
University of Tübingen, Uppsala University

Evaluation of Authentication
Algorithms for Small Devices

by

Tobias Bandh

Supervision:

Prof. Dr. Georg Carle, University of Tübingen,
Prof. Per Gunningberg, Uppsala University
Dr. Christian Rohner, Uppsala University

Herewith I declare that I’ve done this work on my own. External sources are marked
as such.

Uppsala, 2004-03-12

Inhaltsverzeichnis

1 Introduction 1

1.1 Objective Target . 1

1.2 Structure . 2

2 Mathematical Analysis of multiple Authentication Protocols 3

2.1 Introduction . 3

2.1.1 Assumptions . 4

2.2 SSH authentication using Diffie-Hellman Key Exchange 6

2.3 Fiat-Shamir . 8

2.4 Kerberos . 10

2.5 Modified Needham-Schroeder Protocol 12

2.6 Comparison . 13

2.6.1 Conclusion . 14

3 Practial implementation and comparisons of the results to the theo-
retical results 15

3.1 Introduction . 15

3.1.1 The Limited Device . 15

3.1.2 The Unlimited Device . 16

3.2 Implementation of Fiat-Shamir . 17

3.2.1 Preparations . 17

3.2.2 Results . 17

3.2.2.1 Measurements . 18

3.3 Implementation of Fiat-Shamir shorter Version 20

3.3.1 Analysis . 20

3.4 Implementation of a SSH like Protocol 22

3.4.1 Problems and Solutions . 22

3.4.2 Measurement . 22

3.5 Conclusions . 24

4 Resume and forecast 25

A Appendix - First Part 27

A.1 RSA Public-Key-Algorithm . 27

A.1.1 Creating the keys . 27

A.1.2 Encryption and Decryption 27

A.2 DES / 3DES - Encryption . 28

A.2.1 Encryption . 28

A.3 MD5 - Hashing . 31

B Implementation - Results Appendix 33

B.1 Fiat-Shamir Basic Version Results . 33

B.2 Fiat-Shamir Short Version Results . 36

B.3 SSH-Measurements . 39

B.3.1 Analysis of the data . 41

C Source Code 45

C.1 Fiat-Shamir . 45

C.1.1 FS-MIDlet . 45

C.1.2 FS-Servlet . 47

C.2 Fiat-Shamir Short . 49

C.2.1 FS-Short-MIDlet . 49

C.2.2 FS-Short-Servlet . 52

C.3 SSH . 55

C.3.1 SSH-MIDlet . 55

C.3.2 SSH-Servlet . 58

Bibliography 63

Index 63

1. Introduction

This work is a Studienarbeit for my studies at the University of Tübingen. I worked
on it, at the Communications Research Group, Department for Information Tech-
nology, Uppsala University.
Today more and more devices have the ability to communicate, and to send and
receive data. Having these Devices working with personal data, or critical data, se-
curity becomes very important. But these Devices are often very small and therefore
limited in many ways, for example computing power or communication abilities. The
aims of this work is to evaluate possibilities to use standard authentication protocols
on limited Devices. We want to focus on the complexity of these protocols concer-
ning computing power and communication. Aspects as power consumption, storage
issues and others could not be examined due to the limitations of this work.
The work has its’ basics in the Security Proxy Project[6] done at the Communica-
tions Research Group in 2003, it could be seen as a possible extension to it, where
even the small devices need to authenticate itself to the security proxy. So that it can
be prevented that a malicious device offers some service, in order to get for example
the users passwords or cause damage by delivering invalid data.
A good example for such a malicious device is a faked temperature sensor in a cold
room. If it constantly delivers the optimal expected temperature, although the tem-
perature rises over the critical point, all goods are destroyed.

1.1 Objective Target

The Objective Target is to examine standard authentication algorithms in view
of being possibly suitable for usage on small devices, in regards of mathematical
complexity, meaning needed processor power, and communication. This works aims
to evaluate several algorithms in order so get a feeling how much resources are used
to fulfill the same task. Meaning to authenticate the device to the proxy. A device
might be a mobile phone, a sensor, or another low processor, low memory device.

1.2 Structure

The work is structured as follows.
In the first part several known authentication protocols are analyzed and compared.
Especially regarding the processor usage in form of processor cycles.
The second part deals with actually implementing two of these protocols, measuring
their behavior in the real world, and compare these results to the theoretical part.

2. Mathematical Analysis of
multiple Authentication
Protocols

2.1 Introduction

In this first part several authentication protocols will be compared to each other.
So called authentication protocols are used to convince a verifier that the claimant
is in fact who he pretends to be. Authentication protocols are usually classified as
follows:

• Username/Password-Authentication: The claimant authenticates himself using
a username and a password, which is looked up and verified by the verifier.

• Zero-Knowledge-Algorithm: A Zero-Knowledge-Authentification works without
revealing anything about the secret, beside the possession of it. For example in
1535 Nicolo Tartaglia found a way to solve third grade equations. He didn’t tell
anybody how he did it, but to any given equation he could deliver a solution.

• Systems using Symmetric Keys: In such a system, both claimant and verifier
have a unique relation to each other. Both possess the same secret key. Which
they use in a authentication protocol.

• Systems using Public Keys: Here the authentication is done based on a Public
Key System. Now claimant and verifier don’t share a secret key, but have their
own public and private key. Whereof the public key is known by the other part
of the protocol.

If a algorithm

should be used on a limited device it is considered useful how many processor cycles
are needed until a entity B considers that the entity A has authenticated itself pro-
perly.

At first the algorithm is examined at a high level of abstraction. As a result there is
a picture showing the number of exchanged messages, their content, and the related
computations done of each of the protocol partners.

In a second step a closer look is taken at the computations executed. These are
extracted and finally summed up, in order to compare the different algorithms.

The following authentication algorithms where chosen for further examination becau-
se they are typical examples for the above named classes of authentication protocols:

• SSH-Protocol using Diffie-Hellman-Key-Exchange in the first phase

• Fiat-Shamir-Authentication as an example of a Zero-Knowledge-Protocol

• Kerberos as a example for authentication using symmetric keys

• A modified Version of the Needham-Schroeder-Protocol as an example for a
Challenge-Response protocol using Public Keys

2.1.1 Assumptions

In order to compare quite different protocols to each other we had to find a common
abstraction level, so we had to do the evaluation on a low hardware level. Because
not all protocols make use of mathematical means as for example simple multiplica-
tions. Some as for example DES or MD5 make extensive use of bitwise operations.
So each protocol was brought down to the level of processor cycles1 or to simple
multiplications, that can easily be transformed to processor cycles.
To get to consistent results we were assuming the following things:

• MD5 is used to calculate hashes

• RSA is used for public-key systems

• DES is used for symmetric key encryption

All these Methods are explained in the Appendix.

For the calculations the following assumptions are made:

• t, h, n are variables for the bitlength of the numbers

• For the modulo calculations it is assumed, that the first number has twice as
much bits as the divisor

• Any exponentiation is done in a multiplicate group of order (p − 1) with a
prime p.

1Reference Model was the Intel i386 processor

• K+ means public key encryption

• K− means public key decryption

• S is the length of a input chain, used for exponentiation

• Random numbers are only 1 cycle, because they are chosen of a precomputed
list.

Calculations Number of simple multiplications reference
gx → (t + h − 2) → fixed base windowing

mod p → (2n − n)(n + 3) → Multiple-precision division
r2 → 1

2(n
2 + n) → Multiple-precision squaring

K+ → B(s) → Addition-chain exponentiation
K− → B(s) → Addition-chain exponentiation

These values and algorithms are taken from the Handbook of Applied Cryptography[3]

2.2 SSH authentication using Diffie-Hellman Key
Exchange

Here we will have a closer look at the SSH-Protocol, and specially the Diffie-Hellman
Key Exchange[5]. The SSH-Protocol is a typical example for a Challenge-Response
Protocol, where the claimant is challenged by the verifier to respond with username
and password. In a first phase the protocol uses the Diffie-Hellman-Keyexchange
to establish a session key, which is used to encrypt further traffic. We assume this
protocol being secure, under the assumption that there exists no effective algorithm
to calculate a discrete logarithm, and not man in the middle attack only passive
listening.

The Algorithm works as follows:

• Alice (A) selects a big value p, a generator value g and a Secret x with 1 ≤
x ≤ (p − 1)

• A calculates u = gx mod p

• A sends g,p,u to Bob (B)

• B selects a secret y

• B calculates k = zy and v = gymod p

• B sends v to A

• A calculates k = vx

In the end both have the same secret the can use as a key k beeing:

k = gxy mod p = (gx mod p)y = (gy mod p)x

The secret can be used for further secure communications e.g. to exchange authen-
tically certificates or cryptographic keys.

Part I

A B
1 p ∈ prime −→2 p ∈ prime 1
1 g ∈R {2 . . . p − 2} −→ g ∈R {2 . . . p − 2} 1
1 x ∈R {2 . . . p − 2} y ∈R {2 . . . p − 2} 1

(t + h − 2) u = gxmod p −→
←− v = gymod p (t + h − 2)

+(2n − n)(n + 3)
t + h − 2 k = (gy)xmod n k = (gx)ymod n t + h − 2

n2 + 7n + 7 total multiplications n2 + 7n + 7

Now it is possible to just sum up the simple multiplications for each side:

A 1 + 1 + 1 + (n + n − 2) + (2n − n)(n + 3) + (n + n − 2) = n2 + 7n + 7

B: 1 + 1 + 1 + (n + n − 2) + (2n − n)(n + 3) + (n + n − 2) = n2 + 7n + 7

At this point A is not yet authenticated to B. There is additional computing for
to precompute the prime, and of course the second part has to be taken into this
consideration. What is quite astonishing at this point, is that A and B have to do
the same amount of computations.
In order to get a feeling for the size of the used numbers we had a quick look at a
actual implementation of the SSH Protocol[1] where we could see that it uses q = 3
and p some 128Bit prime.

Part II - Authentication
A B

bdes(748 + 10s) K+
AB(login) −→ K−

AB(login) bdes(748 + 10s)
bdes(748 + 10s) K−

AB(password?) ←− K+
AB(password?) bdes(748 + 10s)

bdes(748 + 10s) K+
AB(password) −→ K−

AB(password) bdes(748 + 10s)
pass ok? 1

2.3 Fiat-Shamir

The basic Fiat-Shamir[2] authentication protocol is a Zero-Knowledge protocol. The
objective of this protocol is that A shows that she owns a secret, without sending
the secret or parts or any information about it over the net. The protocol goes over
multiple rounds, until the verifier is convinced of As’ identity. It is assumed that the
protocol is complete and sound, in regard to the definitions given in the ’Handbook
of Applied Cryptography’ [3]. This protocol is based on the assumption that some
computations are easy to do, but the way back is quite hard. In Order to get a
independent and reliable number n, there is a so called Trust-Center that takes care
of the calculation of n.

The Algorithm can be divided into two Parts:

• One-Time-Setup

– A Trust-Center publishes a product of two primes n = p· q

– A Client A chooses a secret s which is a coprime to n: 1 ≤ s ≤ (n − 1)
With this coprime A computes her public key, that is registered at the
Trustcenter. v = s2 mod n

• Protocol Actions

– A chooses a random commitment r: 1 ≤ r ≤ n − 1

– A calculates x = r2mod n and send it to B

– B selects randomly a challenge e ∈ [0, 1] and sends this to A

– A: if challengee = 0 → A sends y = r to B
if challenge e = 1 → A sends y = r· smod n to B

– B rejects the prove if y = 0
B accepts the prove if y2 ≡ xve

A has selected her secret s, calculated the public key and registered it at the Trust
Center.

A B
1 s : 1 ≤ s ≤ (n − 1)

coprime(n, s)
1 Public Key3: v = s2 mod n
1 r ∈ [1, (n − 1)]

1
2(n

2 + n) x = r2 mod n −→
+(2n − n)(n + 3)

←− e ∈ [0, 1] 1
0 e = 0 : y = r −→

(n-1)(n-1) e = 1 : y = r · s mod n −→ y = 0: reject
+(2n-n)(n+3) y2 ≡ x· ve: accept 1

2(n
2 + n)

+(2n − n)(n + 3)

Now again the number of simple multiplications can be summed up. Because of the
probability getting a one or zero as repsonse causes the need of a probality b which
is, because of the random out of two elements b= 1

2 .

A: 3 + (1
2(n

2 + n) + (2n − n)(n + 3) + 1
2 [(n − 1)(n − 1) + (2n − n)(n + 3)]

= 3 + 1
2(5n

2 + 2n + 1)

B:1 + 1
2 [(n − 1)(n − 1)] + 1

2 [(2n − n)(n + 3)] + (1
2(n

2 + n) = 1 + 1
2(3n

2 + 6n + 1)

In every round the chance of being lucky with guessing the corresponding response
r without the knowledge of s is 1

2 . This means that the probability to successful
guess in every round and to cheat the authentication is (1

2)
n. In order to satisfy the

verifiers demands for a successful authentication, the algorithm works with multiple
rounds. To achieve a equivalent confidence as for example we would get with SSH
we assume that about 20 to 40 rounds are required. The hope in using this protocol
is to be able to adapt the complexity to the actual needs.
Running the protocol over x rounds does not mean that the number of messages is
increased to: number of messages · x, as we will show later on.

3It’s only one calculation because it’s only done once

2.4 Kerberos

Kerberos[4][p. 472 ff]/[8][p. 402 ff] is the example for a symmetric key based challenge-
response-authentication protocol based on the Needham-Schroeder authentication
protocol. Kerberos makes use of two services to grant access. The first is the Au-
thentication Server (AS) which is used to authenticate a user and to grant him
access to the his Workstation (AWS). The second Service is the Ticket Granting
Server (TGS). The TGS hands out tickets to authenticated users (or to their ma-
chines). With these tickets the authentication towards other resources is done. Here
no keys have to be shared. All are created dynamically.

!
"

#
$

!
"

#
$

!
"

#
$

!

"

!

"

"

!

AWS

AS

TGS

B

The three steps to logon and access a service, are shown here:

Part I:

• Userlogon to the system

– A sends her LOGIN to AWS

– AWS sends LOGINA to the AS

– AS looks up the corresponding password hash and uses it as a key for
encryption

– AS sends KA,AS(KA,TGS, KAS,TGS(A,KA,TGS)) to A
KAS,TGS(A,KA,TGS) is called a ticket.

– After reception of AS message, AWS querys A for her password

– A enters her password

– AWS computes the key KA,AS and decrypts the message.
If the decryption is a success, A is logged on to the network.

Part II:

• Further authentication of the user to any available service
If A wants to access A service offered by B, she needs to authenticate herself
to B.

– A sends the ticket KAS,TGS(A,KA,TGS), Bs’ identity, and a encrypted
timestamp KA,TGS(t) to the TGS. The timestamp is used to avoid the
replay of the message.

– TGS returns KA,TGS(KA,B, KB,TGS(A,KA,B)) to A, after it has decrypted
the message, checked the timestamp and made shure that the user is
authorized for that service.

Part III:

• As soon as A owns the new ticket, she can authenticate herself to B and use
the requested service.

Defining some Messages
(1) = A
(2) = KA,AS(KA,TGS, KAs,TGS(A,KA,TGS))
(3) = A,B,NA

(4) = KAs,TGS(A,KA,TGS)
(5) = KA,TGS(KA,B, NA, L,B,KTGS,B(KA,B, A, L))
(6) = KTGS,B(KA,B, A, L)
(7) = KA,B(A, TA)
(8) = KA,B(TA)

Part I
A/AWS AS
(1) → Lookup KA,AS 1
(2) ← (2) 7 ∗ (748 + 10s)

976 Calc KA,AS

4· (748 + 10s) K−
A,AS(2)

Part II
A/AWS TGS

1 (3) →
(4) → K−(4) 3· (748 + 10s)

12· (748 + 10s) K−(5) ← (5) 8· (748 + 10s)

Part III
A/AWS B
(6) → K−(6) 4· (748 + 10s)

3· (748 + 10s) (7) → K−(7) 3· (748 + 10s)
(748 + 10s) K−(8) ← (8) (748 + 10s)

2.5 Modified Needham-Schroeder Protocol

Modified Needham-Schroeder Protocol[4] is a challenge-response authentication al-
gorithm using a public key system. For such a algorithm it is evidently that all
communication partners have access to the public-key of the others. Ether exchan-
ged in the very beginning or via a Key-Distribution-Center (KDC).

The algorithm works as follows:

• A sends her identity and a nonce4 NA encrypted with Bs’ public key to B:
K+

B (A,NA)

• B decrypts the message, and sends As’ nonce, another nonce and a session key
KAB, encrypted with As’ public key to A5.

• A returns Bs’ nonce encrypted with the session key.

After these three messages A and B have authenticated each other. To get further
information on computations needed for Encryption / Decryption see Appendix 1.
But to understand this table a few additional information is given:

• The b stands for the number of blocks which are needed

• b(s) means number of blocks times number of cycles needed for the task

• (748 + 10s) is the number of cycles for DES encryption
it is 10s because of the 10 s-boxes where the number of cycles for the single
S-Box is represented by the variable s (which will be replaced by a number
later on)

A B
b1(s) K+

B (A,NA) −→ K−
B (NA) b1(s)

b2(s) K−
A (NA) ←− K+

A (NA, NB, KA,B) b2(s)
bDES(748 + 10s) KA,B(NB) −→ KA,B(NB) bDES(748 + 10s)

In order to get the number of simple multiplications for that algorithm, It is now
possible to sum up. But there are three things that have to be taken into consi-
deration first. The used encrpytion algorithms work on fixed length Bitstrings. To
get these Bitstrings the message is padded to a multiple of its’ needed blocklength.
After that this padded message is splitet into b bitstrings: b = PaddedMessage

NeededBitlength . So the
encryption has to be executed B times in order to encrypt the whole message.
As the private key is much longer than the public key, the input chains have different
length. The third important thing is, that DES does not work with simple multipli-
cations but is calculated in processor cycles. That means that bDES(748+10s) is the

4A nonce is a random number used to connect multiple messages together
5Where K+

A an operation with As’ public and K−
A private key is. KA,B is a symmetric Key for

A and B

number of processor cycles for a DES encryption. To get the whole algorithm into a
one sum, the public-key Part has also to be calculatet in processor cycles.

Cycles = 15· [b1(spu) + b1(spr) + b2(spu) + b2(spr)] + 2bDES(748 + 10s)

2.6 Comparison

After having the algorithms analyzed it should be now possible to make a compari-
son.
But again it is important to state some assumptions.

• DES-Keylength: 56 Bits

• Length of nonces, timestamps, lifetimes: 32 Bits

• Identitys, passwords: 128 Bits

• Fiat-Shamir over 40 rounds

• Fiat-Shamir with 32Bit numbers

• Cycles means the number of needed processor cycles (comp. Appendix)

• 1024 Bit private key K with #1(K) = 512

• 256 Bit public key PK with #1(PK) = 122

Claimant Verifier
Protocol Messages Cycles A Cycles B

SSH (DH + user /password)6 7 (5) 17887 17887

Fiat-Shamir (One Round) 4 38902 24502

Fiat-Shamir (40 Rounds) 160 1583530 490040

Kerberos (Logon to the System) 2 7968 6992

Kerberos(Logon and authentication to a Service)7 6 35960 45448

Modified Needham-Schroeder 3 21113 21113

6If you don’t take the setup-messages into account, or combine the first three messages, only
five messages are exchanged

7B is the sum of the cycles needet at AS, TGS and B

2.6.1 Conclusion

Having these numbers leads to some conclusions. Looking only at processor cycles
authentification via Kerberos or SSH seems to be quite good. In order to choose
the best algorithm, it might be necessary to take more things into consideration.
For example the number of messages, or only the amount of data being exchanged
within the authentication process.
Having a closer look at the table there are some more things to notice.

• A seems to have the bigger workload to accomplish. Only once in Kerberos B
seem to have more to do, but thats not really true, because the 6992 cycles
are shared by at least to ”subjects”

• All the protocols who are making use of symmetric cipher methods and there-
fore use of bitwise operations need less cycles than those using mostly public
key methods.

• The usage of the exponentiation algorithm which uses less operations than the
squaring algorithm can be identified through the smaller number of cycles in
total.

• The question could be raised if setup messages and calculations should be
counted or not. I think that depends on if you have to do the calculation for
each time you use the protocol, or if you do it once and for example register
the value at a Trust Center or similar.

3. Practial implementation and
comparisons of the results to
the theoretical results

3.1 Introduction

After having finished the theoretical analyzes of authentication protocols, the next
logical step was to try to implement at least one or two of the analyzed algorithms.
Especially to see if the theoretical results really do matter and behave like foreseen
in the real world.
Instead of using any special device, the decision was taken to use a regular Nokia
6610 mobile phone.

Not all protocols were implemented, implementations of Fiat-Shamir and a SSH-like
protocol using Diffie-Hellman Keyexchange. All sources are available in the Appen-
dix.

3.1.1 The Limited Device

The Nokia 6610 mobile phone was chosen because it comes with builtin Java sup-
port. Meaning there is the possibility to download an execute Java programs that
follow the MIDP 1.0 standard. In addition to that it supports connections to the
Internet via GPRS. Which seemed to be great for this kind of experiment.
After some research it turned out that the phone supports only the Nokia Series
40 Developer Platform. Phones of this serie have no native Socket support so all
communication has to be done using HTTP-connections. This first seemed to be a
setback.

After having a closer look at a introductive paper provided by Nokia[7] the con-
clusion was drawn to use Apache Tomcat with Java Servlets on the server side. This
allows using the same programming language on each side and eliminates the need
of native socket support.

The java programs, called MIDlets might be up to 64 KByte large, they can access
up to 200 KByte Heap storage, and up to 625 KByte shared memory.
The J2ME MIDP 1.0 is a very stripped down version of the Java Programming
environment. There is no support for numbers larger than 64 Bit (long), also a lot
of common classes as for example String Tokenizer are not available. This makes it
essential to program in a efficient way, especially in respect to the memory usage.
But there will be no other choice than reimplementing some needed classes.
The mobile phone is equipped with a Comviq1 PrePaid Card and uses the Comviq
GPRS System to connect to the Internet. Before any communication the phone is
reset, to start all measurements with the same conditions.

Before testing the programs on the phone a simulator is used to test if they work
without errors. There is another advantage, a big number of tests could be run in
shorter time, and without any costs.

3.1.2 The Unlimited Device

In contradiction to the mobile phone the server is called the unlimited Device, be-
cause if you compare its possibilities to the possibilities on the phone the server has
unlimited resources in storage, memory, bandwidth and processor power.
HTTP connections which are used for the communication are request-response connec-
tions which do not keep any context after delivering the response. By using Servlets
it is possible to keep the context by saving session data in session variables.
Most protocols need more than one communication step. To fit them into the request-
response scheme they have to be structured in phases. The current state of the pro-
tocols is saved into the session variables.
The server is connected to the Internet over a 802.11b link. All measurements were
made at low traffic times on the Wireless link. So that all this does not influence the
communication delay in any way.

1www.comviq.se

3.2 Implementation of Fiat-Shamir

The decision for Fiat-Shamir authentication as a first algorithm to implement was
quite fast taken because Fiat-Shamir does not require any additional libraries, as for
example a cryptographic library. Fiat-Shamir uses only multiplication and exponen-
tiation on the limited device.

3.2.1 Preparations

In contradiction to the theoretical work it is important to make sure that the calcu-
lations at no point of time exceeds the domain of long values.
So p and q are chosen, in a way to satisfy:

n2 = (p · q)2 <= 263

This makes sure, that all calculations resolve in numbers smaller than the maximum
possible.
For the communication the messageformat is defined as follows2:

A B
Commitment v = (s l v)&x = (s l v) −→

←− (1|0) Challenge
Response y = (s l v) −→

←− (1|11|10) Status

If the protocol goes over multiple rounds, and the status is 1, this round succeeded,
if the status is 11 the whole authentication succeeded, otherwise it might be 10,
meaning that the authentication failed.

There are two possible phases of the program, in the first the servlet receives key,
and commitment and returns a challenge.
In the second phase the server verifies the response at returns the status of the pro-
tocol.

3.2.2 Results

After having successfully implemented both MIDlet and the Servlet, multiple tests
were run using a mobile-phone-simulator to discover and eliminate possible bugs.
After the functionality of the implementation had been verified the MIDlet was
downloaded to the mobile phone. We expected differences especially in regards to
slower processor, lower memory, and a much smaller bandwidth, than on the simual-
tor.

The first surprise appeared, while having a closer look at a captured communi-
cation session between the mobile phone and the server. There was a lot more of
information sent, that did not appear in the simulators network monitor. Which is
quite clear but was, unexpected at this point.

2Commitment: s l v = some long value

POST /ssh/ HTTP/1.1 Host: sec-proxy.no-ip.com:18080
X-Wap-Profile: ”http://nds.nokia.com/uaprof/N6610r200.xml”, ”1-4csgll//4OzaR6U7yLPStg==”, ”2-XnrTOLDzBJdZHN2vSasoNA==”,
”3-Z+lJzsFTo4qT8wYH1WfzIQ==”, ”4-pHUB9AHDokQcbAwHU9nTBQ==”

Content-Type: text/plain Accept: */* Accept-Language: de
User-Agent: Nokia6610/1.0 (4.18) Profile/MIDP-1.0
Configuration/CLDC-1.0 Accept-Charset: * Accept-Encoding: deflate, gzip TE: deflate, gzip
X-Wap-Profile-Diff: 1;
<?xml version=”1.0”?>
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”xmlns:prf=”http://www.wapforum.org/UAPROF/ccppschema-
19991014#”>
<!–browser vendor site: Default description of properties –>
<rdf:Description><prf:CcppAccept><rdf:Bag><rdf:li>*/*</rdf:li></rdf:Bag></prf:CcppAccept></rdf:Description>
</rdf:RDF>
X-Wap-Profile-Diff: 2;
<?xml version=”1.0”?>
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”xmlns:prf=”http://www.wapforum.org/UAPROF/ccppschema-
19991014#”>
<!–browser vendor site: Default description of properties –>
<rdf:Description><prf:CcppAccept-Charset><rdf:Bag><rdf:li>*</rdf:li></rdf:Bag></prf:CcppAccept-Charset></rdf:Description></rdf:RDF>

X-Wap-Profile-Diff: 3;
<?xml version=”1.0”?>
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”xmlns:prf=”http://www.wapforum.org/UAPROF/ccppschema-
19991014#”>
<!– browser vendor site: Default description of properties –>
<rdf:Description><prf:CcppAccept-Encoding><rdf:Bag><rdf:li>deflate, gzip</rdf:li></rdf:Bag></prf:CcppAccept-Encoding></rdf:Description>
</rdf:RDF>
X-Wap-Profile-Diff: 4;
<?xml version=”1.0”?>
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”xmlns:prf=”http://www.wapforum.org/UAPROF/ccppschema-
19991014#”>
<!– browser vendor site: Default description of properties –>
<rdf:Description><prf:CcppAccept-Language><rdf:Seq><rdf:li>de</rdf:li></rdf:Seq></prf:CcppAccept-Language></rdf:Description>
</rdf:RDF>
Cookie: $Version=0;wtls-security-level=none Content-Length: 39

v=1597229406&x=534021128&n=2127342101&r=1769446844

All the information about the device, possible protocols, the used browser, and sup-
ported languages is exchanged for each communication step. The ration between
transmitted data and the actual payload is quite bad, what might influence the time
needed for communication.

3.2.2.1 Measurements

In order to verify the results of the theoretical work timers were implemented to gain
information on how long the steps need to be completed. Several tests were run, to
avoid extreme values which might falsificate the results.
First the protocol was run over one round, followed by runs over five and ten rounds.
Again each version is done several times to make sure that not only extreme values
are taken into consideration. The following values are recorded. They are shown in
the appendix.

• Round: Number of Rounds

• Random: Time to calculate a random number in ms

• X: Time to calculate the x-value

• Y: Time to calculate the y-value

• Challenge: The challenge sent to the limited device

• Overall: Time to accomplish the whole protocol

Analyzing the values leads to the following conclusions:

• All calculations are done faster than expected

• The protocol needs a certain startup time to establish all communication chan-
nels

• The communication delay is the main factor for the time a single round needs

• The time a round needs to finish varies

The differences observed in startup- and round-times influences the times for the
whole protocol. These variations are caused by the time needed to establish the
needed communication channels. After this could not be changed, we where thinking
of some other ways to optimize the protocol. As it seemed that the amount of
transferred data does not influence the communication time so much, but the number
of messages exchanged influences the protocol-time strong, we decided to set up a
second version of the protocol we will present in the next section.

3.3 Implementation of Fiat-Shamir shorter Versi-
on

In order to get a better ratio between data that is submitted and the the protocols
payload, the decision was taken to implement a second version of the Fiat-Shamir-
Protocol, which is adapted to submit the values for multiple rounds in one commu-
nication phase.
For example: The small device sends not only one but ten commitments, and recei-
ves therefore ten challenges. This optimizes the ratio, but also increases the need for
memory to save vectors or arrays of values, which are needed for the calculation in
one of the following steps. On the Serverside this causes no problems, but on the
limited device it seems to do so: Due to the lack of memory it is not possible to create
more than 30 commitments and store them and the associated random numbers for
the next phase.
To separate the different values in the Challenge-string the StringTokenizer Class,
not included in the J2ME, had to be reimplemented.

The message format had to be slightly changed to fit the new situation.
Instead of sending:

v = (s l v)&x = (s l v)

now the message format is:

v = (s l v)&x0 = (s l v)& . . . &xn = (s l v)

A B
Commitment v = (s l v)&(xn = (s l v))+ −→

←− ((1|0)2)+ Challenge
i Response (yn = (s l v))+ −→

←− (1|11|10) Status

Also the responses are changed. The first response is a string of challenges sepa-
rated by ”2”. A possible response could look like this:

12020202021212121212

After receiving it, it has to be tokenized and each challenge has to be worked on
separately. Now the second request will look like that:

u0 = (s l v)& . . . un = (s l v)

As a response to that request there are the same possibilities as in the first Version
of the Fiat-Shamir-Protocol.

3.3.1 Analysis

After analyzing the new times, it was obvious that the maintenance of the values
in the memory takes more time, the more values are stored in the memory. While
dealing with only one value, the creation and storing of that value takes in average

two to three milliseconds. But when the number of values increases to 30 Values it
takes in average twice as long and in extreme cases even six times longer than before.
Looking at the times the rounds need to run, there is no real trend. There is not real
trend noticeable looking at the duration of a round and message length. It seems
more likely that the communication delay has big variations which makes it impos-
sible to say something about the time the protocol needs to finish. But what it is
clear, that the first round takes a little longer because the communication channel
has first to be established, although the channel is broken down after every round,
this initiation time appears only at the first round.

• Calculations still done very quickly

• Some time is spent on handling the values

• Longer messages do not lead to longer communication time

• Communication times show still differences from round to round

This leads to the conclusion, that the Limited Device is not as limited as it was
supposed to be. How ever memory shortage and communication delays should be
more taken care of than on processor power.

3.4 Implementation of a SSH like Protocol

The following protocol uses in a first phase the Diffie-Hellman Key Exchange algo-
rithm to agree on a secret shared key which is afterwards used to encrypt username
and password using DES. After the the secret is successfully established the small
Device builds up a request string, which is encrypted and sent to the server.The
string has some similarities with a HTTP-GET-Request.

user=”username ”&pass=”password ”

On the server the string is decrypted, using the secret and user and password are
verified. There are two possible replies to the authentication request: ”OK”or ”DE-
NIED”. The reply is encrypted and returned to the small device, which after decryp-
tion checks, wether the authentication succeeded or failed.

3.4.1 Problems and Solutions

Even before the implementation it was several problems were known, which could
not be solved with the available resources. As there is no cryptographic support in
J2ME the need of a suitable library, providing classes for DES-ecryption was quite
obvious.
But not only the cryptographic part caused a problem. Also the calculation of the
secret was not that easy. Either you could make sure that all calculations run within
the range of the Long type or add some support for BigInteger. Staying within the
borders of the Long Type is quite hard, because you have to calculate logarithms.
And the security of the protocol decreases very strong.
The Bouncycastle Lightweight Crypto API3 brings both, as well slasses for DES en-
cryption and BigInteger support. This API is specially created for the use together
with J2ME. It seemed to be the optimal supplement to the J2ME, solving all pro-
blems at once. Especially including the BigInteger support brought the secret into
regions where it is already hard to recalculate or guess it.
While the testing phase, after the implementation, an inexplicable error appeared.
About 30% of the calculated secrets were wrong. It was tracked to a point where
it was clear that there had to be a Bug in BouncycastlesB́igInteger class. This was
approved via the mailinglist and quite fast fixed.

3.4.2 Measurement

This time there were more measurements taken. As well in the simulator as on the
phone. There were also more times taken,which are the following:

• Calculating u: u = gx mod p

3www.bouncycastle.org

• Calculating the secret: s = vx mod p

• Encryption time

• Decryption time

• Communication time I

• Communication time II

• Protocol Time

The phone has been resetet after ten measurements, due to a occurring memory
shortage.To get results which are at least partly comparable to the theoretical work,
the username and password were hard coded into the MIDlet. Username and pass-
word are chosen, in a way that they are 128Bit long.
This protocol was run 100 times. And again there were some interesting results.

• Calculation of u: Although 44% of the calculations take between 11 and 20 ms
the average calculation takes about 33 ms.

• Calculation of s: At this calculation there is now real peak. The span of time
needed is pretty big: The fastest calculation has been done in 13ms while the
longest took 2560ms. But the average calculation of the secret takes 240 ms
and more than 97% of the calculations are faster than 460ms.

• Encryption time: Differs between 90 and 2328 ms. While the average lies at
190 ms.

• Decryption time: Decryption takes between 63 and 2336 ms, with an average
at 147 ms. But it is obvious that encryption and decryption time vary from
step to step in about the same way. This might mean, that the times needed
is in any kind connected to how the key looks like.

• Communication times: The communication times lie close to each other, with
some peaks, that will be explained later. The average communication takes
about 2500ms. Within this time included, there is also the time needed for
calculations on the Server.

• Protocol Time: The whole authentication takes in average about 7350ms. Whe-
reas the timespan lies between 5400ms and 19720ms. 90% of the authenticati-
ons finish in less than 9200ms.

Looking at the values shows that every 10th Authentication takes much longer,
all single steps require more time:calculations, encryption,decryption and the first
communicationstep as well. It takes some time to reinitialize the additional classes.
So if the authentications would not run in this kind of batched mode, each one might
take about the average time of these ten values, here looking like extreme peaks in
this measurement. This would raise the average authentication time to 13750 ms,
which is nearly 90% longer.

3.5 Conclusions

After having implemented two of the protocols discussed in the first part. It is now
time to draw conclusions.
Comparing the results from the first and the second part it is not that easy to say
that everything just could be confirmed. Especially looking at the times needed for
the calculations it seems not to work out at all.
But still you could say, that an authentication that is regarded secure than the
authentication using the SSH-like implementation, meaning at least 30 Challenge
/ Responds. The SSH version is still faster even if it is compared to the FS-Short
protocol. If you subtract the additional time that comes with the usage of the Bi-
gInteger class, it gets even faster. Maybe it would be a good idea to upgrade the
Fiat-Shamir implementations, so that they also make use of BigInteger numbers,
instead of longs. But then the time needed to authenticate using Fiat-Shamir will
probably raise and the difference will become even bigger.

4. Resume and forecast

There is not real result in this work. But you can say that based on the given pre-
requisites and the needs one of the Algorithms can be chosen.
If the bandwidth is small an algorithm with the minimal data transferred should be
suitable. If the small device has very limited memory resources an algortihm which
has little values to save is better than for example the FS-Short, which has to deal
with a big number of temporary values.
If the small device is only a short period of time within the reach of the proxy, the
algorithm needs to be quick. As for example the SSH-like protocol.

So after beeing successfully authenticated this could not be the end. There should
be any form of authorization and accounting, as well as any form of secured trans-
mission afterwards.
For example could a device, after it has been authenticated secure its’ transmissions
by using MAC.
Another possibility might be, that a device first tries to communicate using MAC
or similar techniques. If it has not been authenticated previously the Security Proxy
Denies all communication and requests a proper authentication first. This Scheme
could speed up the communication if the small devices are roaming. A device has
only to be authenticated once. But this requires on the other hand much more me-
mory and processor power, to store keys, and calculate MACs for every message.
But these things have to be considered separately.

A. Appendix - First Part

A.1 RSA Public-Key-Algorithm

The RSA Algorithm is the typical example for a Public-Key Algorithm. It uses a
system of asymmetric keys. Which means, there exists a key-pair. With a public part
and a private part. Messages encrypted whith the public key, can only be decrypted
with the corresponding private key.

A.1.1 Creating the keys

This section describes, how the keys are created:

• Choose two very large primes p and q

• Compute n = p· q

• Compute z = (p − 1)(q − 1)

• Choose a private key d, being coprime to z

• Compute the corresponding public key e, satisfying e· d = 1mod z

Now the key-pair is ready for usage.

A.1.2 Encryption and Decryption

After creating the keys, and distributing the public part, messages can be encrypted
by anyone and decrypted by the holder of the secret key.

• Messages are Strings of Bits

• Messages are splitted into fixed-length blocks [m0 . . . mi]

• The bitstrings of the blocks, are interpreted as a number 0 ≤ mi ≤ n

• These blocks are processed to the encrypted message C: C = [c0 . . . ci]

• While si: ci = me
i mod n

• Receiver splits the encrypted message C again into blocks

• Receiver decrypts the single blocks: mi = cd
i mod n

• Receiver combines the blocks to the original message M: M = [m0 . . . mi]

Using a system based on public keys includes the need of authentic keys. Otherwise
it might be possible to encrypt a message to a entity B with a key that in reality
belongs to C. Now B gets the message, but can’t decrypt it. C has now the possibility
to read the message which was send to B and thougt to be confidetal. Because of
this fact public-key systems are often connected to certificates. These certificates are
released from Trust Centers, which make sure that the key belongs to the entity it
is said to belong to.

A.2 DES / 3DES - Encryption

DES is a typical example for a Blockcipher-Algorithm. Unlike RSA uses DES sym-
metric keys, which means, the same key to encrypt and decrypt the messages. Here it
is possible that anyone, owning the key can decrypt and read intercepted messages.
This means, that you have to share one key with any communicationpartner.

Since it is known that DES is to be considered unsecure there are several other
algorithms. One possibility is to use DES three times on the same message, this me-
thod is known as 3DES. But even this method seems not to be used for too long time,
due to security problems. There are already newer and possibly better algorithms,
like e.g. AES. In this Report DES will be used because it is not to complex.

A.2.1 Encryption

• Operates on 64-bit blocks

• Each Block is computed to a 64-bit output-block, within 16 rounds.

• DES uses 48-bit keys

• Each Round uses its’ own key

• Each key is derived from a 56-bit Masterkey, which is the shared secret

– First the key is initially permutated

– It is divided into two 28-bit blocks

– For each round the halves are rotated one or two bits to the left

– 24 bit are extracted and combined to a 48-bit key

The encryption is quite simple:

• 64-bit block is initially permutated

• Round i takes the result of round i-1

• Divides resulti−1 into two 32-bit parts: Li−1, Ri−1

• Computes Li = Ri−1, Ri = Li−1
⊕

f(Ri−1, Ki

• f(Ri−1, Ki) is called mangler function

– f() takes 32-bit Ri−1 and 48-bit key

– Expands Ri−1 to 48-bit block

– XORS it with Ki

– Cuts result into eight 6-bit chunks

– 6 − bitinput → SBox → 4-bit output

– Combines them again into a 32-bit string

– Final Permutation

To sum up how many cycles are executed it is necessary to have a closer look to
the number of basic operations that have to be executed. Down at this level there
is again a possibility to compare the algorithm to other algorithms.

#

#

%&
'

$
$

$
$

$
$$

%
%

%
%%

#

. .

.

!

#
&

&
&'

#

((()

*
*

*
*

*+

#

!

#

(

)

*

+
#

"

#
,

,
,

,
,

,
,

,
,

,
,

,
,

,
,-

#

perm

split

f

shift

Mangler function

perm
split
drop
shift

L i-1 i-1R R Ki-1 i

expand

split
s-boxes

drop

combine

Masterkey

SPlittet message

To be able to sum the basic operations up, the following assumptions are made:
Operation Number of Cycles

AND 2
ADD 2
MULT 15

OR/XOR 2
SHIFTX 3

split 6
rotateX 6

expand/combine 0
SBox s
drop s

Permutation (perm) t*6

The number of the SBoxes is expressed through the variable s.

Now the sum for one round is (748 + 10s) cycles, while the sBoxes are not yet
analysed. For the whole encryption this value has to be multiplicated with B:
B = messagelength

64Bit

A.3 MD5 - Hashing

MD5 is cryptographic algorithm to create a 128-bit fixedlength message digest, out
of messages with arbitrary length. MD5 is a one way function. It is not possible to
recompute the message out of the message digest.

• Message is padded to 448 bit (Modulo 512)

• The length of the message is added, as a 64-bit Integer.

• Starting with some initial 128-bit value

• Algorithm works over k phases (k = length div 512)

• In each phase there is a 128-bit digest computed, using the previous and 512-bit
block of the message as inputs

• Each phase consist of 4 rounds, connected to four functions

– F(x,y,z) = (x AND y) OR ((NOT x) AND z)

– G(x,y,z) = (x AND z) OR (y (NOT z))

– H(x,y,z) = x OR y OR z

– J(x,y,z) = y OR (x or (NOT z))

– Each of these functions operates on the 32-bit Variables

– Therefor the 512-bit messageblock is divided into 16 32-bit blocks.

– Each function is used to change four variables (p,q,r,s) in 16 iterations
b0...15

– Iterations compare Tanenbaum[4][434]

Also this time it is impossible to calculate a number of simple multiplications. So
here is again a summation of steps that are to be processed, which can be transfor-
med to basic instructions for a specific platform.

K· [16· (p + F (q, r, s) + b0...15 + C0...15 + rotateX)

+16· (p + G(q, r, s) + b0...15 + C0...15 + rotateX)

+16· (p + J(q, r, s) + b0...15 + C0...15 + rotateX)

+16· (p + H(q, r, s) + b0...15 + C0...15 + rotateX)]

Using the values assumed in A.2 the summed up cylces are:

K· [16· (2 + 4 + 2 + 2 + 6)

+16· (2 + 4 + 2 + 2 + 6)

+16· (2 + 2 + 2 + 2 + 6)

+16· (2 + 3 + 2 + 2 + 6)]

= K · 976 Cycles

B. Implementation - Results
Appendix

B.1 Fiat-Shamir Basic Version Results

Fiat-Shamir-Protocol over one round:

Round Random X Y Challenge Overall
1 1 2 1 0 27450
1 1 1 0 1 12356
1 1 2 2 0 28738

Fiat-Shamir-Protocol over five rounds:

First run:

Round Random X Y Challenge Overall
1 1 2 0 1
2 39195 1 2 0
3 48555 1 0 1
4 60771 1 0 1
5 73045 1 1 1 76023

Second run:

Round Random X Y Challenge Overall
1 1 2 0 1
2 53953 1 1 0
3 64113 1 1 0
4 74554 1 1 0
5 84831 1 1 1 97045

Third run:

Round Random X Y Challenge Overall
1 1 2 1 0
2 12347 1 2 0
3 18558 1 0 1
4 24787 11 1 0
5 31051 1 1 0 37459

Forth run:

Round Random X Y Challenge Overall
1 1 2 1 0
2 12347 1 2 0
3 18558 1 0 1
4 24787 11 1 0
5 31051 1 1 0 37459

Fifth run:

Round Random X Y Challenge Overall
1 1 2 1 0
2 10353 1 0 1
3 15843 3 0 1
4 21249 1 0 1
5 26929 1 4 1 33223

Fiat-Shamir over ten rounds

First run:

Round Random X Y Challenge Overall
1 1 2 11 1
2 9742 1 0 1
3 16030 1 0 1
4 22364 1 38 0
5 28573 1 1 1
6 35551 2 0 1
7 41710 1 0 1
8 57925 1 1 1
9 53937 1 0 0
10 60111 2 0 1 66240

Second run

Round Random X Y Challenge Overall
1 1 1 1 1
2 12275 2 1 1
3 17797 29 1 1
4 27350 1 0 0
5 33716 1 1 1
6 39122 1 0 1
7 44590 1 0 1
8 50144 2 0 1
9 55633 1 1 0
10 62039 1 0 1 65090

Third run:

Round Random X Y Challenge Overall
1 1 2 0 1
2 8628 1 0 1
3 14300 1 1 0
4 20111 2 1 1
5 25957 44 1 0
6 32102 1 0 1
7 37753 32 1 0
8 43515 1 1 1
9 48978 1 2 0
10 55035 2 1 0 65090

B.2 Fiat-Shamir Short Version Results

More or less the same measurements are done as at the usual protocols, but the
calculation of the random values and the X-values is combined.

FS-Short over three rounds, one message

First run:

Round Random / X Y Challenge Overall
1 5 2 0
2 21420 2 1
3 27399 2 1 30136

Second run:

Round Random / X Y Challenge Overall
1 5 3 1
2 17846 2 0
3 25737 2 0 17307

Third run:

Round Random / X Y Challenge Overall
1 5 3 0
2 4996 2 1
3 11109 2 0 30136

FS-Short over three rounds, five messages

First run:

Round Random / X Y Challenge Overall
1 15 15 11010
2 8827 10 01110
3 17829 15 01011 28129

Second run:

Round Random / X Y Challenge Overall
1 14 9 10110
2 18385 10 11011
3 28548 9 01001 17307

Third run:

Round Random / X Y Challenge Overall
1 17 10 10110
2 14317 10 10000
3 22926 23 00000 30136

FS-Short over three rounds, ten message

First run:

Round Random / X Y Challenge Overall
1 29 18 1010100111
2 20861 23 0000101101
3 29930 48 1110001111 37924

Second run:

Round Random / X Y Challenge Overall
1 28 50 1001011110
2 11187 17 1000011110
3 21510 19 0001100000 28018

Third run:

Round Random / X Y Challenge Overall
1 29 24 0110011010
2 16255 52 0000010000
3 22830 20 0110100000 30160

FS-Short over three rounds, thirty message

First run:

Round Random / X Y Challenge Overall
1 104 81 110111110010100001111011100000
2 23685 96 110000100111011100101111010000
3 33113 124 010011111011111000100101010110 46014

Second run:

Round Random / X Y Challenge Overall
1 104 88 0001100111100001101010101101001
2 26116 63 101001010010110101000001000001
3 40446 80 101101001000001011011100100100 47859

Third run:

Round Random / X Y Challenge Overall
1 114 145 010111011110010110000111001110
2 16088 77 101011100110110010101111011110
3 25553 199 011010100010001000001110010001 39094

B.3 SSH-Measurements

The following Values are shown in this table:

• Roundnumber: Nr

• Time needed for calculating U: U

• Time needed for calculating the secret: S

• Time needed for encryption: E

• Time needed for decryption: D

• Time needed for first communication: C 1

• Time needed for second communication: C 2

• Time needed for the whole authentication: Rt

Nr U S E D C 1 C 2 Rt
1 105 18 521 72 24302 1957 28623
2 10 175 180 112 2097 2379 6669
3 13 411 171 111 2020 2327 6985
4 49 373 163 104 2399 1984 7016
5 28 507 139 115 1901 2197 6728
6 27 292 90 179 1965 2307 6681
7 14 14 180 198 2404 2456 6618
8 44 260 158 95 2335 4401 8995
9 29 110 131 74 2019 2354 6715
10 20 88 131 113 2166 2146 6549
11 71 30 443 68 6083 1859 9894
12 12 415 135 108 2210 2001 6682
13 13 163 129 102 2796 2055 6828
14 11 91 132 179 2382 2235 6559
15 59 401 161 148 1910 2177 6679
16 12 284 105 178 2578 2270 6944
17 30 400 90 122 2070 2059 6788
18 9 187 166 143 2318 2332 6678
19 50 534 158 71 2057 2323 7207
20 12 49 122 81 1371 4624 7698
21 67 81 525 99 11223 1929 15271
22 76 47 112 115 2075 2486 6806
23 16 206 213 69 1503 4152 7733
24 82 382 186 159 2069 2134 6769
25 11 36 144 128 1984 2452 6476
26 12 28 144 113 2117 2312 6525
27 16 211 131 102 2255 2424 6945
28 52 16 104 163 2040 2425 6660

Nr U S E D C 1 C 2 Rt
29 11 36 90 179 2079 9507 13814
30 12 406 118 82 2059 1976 6721
31 68 294 389 144 4233 2029 8665
32 66 222 165 134 2572 2312 7042
33 50 113 116 121 2048 2452 6785
34 30 155 136 110 2178 2299 6779
35 23 75 104 163 1961 2355 6578
36 11 208 134 102 1997 2076 6472
37 10 52 157 195 4524 2035 8371
38 16 297 103 117 2333 2569 7349
39 51 48 103 179 1910 2334 6398
40 27 390 108 109 2198 2041 6764
41 104 353 442 106 5585 2040 10244
42 12 290 134 192 2867 2376 7110
43 25 44 2328 95 2306 1991 8619
44 12 275 178 102 2367 2154 6628
45 52 309 108 139 2147 2125 6561
46 11 84 142 107 2341 2410 6907
47 15 434 134 82 1955 2020 9398
48 11 289 156 102 2295 2242 6615
49 13 371 128 104 1967 2157 6655
50 23 34 211 147 2370 2393 6649
51 92 13 481 70 5657 1844 9380
52 15 33 157 103 2376 2329 6491
53 12 318 129 104 2096 2144 6686
54 26 319 132 113 2112 2065 6703
55 14 365 166 185 2139 1988 6655
56 46 100 102 180 2432 2325 6447
57 73 343 100 87 2121 2250 6649
58 68 165 137 102 2295 2431 7009
59 60 401 137 146 2171 1998 6742
60 42 142 151 104 1575 2150 5467
61 66 281 425 191 5168 2254 9687
62 22 280 128 78 2127 2381 6743
63 11 39 175 111 2308 2136 6822
64 64 452 173 176 2029 2108 6795
65 27 33 132 103 2112 2478 6720
66 10 262 130 101 2092 2151 6693
67 13 437 167 178 2020 2129 6615
68 36 172 107 177 2046 2320 6585
69 50 19 178 120 1920 2371 6444
70 27 259 162 103 2081 2208 6635
71 94 161 486 63 5282 2160 9189
72 11 80 177 142 2485 2264 6582
73 53 382 156 103 1929 2249 6745
74 10 238 102 171 2343 2374 6779

Nr U S E D C 1 C 2 Rt
75 28 259 150 84 2040 2112 6654
76 65 43 152 167 1919 2317 6433
77 40 317 173 124 2531 2205 6860
78 11 361 175 102 2546 2083 7102
79 11 278 104 182 2010 2199 6611
80 31 184 108 115 2388 2098 6501
81 97 329 392 112 15055 2202 19711
82 14 57 145 109 1960 2158 6503
83 49 31 135 135 1886 2211 6348
84 14 363 107 106 1916 2298 6823
85 13 65 239 115 2051 2199 6588
86 8 22 110 179 2293 2389 6415
87 13 267 146 135 2250 2196 6767
88 86 436 147 140 2121 1958 6779
89 13 439 135 2336 1869 2251 8893
90 11 217 106 140 2230 2210 6753
91 115 493 433 142 11727 2100 16829
92 12 206 177 133 2098 2214 6604
93 13 118 196 83 2234 2175 6679
94 65 415 166 104 1925 2378 6934
95 62 93 157 83 3312 1927 7481
96 39 2528 159 139 2125 1948 8759
97 12 284 160 188 2059 2214 6704
98 11 280 161 118 2001 2383 7059
99 51 31 136 177 2041 2415 6685
100 10 38 136 178 2380 2395 6461

B.3.1 Analysis of the data

The following diagrams show the distribution of the results within certain timeslots.
Each column represents a timeslot of 10ms. Starting at 0ms. The Y-Axis shows the
number of calculations completed within particular that timeslot.

C. Source Code

Here are the most important parts of the source code. For each implementation these
parts of the sourcecode are included, that do most of the work!

C.1 Fiat-Shamir

C.1.1 FS-MIDlet
package midlets.fiatshamir;

import javax.microedition.lcdui.*;
import java.io.IOException;
import java.util.*;

class FiatShamirScreen
extends Form
implements CommandListener, HttpPosterListener

{
private final FiatShamirMIDlet midlet;
private final HttpPoster httpPoster;
private final StringItem outputField;
private final StringItem outputField1;
private final StringItem outputField2;
private final Command quitCommand;
private volatile boolean readyForInput = true;
private volatile boolean readyForRead = false;
public long reply;
private long r;
private long rreply;

FiatShamirScreen(FiatShamirMIDlet midlet,
HttpPoster httpPoster)

{
super("fiatshamir");
this.midlet = midlet;
this.httpPoster = httpPoster;
outputField = new StringItem("Fiat-Shamir Authentificaton!","");

append(outputField);
outputField1 = new StringItem("","");
append(outputField1);

outputField2 = new StringItem("Times: ","");
append(outputField2);

String times = new String();

//Precomputed and Hardcoded TrustCenter Information
// p = 41 p=6781
// q = 13 q=313721

Long n = new Long(2127342101); // n = p*q
long s = 7692439l; // A’s secret coprime to n
Long v = new Long ((s*s) % n.longValue()); //public key to be registered at the TC

//v=1597229406

//set first timer
Date start = new Date();

//end first timer

while (true){

if ((reply ==11) || (reply==10)){
break;
}

Random rand=new Random(); // initalising the random numebr generator

r = rand.nextLong() % n.longValue(); //making sure the random is less than n

if (r <= 0) {r = r * -1;} // making the random commitment positive

Date randomT = new Date();
times = times +("random:"+(randomT.getTime()-start.getTime()));

Long x = new Long((r*r)%n.longValue()); // x=r^2 mod n

Date xT = new Date();
times = times +(" xT:"+(xT.getTime()-randomT.getTime()));

//send first phase information public key v and commitment x
try{

String requestStr = "v="+v.longValue()+"&x="+x.longValue()+"&n="+n.longValue()+"&r="+r;
httpPoster.sendRequest(requestStr, this);
readyForInput = false;
readyForRead = false;

}
catch (IOException e)

{
outputField.setText("Error");

}
//end first phase
outputField.setText(""+reply);
//working on challenge

while (readyForRead == false)
{

//hibernate
}

if ((reply ==11) || (reply==10)){
break;
}

long y = 0; //initalising prove

Date yT1 = new Date();

if (reply == 0){
y = r;

}

if (reply ==1){
y = (r * s) % n.longValue();

}

else{

outputField1.setText("1/"+reply);
y = r;

}

Date yT2 = new Date();
times = times +(" yT:"+(yT2.getTime()-yT1.getTime()));

//send second phase

try{
String requestStr = "y="+y;
httpPoster.sendRequest(requestStr, this);
readyForInput = false;
readyForRead = false;

}
catch (IOException e){

outputField.setText("Error");
}

while (readyForRead == false)
{

//hibernate
}

}

if (reply == 10){

outputField1.setText("Failed");

}

if (reply == 11){

Date stop = new Date();
outputField1.setText("Succeded");
outputField.setText(""+(stop.getTime()-start.getTime()));
outputField2.setText(times);

}

//end working on challenge

quitCommand = new Command("Quit", Command.EXIT, 2);
addCommand(quitCommand);
setCommandListener(this);

}

public void commandAction(Command c, Displayable d)
{

if (c == quitCommand){

midlet.FiatShamirScreenQuit();
}

}

public void receiveHttpResponse(String response){

reply = Integer.parseInt(response);
response = "";
outputField.setText(""+reply);
readyForInput = true;
readyForRead = true;

}

public void handleHttpError(String errorStr){
outputField.setText("Error");
readyForInput = true;

}
}

C.1.2 FS-Servlet
package servlets.fiatshamir;

/**
* <p>Überschrift: Servlets Studienarbeit</p>
* <p>Beschreibung: Servlets zur Studienarbeit</p>
* <p>Copyright: Copyright (c) 2004</p>
* <p>Organisation: Uppsala Universitetet / Universität Tübingen</p>
* @author Tobias Bandh
* @version 1.0
*/

import java.util.Enumeration;
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.math.*;

public class FiatShamirServlet
extends HttpServlet {

//Initialisation
public void init(ServletConfig config) throws ServletException
{

super.init(config);
}

//end

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException{

//logfile
File[] rootlist = File.listRoots();

String path = rootlist[0]+"temp"+File.separatorChar+"data"+File.separatorChar;
String filename = "fiatshamirlog1.txt"; //datafile

PrintWriter file_out = new PrintWriter(new FileWriter(path+filename,true));
//end logfile

int phase=0;
int round=-1;
int requiredRounds = 10;
Long n = new Long(2127342101);
boolean succ = true;
Integer phaseObject = new Integer(1);
Integer roundObject = new Integer(1);
try{

// First handle session

HttpSession session = request.getSession(false);
if (session == null) { // first connection?

phase = 0;
round = 0;
session = request.getSession(true); // create
String requestUrl = HttpUtils.getRequestURL(request).toString();
String rewrittenUrl = response.encodeURL(requestUrl);
response.setHeader("X-RewrittenURL", rewrittenUrl);
session.setAttribute("round", new Integer(round + 1));
session.setAttribute("phase", new Integer(0));

}
else { // if this is not the first connection there must information saved

phaseObject = ((Integer) (session.getAttribute("phase")));
phase = phaseObject.intValue();
roundObject = ((Integer) (session.getAttribute("round")));
round = roundObject.intValue();

}

// read request
InputStream in = request.getInputStream();

int requestLength = request.getContentLength();

if (requestLength == -1) {
throw new IOException("Need to know request length");

}
StringBuffer buf = new StringBuffer(requestLength);

for (int i = 0; i < requestLength; ++i) {
int ch = in.read();
if (ch == -1) {

break;
}

buf.append((char) ch);
}
in.close();

//requestStr contains the parameters and values e.g. v=3&x=23
String requestStr = buf.toString();

// process request, producing response
String responseStr = "";
//while (round <= requiredRounds) {
if (round <= requiredRounds) {

if (phase == 0) { //if it is the first phase
try {

StringTokenizer st = new StringTokenizer(requestStr, "&");
StringTokenizer st1 = new StringTokenizer(st.nextToken(), "=");
StringTokenizer st2 = new StringTokenizer(st.nextToken(), "=");
st1.nextToken();
st2.nextToken();
long v = Long.parseLong(st1.nextToken()); // get v
long x = Long.parseLong(st2.nextToken()); // get x
session.setAttribute("phase", new Integer(1)); //save phase
session.setAttribute("v", new Long(v)); //save v
session.setAttribute("x", new Long(x)); //save x

Random chRand = new Random(); //initialize Random number generator for challenge
int challenge = chRand.nextInt(2); //create challenge
responseStr = Integer.toString(challenge); // create response including challenge
session.setAttribute("e", new Integer(challenge));

//writing log
file_out.println("Received x: "+x);
file_out.println("Send response: " +responseStr);
file_out.close();
//end writing log

}

catch (NumberFormatException e) {
responseStr = "Error";

}
}

//else {phase =1;}
if (phase ==1) { //second phase! receiving prove / checking it now

StringTokenizer st3 = new StringTokenizer(requestStr, "&");
StringTokenizer st4 = new StringTokenizer(st3.nextToken(), "=");
st4.nextToken();
long y = Long.parseLong(st4.nextToken()); // get y
Long vv = (Long) (session.getAttribute("v"));
Long xx = (Long) (session.getAttribute("x"));
Integer ee = (Integer) (session.getAttribute("e"));
session.setAttribute("round", new Integer(round + 1));
session.setAttribute("phase", new Integer(0));
int e = ee.intValue();
boolean acc = false;

//working on the input
if (y == 0) { //must be rejceted
acc = false;

}
else { //otherwise check input

file_out.println("Received y: "+y);
long ysquare = (y * y) % n.longValue();
file_out.println("Y^2 mod n: "+ysquare);
long test = (xx.longValue() *

(long) (Math.pow((double) vv.longValue(), (double) e))) %
n.longValue();

file_out.println("Test: "+test);

if (ysquare == test) {
responseStr = "" + 1;
if (round == requiredRounds){

responseStr = "" + 11;}

file_out.println("Sent response: " +responseStr);
file_out.close();

}
else
responseStr = "" + 10;

file_out.println("Sent response: " +responseStr);
file_out.close();

}
//input verified?

}
// write response
response.setContentType("text/plain");
PrintWriter out = response.getWriter();
out.write(responseStr);
out.close();

}
else {
// end first connection

responseStr = "11";

// write response
response.setContentType("text/plain");
PrintWriter out = response.getWriter();
out.write(responseStr);
out.close();

file_out.close();
}

}
catch (IOException e) {
e.printStackTrace();
throw e;

}
catch (Exception e) {
e.printStackTrace();
throw new ServletException(e.getMessage());

}

}

public String getServletInfo()
{

return "SSH Servlet.";
}

}

C.2 Fiat-Shamir Short

C.2.1 FS-Short-MIDlet
package midlets.FS_SHORT;

import javax.microedition.lcdui.*;
import java.io.IOException;
import java.util.*;

class FS_SHORT_SCREEN
extends Form
implements CommandListener, HttpPosterListener{

private final FS_SHORT_MIDlet midlet;
private final HttpPoster httpPoster;
private final StringItem outputField;
private final StringItem outputField1;
private final StringItem outputField2;
private final StringItem outputFieldX;
private final Command quitCommand;
private final Command startCommand;
private volatile boolean readyForInput = true;
private volatile boolean readyForRead = false;
public String reply;
private long r;

private long rreply;
public String responseStr ="";

FS_SHORT_SCREEN(FS_SHORT_MIDlet midlet,
HttpPoster httpPoster){

super("FS_SHORT");
this.midlet = midlet;
this.httpPoster = httpPoster;

outputField = new StringItem("Fiat-Shamir Authentificaton!","");

append(outputField);
outputField1 = new StringItem("","");
append(outputField1);
String requestStr;

outputFieldX = new StringItem("Times: ","");
append(outputFieldX);

String times = new String();

int num_of_com = 30;
reply="";

Long n = new Long(2127342101); // n = p*q
long s = 7692439l; // A’s secret coprime to n
Long v = new Long (2); //public key to be registered at the TC

//set first timer
Date start = new Date();
//end first timer

while (true){
if ((1==(reply.compareTo("11"))) || (1==(reply.compareTo("10")))){
break;
}

requestStr="v="+v.longValue();

String r_string ="&r="; //tempstring

long[] rs= new long[num_of_com];
int j = 0;
Random rand=new Random(); // initalising the random numebr generator
while (j <= (num_of_com - 1)){

r = rand.nextLong() % (long) n.longValue(); //making sure the random is less than n
if (r <= 0) {r = r * -1;} // making the random commitment positive
rs[j] = r;

r_string = r_string + Long.toString(r)+"&r=";
Long x = new Long((r*r)% n.longValue()); // x=r^2 mod n

//building request string
requestStr=requestStr + "&x"+j+"="+x.longValue();
j++;
}

Date randomT = new Date();
times = times +(" random/xes:"+(randomT.getTime()-start.getTime()));

//send first phase information public key v and cimmitment x
try{
r_string = r_string +"0";
requestStr = requestStr;//+ r_string;
httpPoster.sendRequest(requestStr, this);
readyForInput = false;
readyForRead = false;
}
catch (IOException e){

outputField.setText("Error");
}

//end first phase
outputField.setText(""+reply);
//working on challenge

while (readyForRead == false){
//hibernate
}

if ((0==(reply.compareTo("11"))) || (0==(reply.compareTo("10")))){
break;

}

String cutStr = "2";
char ch = cutStr.charAt(0);
Tokenize st = new Tokenize(responseStr, ch);

long[] challenges = new long[num_of_com];
requestStr="";
int ch_count = 0;

Date yT = new Date();

while (st.moreT()){

long y = 0; //initalising prove
long challenge =Long.parseLong(st.nextT());

if (challenge == 0){

if (requestStr==""){
requestStr = "y"+ch_count+"="+ rs[ch_count];
}

else{
requestStr =requestStr + "&y"+ch_count+"="+ rs[ch_count];
}

}

if (challenge ==1){

y=0;
y = (rs[ch_count] * s) % n.longValue();

if (requestStr==""){
requestStr = "y"+ch_count+"="+ y;}
else{
requestStr =requestStr +"&y"+ch_count+"="+ y;
}
}

ch_count++;
}

Date yT1 = new Date();
times = times +(" yT:"+(yT1.getTime()-yT.getTime()));

//send second phase

try{
httpPoster.sendRequest(requestStr, this);
readyForInput = false;
readyForRead = false;

}

catch (IOException e){
outputField.setText("Error");

}

while (readyForRead == false){
//hibernate
}

responseStr = outputField.getText();

}

if (reply.compareTo("10")==0){

outputField1.setText("Failed");
}

if (reply.compareTo("11")==0){

outputField1.setText("Succeded");
Date stop = new Date();
outputField.setText(""+(stop.getTime()-start.getTime()));
outputFieldX.setText(times);
}

outputField2 = new StringItem("Now ready to receive Messages!","");
startCommand = new Command("OK", Command.OK, 2);
quitCommand = new Command("Quit", Command.EXIT, 1);

if (reply.compareTo("11")==0){

append(outputField2);
addCommand(startCommand);
}

addCommand(quitCommand);
setCommandListener(this);

}

public void commandAction(Command c, Displayable d){

if (c == startCommand){

//midlet.FS_SHORT_SCREENQuit();
midlet.FS_SHORT_SCREENDone();

}
else {

midlet.FS_SHORT_SCREENQuit();
}

}

public void receiveHttpResponse(String response){

//reply = Long.parseLong(response);
reply ="";
reply = reply +response;

responseStr= response.trim();
//outputField.setText(response);
outputField.setText(""+reply);
readyForInput = true;
readyForRead = true;

}

public void handleHttpError(String errorStr){

outputField.setText("Error");
readyForInput = true;

}
}

C.2.2 FS-Short-Servlet
package servlets.fs_short;

/**
* <p>Überschrift: Servlets Studienarbeit</p>
* <p>Beschreibung: Servlets zur Studienarbeit</p>
* <p>Copyright: Copyright (c) 2004</p>
* <p>Organisation: Uppsala Universitetet / Universität Tübingen</p>
* @author Tobias Bandh
* @version 1.0
*/

import java.util.Enumeration;
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.math.*;

public class fs_short_servlet
extends HttpServlet {

public void init(ServletConfig config) throws ServletException
{

super.init(config);
}

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException{

//logfile
File[] rootlist = File.listRoots();
String path = rootlist[0]+"temp"+File.separatorChar+"data"+File.separatorChar;
String filename = "FS_SHORT.txt"; //datafile
PrintWriter file_out = new PrintWriter(new FileWriter(path+filename,true));

//end logfile

int phase = 0;
int round = -1;
int requiredRounds = 3;
int ch_count=30;
Vector requestVec;
boolean succ = true;
Integer phaseObject = new Integer(1);
Integer roundObject = new Integer(1);

try {
// First handle session
HttpSession session = request.getSession(false);
if (session == null) { // first connection?

phase = 0;
round = 0;
session = request.getSession(true); // create
String requestUrl = HttpUtils.getRequestURL(request).toString();
String rewrittenUrl = response.encodeURL(requestUrl);
response.setHeader("X-RewrittenURL", rewrittenUrl);
session.setAttribute("round", new Integer(round));
session.setAttribute("phase", new Integer(0));
session.setAttribute("authenticated", new Integer(0));

}
// if this is not the first connection there must information saved
else {

phaseObject = ((Integer) (session.getAttribute("phase")));
phase = phaseObject.intValue();
roundObject = ((Integer) (session.getAttribute("round")));
round = roundObject.intValue();

}

// read request
InputStream in = request.getInputStream();
int requestLength = request.getContentLength();
if (requestLength == -1) {

throw new IOException("Need to know request length");
}

StringBuffer buf = new StringBuffer(requestLength);
for (int i = 0; i < requestLength; ++i) {

int ch = in.read();
if (ch == -1) {

break;
}

buf.append((char) ch);
}

in.close();

//requestStr contains the parameters and values e.g. v=3&x=23
String requestStr = buf.toString();

// process request, producing response
String responseStr = "";
//while (round <= requiredRounds) {
if (round < requiredRounds) {

file_out.println("Round:" +round);

if (phase == 0) { //if it is the first phase
try {

file_out.println("Phase: "+phase);
requestVec = inputs_split(requestStr);

int v_number = Integer.parseInt(requestVec.elementAt(0).toString()); // get v
long v = get_public_key(v_number);
long n = get_n(v_number);
Vector xes = new Vector();

int xcount = 1;
long xn;
while (xcount <= requestVec.size() - 1) {

xes.add(new Long(Long.parseLong(requestVec.elementAt(xcount).
toString())));

file_out.println("received x: "+requestVec.elementAt(xcount).
toString());

xcount++;
}

session.setAttribute("phase", new Integer(1)); //save phase
session.setAttribute("v", new Long(v)); //save v

session.setAttribute("n", new Long(n));
session.setAttribute("x", xes); //save xes

Random chRand = new Random(); //initialize Random number generator for challenge
Vector e_Vec = new Vector();

//create challengestring with 5 (ch_count challenges and 2 as seperator
for (xcount = 0; xcount <= (ch_count-1); xcount++) {

int challenge = chRand.nextInt(2); //create challenge
e_Vec.add(new Integer(challenge));
if (responseStr == "") {
responseStr = responseStr + Integer.toString(challenge);

}
else {
responseStr = responseStr + "2" + Integer.toString(challenge);

}
file_out.println("Challenge: "+challenge);

}

session.setAttribute("e", e_Vec);
}

catch (NumberFormatException e) {
responseStr = "Error";

}
}

if (phase == 1) { //second phase! receiving prove / checking it now

file_out.println("Phase: "+phase);
Vector y_es = new Vector();

requestVec = inputs_split(requestStr);
int xcount = 0;
long xn;

while (xcount <= requestVec.size() - 1) { //building y vector
y_es.add(new Long(Long.parseLong(requestVec.elementAt(xcount).

toString())));
xcount++;

}

Long vv = (Long) (session.getAttribute("v"));
Long nn = (Long) (session.getAttribute("n"));
Vector xx = (Vector) (session.getAttribute("x"));
Vector ee = (Vector) (session.getAttribute("e"));

long t_v = vv.longValue();
long t_n =nn.longValue();

session.setAttribute("round", new Integer(round+1));
session.setAttribute("phase", new Integer(0));

xcount = 0;
boolean acc = false;

while (xcount <= (ch_count-1)) {
int t_e = Integer.parseInt(ee.elementAt(xcount).toString()); //get temporary e
long t_y = Long.parseLong(y_es.elementAt(xcount).toString()); //get temporary y

if (t_y == 0) { //must be rejceted
acc = false;

}
else { //otherwise check input
long ysquare = (t_y * t_y) % t_n;
file_out.println("y: "+t_y);

file_out.println("n: "+t_n);

//getting temporary y
long t_x = Long.parseLong(xx.elementAt(xcount).toString());

long test = (t_x * (long) (Math.pow((double) t_v, (double) t_e))) %t_n;

file_out.println("Saved x: "+t_x);
file_out.println("Y^2: "+ysquare);

file_out.println("Test: "+test);

if ((ysquare == test) && (responseStr != "10")) {
responseStr = "" + 1;
if (round+1 == requiredRounds){
responseStr = "" + 11;
session.setAttribute("authenticated", new Integer(1));

}

}
else {
responseStr = "" + 10;

}

}
xcount++;

}

//working on the input
}

// write response
response.setContentType("text/plain");
PrintWriter out = response.getWriter();
out.write(responseStr);
out.close();
file_out.close();

}

//Processing after authentication
Integer auth = (Integer) (session.getAttribute("authenticated"));
if ((round>=requiredRounds) && (auth.intValue() ==0)){
responseStr = "11";

// write response
response.setContentType("text/plain");
PrintWriter out = response.getWriter();
out.write(responseStr);
out.close();
file_out.close();
session.setAttribute("authenticated", new Integer(1));

}
if ((round>=requiredRounds) && (auth.intValue() ==1)){

Long vv = (Long) (session.getAttribute("v"));
long t_v = vv.longValue();

PreparePush message = new PreparePush(t_v);
responseStr = "";
if (message.MoreMessages()){
responseStr = message.NextMessage();

}
else
{
responseStr = "no_more_messages";

}

response.setContentType("text/plain");
PrintWriter out = response.getWriter();
out.write(responseStr);
out.close();

}
}

catch (IOException e) {
e.printStackTrace();
throw e;

}
catch (Exception e) {
e.printStackTrace();
throw new ServletException(e.getMessage());

}

}

/*

Accepts a request String
Returns: A Vector of Arrays
Array: Parameter Name / Parameter Value

**
*/

public Vector inputs_split(String requestStr)
{
Vector return_vec = new Vector();
String[] elements = new String[2];
StringTokenizer st = new StringTokenizer(requestStr, "&");

while (st.hasMoreTokens()) {

StringTokenizer st1 = new StringTokenizer(st.nextToken(), "=");
st1.nextToken();
return_vec.add(st1.nextToken());
}

return return_vec;
}

/*

**
*/

public long get_public_key(int i){

long[] keys = new long[]{237,1597229406};
return keys[i-1];

}

public long get_n(int i){

long[] n_s = new long[] {533, 2127342101};
return n_s[i-1];

}

public String getServletInfo()
{

return "SSH Servlet.";
}

}

C.3 SSH

C.3.1 SSH-MIDlet
package midlets.SSH;

import javax.microedition.lcdui.*;
import java.io.IOException;
import java.util.*;
import org.bouncycastle.crypto.*;
import org.bouncycastle.crypto.digests.*;
import org.bouncycastle.crypto.engines.*;
import org.bouncycastle.crypto.paddings.*;
import org.bouncycastle.crypto.params.*;
import org.bouncycastle.util.encoders.Hex;

class SSHSCREEN
extends Form

implements CommandListener, HttpPosterListener{
private final SSHMIDlet midlet;
private final HttpPoster httpPoster;
private final TextField userField;
private final TextField passField;
private final StringItem outputField;
private final Command quitCommand;
private final Command loginCommand;
private volatile boolean readyForInput = true;
private volatile boolean readyForRead = false;

public String reply;
String requestStr = "";
BigInteger secret = new BigInteger("0");

SSHSCREEN(SSHMIDlet midlet, HttpPoster httpPoster){

super("SSH");
this.midlet = midlet;
this.httpPoster = httpPoster;

outputField = new StringItem("Secret Key","");

append(outputField);

//Prime p
BigInteger p = new BigInteger("36413321723440003717");

//small Value q = 2
BigInteger q = new BigInteger("2");

//Secret x <= 63;
Random rand = new Random();
int x = 0;
while (x==0){
x = rand.nextInt()% 180;
}

if (x<=0){
x=x*-1;
}

//Calculate u
BigInteger exponent = new BigInteger(Integer.toString(x));

BigInteger u = q.modPow(exponent,p);
Pow uu = new Pow(q,exponent,p);

String message = "q="+q.toString()+"&p="+p.toString()+"&u="+u.toString()+"&x1="+Integer.toString(x)+"&uu="+uu.getValue()+"&Steps="+uu.getSteps();

//send message to the server
try{
requestStr = message;
httpPoster.sendRequest(requestStr, this);
readyForInput = false;
readyForRead = false;

}
catch (IOException e){

//outputField.setText("Error");
}

//wait until repsonse received
while (readyForRead == false){
}

//work on the response

BigInteger v = new BigInteger(reply);
secret = v.modPow(exponent,p);

outputField.setText(""+secret);

//Getting user and Password
userField = new TextField("User", null, 16, TextField.ANY);

append(userField);
passField = new TextField("Password", null, 8, TextField.PASSWORD);
append(passField);

quitCommand = new Command("Quit", Command.EXIT, 2);
addCommand(quitCommand);
loginCommand = new Command("Login", Command.SCREEN, 2);
addCommand(loginCommand);

setCommandListener(this);
}

public void commandAction(Command c, Displayable d){

if (c == quitCommand)
{

midlet.SSHSCREENQuit();
}

else if (readyForInput)
{

if (c == loginCommand)
{

String plainText = "user="+userField.getString()+"&pass="+passField.getString();
String secretText = doEncryption(plainText,outputField.getText(),outputField.getText());
secretText.trim();

try{
requestStr = secretText;
httpPoster.sendRequest(requestStr, this);
readyForInput = false;
readyForRead = false;
}
catch (IOException e){

//outputField.setText("Error");
}

while (!readyForRead){
}

String encodedText=reply.trim();
String pass = ""+secret.toString();
String decodedMessage = decodeMessage(encodedText.getBytes(),pass,pass);
outputField.setText(decodedMessage.trim());
}

}
}

public void receiveHttpResponse(String response){

reply = response;
readyForRead=true;
readyForInput=true;

}

public void handleHttpError(String errorStr){

readyForInput = true;
}

private static String doEncryption(String plainText, String password, String nonce){

String compundKey = password + ":" + nonce;
Digest digest = new MD5Digest();
byte[] key = new byte[digest.getDigestSize()];
digest.update(compundKey.getBytes(), 0, compundKey.getBytes().length);
digest.doFinal(key, 0);

byte content[] = plainText.getBytes();

BufferedBlockCipher cipherEngine = new PaddedBufferedBlockCipher(new DESEngine());
cipherEngine.init(true, new KeyParameter(key));

byte[] cipherText = new byte[cipherEngine.getOutputSize(content.length)];

int cipherTextLength = cipherEngine.processBytes(content, 0, content.length,
cipherText, 0);
try{
cipherEngine.doFinal(cipherText, cipherTextLength);
}
catch(InvalidCipherTextException e){
}

return new String(Hex.encode(cipherText));

}

private static String decodeMessage(byte[] content, String password, String nonce){

String compundKey = password + ":" + nonce;
Digest digest = new MD5Digest();
byte[] key = new byte[digest.getDigestSize()];
digest.update(compundKey.getBytes(), 0, compundKey.getBytes().length);
digest.doFinal(key, 0);

byte cipherText[] = Hex.decode(content);
BufferedBlockCipher cipherEngine = new PaddedBufferedBlockCipher(new DESEngine());
cipherEngine.init(false, new KeyParameter(key));

byte[] plainText = new byte[cipherEngine.getOutputSize(cipherText.length)];

int plainTextLength = cipherEngine.processBytes(cipherText, 0, cipherText.length,
plainText, 0);
try{
cipherEngine.doFinal(plainText, plainTextLength);

}
catch(InvalidCipherTextException e){

}

return new String(plainText);

}
}

C.3.2 SSH-Servlet
package servlets.ssh;

/**
* <p>Überschrift: Servlets Studienarbeit</p>
* <p>Beschreibung: Servlets zur Studienarbeit</p>
* <p>Copyright: Copyright (c) 2004</p>
* <p>Organisation: Uppsala Universitetet / Universität Tübingen</p>
* @author Tobias Bandh
* @version 1.0
*/

import java.util.Enumeration;
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.math.*;

import org.bouncycastle.crypto.*;
import org.bouncycastle.crypto.digests.*;
import org.bouncycastle.crypto.engines.*;
import org.bouncycastle.crypto.paddings.*;
import org.bouncycastle.crypto.params.*;
import org.bouncycastle.util.encoders.Hex;

public class ssh
extends HttpServlet {

//Initialisation
public void init(ServletConfig config) throws ServletException
{

super.init(config);
}

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException{

//logfile
File[] rootlist = File.listRoots();
String path = rootlist[0]+"temp"+File.separatorChar+"data"+File.separatorChar;
String filename = "SSH.txt"; //datafile
PrintWriter file_out = new PrintWriter(new FileWriter(path+filename,true));

//end logfile

//div variables

// phase --> shows in which phase the protocol is
int phase = 0;
Integer phaseObject = new Integer(0);

//secret Key
BigInteger s=new BigInteger("0");
BigInteger secretObject = new BigInteger(s.toString());

try {
// First handle session
HttpSession session = request.getSession(false);
if (session == null) { // first connection?

session = request.getSession(true); // create
String requestUrl = HttpUtils.getRequestURL(request).toString();
String rewrittenUrl = response.encodeURL(requestUrl);
response.setHeader("X-RewrittenURL", rewrittenUrl);

//save phase for next phase
session.setAttribute("phase", new Integer(1));
session.setAttribute("round", new Integer(1));

}

else { // if this is not the first connection there must information saved

//get Phase
phaseObject = ((Integer) (session.getAttribute("phase")));
phase = phaseObject.intValue();
secretObject = ((BigInteger) (session.getAttribute("secret")));
s = new BigInteger(secretObject.toString());
Integer roundObject = ((Integer) (session.getAttribute("round")));
int r = roundObject.intValue();

}

// read request
InputStream in = request.getInputStream();
int requestLength = request.getContentLength();
if (requestLength == -1) {

throw new IOException("Need to know request length");
}

StringBuffer buf = new StringBuffer(requestLength);
for (int i = 0; i < requestLength; ++i) {

int ch = in.read();

if (ch == -1) {
break;

}
buf.append((char) ch);

}

in.close();

//requestStr contains the parameters and values e.g. v=3&x=23
String requestStr = buf.toString();

// process request, producing response
String responseStr = "";

//working on the phases.

String values;
BigInteger p = new BigInteger("0");
BigInteger q = new BigInteger("0");
BigInteger u = new BigInteger("0");
boolean test = false;

switch(phase){

case 0:
//expecting q,p,u
file_out.println("requestStr: "+requestStr);
values = get_values(requestStr,4);
file_out.println(values);
StringTokenizer vt = new StringTokenizer(values,"@");
q = new BigInteger(vt.nextElement().toString());
p = new BigInteger(vt.nextElement().toString());
u = new BigInteger(vt.nextElement().toString());
long y=0;
BigInteger res = new BigInteger("0");

Random rand = new Random();
BigInteger yy = new BigInteger("0");
while (test == false){
while(y<=0){
y = rand.nextInt(200);}
file_out.println("Y: "+y);

if ((y!=0))// &&((t*y)<=160)) {
yy = new BigInteger(Long.toString(y));
s= u.modPow(yy,p);
test=true;
}
}

res = q.modPow(yy,p);
responseStr=""+res;
session.setAttribute("secret", new BigInteger(s.toString()));
session.setAttribute("phase", new Integer(1));
session.setAttribute("u", u);
session.setAttribute("v", res);
session.setAttribute("x", new Integer(vt.nextElement().toString()));
session.setAttribute("y", new Long(y));

file_out.println("SecretKey: "+s.toString());
break;

//second Phase Verifying login and password
case 1:

secretObject = ((BigInteger) (session.getAttribute("secret")));
s = new BigInteger(secretObject.toString());

//expecting crypted String

String pass = ""+s.toString();
requestStr.trim();
String decodedMessage = decodeMessage(requestStr.getBytes(),pass,pass);

decodedMessage.trim();
boolean veryf = verifyUser(decodedMessage.trim());
file_out.println("decodedMessage: "+decodedMessage.trim());
if(veryf==true){

String plainText="OK";
String secretText = doEncryption(plainText,pass,pass);
responseStr=secretText.trim();
}

else {

String plainText="DENIED";
String secretText = doEncryption(plainText,pass,pass);
responseStr=secretText.trim();

}

session.setAttribute("phase", new Integer(2));

//responseStr =decodedMessage;
break;

case 2:

String logString = "";

String filename1 = "SSH.csv"; //datafile
PrintWriter csv_out = new PrintWriter(new FileWriter(path+filename1,true));

BigInteger sObject = ((BigInteger) (session.getAttribute("secret")));
Integer rObject = ((Integer) (session.getAttribute("round")));
BigInteger uObject = ((BigInteger) (session.getAttribute("u")));
BigInteger vObject = ((BigInteger) (session.getAttribute("v")));

Integer xObject = ((Integer) (session.getAttribute("x")));
Long yObject = ((Long) (session.getAttribute("y")));

//create String for Logfile round;tU;tS;u;v;s;x;y;
logString = rObject.toString() +";"+ requestStr.trim()+";’" + uObject.toString()+";’" + vObject.toString()
+";’"+sObject.toString()+";"+xObject.toString() +";"+ yObject.toString()+";";

csv_out.println(logString);
csv_out.close();
session.setAttribute("phase", new Integer(0));

int r = rObject.intValue();
session.setAttribute("round", new Integer(r+1));
break;

}

response.setContentType("text/plain");
PrintWriter out = response.getWriter();
out.write(responseStr);
out.close();

file_out.println("ResponseStr: "+responseStr);
file_out.close();

}
catch (IOException e) {

e.printStackTrace();
throw e;

}
catch (Exception e) {

e.printStackTrace();
throw new ServletException(e.getMessage());
}

}

/*

Get Values extracts Values out of a request String

Take request String / Numer of Values

Returns a @ separated list of Values
**

*/

public String get_values(String requestStr, int count){

String values ="";
StringTokenizer st = new StringTokenizer(requestStr, "&");

int i = 0;

while(i<=(count-1)){
StringTokenizer st1 = new StringTokenizer(st.nextToken(),"=");
st1.nextToken();
if (i==0){
values = st1.nextToken().toString();

}
else{

values = values +"@"+ st1.nextToken().toString();
}
i++;

}

return values;

}

public String getServletInfo()
{

return "SSH Servlet.";
}

private static String doEncryption(String plainText, String password, String nonce){

String compundKey = password + ":" + nonce;
Digest digest = new MD5Digest();
byte[] key = new byte[digest.getDigestSize()];
digest.update(compundKey.getBytes(), 0, compundKey.getBytes().length);
digest.doFinal(key, 0);

byte content[] = plainText.getBytes();

BufferedBlockCipher cipherEngine = new PaddedBufferedBlockCipher(new DESEngine());
cipherEngine.init(true, new KeyParameter(key));

byte[] cipherText = new byte[cipherEngine.getOutputSize(content.length)];

int cipherTextLength = cipherEngine.processBytes(content, 0, content.length,
cipherText, 0);
try{
cipherEngine.doFinal(cipherText, cipherTextLength);
}
catch(InvalidCipherTextException e){
}

return new String(Hex.encode(cipherText));

}

private static String decodeMessage(byte[] content, String password, String nonce){

String compundKey = password + ":" + nonce;
Digest digest = new MD5Digest();
byte[] key = new byte[digest.getDigestSize()];
digest.update(compundKey.getBytes(), 0, compundKey.getBytes().length);
digest.doFinal(key, 0);

byte cipherText[] = Hex.decode(content);
BufferedBlockCipher cipherEngine = new PaddedBufferedBlockCipher(new DESEngine());
cipherEngine.init(false, new KeyParameter(key));

byte[] plainText = new byte[cipherEngine.getOutputSize(cipherText.length)];

int plainTextLength = cipherEngine.processBytes(cipherText, 0, cipherText.length,
plainText, 0);
try{
cipherEngine.doFinal(plainText, plainTextLength);

}
catch(InvalidCipherTextException e){

}

return new String(plainText);

}

public boolean verifyUser(String message){

boolean verif= false;
StringTokenizer st = new StringTokenizer(message,"&");
StringTokenizer st1 = new StringTokenizer(st.nextToken(),"=");
st1.nextToken();
String user = st1.nextToken().toString();
StringTokenizer st2 = new StringTokenizer(st.nextToken(),"=");
st2.nextToken();
String pass= st2.nextToken().toString();
verif = check_user_db(user,pass);

return verif;
}

public boolean check_user_db(String user, String pass){

boolean verif = false;
Vector user_db = new Vector();
String[] users = new String[2];
users[0] = "442c1963bd105698";
users[1] = "9a2990e652cc9580";

user_db.addElement(new String(users[0]));
user_db.addElement(new String(users[1]));
int i =0;

while(i<=user_db.size()-1){

if (user.compareTo(user_db.elementAt(i))==0){
i++;

if(pass.compareTo(user_db.elementAt(i))==0){
verif=true;

}

}
else{
i=i+2;
}

}

return verif;
}

}

Bibliography

[1] Putty SSH-Client Source. Http://www.chiark.greenend.org.uk/ sgta-
tham/putty/.

[2] Fiat A., Shamir A. How to prove yourself:Practical Solutions to identification
and signature problems.

[3] P. van Oorschot A, Menezes, S. Vanstone. Handbook of Applied Cryptography.
CRC press, 1996. Www.cacr.math.uwaterloo.ca/hac.

[4] M. van Steen A. S. Tanenbaum. Distributed Systems - Principles and Paradig-
mas. Prentice Hall, 2002.

[5] W. Diffie, M. Hellman. New Directions in Cryptography. November 1976.

[6] A. Otto E. Salomonsson O. Wibling O. Widell K. Johnsson, K. Madsen. Security
Proxy - Project Report. Datakom2 Course, Uppsala University, june 2003.

[7] Nokia. Getting Started with Java V1.1. Www.forum.nokia.com.

[8] W. Stallings. Cryptography and Network Security. Prentice Hall, 2003. Third
International Edition.

