Uppsala Master’s Thesis in
Computer Science
Examensarbete DV3

30th January 2006

Secure Drag&Drop Key-exchange
Henrik Andersson

Information Technology
Computer Science Department
Uppsala University
Box 337
S-751 05 Uppsala
Sweden

Abstract

This master thesis describes the technology and an implementation
of the Secure Drag&Drop Key-Exchange system, a system that will
solve the problem with distribution of key material between devices
in an authentic, intuitive and easy to understandable way for a non-
expert user. This system involves a camera-equipped mobile phone
that will act as a security manager to do this distribution in a “drag &
drop” fashion when two devices want secure communication.

Supervisor: Christian Rohner
Examiner: Mats Bjorkman

Contents

1 Introduction
1.1 Problem description
1.2 Goalsand methods
1.3 Thesis structure
2 Background
2.1 Security background
2.2 Fiat-Shamir authentication protocol
2.3 Visualcodes.
3 Secure Drag&Drop key-exchange algorithm
3.1 Idea description
3.2 Typical scenario.
3.3 Devices
4 Algorithm evaluation
4.1 Security verification
4.1.1 Transformation of t4 channel
4.1.2 Transformation of tg channel
4.1.3 Transformation of ¢3 and t¢5 channels
4.1.4 Transformation of ¢t7 channel
4.1.5 Transformation of tg channel
42 Attacks
4.3 Conclusions
5 Prototype implementation
5.1 Camera-equipped mobile phone
5.2 Mobile phone
5.3 Computer
6 Summary & Conclusions
6.1 Summary
6.2 Conclusions
6.3 Futurework
6.4 Acknowledgments
A APPENDIX: Test results
A.1 Time measurement
A2 Analysis
References

10
10
11
12

13
13
14
16
17
18
19
21
22

23
23
25
26

27
27
27
28
28

29
29
31

32

1 Introduction

Secure key-exchange between devices is an active field of research today. The
problem in key-exchange is how to do authentic transport of key material
from one device to another. The transportation should also be intuitive and
easily understandable for a non-expert user and it should involve as little
interaction as possible from the user. The user should easily be able to setup
a secure communication between two devices. It is often the case that it
requires expert users to setup this communication and that it involves much
interaction from the user and that it is not easy to understand.

Since more and more mobile phones are being equipped with cameras new
fields of research become available. The computational power of the mobile
phones are increasing and they are often equipped with wireless techniques
like bluetooth and almost everyone has one in their pocket.

A recently investigated field is to use the camera of a camera-equipped
mobile phone as a visual code reader to interact with physical objects [5, 6,
13, 14, 15].

The use of this visual code reading technology to transport key material
between two devices has also been investigated. The key material can be
public keys presented as visual codes that the two devices that want to
communicate read from each other using their cameras as visual code readers
[3].

In this thesis we investigate a more general approach, also using a camera-
equipped mobile phone, to transport key material between two devices. Here
we use the camera-equipped mobile phone as a security manager to take care
of the key distribution. We only use existing techniques and hardware and
the intuitive concept of ”"drag & drop” to transport key material from one
device to another to make it easy to understand for the user.

1.1 Problem description

When two devices want to communicate in a secure manner key material,
like public keys, has to be exchanged between the devices. The problem
is how to distribute this key material in an authentic, intuitive and easily
understandable way so that non-expert users can setup and configure a secure
communication between the two devices with as little interaction as possible
from the user.

1.2 Goals and methods

The main goal with this thesis is to design and investigate an approach to
exchange key material between two devices in an authentic, intuitive and

easily understandable way. The design should use existing hardware and
techniques to accomplish the key exchange. It should be easy for the user to
do such exchange and involve as little interaction as possible from the user.

Experimental methods have been used where ideas have been discussed,
evaluated and tested to come up with a suitable solution. The final solution
have been implemented to show "proof-of-concept”.

1.3 Thesis structure

Chapter 2 describes some background material that is needed for this thesis.
First a background on some security issues is presented that will clarify the
security terminology used later. Related solutions and an introduction to the
Fiat-Shamir authentication protocol will also be presented and discussed.
In Chapter 3 we will get to know the concept of Secure Drag&Drop Key-
Exchange. First a description of the main ideas, then a discussion about
what kind of devices that are suitable for this concept and then a typical
scenario will be presented to clarify the use of it. Chapter 4 will be dedicated
to a security evaluation of the algorithm. We will also have a look at possible
attacks and how to prevent them. A presentation of the implementation of
the algorithm will follow in Chapter 5. Finally Chapter 6 will sum up and
conclude the thesis.

2 Background

This chapter begins with a background where we present a calculus for secu-
rity channel transformations and we define confidentiality and authenticity
in the context of channels. In Section 2.2 we will introduce the Fiat-Shamir
authentication protocol that is being used in the implementation of the Se-
cure Drag&Drop Key-Exchange algorithm for proving knowledge of secret
keys. Last in this chapter we present some related work on visual codes.

2.1 Security background

In this section we will present a calculus and a notation of security channels'
that we will use in Section 4.1 when we verify the security of the system.
This calculus and the notation of security channels are based on the work of
Maurer and Schmid [2].

A communication channel, from A to B, can be viewed as a means for
transporting a message from the source A, the channels input, to the desti-
nation B, the channels output. A channel can provide authenticity and/or
confidentiality. A channel that provides confidentiality has its output ex-
clusively accessible to the receiver and a channel that provides authenticity
has its input exclusive accessible to the sender. A more formally definition
would look like:

e Confidentiality: A channel provides confidentiality if its output is
exclusively accessible to a specified receiver and this fact is known to
(or believed by) a sender on the channel.

e Authenticity: Similarly, a channel provides authenticity if its input
is exclusively accessible to a specified sender and this fact is known to
(or believed by) a receiver.

Since authenticity and confidentiality are independent we can distinguish
four types of channels based on these fundamental security properties. Chan-
nels with none of the security properties, channels with just authenticity,
channels with just confidentiality and channels with both authenticity and
confidentiality. A channel is denoted by the symbol — and the symbol e
attached to one side of the channel symbol indicates that the user at the
corresponding end of the channel has exclusive access to the channel. The
four types of channels are:

' A channel is a path between two endpoints. In communication, a channel is the path
a message follows from the sender to the receiver. A channel can be a wire, the air, the
sight etc.

A— B channel that provides no security

A—e B channel that provides confidentiality but not authenticity
Ae— B channel that provides authenticity but not confidentiality
A e—e B channel that provides both confidentiality and authenticity

The security symbol e in the channel A —se B refers to A’s belief that in-
formation sent on this channel will only be available to B. Similarly the
security symbol e in the channel A &— B refers to B’s belief that informa-
tion received on this channel originates from A.

There exist several security transformations where we can transfer secu-
rity properties from initially available channels to insecure channels. These
transformations are available if we use some of the cryptographic primitives
like symmetric encryption, message authentication code, public-key cryp-
tosystem or digital signature scheme. The following transformation rules are
a selection from all the available ones and they will be used when we verify
the security in Section 4.1.

Ae B
A 2. B — Ao B (1)
to >t

Aol T
to
Te=Db — A&EB 2)
to >t
B trusts T'

Transformation rule (1) can be used to transfer the authenticity of the chan-
nel t; to the insecure channel ¢, if we use digital signatures.

Over the authentic channel ¢; A can send her public key to B. B will now
have A’s public key and he can decrypt messages encrypted with A’s private
key which only A has access to. Hence he knows that messages encrypted
with A’s private key originates from A.

A uses her private key to generate a digital signature on a message which
she sends to B over the insecure channel to. With the public key of A,
received earlier over the authentic channel, B can verify that the message
sent over the insecure channel ¢y originates from A.

Transformation rule (2) can be used if we introduce trust in the model.
Trust is often a fundamental ingredient for secure communications in large

distributed systems. If B trusts 7" and we have an authentic channel from A
to T and an authentic channel from T to B we can connect these authentic
channels and end up with an authentic channel from A to B. Notice that B
have to trust T to send only authenticated information.

2.2 Fiat-Shamir authentication protocol

The Fiat-Shamir authentication protocol is a 3-pass, challenge-response, pro-
tocol where the prover A proves, in t rounds, knowledge of the secret s to
the verifier B. This must be done without A revealing any information to B
, about the secret s, other than information already known or computable
to B. B does not learn anything about the secret under the protocol rounds
and B can not use information retrieved to successfully convince A that he
also knows the secret. This is called a Zero-knowledge protocol since it, after
t successful rounds, gives B “zero-knowledge” about the secret.

There are two initialization steps in the protocol. First a trusted-third-
party selects n which is the product of two large prime numbers p and ¢. This
n is public and is used in the protocol by both A and B. Second A selects the
secret s with the following proterties, gcd(s,n) =1 and 1 < s <n—1. Then
A computes v = s> mod n, and registers v with the trusted-third-party. In
each of the ¢ rounds the following messages are passed between A and B.

A—B: z=7’modn, 1<r<n-1
A« B: ec{0,1}

A— B: y=r-smodn

Before A sends x to B, A chooses (commitment) r, 1 < r < n —1,
and calculates (witness) x = r?> mod n. When B has recieved z, B sends
(challenge) e = 0 or e = 1. Depending on the value of e, A responds to B
with (response) y =r modn (if e=0) or y =7-smodn (if e=1). Now B
tries to verify that 32> = x - v° (mod n) and B rejects if that is not the case
or if y = 0, otherwise B accepts.

The zero-knowledge protocols use asymmetric techniques but do not rely
on digital signatures or public-key encryption, and which avoid use of block
ciphers, sequence numbers, and timestamps [1].

Why these protocols, especially the Fiat-Shamir protocol, are interesting
to us is because it does not involve any complicated computations and the
strength can be reduced, run the protocol in less rounds, if the computa-
tional power is a limited factor. Since we are using small wireless devices
computational power is a limited factor.

To verify our claim, that small wireless devices have limited computa-
tional power, we made some computational tests on a typical small wireless
device. How these tests were performed can be viewed in Appendix A.

2.3 Visual codes

There exists several projects where the use of a camera-equipped mobile
phone for recognizing and reading visual codes to interact with physical
objects are investigated.

Hanna presents several approaches to establish security parameters be-
tween devices in a smarthome. One approach is to use visual codes to es-
tablish these security parameters [7].

McCune, Perrig and Reiter has developed the concept of "Seeing-Is-
Believing" where two camera-equipped mobile phones can authenticate each
other using camera and display [3]. User A’s mobile phone generates a visual
code in the display that user B takes a snapshot of using his camera-equipped
mobile phone. Using the cryptographic material encoded in the visual code
B can authenticate A. The procedure can of course be done in the other
direction so that A authenticate B.

Woodside developed semacodes which uses the data matrix standard for
mobile phones [13]. Here a URL is encoded into a visual code that can
be read by a camera-equipped mobile phone and associated data can be
retrieved.

Rohs and Gfeller developed their own 2-dimensional visual code for use
with mobile phones [6]. These codes are suitable to display on both electronic
screens or on paper. This code system encodes 78 bits and without the error
correction codes 83 bits. The code system also has a guide bar that is used
to locate codes in an image.

CyberCode is another 2-dimensional visual code system and it is devel-
oped by Rekimoto and Ayatsuka at Sony Computer Science Laboratories in
Tokyo. This system is designed to be recognized by low quality cameras
found in mobile phones. This code system encodes 24 or 48 bits, excluding
error correction bits. With these bits an ID can be encoded that the camera-
equipped mobile phone can recognize and identify a physical object. The ID
can then be sent to a server, since most mobile phone have network access,
and related data can be retrieved [15].

Scott, Sharp, Madhavapeddy and Upton presented the use of SpotCodes
to enhance human-computer interaction [5]. With SpotCodes a camera-
equipped mobile phone could be used as a remote control or a mouse to
interact with a computer when reading codes. These visual codes can be
applied on both active displays, like computer displays or plasma displays,

or on passive displays like on a piece of paper.

Researchers at Korea’s Yonsei University developed ColorCodes which is
a visual code that consists of colors. The colors that a ColorCode can consist
of are red, green, blue and black. With a 5x5 cell code, like the one in Figure
1, more than 17 billion patterns can be created. In ColorCodes system each
of these patterns are linked to digital content on a server, called content
platform. With a camera-equipped mobile phone the user can recognize a
color pattern and send it to the content platform which respond with the
content linked to the pattern [14].

o

Figure 1: From the left: ColorCode, Rohs and Gfellers visual code, Semacode
and SpotCode.

As you can see there are several ongoing projects that investigate the
use of camera-equipped mobile phones as visual code readers for different
purposes.

3 Secure Drag&Drop key-exchange algorithm

In this chapter the algorithm will be presented. First a general idea descrip-
tion and then a typical scenario that will demonstrate the use of it. In the
last section different types of devices will be discussed and how these can
use the algorithm depending on their properties.

3.1 Idea description

The main idea behind Secure Drag&Drop Key-Exchange (SDDKE) is that
we want to use a camera-equipped mobile phone as some kind of security
manager to initiate a secure communication between two devices. We want
to use a ”drag & drop” procedure to transport key material between the two
devices that want secure communication. The user should get the feeling of
"drag & drop” when distributing that material. The security manager will
use the camera as a visual code reader to read visual codes attached to the
two devices so that the identity of the two device can be established. The
following scheme will describe the steps involved in the algorithm.

1. The security manager reads the visual code of device A to retrieve the
identity of A. (This step is the "drag” step where the user presses down
the capture button to capture the visual code of A and holds it down.)

2. The security manager reads the visual code of device B to retrieve the
identity of B. (This is the "drop” step where the user lets go of the
capture button when he sees the visual code of device B in the display
and that visual code is also captured.)

3. The security manager connects to A and asks for the public key of A.
4. A responds and sends her public key to the security manager.

5. The security manager connects to B to ask for the public key of B and
to deliver the public key of A and the address of A (received in step 4
and step 1).

6. B responds and sends his public key to the security manager.

7. The security manger sends the public key of B and the address of B
to A (received in step 6 and step 2).

8. A connects to B and tries to prove her identity, the knowledge of the
secret key that belongs to her public key (that B received in step 5).

10

9. B tries to prove his identity to A, the knowledge of the secret key that
belongs to his public key (that A received in step 7).

A more detailed and technical description of the algorithm will be pre-
sented in Chapter 5 where the implementation will be discussed. To clarify
the use of SDDKE even more a typical scenario will now follow that will
demonstrate a real world example.

3.2 Typical scenario

Figure 2: A typical scenario when the Secure Dragé&Drop Key-Exchange
could be used.

Figure 2. will demonstrate a typical scenario where the Secure Drag&Drop
Key-Exchange algorithm could be used. This scenario could be possible in,
for example, a smarthome.

Imagine that you have your mp3 collection on the laptop and you would
like to listen to some music. Your laptop has poor speakers so you decide
that the stereo should play the music instead. Since both your laptop and
your stereo has bluetooth wireless radios built-in, the music will be sent
over the wireless medium instead of over a wire. Since it is illegal to share
copyrighted music with others you would not like someone to eavesdrop on
the communication between the computer and the stereo.

To initialize the communication you take the camera-equipped mobile
phone and point the camera to the visual code of the computer. When
the visual code is visible in the display you press the capture button on the
mobile phone and then you point the camera to the visual code of the stereo.
When you see that visual code in the display you release the capture button

11

and the initialization phase is done. Now both the laptop and the stereo has
all the needed information to secure communication.

In the following section different types of devices will be discussed and
we will present our own definition of “smart” and "primitive” devices.

3.3 Devices

There exists many types of devices with different properties. The ones that
we are interested in, in this thesis, are devices with some kind of wireless
communication abilities, like bluetooth. In that category we have everything
from advanced devices like computers to “primitive” devices like sensors.
These devices are equipped with strong or poor computational power, some
have displays and some do not, some have keyboards for input and others
lack of it. These properties allow us to make a difference between "smart”
and “primitive” devices. This is our definition of a ”smart” and a "primitive”
device:

e Smart device: A device that has strong computational power, wire-
less communication abilities, a display and keyboard for input.

e Primitive device: A device that has poor computational power, wire-
less communication abilities, no display and no keyboard for input.

Of course there can be devices with wireless communication abilities that
do not fit into either of these two definitions, but the definitions are only
presented to define the interval of interesting devices.

A sensor could be a primitive device in our definition if the computational
power is enough to use the cryptographic primitives involved. Since we are
using Fiat-Shamir authentication protocol in this solution it will not require
so much computational power form the device so it would be possible to use
even sensors.

12

4 Algorithm evaluation

In this chapter the algorithm will be evaluated. The evaluation will be
done on the basis of security. In the first section a security verification will
be performed. Attacks will also be presented in this chapter and ways to
prevent them will be discussed. Conclusions about this chapter will be in
Section 4.3 and that will conclude this chapter.

4.1 Security verification

T
t3 ts
1 to
ty te
A i > B
< t8

Figure 3: The available channels between the two devices A and B and the
security manager 7.

In this section we will verify the security of the Secure Drag&Drop Key-
Exchange system. To clarify the verification we will use the following nota-
tion where T" will be the security manager and A and B will be the other
two devices. The following scheme describes the available channels in the
system:

13

Ao T Visual channel available through visual code reading.
(Step 1. in algorithm see Section 3.1)

T +—e B Visual channel available through visual code reading.
(Step 2. in algorithm see Section 3.1)

AT Bluetooth channel available through ¢; channel.
(Step 3. and step 7. in algorithm see Section 3.1)

A—=T Bluetooth channel available through ¢3 channel.
(Step 4. in algorithm see Section 3.1)

— B Bluetooth channel available through t5 channel.
(Step 5. in algorithm see Section 3.1)

T—— B Bluetooth channel available through 5 channel.
(Step 6. in algorithm see Section 3.1)

AL B Bluetooth channel available through t3 channel.
(Step 8. in algorithm see Section 3.1)

A B Bluetooth channel available through t5 channel.
(Step 9. in algorithm see Section 3.1)

The final goal with this verification is to transform the two insecure channels
t7 and tg into authentic channels. The verification will be done in several
steps were each channel will be transformed into an authentic channel using
the transformation rules presented in Section 2.1. The two visual channels
t1 and to will not be transformed since they already are authentic channels.
We consider these channels authentic since the user of T can identify both
A and B visually when aiming the camera at the desired device.

We will start the transformations with the insecure channel ¢4. This is
because we have the authentic channel ¢; which we will use.

4.1.1 Transformation of ¢4, channel

The bluetooth channel ¢4 is an insecure channel and we need to make it
authentic to be able to use it in transformations of other channels. This can
be done using the authentic visual channel #; and the insecure bluetooth
channel t3.

What is happening in step 1 of the algorithm (see Section 3.1) is that 7'
gets the address of A over the authentic visual channel ¢;. Hence T will be
sure that the address is indeed the address of A. In step 3 T" connects to A
and asks for the public key of A. T receives the public key in step 4. The
following scheme illustrates what is happening:

14

Aol T Visual: Addr

A Bluetooth: “Hello”
AT Bluetooth: PK 4

Here we can argue that, since T" got the address of A over the authentic
channel, T knows that the device he is trying to connect to using Addra
is indeed A and hence the public key, PK 4, received from that address is
indeed A’s public key. Hence a transformation would be possible.

This is a pretty weak assumption since there is the risk of bluetooth
address spoofing and then 7' can not be sure that he is connecting to A,
although he has A’s address, hence PK 4 would not be authentic.

A way to make the receiving of PK 4 more secure could be to receive
it over the visual channel as well. If we use the visual channel for both
the bluetooth address and the public key then T" would not have to receive
anything over the insecure bluetooth channel.

The problem with this approach is that we must have two visual codes,
one with the bluetooth address and one with the public key, or one more
advanced visual code that could present both.

If we would like to receive more authentic information from A, other than
the bluetooth address and the public key, we could transform the insecure
bluetooth channel into an authentic channel using digital signatures. Infor-
mation sent over channel ¢4 could be signed with a digital signature of A that
T could verify using the public key PK 4. The following scheme illustrates
the scenario:

Aol T Visual: PK 4, Addr,
Al Bluetooth: “Hello”
AT Bluetooth: m, SIG4(m)

If we use the argument that the bluetooth address, received through
visual code reading, is enough to make the insecure bluetooth channel au-
thentic or if we use digital signatures, a formal transformation using rule (1)
presented in Section 2.1 would look like:

AT
A — AeT
ty >t

The insecure bluetooth channel ¢4 has now been transformed into an au-
thentic bluetooth channel. We will continue this verification by looking at
channel tg which has the same conditions as channel 4.

15

4.1.2 Transformation of t; channel

As with the channel ¢4 this channel also has to be transformed into an au-
thentic channel. The procedure will be much like the one with ¢4. Here
we will be using the authentic visual channel ¢ and the insecure bluetooth
channel t5.

What is happening in step 2 of the algorithm (see Section 3.1) is that T’
gets the address of B over the authentic visual channel to. Hence T will be
sure that the address is indeed the address of B. In step 5, T' connects to B
and asks for the public key of B. T receives the public key in step 6. The
following scheme illustrates what is happening:

2}

TeB Visual: Addrg
T 5, B Bluetooth: ”"Hello”
Tl B Bluetooth: PKp

As we pointed out earlier this is a weak assumption and it could be com-
promised by bluetooth address spoofing. A way to prevent this would be
to use digital signatures, as we saw in previous section. Then B can sign
information sent over the insecure bluetooth channel with his signature that
T could verify using the public key PKp. The following scheme illustrates
the use of digital signatures:

T eB Visual: PKpg, Addrg
T B Bluetooth: "Hello”
T B Bluetooth: m, SIGg(m)

If we use the same arguments as before, with the channel ¢4, that the blue-
tooth address is enough to make the insecure bluetooth channel authentic or
if we use digital signatures, a formal transformation using rule (1) presented
in Section 2.1 would look like:

to

T«—eB
T 8 — T*eB
te > to

The insecure bluetooth channel tg has now been transformed into an authen-
tic bluetooth channel. We will continue this verification by looking at the
two insecure channels we have left between the security manager and the
two devices.

16

4.1.3 Transformation of t3 and ¢5 channels

These two insecure channels can not be transformed into authentic channels
using the formal transformation rules in Section 2.1. This is because we do
not have any other channels from 7 to A or from T to B to use that are
authentic. Since we can not transform these insecure channels we have to see
if we could make them authentic from the beginning using some technique.

One simple way to solve this is to make use of the fact that the authentic-
ity refers to the receiver’s state of belief. If the receiver believes, trusts, that
information is sent by a specified sender, and accepts that information, then
it can be seen as authentic. If the receiver does not believe the information
to be authentic he can just reject it.

In practice we could have a display or some other type of output on
the device where information can be presented that the user of the device
can accept or reject. The information presented could be, in this case, the
bluetooth address of the security manager or some other information that
could be used to prove the identity of the security manager. If the user of the
device believes that it is indeed the security managers bluetooth address then
he could accept the communication and be able to retrieve the public key
of the security manager, hence be able to transform the insecure bluetooth
channel into an authentic channel.

This solution is very simple but it will not be so convenient to use. Every
time when some secure communication will be established, the user have
to make a decision whenever to accept or reject the communication by for
example pressing a button. The devices must have displays or some other
type of output for the user to be able to make the decision to accept or
reject. This solution is, in other words, not suitable for primitive devices
(see Section 3.3).

Another way could be to let all devices to have a secret key stored in
them during manufacturing. This secret could be printed as a visual code
on a paper shipped with the device. The one knowing that secret would be
treated as the owner of the device, be trusted and be an authenticated user.

When the user buys a new product he can use the security manager
to read the visual code on the paper, shipped with the device, to get the
secret key. Then the security manager will be authenticated with the new
device since he can encrypt information with that key which the device then
can verify. The one knowing the key will be treated as owner, hence be
authenticated.

There are some problems with this solution. First the secret key has to
be exclusive to the owner. If someone else get their hands on the secret key
they will also be authenticated as the owner. When the user of the device

17

have read the visual code with his security manager the document with the
secret key have to be stored in a safe place. How this could be done will not
be discussed in this thesis.

There are other problems associated with this approach. If the secret
key can not be changed there could be some serious problems if the paper
with the secret key is lost. Also if someone unauthorized person get to know
the secret key there would be security problems. If the device is sold to a
new owner the new owner would not like the previous owner to know the
key since that would be the same as an unauthorized person knowing it. If
the key should be changeable there are issues like who can change the secret
key and how to read the new key.

We could also think of having this secret key hidden on the device like
the approach with the paper. This approach would be more convenient to
use but it would not be so good in a security perspective [7].

Another interesting approach would be to let all devices to be associated
with a master device, like the security manager. A device will only obey and
trust the security manager and will only accept security information from
the security manager, hence the security manager can be authenticated.

The association could be done by letting the first one to present a secret
key to the device to be its master device. The secret key could be presented
as a visual code on the device so that the security manager could read it
through the camera. The device will obey and trust the security manager
until the device is reset. That could be done by just pressing a reset button
on the device [8].

With this approach we do not have to care about what have happened
to the device before we buy it. If someone has taken control over the device,
by presenting the secret key for the device, then we could just reset the
association by pressing the button and we could associate it with our security
manager instead. To take control over the device someone must have physical
contact with the device to be able to read the visual code. It is not enough
to be in range of the bluetooth radio. This will make an security attack from
an evil neighbor hard.

The important thing here is that it is possible to make the insecure
channels t3 and t5 authentic using one of the presented techniques. The ver-
ification will now continue with the transformation of the insecure bluetooth
channel t7.

4.1.4 Transformation of t; channel

After the previous transformations and discussions we have the following
channels available:

18

Aot—1>T T(t—203 At—7>B

ABeT T ¢ B A B
ta te

Ae—T T —e B

Now we have an authentic bluetooth channel from A to T', using channel g4,
and an authentic bluetooth channel from 7" to B, using channel ¢5. Authentic
information can now be sent from A to B through 7. If we apply the formal
rule (2) in Section 2.1 on these two channels we would get:

Aol T
t
Te= B — A&LB
ts > 14
B trusts T'

Now we have this authentic bluetooth channel from A to B through 7" and
an insecure bluetooth channel from A to B, using channel ¢7. Using the same
arguments as before, when we transformed the insecure bluetooth channels
ty and tg into authentic channels, we could use the formal transformation
rule (1) in Section 2.1 and end up with:

At B
A", B — AT
t7 > 15

This transformation could be done since we have transferred PK4 to B
over the authentic channel A ¢*% B and B can use that public key to
verify information signed and sent by A over the bluetooth channel ¢7. Now
we have transformed the insecure bluetooth channel from A to B into an
authentic channel using the trusted security manager 7T'.

The only thing left is to argue that we can do the same transformations
with the tg channel and that will be discussed in the next section.

4.1.5 Transformation of tg channel

From the previous transformations we have the following channels available:

to t7

Aot—1>T T ~e B Ae"YS B
AeT T . B Al
Ao T T 5 ep

19

The arguments are the same as before when we made the transformation
of channel t;. We have an authentic bluetooth channel from B to 7', using
channel tg, and an authentic bluetooth channel from T' to A, using channel
t3. Authentic information can now be sent from B to A through T'. If we
apply the formal rule (2) in Section 2.1 on these two channels we would get:

T 5 e B

A(t—30T — At6t3B
t3 > g

A trusts T'

Channel t3 is available after the time when channel tg is available and hence
the rule can be applied.

Now we have this authentic bluetooth channel from B to A through T
and an insecure bluetooth channel from B to A, using channel tg. Using the
same arguments as before, when we transformed channel ¢7 into an authentic
channel, we could use the formal transformation rule (1) in Section 2.1 and
end up with:

A% B
Adls B — A&eB
tg > 13

This security verification has shown that we can transform the insecure blue-
tooth channels ¢7 and tg into authentic channels, hence our goal with this
verification is achieved.

When we have the two channels t7 and tg authentic we could easily make
the communication confidential if we want to. Since A has B’s public key
and B has A’s public key, ordinary public key encryption could be used.
Since we only where interested in making the channels authentic no further
discussion will be made about the confidential issues.

This final figure, Figure 4, shows the security properties of the available
channels after the transformations made in this section:

20

t3 ls
(3] to

t to
t7

A
[

tg

Figure 4: All channels are now authentic channels.

4.2 Attacks

In this section we will discuss some various types of attacks that could be
used to compromise the security in Secure Drag&Drop Key-Exchange.

There could be different goals associated with an attack. An attacker
may want to eavesdrop information sent by a device, take control over a
device or just detect devices. Information that could be interesting could be
audio signals, sent by for example the stereo, or it could be information sent
by a sensor of some kind. If we have doors and windows that have the ability
to be controlled over a wireless connection they could be a likely target. The
detection of devices could reveal a technical equipped home, a smarthome,
that could be a good target for burglary.

There is always the risk of bugs and vulnerabilities in a device software
or hardware that an attacker can use and compromise the security. Many
manufacturers include backdoors so that support staff can help customers. If
these backdoors are available over a network they can be used by an attacker.

If the security mechanism is eligible then most people would not even
bother to enable it. An attacker can enable the security and prevent the real
user to access the device. To prevent this the enabling and disabling of the
security should only be possible when you have physical contact with the
device [7].

Since we are using visual codes to get authentic information, like the
bluetooth address, there is a risk of someone trying to manipulate the visual
code to be able to interfere with the communication. A visual code could
be viewed in a display or it could be placed as a label on a device. If we
have devices with displays it would be safer to view the visual code in the
display. It would be easier to manipulate a visual code label. This is an

21

attack that requires physical contact with the device. With physical contact
the attacker can replace the visual code with his own visual code. When the
owner /user of the device is trying to connect to it, he or she will instead try
to connect to the attackers device. Valuable information could be lost to the
attacker.

4.3 Conclusions

The security evaluation of the algorithm is very important. We argued that
the algorithm is secure and that had to be proven. This was done in Section
4.1 and some issues where discovered. These issues were discussed and some
proposals for solutions were presented.

The algorithm provides authentication and that was what we wanted.
When we have authentication, confidentiality can easily be introduced using
public key systems. The attacks presented are common in many systems and
there are ways to prevent them.

22

5 Prototype implementation

In this chapter the prototype implementation will be presented. First the
implementation of the security manager, the application for the camera-
equipped mobile phone, and then the implementation for the other two de-
vices, the mobile phone and the laptop computer.

Since we have three devices involved in a key exchange, the security
manager, the mobile and the computer, three different applications has been
implemented. If we use the same type of platform to run the application
on, for the mobile phone and the computer, one implementation would be
enough instead of two. The same type of platform could be to use two mobile
phones instead of one mobile phone and one laptop computer. The platform
could be for example two Nokia Series 40 mobile phones like the one we used
for computational evaluation in Appendix A. To make it more realistic and
flexible two different types of platforms were used, one Nokia Series 40 phone
and one laptop computer. These implementations will be discussed in the
following sections.

Figure 5: From the left: Nokia 6230i mobile phone, Nokia N70 mobile phone
and a Dell D410 laptop computer.

5.1 Camera-equipped mobile phone

The implementation of the security manager presented in Chapter 3 has been
done using J2ME MIDP 2.0 [10]. The most important APIs used are the

23

bluetooth API and the mobile media API [9, 11]. To make this implementa-
tion robust and responsive concepts like threads and process synchronization
has been used.

The camera-equipped mobile phone used to test this implementation is
a Nokia Series 60 model called N70. Important to notice is that the mobile
media API is not fully implemented on all Nokia camera phones. The simpler
Series 40 models has not a full implementation of the API and the camera
can not be accessed.

A simple visual code reader has been implemented. This simple version
can only recognize the eight RGB colors, red, green, blue, magenta, cyan,
yellow, white and black. This allow us to have eight unique devices where
each color represent one bluetooth address. The security manager has a
address list stored which maps a color to a bluetooth address.

When connecting to a device via bluetooth a bluetooth address and a
channel number is required. The bluetooth address is unique and fixed.
The channel number is not fixed and it is similar in concept to a TCP/IP
port where each service on the device is associated with a port. When
establishing a bluetooth connection between two devices in the standard way
a device discovery process and a service discovery is required. The device
discovery process detects nearby devices and the service discovery searches
these devices for the service you wish to connect to. Since we already have
the bluetooth address of the device, through the visual code reading, and
know that it has the service we are looking for the device discovery process
is not needed. Since we do not know the channel number a service discovery
is needed and through this service discovery we retrieve the channel number.
Now we have both the bluetooth address and the channel number and we
can now connect to the other device and start commmunicate [4].

The following scheme describes the communication involved in the im-
plementation. In the scheme we see which devices that communicate, what
is being sent and over what channel.

Initialization:

Camera mobile <—— mobile : URL o0pile : visual channel
Camera mobile «— computer : URL computer : visual channel
Camera mobile — mobile : Service request: bluetooth channel
Camera mobile «<— mobile : Channel: bluetooth channel
Camera mobile — computer : Service request: bluetooth channel
Camera mobile «—— computer : Channel: bluetooth channel
Communication:

Camera mobile — mobile : state: bluetooth channel

24

Camera mobile — computer : state: bluetooth channel

Camera mobile «<— mobile : PK . obite bluetooth channel
Camera mobile «—— computer : PK computer : bluetooth channel
Camera mobile — mobile : URL computer : bluetooth channel
Camera mobile — computer : URL opite : bluetooth channel
Camera mobile — mobile : PK computer : bluetooth channel
Camera mobile — computer : PK . obite bluetooth channel

First the security manager reads the visual code of the mobile to get
URL,opite- How this is done has been discussed earlier. The same procedure
is done with the computer. When the right URLs has been retrieved from
the address list a service discovery has to be performed to get the channel
number of the SDDKE service. This is done on both the mobile and the
computer. When the bluetooth address and the channel number is retrieved
the initialization steps are done and the communication can start.

The security manager establishes one connection to the mobile and one to
the computer. The first thing the security manager sends to the two devices
are a state flag. This state flag will indicate which device that will start to be
the prover and which one that will start to be the verifier in the Fiat-Shamir
authentication protocol used later. The device that the first visual code,
read by the security manager, belongs to will get a state flag that is 0 which
indicate that the device will start to be prover and the device that gets a
state flag that is 1 will start to be the verifier. This will be helpful later
in the communication when the mobile and the computer will communicate
with each other and it will be discussed in Section 5.2. The two devices
responds to the security manager with the their public keys, PK,,opiie and
PK .omputer- Now the security manager has all information needed and can
now start distribute connection information and public keys.

The security manager sends U RL,,opie and PK,,opie to the computer
and URL computer and PK computer to the mobile. When this is done the two
connections are being closed and the security manager is done. What is
happening after the security manager is done will be discussed in the next
two sections.

5.2 Mobile phone

This implementation is very simple since it only is sending and receiving
data. Receiving the state flag, the URL and the public key of the other device
from the security manager and sending its channel number and public key
to the security manager. Like the implementation of the security manager
the J2ME MIDP 2.0 has been used and the bluetooth API [9, 11].

25

What is happening in the communication between this device and the
security manager has be discussed in the previous section. What is left to
discuss is what happens when the security manager is done.

When the security manager is done, the mobile phone and the computer
have all needed information to be able to connect and verify the identity of
each other. To verify the identity the Fiat-Shamir authentication protocol is
used which was presented in Section 2.2. Here is were the state flag is being
used. The device that got the state flag that was 0 will start as prover to
prove knowledge of the secret key S that belongs to the public key PK to
the other device that got the state flag that was 1. That device will start as
verifier.

When the protocol is done they switch so that the device that started to
be the verifier now will prove knowledge of his secret key S and the other
device will be the verifier. If both succeed in proving their knowledge of
their secret keys they are authenticated. Notice that the this only assures
the identity of an entity only at a given instant in time. Now the mobile and
the computer are authenticated to each other and the SDDKE algorithm is
done.

5.3 Computer

As discussed earlier the version of the application for the two devices, the
mobile and the computer, are almost the same with some small differences
depending on the platform running on. Since this implementation is for a
computer the J2ME MIDP 2.0 could not been used. This implementation
was done in Java (J2SE) with an additional open source implementation of
the JSR-82 bluetooth API [12]. For more details on the implementation see
Section 5.2.

26

6 Summary & Conclusions

The following chapter will summarize and conclude this thesis and a future
work section will present some ideas of possible extensions of this work.

6.1 Summary

This thesis has presented the concept of Secure Drag&Drop Key-Exchange,
the general idea and the practical use. An implementation has shown a
"proof-of-concept” and the security verification, that has been made, shows
that the algorithm provides authentication using a public key system. Pos-
sible attacks on the system have also been presented and discussed.

The thesis started with an introduction to the subject and a problem
description was presented. Background information that was useful to un-
derstand the security terminology and concepts was also presented. Last this
summary and the following conclusions section concludes the thesis.

6.2 Conclusions

The goal of this thesis was to design and investigate the approach to use
a camera-equipped mobile phone as some kind of security manager to dis-
tribute public keys between devices that want secure communication. The
distribution of the key material had to be intuitive and easy to understand
and it would involve as little configuration and interaction as possible with
the user.

The solution to this we call Secure Drag&Drop Key-Exchange. To dis-
tribute public keys for secure communication the distribution itself has to be
secure, the keys has to be authentic. The receiver of a public key must be
sure that the key received belongs to the one it says to be. The security veri-
fication proved that the system is providing authentication if the two devices
that want to communicate has some kind of relationship with the security
manager. Maybe the most interesting approach to solve this problem is to let
all devices to associated with a master device. The association could be done
by letting the first one to present a secret key to the device to be its master
device. The secret key could be presented as a visual code on the device so
that the security manager could read it with the camera. The device will
obey and trust the security manager until the device is reset. That could be
done by just pressing a reset button on the device. This approach was pre-
sented by Stajano and Anderson in their work The Resurrecting Duckling:
Security Issues for Ad-hoc Wireless Networks.

The "proof-of-concept” prototype of Secure Drag&Drop Key-Exchange
was implemented successfully. The implementation provide a simple visual

27

code reader that can easily be replaced with a more powerful one if needed.
This simple visual code reader was powerful enough to prove the concept.
The prototype for the security manager was tested on a Nokia N70 mobile
phone and the two devices that wanted secure communication was a Nokia
62301 mobile phone and a Dell Latitude D410 laptop.

Since we have more and more devices at home and they will be equipped
with wireless radios, like bluetooth, the security risks will increase. The
communication between devices will increase and small ad-hoc networks will
pop up. The configuration of these networks will be hard for a regular user
and the security configuration even harder. This will create a need for an
easy solution that will be intuitive and easy to understand and that does not
involve buying new special devices for the purpose. Digital cameras in mobile
phones are becoming standard and they are well suited for this purpose and
almost everyone owns a mobile phone. Secure Drag&Drop Key-Exchange
could be the solution.

6.3 Future work

A natural extension of this work would be to implement a real” visual code
reader instead of this simple version. The goal of this thesis was to prove
the concept of Secure Drag&Drop Key-Exchange and for that purpose the
simple version was enough. If more time had been available this could have
been done.

Implementations for other platforms could also have been done. This
would allow us to see if it would be possible to use this algorithm in its
current state on more "primitive” devices than a simple mobile phone, like a
sensor of some kind.

This prototype is only implemented for bluetooth so a natural extension
would be to make is possible to use other technologies as well.

6.4 Acknowledgments

I would like to thank my supervisor, Christian Rohner for his valuable in-
sights and comments during my master thesis project. Mats Bjorkman for
being the examiner and my girlfriend Therese Jansson for love and support.

28

A APPENDIX: Test results

Here test results from the evaluation of the Fiat-Shamir authentication proto-
col will be presented. We claimed, in Section 2.2, that small wireless devices
have limited computational power. To verify or reject our claim several tests
were made.

A.1 Time measurement

The following tests were performed on a Nokia 6230i mobile phone. When
running the Fiat-Shamir protocol several calculations are made. In each
round of the protocol 72 mod n, random e and r - s mod n is calculated.
If we look at the last equation we see that, since e is either 0 or 1, we
could get either » mod n or r - s mod n. Since both s and r must be > to
1 and < to n — 1 we could argue that r - s mod n ~ r% mod n. From this
approximation we could argue that it would be enough to test how long
time it takes to perform the r? mod n equation and then use that as an
approximation for the time to calculate r - s mod n. Hence the interesting
calculations to do time measurements on are the 72 mod n equation, the
random generation of e and the random generation of r. For the test we
used n = 2127342101 which is the product of the two random prime numbers
p = 6781 and ¢ = 313721. To generate the random numbers, e and r, the
standard java.util. Random class was used. Time measurements were made
using the system call System.getMillis().

The random generation of e was made 10000 times to get enough values
to make any conclusions about the time (see Table 2). Of these 10000 gener-
ations 4952 generated e = 0 and 5048 generated e = 1. The generations took
from 0 — 2 milliseconds and the distribution was 8725 generations that took
0 milliseconds, 1273 that took 1 millisecond and 2 that took 2 milliseconds
to generate. The average generation time was 0.1277 milliseconds and that
is not much.

With the random generation of r we got similar results (see Table 4). Here
we also performed 10000 generations and it took from 0 — 2 milliseconds and
the distribution was 8501 generations that took 0 milliseconds, 1497 that
took 1 millisecond and 2 that took 2 milliseconds to generate. The average
generation time was therefore 0.1501 and that is not much either.

The time measurements of the 72 mod n equation was made in two differ-
ent tests. To see if it took more time with large values than small values on
r we made one test with r going from 1—10000 and one with (n—10000) —n
which was 2127332101 — 2127342101. In each round the equation was cal-
culated 100 times. This means that there was 100 - 10000 calculations made

29

in each test. We had to make 100 calculations of each equation to get any
measurable times.

With the first test (see Table 1) the 10000 calculation rounds of 72 mod n
took from 0 — 9 milliseconds and the distribution was 6413 that took 0
milliseconds, 3561 that took 1 millisecond, 25 that took 2 milliseconds and
1 that took 9 milliseconds. That gave us a average of 0.362 milliseconds.

With the second test it took a little longer (see Table 3). The calculation
rounds of r? mod n took from 0 — 11 milliseconds and the distribution was
4642 that took 0 milliseconds, 5198 that took 1 millisecond, 155 that took
2 milliseconds, 3 that took 3 milliseconds, 1 that took 5 milliseconds and 1
that took 11 milliseconds. The average time spent was 0.553 milliseconds.
Remember that each round was performed 100 times so the average time
spent on one calculation would be 0.00553 milliseconds in the second test
and 0.00362 in the first test.

Table 1: 72 mod n (r from 1 - 10000)

Seconds | Nr of rounds
0 6413
1 3561
2 25
3 0
4 0
5 0
6 0
7 0
8 0
9 1

Table 2: Generation of e
Seconds | Nr of generations

0 8725
1 1273
2 2

30

Table 3: 72 mod n (r from 2127332101 - 2127342101)

Seconds | Nr of rounds
0 4642
1 5198
2 155
3 3
4 0
5 1
6 0
7 0
8 0
9 0
10 0
11 1

Table 4: Generation of r
Seconds | Nr of generations

0 8501
1 1497
2 2

A.2 Analysis

As we can see it take almost no time at all to perform a calculation of this
type. The random number generations takes less than 0.2 milliseconds and
the 72 mod n takes less than 0.01 milliseconds. If we assume that we run the
Fiat-Shamir protocol for 40 rounds the calculations involved would take less
than 17 milliseconds to perform, (40-0.2+40-0.2+40-0.01+40-0.01), with
n < 2127342101. 17 milliseconds is nothing compared to the communication
time involved in the protocol. By these time measurements and this little
discussion we reject our first claim, made in Section 2.2, that small wireless
devices have limited computational power. It is not a limited factor in this
context.

31

References

[1] Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone. Handbook
of Applied Cryptography, CRC Press, 1996, Chapter 10. ISBN 0-8493-
8523-7, http://www.cacr.nath.uwaterloo.ca/hac/.

[2] Ueli M. Maurer, Pierre E. Schmid. A Calculus for Security Bootstrapping
in Distributed Systems, 1996.

[3] Jonathan M. McCune, Adrian Perrig, Michael K. Reiter. Seeing-Is-
Believing: Using Camera Phones for Human- Verifiable Authentication,
November 2004, CMU-CS-04-174.

[4] David Scott, Richard Sharp, Anil Madhavapeddy, Eben Upton. Using
Visual Tags to Bypass Bluetooth Device Discovery, January 2005.

[5] David Scott, Richard Sharp, Anil Madhavapeddy, Eben Upton. Using
Camera-Phones to Enhance Human-Computer Interaction, 2004.

[6] Michael Rohs, Beat Gfeller. Using Camera-equipped Mobile Phones for
Interacting with Real- World Objects, April 2004.

[7] Stephen R. Hanna. Configuring Security Parameters in Small Devices.
Internet Draft, Sun Microsystems Inc, July 2002, draft-hanna-zeroconf-
seccfg-00.txt.

[8] Frank Stajano and Ross Anderson. The Resurrecting Duckling: Secu-
rity Issues for Ad-hoc Wireless Networks, In Security Protocols, 7th
International Workshop, 1999.

[9] Java Community Process, Community Development of Java Technology
Specifications. JSR-82: Java APIs for Bluetooth, http://www.jcp.org
(search for JSR-82).

[10] Java Community Process, Community Development of Java Technol-
ogy Specifications. JSR-118: Mobile Information Device Profile 2.0,
http://www.jcp.org (search for JSR-118).

[11] Java Community Process, Community Development of Java Technol-
ogy Specifications. JSR-185: Mobile Media API, http://www.jcp.org
(search for JSR-135).

[12] SourceForge.net. BlueCove, http://sourceforge.net/projects/bluecove.

32

[13] Simon Woodside, Semacode. All technical details you could possibly
want, and more, http://semacode.org, Home>About>Technical Chap-
ter 5. Technical challenges.

[14] Colorzip Media Inc. ColorCode Technology, http://www.colorzip.com,
Home>Technology.

[15] Jun Rekimoto and Yuji Ayatsuka. CyberCode: Designing Augmented
Reality Environments with Visual Tags, Proceedings of DARE, Design-
ing Augmented Reality Environments, 2000.

33

