
ARPD: Asynchronous random key predistribution in
the LEAP framework for Wireless Sensor Networks

Andreas Achtzehn, Christian Rohner and Ioana Rodhe
Department of Information Technology

Uppsala University,
Box 337, SE-751 05 Uppsala

Email: andreas.achtzehn@rwth-aachen.de
{christian.rohner,ioana.ungurean}@it.uu.se

Abstract—In the LEAP framework for wireless sensor net-
works a set of keys is used to secure communication. LEAP
distinguishes between unicast (pairwise) communication,group
(cluster) communication and global (broadcast) communication.
The keys used in pairwise communication are derived from an
initial key KI that nodes are equipped with prior to deployment
and that is deleted after link setup. Further keys are distributed
encrypted with these pairwise keys. If the initial key is ever
disclosed, the whole network is compromised.
To lower the threat of KI disclosure, we present a novelKI -less
scheme for key predistribution. Our scheme is based on random
key predistribution, and proves to perform better in medium
sized networks than previous proposals. It is resilient against node
capture attacks and allows node to node authentication. Attacks
against overlying protocols in the network are more difficult with
this scheme.
We have conducted computations to show the feasibility of our
scheme for networks up to a size of 1000 nodes. By introducing
a key reuse system we are able to increase the probability of
a successful link setup. We have included a security analysis
that discusses our scheme’s resistance against commonly known
attacks.

Index Terms—Wireless sensor networks, Network-level secu-
rity and protection

I. I NTRODUCTION

Protocols designed for sensor networks have to work
securely in a hostile environment like a battle field. Encrypted
communication is therefore necessary. Sensors nodes, though,
are usually low power devices with limited memory capacity
and low computation power. Processors used in sensor nodes
fulfil the requirements for public key encryption [1], but
energy consumption due to extensive calculations significantly
decreases a node’s lifetime [2]. Therefore, symmetric key
encryption and authentication is often applied in wireless
sensor networks.
The LEAP framework [3] distinguishes between
pairwise communication, cluster communication, group
communication, and communication between each node and
the base station. Symmetric keys for each message class are
derived with the help of a keyKI that is deleted after initial
deployment.
LEAP is secure if an adversary cannot deriveKI . If the actual
time a node needs to establish pairwise keys after deployment
in the hostile environment is smaller than the time an attacker

needs to capture a node then a LEAP network is secure.
In the life cycle of a WSN it becomes necessary to add new
nodes to the network. Nodes cease to operate due to empty
batteries, electrial or mechanical failure and need replacement
[4].
In LEAP, KI is present in the hostile environment every time
new nodes are added. This increases the threat of an attacker
to retrieveKI .
The impact of such disclosure is significant. WithKI in
his possession, an attacker can derive all pairwise keys and
decrypt all unicast communication in the network. This is not
limited to communication taking place afterKI is captured.
All encrypted communication can be decrypted retroactively.
Other keys can be derived under certain circumstances.
We have derived from our observation that protection ofKI

is essential in the LEAP framework. We have identified node
additions as a critical phase in a WSN’s life cycle. Hence,
we focus on developing a replacement for the keying scheme
LEAP uses in the node addition phase.
We have studied the random pairwise keys scheme (RPK)
proposed by Chan et al. [5] as a candidate for replacing
the basic LEAP algorithm. The scheme perfectly preserves
the secrecy of the network in case of node capture as well
as allowing node to node authentication. But, since node
relations are predetermined,RPK limits the network size and
the number of node additions. We have reviewed Chan et
al.’s scheme and developed it into a new scheme.

Contribution . We introduce an asynchronous random
key predistribution scheme calledARPD that can be used
in node addition phases instead of the basic LEAP keying
scheme. It needs no initial keyKI , therefore the network
remains secure even if an attacker is able to capture a
node. Like RPK, it providesperfect resilience against node
capture, limiting network communication disclosure solely to
communication including the captured node.
We show that ARPD does not limit the number of node
addition phases and allows a controller to dynamically change
the network’s size.

Organization. The rest of this paper is organized as
follows. Section II covers the basic LEAP algorithm as well

as an introduction to the random keying scheme by Chan et
al. In section III we present our new approach of establishing
pairwise shared keys calledasynchronous random pairwise
key distribution(ARPD). Section IV contains a discussion on
the performance issues that arise in our protocol. A security
model to evaluate robustness to various attacks against our
protocol can be found in section V. We complete this paper
in Section VI with conclusions.

II. RELATED WORK

In this section we will briefly study pairwise key estab-
lishment in the LEAP protocol. Pairwise key establishment is
essential since all other keys are transmitted over the medium
through pairwise communication.
To compare keying schemes more easily we will define four
distinct phases in the life cycle of a wireless sensor network.
They are described assettling phase, pairwise key estab-
lishment phase, cluster key establishment phase, andmission
phase.
Because ARPD is based on ideas in random pairwise keying,
we will continue in the later part of this section with a study
of the random pairwise scheme of Chan et al.

A. Pairwise key establishment in LEAP

In sensor networks, it is unknown prior to deployment which
two nodes will be able to communicate directly with each
other. LEAP evades this obstacle by applying an algorithm
for pairwise key establishment that makes it possible to build
a secure link between any two nodes in the network.
A commonly known secret, the initial keyKI , is necessary
to exchange key credentials. The basic algorithm works as
follows:

1) Predistribution. The controller generates the initial key
KI and stores it in every node. Each nodeu generates
its master keyKu using KI , so thatKu = fKI

(u). f

is a secure pseudo-random function [6].
2) Settling. All nodes are spread randomly in the deploy-

ment area. Each node waits for a predefined time to
assure that all nodes are in their final position. We refer
to this as thesettling phase.

3) Neighbour Discovery.The pairwise key establishment
phasebegins with a discovery message sent out by each
nodeu to reveal all nodes in its vicinity. Nodes reply
to this message with an authenticated acknowledgement
message. Verification is possible, since at this stage
node u still holds KI and can therefore generateKv

for each replying nodev. We symbolize concatenation
of valuesa and b asa | b. Nodev uses a secure keyed
hash function [7]MAC(K, m) where K is the key
andm is the message to authenticate.

u −→ ∗ : u

v −→ u : v, MAC(Kv, u | v).

4) Pairwise Key Derivation. Node u and node v

generate their mutual pairwise keyKuv without further

communication.

Kuv = fKv
(u).

5) Initial Key Deletion. After successful establishment of
secure connections with the neighbouring nodes, nodeu

deletes the initial keyKI from its memory.

The pairwise key establishment sketched out above is
followed by further key establishments which are outside the
scope of this paper. Having concluded key establishment, the
network goes into themission phase.
Some nodes fail during the mission phase. To maintain
functionality, the operator has to replace those nodes.
In LEAP, new nodes execute the same algorithm the
original population of nodes in the network used. They also
carryKI in their memory prior to finishing key establishment.

1) LEAP security: A number of security threats can be
identified in this keying scheme. Most important, ifKI be-
comes known to an attacker at any time, he can derive any
pairwise key between two nodes. No backward confidentiality
is provided. So, encrypted traffic recorded earlier can be
decrypted including key establishment traffic.
Another threat can be identified in the ability of the attacker
to arbitrarily add nodes to the network if in possession ofKI ,
influencing information retrieval based on majority votes [8].
Also, any node can be impersonated, opening the network to
Sybil attacks [9].A promising approach to lower the risk of
KI disclosure is shortening the time the key is available in
the deployment area. In [10], Zhu et al. have addressed this
issue by shortening the time,KI is valid. They use a different
Kt

I for each intervalt in the lifetime of the sensor network.
The advantage is obvious, as that disclosure of an initial keys
valid for intervalt, doesn’t allow for arbitrary node additions
and supportweak backward and forward confidentiality. In
opposite to the basic scheme with only oneKI the extended
scheme needs additional measures to invalidate old initialkeys,
limits the number of node additions and increases memory
consumption. Therefore, we propose replacing the node ad-
dition algorithm by a variant, that works without having any
initial key stored in the nodes.

B. Random pairwise key predistribution

A possible substitute for the LEAP node addition algorithm
is the random pairwise key predistribution scheme (RPK) of
Chan, Perrig, and Song [5]. Each node is equipped with a set
of keys that correspond to a subset of nodes in the network. If
a node is later deployed in another nodes’ neighbourhood, they
can build a pairwise connection with the preloaded key. The
practicality of this approach can be shown by applying random
graph theory. Erdös and Rényi showed in the late 1950’s that
in order to have a connected graph for a number of nodes, each
two nodes have to be connected only with a certain probability.

RPK has some salient features. It allowsnode to node
authentication, so any node can ascertain the identity of the
nodes that it is communicating with. Another feature of RPK

is the perfect resilience against node capture. We define it as
a property of the protocol so that through the capture of any
node solely communication including the captured node is
revealed.
But, RPK bears two limitations that make it difficult to use
in the LEAP framework. We assume that the controller can’t
change keying material in nodes that are already deployed.
Also, we assume that the controller doesn’t know which
nodes have failed before he deploys new nodes. Therefore,
the network size is predetermined since keying material for
new nodes has to be stored beforehand. The number of node
additions is consequently limited, since, if all node identities
have been used, the network can’t be further “refreshed” with
new nodes.

III. ARPD FOR NODE ADDITIONS

In this section we will present our new key establishment
protocol called asynchronous random pairwise key
distribution(ARPD) that evades the limitation on network
addition and size in RPK while offering node to node
authentication and perfect resilience against node capture.
ARPD uses no common initial key, eliminating this single
point of exploitation in LEAP.
We have designed ARPD to be used to add new nodes to the
network. Some nodes might have ceased to work or there is a
need to increase network size or density. Keying for the initial
deployment of the network was conducted for example by
using the basic LEAP pairwise keying algorithm as presented
in section II-A.
Our scheme works as follows:

1) Predistribution. The controller generates an individual
generation keyKps

u = fKps(u) and stores it in nodeu.
Note that this key is a function of the node identifier
u and a master keyKps that is to be kept secret by
the controller. Every node, including those that have
been brought out in the initial deployment phase hold
an individual generation key.
In addition to the node’s individual generation key, the
controller storesm pairwise shared keys in the new
node. These keys are used for establishing secure links
with already deployed nodes. They are generated by
applying the node identifieru to a function of the indi-
vidual generation key of the appropriate node. Imagine
that we want nodeu to be able to establish a secure link
with the already deployed nodev. The controller stores
Kuv = fK

ps
v

(u) in nodeu’s key ring.
2) Settling.The new nodes are brought into the deployment

area. They are spread, for example, by aerial scattering.
Each node waits for a predefined time to assure that it
is in its final position.

3) Neighbour Discovery. A discovery message sent out
by each nodeu reveals all nodes in its vicinity. Nodev
generates an authenticated reply by sendingu’s andv’s
identifiers. Nodev can generateKuv usingKps

v

u −→ ∗ : u

v −→ u : v, MAC(Kuv, u | v).

4) Node Authentication. Node u can verify v’s message
if it was equipped withKuv in advance. As a reply,
it sends and authenticated message in which the node
identifiers are inverted. This enables nodev to verify if
u holdsKuv.

u −→ v : u, MAC(Kuv, v | u)

5) Key Deletion. Nodeu erases all pairwise keys it hasn’t
used during step (4).

The algorithm provided above yields secure links with
all neighbours nodeu shares a key with. To connect
the remaining immediate neighbours, other methods like
multipath reinforcement[11] have to be applied. Multipath
reinforcement needs at least two neighbours to already be
connected with the node.

IV. PERFORMANCE ANALYSIS

In a random scheme like ARPD, a node can only connect
with a certain probability to its neighbours. In this section we
study this probability and the limitations introduced through
random keying and present a key reuse scheme to extend the
usability of our scheme.

A. Section notation and assumptions

Throughout this section we use the following notation:
n number of nodes in the network
n′ average number of nodes within a node’s

communication range
m number of pairwise keys in a node’s key

ring
k expected number of mutual keys in the

neighbourhood
r key reuse factor
pmulti probability to be able to establish a suffi-

cient number of connections to do multi-
path reinforcement

p
overlap
2

(x) probability for a node to havex keys twice
in the neighbourhood if a reuse factor of
2 is applied

p
overlap
3

(x, y) probability for a node to havex keys twice
and y keys three times in the neighbour-
hood if a reuse factor of 3 is applied

We study the feasability of our scheme up to a network
size of 1000 nodes. As suggested in [12] where Hwang and
Kim compare keying schemes, we have examined sparse
distributions of down to 10 neighbour nodes.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 200 300 400 500 600 700 800 900 1000

pr
ob

ab
ili

ty
 to

 s
ha

re
 a

t l
ea

st
 tw

o
ke

ys
 w

ith
 n

ei
gh

bo
ur

s

network size n, number of neighbours: 10

m: 64
m: 128
m: 256

Fig. 1. Probability to share enough keys with vicinity to perform multipath
reinforcement. Each node has ten neighbours, probability is sketched for key
rings of 64,128, and 256 keys.

B. Probability of connectivity

Our scheme limits the network size by the size of the
memory in a single node. This is because a node has to store
a certain amount of keys in its key ring before deployment
to connect to at least two neighbours in its later deployment
environment.
In order to do multipath reinforcement, a node has to share
keys with at least two neighbours. Based on the number of
neighbours and the number of keys stored in the node, this
probability is

pmulti = 1 −
n + k(m − 1) − m + 1

n − k − m + 1

n′−1
∏

i=0

n − m − i

n − 1

Figure 1 showspmulti for selected key ring sizes. The proba-
bility to connect drops as expected if the size of the network
is increased.

1) Key reuse:To increase the maximum network size in
a memory contrained scenario and still keep the connection
probability, we propose to reuse generation keys and thereby
reduce the number of unique keys in the network. We will call
a group of nodes that share the same generation key agener-
ation cluster, consequently the generation key is furthermore
to be calledgeneration cluster key.
We defineKcs

u = fKps(u mod r) as thegeneration cluster
keywherer denotes how often a key is assigned to nodes in
the network (reuse factor).
Key reuse comes at the cost of exposing parts of the network
in case of node capture. If one of the nodes of a generation
cluster is compromised, the links of all nodes in that cluster
get compromised.
We have concentrated on reuse factorsr of 2 and 3 for the
network size assumed above.

reuse factor 2.The probability to havex keys twice in the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

pr
ob

ab
ili

ty
 o

f h
av

in
g

do
ub

le
 k

ey
s

network size n

direct neighbours: 10
direct neighbours: 20
direct neighbours: 30

(a) Probability to have at least one key twice in the physical
neighbourhood.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500 600 700 800 900 1000

ex
pe

ct
ed

 n
um

be
r

of
 le

ss
er

 k
ey

s
in

 n
ei

gh
bo

ur
ho

od

network size n, reuse factor 2

direct neighbours: 10
direct neighbours: 20
direct neighbours: 30

(b) Excepted number of key losses.

Fig. 2. Changes in neighbourhood in an environment with reuse factor 2.

physical network neighbourhood can be calculated to

p
overlap
2

(x) =

(

⌊n
2
⌋

x

)(

⌊n
2
⌋ − x

n′ − 2x

)

2
n′

−2x

(

n

n′

) if x > n′ − n
2

0 else

As one can see from Figure 2(a), the probability to have
more than one member of ageneration clusterin the physical
neighbourhood is especially high for smaller networks. The
number of expected keys in the physical neighbourhood of a
node is

k =

⌊n′

2
⌋

∑

x=0

p
overlay
2

(x) ∗ (n′ − x)

We show in Figure 2(b) that in a small size neighbourhood like
ten neighbours, the expected number of keys in a worst case
approximation is almost equal to the number of neighbours
minus one if the network consists of more than 48 nodes.
For this expected number of keys to be achieved in a denser

network with 20 nodes in the vicinity, the network size should
be greater than 192 nodes. In case of 30 neighbouring nodes,
the network should be larger than 436 nodes.
reuse factor 3.Similar to the calculation done above, we can
derive the probability to havex triples (three nodes sharing
the same key) andy doubles (two nodes sharing the same key)
as

p
overlap
3

(x, y) = 3n′−3x−y

(

⌊n
3
⌋

x

) (

⌊n
3
⌋ − x

y

) (

⌊n
3
⌋ − x − y

n′ − 3x − 2y

)

(

n

n′

)

if n′− n
3

< y−2x, 0 otherwise. The expected number of keys
k is

k =

⌊n′

3
⌋

∑

x=0

⌊n′
−3i

2
⌋

∑

y=0

p
overlap
3

(x, y)(n′ − 2x − y)

2) Choice of reuse factor:We have shown in section IV-B1
how we can improve the scheme by introducing a key reuse
scheme. We will now look closer at how many keys we have
to store in the newly deployed node in order to connect it to
the network with high probability and in how far the reuse
factor influences this choice.
The probability of having at least two keys, thus being able
to do multipath reinforcement, is

pmulti
r = 1 −

⌈n
r
⌉ + k(m − 1) − m + 1

⌈n
r
⌉ − k − m + 1

k−1
∏

i=0

⌈n
r
⌉ − m − i

⌈n
r
⌉ − 1

taking the reuse factor into account. Figure 3 shows the
ratio between the number of keys to be stored in a node to
guarantee a 99 percent connection probability and the size
of the network. It is particulary interesting to see that for
large network sizes this ratio is non-varying. Therefore, the
maximum size of a wireless sensor network that usesARPD
as a keying scheme grows linearly with the size of memory
provided by a single node.

V. SECURITY ANALYSIS

In this section we will analyze the most commonly used
attacks against WSNs and estimate their impact on a ARPD
employing LEAP network. We have developed a model to
outline the impact of each security threat, which we present
first.

A. A security threat model for WSNs

A first basic differentiation of attacks can be made looking
at the prerequisite of node capture. In our security model we
differ betweenoutside attacksand inside attacksto reflect the
aspect of node capture, one of the most common threats. Inside
attacks are considered to be more harmful to overall network
security, since at that time the attacker can already gain access
to some information stored in the network. Also, if the attacker
has gained access to the inside of the network, he can raise

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 100 200 300 400 500 600 700 800 900 1000

ra
tio

 b
et

w
ee

n
re

qu
ire

d
nu

m
be

r
of

 k
ey

s
in

 k
ey

 c
ha

in
 a

nd
 n

et
w

or
k

si
ze

n: network size (number of neighbours: 10, p req: 0.99)

reuse factor: 1
reuse factor: 2
reuse factor: 3

Fig. 3. Ratio between the number of keys to be stored in the keyring of a
new node and the size of the network if a connection probability of at least
99 percent is to be guaranteed.

message replay

message interception

man in the middle

outside attack

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

node impersonation

node addition

impersonation
controller

inside attack

Fig. 4. A security model for WSNs.

attacks against overlying protocols. With no further argument,
if the network controller is under the control of the attacker,
the network has to be considered completely insecure.
We incorporate this observation in a graphical representation
of our security model in Figure 4. The closer a successfully
carried out attack is to the center of the circle, the more
information in the network is revealed or can even be altered.
The graphical representation is not to be misinterpreted asthat
it is strictly considered more difficult to conduct an outside
attack in comparison to an inside attack.
Outside attacks can be further broken down into three levels
of severity. At the first level, message interception is set.
Message interception is seen as the interception of (eventually
encrypted) messages on the physical medium. Attacks on
this level might allow for pattern analysis and derivation of
information structure. Message replay requires the attacker to
simulate a sending node’s radio characteristics. An attacker
needs to intercept message traffic first in order to have it
replayed. Some protocols employ a way to ensure message
freshness to avoid message replay. Finally, man in the middle

attacks require the attacker to not only intercept and send
messages, but also to prevent nodes from receiving the original
message.
In inside attacks, our model focuses on attacks against commu-
nication in the network. Of course, if a node is compromised,
it can influence other nodes on higher layers of the application.
In order to infiltrate higher levels of the application running
on the network’s nodes, the attacker needs to be able to
either gain full control over a node or be able to add new
nodes to the network. As we have pointed in the introduction,
aggregation and agreement protocols still perform correctly in
presence of a limited number of malicious nodes. Still, these
protocols have to be adjusted to the security performance of
the underlying keying mechanism.

B. Outside attacks against ARPD

Outside attacks are based on analysis of traffic pattern,
message tampering or cryptoanalysis. Our scheme secures the
network at link layer level. In this section we therefore conduct
experiments on this level and evaluate their impact.
Message injection during node addition.An attacker can
send neighbour discovery messages to nodes since these
messages are not encrypted or authenticated. If sensors use
techniques to save energy by powering down components, the
advantage of these techniques can’t be used anymore. This
sleep-deprivation attackis studied in [13], [14], [15].
Some approaches can be made to lower the impact ofdiscov-
ery message injection. First, the number of acknowledgements
sent by each node within a certain threshold time can be
limited so that an attacker can’t make the nodes use process-
ing power extensively. Though this approach lowers energy
consumption, it opens the possibility of a denial of service
attack. An attacker can trick nodes into rejecting justifiednode
addition requests. The approach is still adequate, since we
consider an attacker to have full control over the broadcast
medium and therefore to be able to prevent communication
(including node join requests).
Our keying scheme is robust to forged acknowledgements. If
the attacker forges the reply of an already deployed node to
the new node, the new node will discard it due to the wrong
MAC.

C. Inside attacks against ARPD

Attacks to routing protocols. Inside attacks can be carried
out on multiple layers of the application. Attacks to the
routing of messages in a wireless sensor network have been
of particular interest to research. Two of these attacks, namely
sinkhole attacksandwormhole attacks, have been studied by
Karlof and Wagner [16].
Attacks on the routing layer of the network protocol are
difficult to prevent. Hu, Perrig and Johnson [17] present two
schemes for ad hoc networks to defend against wormhole at-
tacks. Neither of them is suitable for wireless sensor networks
because they either require additional hardware in form of GPS
receivers or tight time synchronisation.

If an attacker is able to capture a node preliminary to de-
ployment, he can use the key material to connect two distant
parts of the networks. Once this connection is established,
overlaying routing protocols will decide to use the captured
node as a preferred route.
ARPD makes this kind of attack more difficult for several
reasons. Every node deletes keying material that was not
used during pairwise key establishment phase. Therefore,
an attacker cannot use an already deployed node to build
sinkholes or wormholes. Keying material and node identity
are indivisible bound to each other. So, it is not possible for
the adversary to create new node entities for attacking routing
protocols.
Node impersonation.ARPD implements a proof of identity
by using keying material that is bound to the node’s identity.
This feature is a strong way to defend against various attacks.
Nodes added to the network can authenticate already deployed
nodes since only those nodes can generate the pairwise keys.
Nodes deployed in earlier stages can authenticate the new
nodes because of the bondage property. Node to node authen-
tication in accordance with the definition above is therefore
possible.
Once a misbehaving (because tampered with) node is revealed,
other nodes have to isolate it and render it useless to the
attacker. This can be achieved by keeping a list of misbehaving
nodes in each nodes memory. Additions to the list must be
authenticated, so to keep attackers from arbitrarly addingother
nodes to this list.

VI. CONCLUSIONS

We have presented ARPD, an asynchronous pairwise key
establishment scheme based on random keying. To proof its
functionality, we have applied it to node addition phases inthe
LEAP framework. ARPD decreased the overall threat time, the
time an attacker can potentially deriveKI , to a constant.
We conducted a number of calculations on the connection
probability in an ARPD environment. We showed that due
to the limitation in memory, it might become necessary to
employ key reuse. We have presented a simple method to
distribute keys among several nodes, so called generation
clusters, and make it easy to the newly deployed node to
identify cluster affiliation. Our calculations indicated that key
reuse can significantly improve memory consumption.
The security analysis introduced a security model to make the
impact of different varieties of attacks comparable. We split
up the analysis into an analysis of inside and outside attacks.
Our studies showed that the ARPD protocol is resilient against
any kind of outside attacks. The impact of key disclosure in
an inside attack is limited to keys that are used solely in
communication with the captured node. Therefore, the key
framework remained perfectly secure in node capture attack.

REFERENCES

[1] N. Gura, A. Patel, A. Wander, H. Eberle, and S. Shantz, “Comparing
elliptic curve cryptography and rsa on 8-bit cpus,”Lecture Notes in
Computer Science, 2004.

[2] D. W. Carman, P. S. Kruus, and B. J. Matt, “Constrains
and approaches for distributed sensor network security,”
NAI Labs, Tech. Rep., September 2000. [Online]. Avail-
able: http://download.nai.com/products/media/nai/zip/nailabs-report-00-
010-final.zip

[3] S. Zhu, S. Setia, and S. Jajodia, “Leap: efficient security mechanisms
for large-scale distributed sensor networks,” inCCS ’03: Proceedings of
the 10th ACM conference on Computer and communications security.
New York, NY, USA: ACM Press, 2003, pp. 62–72.

[4] R. Szewczyk, J. Polastre, A. M. Mainwaring, and D. E. Culler, “Lessons
from a sensor network expedition.” inEWSN, ser. Lecture Notes in
Computer Science, H. Karl, A. Willig, and A. Wolisz, Eds., vol. 2920.
Springer, 2004, pp. 307–322.

[5] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes
for sensor networks,” inSP ’03: Proceedings of the 2003 IEEE Sympo-
sium on Security and Privacy. Washington, DC, USA: IEEE Computer
Society, 2003, p. 197.

[6] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random
functions,” J. ACM, vol. 33, no. 4, pp. 792–807, 1986.

[7] H. Krawczyk, M. Bellare, and R. Canetti, “Hmac: Keyed-hashing for
message authentication,” , United States, 1997.

[8] L. Patrick and R. John, “A formally verified algorithm forinteractive
consistency under a hybrid fault model,” Tech. Rep., 1993.

[9] J. Douceur, “The sybil attack,” 2002. [Online]. Available:
citeseer.ist.psu.edu/douceur02sybil.html

[10] S. Zhu, S. Setia, and S. Jajodia, “Leap+: Efficient security mechanisms
for large-scale distributed sensor networks,”ACM Trans. Sen. Netw.,
vol. 2, no. 4, pp. 500–528, 2006.

[11] R. Anderson, C. Haowen, and A. Perrig, “Key infection:
Smart trust for smart dust,” 2001. [Online]. Available:
citeseer.ist.psu.edu/anderson01key.html

[12] J. Hwang and Y. Kim, “Revisiting random key pre-distribution schemes
for wireless sensor networks,” inSASN ’04: Proceedings of the 2nd
ACM workshop on Security of ad hoc and sensor networks. New York,
NY, USA: ACM Press, 2004, pp. 43–52.

[13] M. Pirretti, S. Zhu, N. Vijaykrishnan, P. McDaniel, M. Kandemir,
and R. Brooks, “The sleep deprivation attack in sensor networks:
Analysis and methods of defense,” inConference on Innovations
and Commercial Applications of Distributed Sensor Networks,
October 2005, p. to appear, best Paper Award. [Online]. Available:
http://www.gigascale.org/pubs/741.html

[14] F. Stajano and R. Anderson, “The resurrecting duckling: Security issues
for ad-hoc wireless networks,” 1999, pp. 172–194. [Online]. Available:
citeseer.ist.psu.edu/stajano99resurrecting.html

[15] J. Krishnaswami, “Denial-of-service attacks on battery-powered mobile
computers,” 2003.

[16] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks:
Attacks and countermeasures,” inFirst IEEE International Workshop on
Sensor Network Protocols and Applications, May 2003, pp. 113–127.
[Online]. Available: citeseer.ist.psu.edu/article/karlof02secure.html

[17] Y. Hu, A. Perrig, and D. Johnson, “Packet leashes: A defense
against wormhole attacks in wireless ad hoc networks,” Department
of Computer Science, Rice University, Tech. Rep., 2001. [Online].
Available: citeseer.ist.psu.edu/hu01packet.html

