
Building Secure Communities in
Spontaneously Networked Environments

Christian Rohner
Uppsala University, Dept. of Information Technology, Box 337, 751 05 Uppsala, Sweden

Abstract – We believe that the criti-
cal aspect in providing security for per-
vasive environments is building security
and trust relations between devices with-
out requiring the users to be experts. In
this tech-note we present two complemen-
tary mechanisms to bootstrap security re-
lations between networked devices: the
ownership model and a security policy def-
inition language. The ownership model
assures security relations between devices
owned by the same user, and the secu-
rity policy language defines security re-
lations to other devices, assigns rights to
relations, and supports authentic key ex-
change.

1 Introduction

We observe the trend that more and more de-
vices get equipped with some computing power
and a communication interface. The communi-
cation interface is typically a short-range wire-
less technology that allows the devices to interact
whenever and wherever they meet, without rely-
ing on a central infrastructure. Such networked
devices often store personal and private informa-
tion, have limited resources, and operate in an
open and unknown environment. It is therefore
important to restrict access to device informa-
tion and resources. While the necessary security
mechanisms (i.e., access control and potentially
encryption) are well known, it is not clear how
to build security relations on which these mech-
anisms rely.

A security relation between two devices can
be a common shared cryptographic key or an
authentic copy of a public key. It allows the
two entities to exchange messages in an authentic
and/or confidential way. Security relations need
to be bootstrapped, that is, keys have to be gen-

erated, authenticated, and distributed. These
operations cannot be expected to be done by an
average user because he might not be aware of
the importance and subtleness of the different
steps.

In this paper we present an approach to boot-
strap security relations by forming federations of
devices owned by the same entity. Having a fed-
eration of own devices seems to be an intuitive
concept to the user and through redundancy of
relations simplifies recovery from exceptions like
loss of devices. A security policy definition lan-
guage is proposed to extend the security relations
to other devices and assigning rights to relations.

1.1 Pairing

Building security relations between devices in an
environment when one cannot rely on pre-defined
security relations, central services (e.g., an ad-
ministrator), or the availability of dedicated en-
tities such as trusted parties is typically done
by bilateral pairing of devices upon need. The
goal of pairing is the authentic key exchange be-
tween two devices. Because it is often not desired
nor needed to build relations to just any device,
dedicated pairing is done between devices in one
another’s proximity and initiated by the user.

Implementing pairing is delicate because the
security of the system relies on the resulting secu-
rity relations. Weak pairing results unavoidably
in weak system security. Although some wireless
communication technologies such as short range
radio or infrared reduce the probability of at-
tacks to a limited range, one must not rely on
that fact. There are three typical approaches to
implement pairing: physical contact, variations
of the Diffie-Hellman key exchange protocol, and
password authenticated key exchange. Physi-
cal contact is a rigid approach avoiding sniff-
ing and man in the middle attacks at all. Vari-
ations of the Diffie-Hellman protocol (e.g., [1],

1



User A

User C

User B b)a)

Figure 1: (a) The ownership model forms federations by building security relations between devices owned
by the same user. (b) The security policy defines security relations to other devices and assigns
rights to security relations.
Legend: solid line - security relation represented by a certificate. dashed line - security relation
implied by a certificate chain.

[2], [3]), which by itself is prone to man in the
middle attacks, relax the requirements on the
communication technology used. They can be
combined with approaches using (human memo-
rable) passwords to guarantee authenticity (e.g.,
[4]). New user interface paradigms abstract from
traditional PIN-like passwords by, for example,
using a shaking pattern as a password [5].

1.2 The Resurrecting Duckling Policy
Model

Frank Stajano and Ross Anderson were the first
that recognized the importance for building se-
curity relations between networked devices. In
their Resurrecting Duckling Policy Model [6] [7],
they propose two basic elements to extend pair-
ing:

• Secure Transient Association: Exchange of
a shared secret during pairing (physical con-
tact) representing a master–slave relation
between the devices.

• Default policy : Assigning rights to associa-
tions. The master device is the only device
that can access services on the slave device.

While the relation between devices is a static
master–slave relation in the original paper [6],
an extension to pair-wise peer-to-peer relations
is presented in [7] by introducing policy updates
that describe relations to other devices in the
security policy. The two basic elements are nec-
essary and sufficient to bootstrap security rela-
tions.

1.3 Contributions

Master–slave relations between devices introduce
static and dedicated dependencies between de-
vices that limit the usability and are prone to

loss of devices. Although pair-wise peer-to-peer
relations partially address this shortcoming, the
resurrecting duckling policy model does (1) not
suggest how the credentials (i.e., keys and cer-
tificates) to represent peer relations could be de-
scribed in the policy in an authentic way. Fur-
ther (2), the lifecycle of a security association is
rather static, either imprinted or not: Delegation
and exception handling (i.e., loss of devices) are
not supported.

In the next three sections we present an exten-
sion to the Resurrecting Duckling Policy Model
that addresses these two shortcomings. The
ownership model builds peer-to-peer security re-
lations between all devices owned by the same
user and thereby strictly defines trusted devices.
The security policy definition language defines
relations to other devices in an authentic way,
assigns rights to security relations, and supports
authentic key exchange. The third extension ad-
dresses delegation to support passing on or loan-
ing devices to new owners and to leverage of pre-
viously built security relations, for example, ini-
tialized by the manufacturer of the device. The
basic idea of the ownership model and the secu-
rity policy is illustrated in Figure 1.

By building federations of devices owned by
the same entity, we clearly define trust as trust-
ing another device to follow the protocols and to
forward only authentic information. At the same
time, simplify the dependencies between devices
and we introduce redundancy that can be used
to handle exceptions. We have implemented the
proposed mechanisms and were successful in hid-
ing the complexity of key handling and security
protocol configurations from the user [8].

2



b) Optimizationa) Federation c) Loss of a device and delegation

7
7

A
B

C

A
B

C

C'

B

C

A
B

Figure 2: The ownership model simplifies adding new devices and supports situations where devices get lost
or delegated to another user. (a) New devices can be added to a federation though pairing with an
arbitrary device of the federation. (b) The resulting structure of a federation can automatically
be optimized. (c) Even if a device gets lost, the remaining devices will be able to recognize their
relation.
Legend: solid line - security relation represented by a certificate. dashed line - security relation
implied by a certificate chain. dotted line - same certificate root. This is the weakest form of
security relation.

2 Ownership Model

We propose to build federations of devices owned
by the same user or organization. Devices owned
by the same user are likely to interact with one
another, and federating them allows at least an
informal association of them to the user as a per-
son. Our approach uses a pre-installed crypto-
graphic public key as identifier of a device and
the corresponding cryptographic private key as
credential to prove the ownership of that iden-
tity.

2.1 Building a Federation of Devices

When two devices, one device creates a certifi-
cate for the other device by signing the public
device key of the other device. The resulting
certificate chain leads towards one of the user’s
devices and is used to recognize other devices
owned by the same user. The initial security
policy of a device defines the same default rights
as the Resurrecting Duckling Policy Model.

Figure 2 illustrates the achievements of the
ownership model. A particular advantage of this
approach is that a new device has to be paired
only with one device of a federation to get an
authentic relation to all other devices of that
federation. Devices of the same federation are
recognized based on their certificates leading to
a common device. Inefficient certificate chains
are optimized automatically when a device in-
teracts with a device higher in the certificate hi-
erarchy. The ownership model further provides
redundancy to cope in situations where devices
get lost or delegated, because a device is not de-
pendent on a dedicated other device such as in
master–slave or pair-wise peer-to-peer models.

2.2 Computational Complexity

The advantages of federating devices come on the
expense of computational complexity. The ex-
pensive operations are key generation and pair-
ing, often based on Diffie-Hellman key exchange.
The ownership model makes also use of certifi-
cates. All these operations are executed at the
initialization when a new device is added to a fed-
eration of devices. Rough estimates showed that
these operations can be executed within a few
seconds even on a smart-card - a time that might
be tolerated during initialization because it has
to be done once. Use of elliptic curve cryptogra-
phy and pre-computation of keys can reduce the
delay. However, the integration of weak devices
require an individual adequate solution based on
shared secrets, and therefore depending on other
devices acting as proxy for them.

2.3 Exception Handling

With devices being mobile, it is likely that some
devices get lost, stolen, or simply borrowed by
other users. It is therefore important to avoid
others to take over ownership, to alter security
policies, or to integrate their devices into some-
one else’s set of owned devices. Our approach
to these problems is to require proximity of the
user: the ability to assign ownership and defining
policy updates is made dependent on the pres-
ence of dedicated devices such as, for example,
the user’s wrist watch. If no dedicated device
is available, a pre-defined password for pairing
is required. Recovery mechanisms make use of
the redundant security relations among devices
owned by the same user. The policy is used to
propagate recovery lists within a federation and
to re-assign certificates whenever a loss is no-

3



OR
a) b) c)

ANDAND

new
policy

old
policy

ANDAND

new
policy

old
policy

OR

ANDAND

new
policy

old
policy

1 1 12 2 2

3

Figure 3: (a) Logical expressions ’1’ and ’2’ block or specifically allow parts of the old and new main policy.
(b) The old and new main policies are parts of one device policy. (c) A special policy element
’3’ defines a condition to terminate delegation.
Legend: light color - policy elements defined by the original owner of the device. dark color -
policy elements defined by the new owner of the device.

ticed.

3 Security Policy

Every device has its own security policy to make
access control decisions. The proposed security
policy is expressed in the Security Policy Defi-
nition Language (SPDL, [8]). It does not only
describe access rights, but also describes policies
that allow remote configuration and authentic
key exchange. This will support devices with a
limited user interface and introduces security re-
lations to other devices. Initially, policy updates
are accepted only from devices involved in the
ownership certificate chain. Policy updates can
be used to define other devices that are allowed
to send policy updates.

3.1 Security Policy Definition
Language

SPDL evolved from an instance of the IETF pol-
icy core information model [9]. It describes prin-
cipals (defined by credentials, typically the pub-
lic keys serving as identity), services (defined by
their service description), and constraints such
as time, frequency, and network interface. These
three elements are combined by logical expres-
sions. The resulting logical expression is evalu-
ated when an other device tries to access a ser-
vice.

Logical expressions build a decision tree that
have the advantage that decisions are definite
(i.e., no precedence cases can appear), and that
consecutive updates can be added anywhere in
the decision tree.

Languages are often not easy to use because
one has to remember syntax and semantic. One
of the design goals of SPDL was to use it as a
meta language that mediates between intuitive
metaphors on the user interface (e.g., drag and
drop a picture of a principal to a service logo) and

configuration files of specific security protocols.
As suitable user interfaces are not available on all
devices, remote configuration of security policies
is supported:

3.2 Letter of Authority

Device security policies expressed in SPDL are
a sequence of policy updates applied to the de-
fault policy. The letter of authority is a signed
policy update that allows authentic remote con-
figuration of the device policy. It has two useful
properties. First, the letter of authority allows
to transport a key from one device to another in
an authentic way, and second, allows to pass-on
a policy update to the target device via other
devices in case there is no direct connectivity.

3.3 Authentic Key Exchange

SPDL describes devices with credentials such as
keys (i.e., the device identifier) or certificates
for expressing roles that a device assumes. In-
stead of configuring these credentials in the pol-
icy, SPDL allows wildcards specifying the con-
ditions to accept the credential of the next de-
vice that gets paired with the target device. The
involved devices thus exchange their credentials
themselves without requiring the user to cope
with cryptographic material.

4 Delegation

During its lifetime, a device might change its
owner, or it will be temporarily used by another
user. Instead of resetting the device, we propose
an extension to SPDL that allows the original
owner of the device to delegate only specific func-
tionality of the device. At the same time, the
new user can make sure that the original user
cannot continue to use just whatever functional-
ity he wants. In some situations it might, how-

4



ever, still be useful to make use of selected secu-
rity relations previously defined. A device man-
ufacturer might, for example, define relations to
authorized technicians that the owner of a device
might activate upon need.

We achieve the flexibility of partial delega-
tion by constraining parts of the old and new
main policy with logical expressions (see Figure
3). The old policy is by default constrained by
and-ing it with false, which can be relaxed to
a specific service that is allowed. The new pol-
icy is constrained by and-ing it with either a list
of services that are allowed, or simply true if all
functionality is delegated. A tamperproof imple-
mentation is required for this form of delegation
to guarantee that a user can only change and
read policy elements he is in charge of.

5 Concluding Remarks

Most of the devices that we intend to connect will
be personal and private devices of our daily life.
A crucial aspect is therefore ease-of-use because
the user cannot be expected to configure complex
protocols. We consider the security bootstrap-
ping as a first step towards the ambitious goal
of self-configuration in dynamic networks. Hav-
ing defined federations of trusted devices, many
other configuration aspects might be easier to re-
alise.

We have implemented the proposed mecha-
nisms and were successful in hiding the complex-
ity of key handling and security protocol config-
urations from the user [8]. Ongoing work ex-
tends the security bootstrapping with two addi-
tional important aspects, which are support for
devices with very limited resources and practical
implementations of pairing mechanisms: Lim-
ited devices such as sensors might not have the
resources to provide advanced security mecha-
nisms. We investigate techniques to off-load op-
erations to more capable devices, for example de-
vices acting as security proxy transparently pro-
viding access control and confidentiality towards
other devices, and using adequate security mech-
anisms ’on the last hop’.

In this paper we presented a practical way
of implementing key generation, authentication
and distribution in dynamic environments with-
out relying on central infrastructure: A key-pair
is generated or pre-installed on the device and
used as identifier of the device. These keys are
authenticated during pairing, and distributed via
signed policy update.

References

[1] S.M. Bellovin and M. Merritt. Encrypted
Key Exchange: Password based protocols
secure against dictionary attacks. In
Proceedings 1992 IEEE Symposium on
Research in Security and Privacy, pages
72–84. IEEE Computer Society, 1992.

[2] N. Asokan and P. Ginzboorg.
Key-agreement in ad-hoc networks.
Computer Communications, 23, 2000.

[3] M. Cagalj and J-P. Hubaux. Key agreement
over a radioi link. EPFL-IC Technical
Report No. IC/2004/16, 2004.

[4] J. Katz, R. Ostrovsky, and M. Yung.
Efficient Password-Authenticated Key
Exchange Using Human-Memorable
Passwords. In B. Pfitzmann, editor,
Eurocrypt 2001, number 2045 in Lecture
Notes in Computer Science, pages 475–494.
Springer-Verlag, 2001.

[5] L.E. Holmquist, F. Mattern, B. Schiele,
P. Alahuhta, M. Beigl, and H-W. Gellersen.
Smart-Its Friends: A Technique for Users to
Easily Establish Connections between
Smart Artefacts. In Proceedings Ubicomp
2001, number 2201 in Lecture Notes in
Computer Science, pages 116–122.
Springer-Verlag, 2001.

[6] F. Stajano and R. Anderson. The
Resurrecting Duckling: Security Issues in
Ad-Hoc Wireless Networks. In M. Roe
B. Christianson, B. Crispo, editor, Security
Protocols, 7th International Workshop
Proceedings, Lecture Notes in Computer
Science. Springer-Verlag, 1999.

[7] F. Stajano. The Resurrecting Duckling -
what next? In M. Roe B. Christianson,
B. Crispo, editor, Security Protocols, 8th
International Workshop Proceedings,
Lecture Notes in Computer Science.
Springer-Verlag, 2000.

[8] Ch. Rohner. Security in Ad-hoc Distributed
Systems. PhD thesis, ETH Zürich, 2003.

[9] B. Moore, E. Ellesson, J. Strassner, and
A. Westerinen. Policy Core Information
Model – Version 1 Specification. IETF RFC
3060, February 2001.

5


