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Abstract— We investigate application of agreement pro-
tocols tolerating malicious failures in sensor networks.
We identify several scenarios where agreement can be
used, and report on our experience with implementing
an agreement protocol.

I. INTRODUCTION
A. Agreement in Distributed Systems

Agreement protocols come into the scene when the
nodes in a distributed system need to reach agreement
on data in a decentralized manner. For example, nodes in
a replicated system may need to agree on the messages
or values they receive from some system components in
order to take identical steps in their program. Another
prominent agreement task is clock synchronization.

Agreement becomes non-trivial in presence of node
and communication faults, such as lost messages, node
crashes, or confusing information (e.g., a faulty node
may send different clock values to the protocol partici-
pants). Fault-tolerant and secure systems extensively use
agreement, MAFT [1] and Rampart [2] being among the
first such applications. Problem of reaching agreement
in presence of faults remains an active research area for
more than 25 years starting with the seminal paper [3].

Agreement protocols usually work according to the
following scheme. Each node receives an input value
(e.g., its own clock reading). Then the nodes exchange
their values, and the values they received from other
participants. In order to cope with failures, several rounds
of communication are necessary [4].

B. Contribution and Outline

The goal of this work is to investigate the applicability
of agreement protocols in sensor networks from the
practical point of view. To our knowledge, this is the first
attempt of this kind, although many secure protocols for
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sensor networks rely on agreement, see, e.g., [5], [6], [7].
The kind of used agreement is usually not specified, but
as a building block for secure sensor networks, we feel
that it should also be implemented securely. We further
discuss the uses of agreement protocols in Section II.

Our ultimate goal is to implement a secure and energy-
efficient agreement protocol for sensor networks. How-
ever, in order to get the feeling for this problem, we
decided to consider a “toy” application with a relatively
benign adversary, and to choose the appropriate agree-
ment protocol methodically, see Section III.

Finally, in Section IV, we report on our implemen-
tation and its resource consumption, and conclude in
Section V.

II. AGREEMENT IN SENSOR NETWORKS
A. Scenarios

In classical agreement protocols, all nodes need to
communicate with each other. Clearly, running a global
agreement protocol in a sensor network consisting of
hundreds of nodes is infeasible due to high communica-
tion costs.

However, we identified several scenarios where the
classical decentralized agreement may be useful. All
these scenarios assume that the agreement is localized,
i.e., only a small part of sensor nodes from a particular
region needs to reach agreement.

Aggregation: If decentralized, secure and fault-tolerant
aggregation of sensor readings is to be implemented,
there seems to be no alternative to the agreement pro-
tocols, as the sensors have to agree on the aggregation
outcome in presence of arbitrary, perhaps even malicious,
faults.

Group management: Leader election and group mem-
bership protocols from classical distributed systems
could also be used in sensor networks for secure and



fault-tolerant decentralized selection of cluster heads or
aggregators, or for exclusion of faulty nodes.

Coordinated action: Agreement on the event detection
is needed in case sensor nodes need to take a further
action based on the event detection. For example, after an
agreement on the target detection, the next collaborative
task is to localize the target [8]. Of course, this task
can also be solved in a centralized manner where the
sensors report target detection to the base station, and
the base station then disseminates the next task of target
localization. However, if the base station is far away
from the observed region, making a local fault-tolerant
decision on the presence of the target would be less
expensive than having each sensor to notify the base
station independently.

Agreement is especially useful if the further action is
to activate an actuator. Consider a field irrigation system
where each sensor node can turn on one irrigation unit.
Without agreement, a sensor node with a faulty humidity
sensor may perceive the ground to be too dry and start
its irrigation actuator. Using agreement, this situation can
be prevented.

B. The Centralized Alternative

Usually, localized decisions in sensor networks are
made in the centralized manner. The nodes report their
(possibly, preprocessed) measurements to an aggregator
node, e.g., a cluster head, which takes the decision
based on the received values, and disseminates it to
the nodes. The advantage of this architecture is the
low communication overhead O(n) for the group of n
sensors. Using agreement, at least O(n?) messages are
needed.

On the other hand, apart from the usual argument that
a centralized solution is susceptible to the failure of the
central component, decentralized protocols also signif-
icantly increase robustness of the decision making in
case of communication failures which are very common
in sensor networks. For example, in Fig. 1, a majority
voting should be performed based on local decisions of 4
sensor nodes. In case of the centralized solution, two link
failures preclude the decision, whereas an appropriate
agreement protocol still works.

C. Related Work

In [8] the authors investigate by analysis and simu-
lation the performance of interactive consistency algo-
rithms for target detection in terms of detection accuracy.
They use the algorithm by Lamport et al. [9] which

Fig. 1. In centralized agreement, two link failures preclude the
majority decision. In a decentralized protocol, the decision “yes” still
can be made.

assumes fully reliably communication, and do not con-
sider communication costs. Some of the used scenarios
are unrealistic in terms of resource consumption, e.g.,
48 sensor nodes reaching agreement in presence of 8
faulty nodes. Implementing such a scenario in a real
sensor network would be much too expensive in terms
of energy, as our experiment showed. Moreover, the
implementation would have to rely on the unrealistic
assumption of fully reliable communication. To our
knowledge, nobody considered implementing a fault-
tolerant agreement protocol in sensor networks.

III. SYSTEM SPECIFICATION

In this section, we describe our toy application, and
the choice of the appropriate agreement protocol.

A. Hitzefrei

The German term Hitzefrei (HF in the following)' is
used to describe the following situation: If in summer
the air temperature gets too high (around 30 degrees
Celsius), the schools remain closed, such that the school
children have a free day because of the heat.

In our scenario, the HF application monitors the air
temperature in offices in a large building using a sensor
network. There are several sensor nodes in each office.
If the temperature gets above a certain threshold (HF
threshold), the system uses agreement to decide that the
HF event occured, and notifies the employee, as well as
all doors in the building, that the employee may leave.

The application should meet two goals. Firstly, an
attacker (the employee) should not be able to fool the
system into deciding that the HF event happened in case
the air temperature is below the HF threshold. On the
other hand, if the HF event happens, the system should
not miss it.

We used the well known threat tree approach [10] to
identify how the system could fail to meet its goals. In
Figure 2, threat trees for these two goals are presented.

"“Hitze” means “heat”, “frei” means “free”.
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Fig. 2. Threat trees for the HF application. The goal is to recognize
the HF threshold correctly while being well protected from malicious
attacks.

To fake a HF event, the employee may attack any part
of the system. He can try to directly manipulate sensor
readings. One of the most likely attacks is heating the
node up using, e.g., a lighter. The attacker can also try
to exploit protocol failures, meaning logical mistakes in
the protocol. Malicious reprogramming implies that the
adversary gains full control over the node. The worst
case attack would be finding software bugs in the node’s
operating system, or in the program. This may allow the
adversary to take over all sensors in the system. The
second type of reprogramming attacks is known as node
capture, meaning gaining full control over a sensor node
by a physical attack.

Apart from being secure with respect to the attacking
employees, Hitzefrei should be fault-tolerant with respect
to HF events recognition. Failures which can happen to
the sensor nodes are plentiful. Wrong temperature can be
measured due to a failed sensor, node’s radio may fail,
such that the communication is impossible, or due to
some memory error the saved correct measurement, or,
indeed, node’s program, can be changed unpredictably.
Link failures can also happen in the office due to some
environmental changes or to obstacles, in case something
or somebody accidentally shields a node from the other
nodes.

B. System Requirements

According to the famous result [11], designing a
deterministic agreement protocol is impossible for asyn-
chronous communication channels. Thus, we use time-
outs as a a parameter of the system in order to decide
on the message processing times and on the message
arrivals. This allows us to use agreement protocols
designed for synchronous networks, where the upper
bounds on node speed and message arrival are known.

Agreement protocols use either “written messages”
or “oral messages” [9]. The former can be realized
by digital signatures’, and are too inefficient for the
computationally weak sensor nodes. The benefit of a
written message is that it can be verified by any node.

Using oral messages, any node can determine reliably
from which node the message came, but is unable
to prove the message origin to somebody else. Oral
messages can be realized using message authentication
codes, which are feasible for sensor nodes.

In sensor networks, link failures are reported to be
one of the most common failures, followed by malfunc-
tioning sensing units [13]. Therefore, we assume that the
communication links are unreliable, and the nodes can
measure wrong values due to failed temperature sensors.

C. The Adversary

As already mentioned in the introduction, we consider
a relatively benign adversary. In our building, each office
is occupied by a single employee. The employees are
interested in attacking the system, such that they can
get a free day, but they do not trust each other, so they
do not cooperate in the attack. We also assume that the
sensors are installed far apart from each other, such that
simultaneous physical manipulation (such as heating up)
of two or more sensors by a single attacker is impossible.

We also assume the sensor network to be robust
against malicious reprogramming. Defenses against soft-
ware bugs are presented, e.g., in [14], and countermea-
sures against node capture attacks are discussed in [15].

D. Interactive Consistency

We decided to implement an Interactive Consistency
(IC) algorithm in order to enable the sensor nodes to
reach agreement on the room temperature.

Consider a set of n nodes {p1,...,p,}, each having
an initial value x;. Some nodes may be faulty, meaning
that they do not follow their program correctly. Other-
wise, the nodes are called correct. To solve Interactive

Zfor another realization of written messages, see [12]



Consistency, the nodes should compute a vector V =
(y1,--.,yn) satisfying the following requirements:
o (Agreement) All correct nodes compute exactly the
same vector.
e (Validity) For any correct node p;, the ith vector
entry corresponds to its initial value, i.e., V[i] = x;.
For example, in case of sensor readings, all correct
sensor nodes will know the values read by all other
correct sensor nodes. As faulty sensor nodes can exhibit
arbitrary behavior (crash, measure an unrealistic value,
etc.), the correct nodes are guaranteed to agree at least
on some default value for these nodes.

E. Protocol Choice

Algorithms for Interactive Consistency are plentiful.
Their applicability depends on the assumptions concern-
ing the communication channels between the nodes, and
the nature of possible faults.

Unfortunately, reaching agreement even in case of
a single link failure is impossible [16]. However, if
one reasonably restricts the impact of link failures,
agreement becomes possible [17]. Therefore, we decided
to implement the IC protocol based on the agreement
protocol by Schmid et al. from [17], called OMH(m)
in the following (m is an internal parameter). OMH(m)
enables agreement on a single value. This protocol has
additional advantages: it is formally verified, and it
allows a trade-off between the number of nodes needed
for the agreement, and the nature and number of tolerated
failures.

OMH(m) is designed with respect to the following
node failures:

e Manifest failures result in nodes sending messages
which are detectably wrong, e.g., reporting temper-
ature -20 degrees Celsius in midsummer, or sending
a message in an unspecified format.

o Omission failures occur when the node fails to send
or to receive a message. In this case if an expected
message did not arrive, the receiver cannot distin-
guish its own omission failure from the sender’s
omission failure.

o Symmetric failures occur when a sender broadcasts
the same “bad” (but not detectably wrong) value
to several receivers. For example, if a temperature
sensor reports wrong a value which is 5 degrees
more than the temperature of the real environment,
this can be a symmetric failure (depending on the
application).

o Asymmetric failures occur if a node, instead of
broadcasting the same value to all receivers, sends

at least two different values to different receivers.
Also the following link failures are possible:

o Simple sending failures occur if a (possibly broad-
cast) message does not arrive at all receivers, or
arrives at some receivers in a detectably bad condi-
tion.

o Simple receiving failures occur if messages (pos-
sibly, from multiple senders) do not arrive at the
receiver, or arrive in a detectably bad condition.

Note that one cannot simply substitute sending and
receiving link failures with the node omission failures.
Whereas a failed node, according to definition in Sec-
tion III-D, is not required to reach the correct agreement,
a node which experiences link failures should be able to
do this.

The OMH(m) protocol runs in m + 1 rounds of com-
munication. Let f,, fs, fo, and f,, denote the number
of asymmetric, symmetric, omission, and manifest node
failures, respectively. Let f7 and f] denote the number
of simple sending and simple receiving link failures,
respectively, per node in each protocol round. Then
OMH(m) can withstand these failures using n nodes,
where

n>2f+ fl +2(fa+ fo) + fot+ fm +m €]

for any m > f, + f, + min{1, f7}.

The above flexible failure model enables system de-
signers to choose the parameters n and m according to
the expected failure modes.

1) Choice of the Protocol Parameters: Equation 1
enables system designers to trade-off the protection level
of their agreement protocol against available resources.
We decided to take m = 1, such that the protocol runs
for two rounds, to reduce communication overhead. As
we only had 7 sensor nodes, i.e., n = 7, we carefully
considered against which failures we can protect our
system.

We tolerate one sender and one receiver link failure
per node in each protocol round (ff = f/ = 1).

With m = 1 we cannot tolerate asymmetric or
omissive node failures due to the restriction m > f, +
fo + min{l, f}. However, this agrees well with our
benign adversary model. We note that asymmetric and
omission failures can still happen in reality due to node’s
unreliable hardware, and our implementation would not
be able to tolerate such failures.

We decided to tolerate one symmetric failure (f; = 1)
which accounts for one node heated up by an attacker,



or for the case where a sensor node gets heated up
incidentally, e. g., through direct sun light.

Besides, we also can tolerate one manifestly faulty
node, which accounts for a crashed node, or for a node
which goes out of synchronization with the other nodes,
or for a node which reports a detectably bad temperature
value due to the failed sensor.

In this case, according to equation 1, we need n > 6
nodes.

Of course, having more nodes would have made our
choice less restrictive, especially, would allow to tolerate
more link failures per node, and more manifestly faulty
nodes, which would significantly improve the system
robustness. However, we note that only increasing the
number of nodes would not help us to tolerate mali-
ciously reprogrammed nodes. To do this, we would have
to increase m, the number of communication rounds.

F. The Protocol

In the following, we describe the Interactive Consis-
tency protocol based on the protocol OMH(m) for the
case m = 1 which we implemented. For the full protocol
description, see [17].

round 1: In the first round, each node p; sends its input
x; to all other n — 1 nodes. It receives messages 71 (p;)
from all nodes p; # p;. In case no failures occured,
r1(pj) = ;. If no message, or a detectably bad message
was received, ri(pj) = L. Otherwise, r1(p;) can be any
admissible value. Thus, node p; receives an (n — 1)-
vector Vp,, of values in the first round.

round 2: In the second round, each node p; sends its
vector V), to all other n — 1 nodes. It receives messages
r2(pj) from all other nodes, where r2(p;) =V}, in case
no failures occured. As in the previous round, V), can
be L if no message or a detectably bad message arrived,
and otherwise, it can be any (n — 1)-vector of admissible
values, including L values.

After the second round, each node p; assembles n — 1
possible values for each node p; # p;: In the first
round it received 71(p;), and the other values can be
extracted from the vectors of values received in the
second round. Then for each p; # p;, p; discards all
L values, and computes the majority on the remaining
values (ties can be resolved in any deterministic way).
The computed value y; becomes the jth component of
the final Interactive Consistency vector: V'[j] = y;.

IV. IMPLEMENTING INTERACTIVE CONSISTENCY

We implemented the above IC protocol and exper-
imentally tested the robustness of the implementation
with respect to specified attacks and failures.

For our testbed we chose Scatterweb sensor boards
(ESBs) [18] that are equipped with a DS1629 IC tem-
perature sensor. The ESBs run on three alkaline batteries
(1,5V).

A. Message Authenticity and Freshness

As outlined in Section III-E, the origin of any message
should be reliably determined by the receiver, including
the situation where an entity replays a message. Thus,
apart from carrying authentication information, each
message also should be fresh (sent for the first time).

Since the radio channel is broadcast, an attacker can
easily collect packets and reinject them. In our example,
an attacker could collect packets during a legitimate HF
situation when temperature is above the HF threshold.
Later, the attacker reinjects those packets and fools the
sensors into a HF decision.

For authentication, we use message authentication
codes (MAC), which are a cryptographically secure
checksum. Each node shares a secret key with any other
node in the system, and authenticates all its messages
to each receiver by computing the MAC on the message
using this secret key. We assume that secret keys are
predistributed in the predeployment phase, such that any
node in an office knows the identities of all other nodes
in the office, along with the corresponding secret keys.
The keys are shared pairwise, i.e., each node has a
separate secret key with each of its n — 1 neighbors.

Our sensor nodes use counters to identify a particular
protocol run. If a node senses the temperature above
the HF threshold, it increases the protocol counter and
starts a new protocol run. This already provides a weak
freshness mechanism. However, if a counter overflow
occurs, message replays would become possible.

We chose the 16 bit counter with respect to the ESB
node characteristics. According to the described below
energy consumption of an IC run, even in case the ESBs
are permanently involved in IC runs with the counter
increasing by 1 every run, they would run for 54 hours
before the overflow occurs.

For the case of counter overflow, we implemented
a challenge-response protocol for setting up the new
counter. This measure resulted in appending a freshness
identifier, which is a 16 bit random number, to the
counter in order to distinguish between protocol runs
with the same counter.

B. Performance

We ran our tests using 7 sensor nodes. Our im-
plementation uses 53428 bytes ROM and 1702 bytes



RAM. The application was able to cope with several
link failures, temporal absence of nodes, and wrong
temperature values according to the fault model of our
protocol. For example, two absent (temporarily shielded)
nodes and one fake HF event can be tolerated.

The interactive consistency algorithm is still compara-
bly greedy on communication resources. In Scatterweb,
the packet header consists of 10 bytes. Each temperature
value is 2 bytes long, the same size are also the counter,
the freshness identifier, and the MAC. Thus, a step-one
packet has a size of 18 bytes, while a step two packet
has a size of 30 bytes for 7 nodes, as each node has to
resend the values received from other nodes.

A single protocol run takes 3 s on average. In each
round, each node has to compute 6 MACs on its mes-
sages to the other nodes, and to verify 6 MACs on
the messages received from the others. This work takes
approximately 240 ms. The most important factor in the
time complexity of our protocol is due to the timeout
values which determine the time during which the node
waits for messages. In each round, nodes try to send
their messages almost simultaneously, which leads to a
high number of collisions. Thus, in the first round the
timeout value had to be set to nearly 1 s, while in the
second round, this value had to be further increased due
to the increased message sizes.

V. CONCLUSIONS

We considered the applicability of the classical dis-
tributed agreement protocols in sensor networks. We
identified scenarios where these protocols may be useful,
and implemented an agreement protocol for one of these
scenarios.

Requiring 3 s for a single run of an agreement
protocol which tolerates such a benign adversary as
ours is too slow, and also too resource-consuming. This
performance problem can be partially contributed to the
contention-based MAC layer of the ESB sensor nodes,
because the protocol needs large timeouts. We think that
the most promising way to enhance the efficiency of
the agreement protocols is the cross-layer optimization,
which is an acknowledged paradigm for building energy-
efficient applications. Our ongoing work is to design
a fast and an energy-efficient agreement protocol for
sensor networks tolerating more powerful adversaries.
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