the recursive definition, and barbed congruence is defined
as barbed equivalence in all contexts. This is the approach
in the original work on barbs [18], [21]. The proofs become
quite involved and use contexts with infinite sums. This
technique is not available in psi-calculi since we require all
terms to have finite support.

Finally, an alternative is to close under all contexts (and
not merely static contexts). Since input contexts can be used
to effect a substitution on any free name, this is akin to a
recurring closure under arbitrary substitutions, and would
correspond to a smaller equivalence, probably similar to the
hyperequivalence of [19]. Consider an example from the
polyadic pi-calculus, which as explained in [4] is a psi-
calculus with 1 as the only assertion. We elide unimportant
objects.

R = (νxy)a〈x, y〉 . (x | y)
S = (νxy)a〈x, y〉 . (x . y + y . x)

R and S are weakly bisimilar. If arbitrary substitutions
recur in a barbed equivalence R and S will not be barbed
equivalent. To see this consider R | a(xy) −→ x | y
simulated by S | a(xy) −→ x . y + y . x. Closure under
all contexts means that ay | a(x) . (x | y) should be barbed
bisimilar to ay | a(x) . (x . y + y . x), but the former can
reduce twice to reach an inert state without barbs, whereas
the latter after a reduction has a barb y.

VII. CONCLUSION

We have presented two definitions of weak labelled
bisimulation for psi-calculi: one is simple and traditional
and the other is more involved. They coincide for calculi
where the weakening assumption holds, and therefore the
simpler definition is preferable in those cases. In other
calculi they can be different, and the more complicated
definition turns out to be necessary. Algebraic properties
including compositionality have been established, and the
proofs are mechanized in the interactive theorem prover
Isabelle. They are freely available for anyone who wants
to extend our work, for example by implementing specific
instances of the framework.

To strengthen the motivations of the definitions we have
established the connection between weak labelled bisimula-
tion and weak barbed bisimulation. The latter gives a more
intuitive understanding of the equivalence, since it is based
on observations (barbs) and closure of contexts. The result
that the equivalences coincide constitutes an independent
confirmation of weak labelled bisimulation.

In earlier work we presented a fully abstract symbolic
version of strong bisimulation for psi-calculi with weakening
[17]. In order to be practically useful this result should be
extended to weak bisimulation. A more ambitious project is
to extend proof mechanisation in Isabelle to include barbed
equivalence.

We intend to build tools for bisimulation checking in
instances of psi-calculi. For this, an algorithm for deciding
weak symbolic bisimulation needs to be developed and
implemented; an attractive approach would be to integrate
it as an oracle in Isabelle.
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