
Secure Group Communication

for Mobile P2P Groups: A Survey

Zinaida Benenson

Abstract

This report presents an overview over secure group communication paradigms
in ad hoc networks, with especial attention to join and leave algorithms.
Although classical group communication, after more than 25 years of devel-
opment, is by now well understood and formalized, group communication
for ad hoc networks is still under development. Firstly, the paradigm of
groups in distributed computing is considered, distinguishing between clas-
sical, multicast and mobile ad hoc groups. Purpose, features, and system
architecture of group communication systems are presented in the light of
historical evolution of this concept. Further, security issues in group com-
munication are outlined, focusing on the changes to the system architecture
which are necessary for making a group communication system secure. Fi-
nally, an overview over group key management in group communication is
given.

Contents

1 Introduction 2
1.1 Motivation and Structure of this Report 2
1.2 Executive Summary . 3

1.2.1 Purpose and Functionality of Groups 3
1.2.2 Lifecycle of Groups . 4
1.2.3 Issues of Join and Leave Events 5

2 The concept of groups in distributed computing 7
2.1 Classical Groups . 7
2.2 Multicast Groups . 8
2.3 Wireless Ad Hoc Groups . 9

2.3.1 Additional assumptions on the network model 10
2.3.2 Adaptations of classical GCSs to the new network model 11

3 Secure group communication systems 14
3.1 Requirements on Secure Group Communication 14
3.2 Group Communication Secure against Byzantine Failures . . 16
3.3 Fortress-Inspired Secure Group Communication 18
3.4 Trust and Relationship Management in Mobile Ad Hoc Groups 21

4 Group key management for secure group communication 23
4.1 An Overview of Group Key Management Algorithms 23

4.1.1 Security Requirements on Group Key Management . . 24
4.1.2 Group Key Transport 25
4.1.3 Group Key Agreement 27

4.2 Group Key Management in Ad Hoc Networks 29

5 Conclusion 31

1

Chapter 1

Introduction

1.1 Motivation and Structure of this Report

The goal of this survey is to identify issues of secure group communication
in mobile peer-to-peer groups with especial attention to join and leave algo-
rithms. However, as the concept of group-oriented system architecture for
distributed computing is much older than the concept of ad hoc networks, it
is important to understand why and how the groups are used in distributed
computing, and what security issues arise with the evolution of this concept.
I identified the following topics concerning the concept of secure groups in
distributed computing:

1. Group-oriented system architectures, see Chapter 2. Group-oriented
systems were developed with different goals, such as service repli-
cation for high availability (the ”classical” groups), multicasting in
large groups, scalable applications in pervasive computing environ-
ment. Very often the developers do not take security considerations
into account, or assume the existence of ”some security service”. This
usually results in the necessity of integrating security mechanisms into
the group management architecture subsequently.

2. Secure group management architectures, see Chapter 3. Work in this
area concentrates on securing the group-oriented abstractions, such as
the policies for the group organization, access control to the groups
(e.g., which processes are allowed to join the group), consistent view
on the events in the group (e.g., causal multicasting for consistent
communication, consistent information about the group membership).
Most of these works assume the existence of the group key, which is the

2

key shared between all group members for confidential communication,
but do not go into the details of group key management.

3. Group key management is considered in the almost separate area of re-
search, see Chapter 4. These works consider the initial group key agree-
ment, which happens at the time of the group initialization, and the
subsequent operations needed when the group membership changes.
For example, if a member leaves the group, new group key is needed
in order to prevent the former member from eavesdropping on the
future group communication. On the other hand, if a new member
joins the group, the new key should be distributed such that the new
member cannot decrypt the past group communication.

In the next section, the results of this study are presented in a concise
form. The rest of the report is dedicated to more detailed overview of the
above three topics.

1.2 Executive Summary

1.2.1 Purpose and Functionality of Groups

The concept of group communication services in distributed computing ex-
ists for about 25 years, probably starting in eighties with ISIS, see [Bir93]
for an overview. Groups are used to implement highly available, reliable
and fault-tolerant applications, such as brokerage and trading systems, or
distributed databases.

As summarized in one of the recent articles [ANRST05], group commu-
nication systems provide two main services:

• Group membership: The group members are provided with the list of
all current group members, called the view, and are notified about any
membership changes. Group membership can change due to volun-
tarily joins and leaves, as well as due to communication and process
failures.

An exception constitute anonymous groups, e.g., multicast groups
[Cha05]. There, the members of the group subscribe to the infor-
mation which is disseminated to the group members by some entities
(publishers), but do not communicate with each other directly. In this
situation, group members do not need (or even are not allowed) to
know about other subscribers. In secure multicast setting, the group

3

membership is usually tightly coupled with the possession of the group
key which enables the participants to decrypt the multicast traffic.

• Reliable and ordered message delivery: At least causal order of mes-
sages is important in any kind of distributed system. That is, if the
content of message m is dependent on the content of message m′, then
each process should receive m′ before it receives m. More stringent
message orders are also possible.

The above services are realized through agreement on group membership
and on message delivery order. As most kinds of agreement are impossible
in asynchronous distributed systems, real systems usually use timeouts to
determine communication and process failures. In unstable networks, this
may result in correct processes being involuntarily excluded from the groups
due to slow communication or network partitioning. This paradigm also
applies to peer-to-peer and ad hoc groups consisting of wireless devices,
often with relaxed consistency requirements [PH03, LSSI05].

1.2.2 Lifecycle of Groups

The lifecycle of the group consists of the following events.

Group formation (initialization) A group can be started by one or
by multiple entities according to some criteria. For example, in ad hoc
networks, devices which are in the proximity of each other are often members
of the proximity-based groups. Other criteria, such as services which the
group can offer to outsiders, or a collaborative task which the group should
perform (e.g., a video conference, or a collaborative editing session) may
apply to the group formation.

Usually, there is a group initiator which is responsible for the initial
group organization. In dynamic peer groups, this entity is picked dynam-
ically according to some criteria, such as the lowest process identifier, the
largest remaining power of the device, or the advanced computational capa-
bilities. The group initiator determines the initial group members. It may
also select the group leader, and/or coordinate the group key agreement.

Group membership changes Following group membership changes can
be identified:

Single join One process sends to the group a request to join.

4

Mass join Multiple independent process send the join request.

Merge (Fusion) Two or more groups are organized into one group. Some-
times one group becomes the subgroup of another group, sometimes a
totally new group emerges.

Single leave (Deletion) One member either leaves the group according to
some criterion. This may happen because it moves out of the group’s
proximity, or becomes unavailable due to some event, e.g., crash, run-
ning out of energy, or a communication failure, such as network parti-
tion or, in case of wireless communication, some obstacle.

Mass leave Multiple entities independently leave the group at the same
time.

Partition (Fission) The group is divided into two or more independent
groups.

On each membership change, special protocols are executed. These pro-
tocols are often driven by a single entity, the current group leader. The role
of the group leader may be rotated between the participants on every mem-
bership change in order to ensure fairness, as the group leader consumes
much more resources than the rest of the group. It sends and receives more
messages than the other participants, and sometimes it is also responsible for
the bulk of the calculation of the new group key [STW00, KPT04a, ABIS05].

The group ends its existence when the last member leaves the group, or
according to some other criteria, depending on the system architecture and
application.

1.2.3 Issues of Join and Leave Events

Join and leave events in all three forms (single, mass, and group join/leave)
have implications on different levels of the group architecture.

Agreement on new group membership list Especially in case of join
events, access to the group should be granted based on some rules.
Usually, the access is granted by the current group leader. The group
leader may take this decision solely on behalf of the group [LSSI05],
or upon an agreement which is usually coordinated by the leader
[STM04]. Agreement is also used in case of exclusion of crashed or
corrupted members from the group. Decentralized agreement of the
type of Byzantine Generals problem [LSP82] is rarely employed due
to its very high communication cost and considerable delay.

5

Access control without agreement on the membership list In case no
consistent group membership list is to maintained, it is still important
to restrict access to the group, and especially to delete corrupted group
members. In case the group membership is determined using a public
key certificate [AM02], efficient revocation procedures must be devel-
oped.

New group key calculation In case the communication between the group
members should remain confidential, new group key should be calcu-
lated on each join/leave event. The new key should be independent on
the previous group keys, such that joining entities cannot compute the
previous keys. On the other hand, the leaving group members should
not be able to compute any future group keys.

6

Chapter 2

The concept of groups in
distributed computing

This chapter considers three kinds of groups: classical groups, multicast
groups, and ad hoc wireless groups.

2.1 Classical Groups

Classical groups serve as programming paradigms for developing of highly
reliable and fault-tolerant systems. In the early stage of the development
of group communication systems, small groups of 4-12 processes were used
for providing replicated services, fault-tolerance and data replication. Some-
times, these groups had static configurations, join and leave were rare events.
Emphasis in theses systems was on consistent system view at all processes.
After the group concept proved to be very useful for development of dis-
tributed fault-tolerant applications, systems with large groups with partici-
pants connected via wide-area networks emerged.

The first rigorously specified groups communication service (GCS) is Isis
[Bir93]. It was developed in eighties and found its application in the areas
of financial computing (brokerage), database replication, fault-tolerant file
storage, reactive control systems, publish-subscribe systems. Many other
GCSs followed, such as Totem [AMMS+95], Horus [vRBM96], Transis [DM96],
Ensemble [RBD01], Spread [ANRST05].

A classical GCS provides two types of services: group membership service
and reliable and ordered message delivery.

Group membership service provides processes with a list of currently alive
and connected group members. This list is called view. Views may change

7

due to processes joining and leaving the group, but also due to process
crashes, network partitions, and malicious attacks.

One of fundamental characteristics of a group membership service is
its reaction to network partitions. A primary-partition membership service
always runs only on one partition, which is called primary partition. Pro-
cesses in the parts of the network which are not connected to the primary
partition are considered faulty. This kind of service is appropriate in small
stable networks, e.g., in wired LANs. On the other hand, partitionable group
membership service allows multiple network partitions to run the service si-
multaneously. That is, if a group splits due to network partitions, all its
parts continue working. If the network becomes connected again, the parts
of the group merge. Partitionable group membership service should be used
in WANs and mobile networks. However, there is a fundamental difference
in designing a GCS for WANs and for mobile ad hoc networks. In WANs
one can safely assume that the network would not partition forever, and any
partitioned group will eventually merge. On the other hand, mobile ad hoc
networks cannot give this guarantee. Therefore, GCSs for WANs usually
cannot be used for mobile ad hoc networks.

Reliable and ordered message delivery makes sure that group members
receive messages sent to the group according to some specified semantics.
For example, messages may be delivered in causal order, such that if the
content of message m depends on content of message m′, then all processes
in the group are guaranteed to receive m′ before m. Another guarantee may
be that any message sent to the group is delivered to the processes while all
of them have the same group membership view.

A rigorous survey of classical GCSs can be found in [CKV01]. This pa-
per provides a comprehensive overview of services offered by different GCSs,
gives an insight (without going into details) into techniques used to imple-
ment them, and provides extensive literature on specifications, protocols and
impossibility results.

2.2 Multicast Groups

With the development of the Internet, applications based on IP multicast,
such as video-conferencing, or multicasting of stock exchange, demanded
some changes in the group communication paradigm. This kind of mul-
ticast happens over very large wired networks. Multicast groups are very
large (thousands of participants) and highly dynamical with with frequent
joins and leaves. Group management is often coordinated by a single au-

8

thority (the multicast source). The group participants are only interested
in receiving multicast messages, but do not need a consistent view on group
membership. In case of many-to-many multicast, group management may
be distributed between several authorities. Multicast groups are not very
relevant for this study. A comprehensive overview can be found in [Cha05].

2.3 Wireless Ad Hoc Groups

As wireless personal devices such as laptops, PDAs and mobile phones
emerged, the group communication paradigm has to be adapted to the new
requirements. Developers of applications for wireless communication face
challenges such as unstable links due to interference and obstacles, resource-
limited devices, proximity-dependent connectivity. Considered groups are
usually small to medium-sized (about 10 to 100 participants), do not have
designated leader (all devices are considered as peers, the role of the leader
may be rotated among the participants), experience high group dynamics,
especially due to unreliable wireless links. In the following, I describe some
interesting ideas and important projects from the research area of group
communication for mobile ad hoc networks.

A group communication system (GCS) in a mobile ad hoc network should
provide the two classical services (1) group membership and (2) reliable
message delivery to group members (reliable multicast), despite frequent
communication failures due to wireless communication and node mobility.

Classical GCSs consider node crashes and infrequent network partitions
as possible failures. In addition to these types of failures, GCSs for mobile ad
hoc networks also have to face link failures, sudden short-lived or permanent
device disconnections, long-lived or permanent network partitions. These
new types of failures pose very serious challenges on the specification of a
GCS, as such tasks as agreement on the group view become impossible in
presence of link failures, and furthermore, if the network configuration is
highly dynamical, the classical GCS protocols may take very long time to
stabilize, because after every change in network configuration, such protocol
have to go through a communication-intensive recovery phase which, among
other things, prevents processes from sending application messages.

Two directions of handling node mobility and wireless communication
can be identified:

1. Some authors make additional assumptions on the system model, such
as absence of node crashes and obstacles, or perfect communication

9

links [PB98, RHH01]. It is not clear, however, how these assumptions
can be guaranteed in practice.

2. Another way is to adapt the principles of classical GCSs to the new
network model. These GCSs change specifications of their services
such that the services become possible in the harsh model of mobile
wireless networks [BH02, BCM03, LSSI05]. They may relax the spec-
ification of group membership and reliable multicast probabilistically
[BYFK06, LEH04], or allow that multicast messages be delivered only
to the well connected and not too slow group members [Fri03].

2.3.1 Additional assumptions on the network model

In one of the first papers on group communication in mobile networks by
Prakash and Baldoni [PB98], a proximity layer is suggested which monitors
the changes in the neighborhood of a node. The proximity layer enables
the execution of the D-proximity test with the goal to find all nodes within
the distance D from a given node. Based on the proximity layer, a group
membership layer is further proposed. In the first round of the three-round
group formation protocol, a node which wishes to form a group sends a
request to all nodes in its D-proximity. This request may contain further
constraints on the prospective group members, such that not all nodes in D-
proximity can join the group. In the second round a node can acknowledge
the join request, and in this case the leader sends to the node a confirmation
of its group membership.

The proposed group membership protocol is robust to the changes in the
D-proximity information during all phases. The underlying assumptions of
the protocol are that the nodes and links do not fail, and a collision-free
medium access control protocol is used. These assumptions are needed to
guarantee accuracy of the D-proximity test in presence of node mobility.
The weakest point in the concept of proximity layer is the assumption of
fault-free nodes and communication links. Moreover, the presented proto-
col for D-proximity test requires flooding the network with the discovery
messages. Probably, if the D-proximity test would be exchanged for the
D-hops-test which finds all hosts within D hops from the given host, the
resource-consuming flooding might be avoided.

Roman et al. [RHH01] propose the concept of safe distance in order
to maintain consistent group membership in ad hoc networks. They also
assume that the hosts and the links do not fail, and that the only changes in
network configuration are due to node mobility. The nodes move randomly

10

with bounded velocity. Two nodes are said to be at a safe distance if they are
in the range of each other and will remain so for a predefined time period T
assuming that they move in opposite directions with maximum speed. Time
period T is determined by the time period needed for joining or leaving the
group and the network latency. A group is called safe if any two group
members are connected by a path along which all consecutive hosts are at
a safe distance. Two safe groups are at a safe distance if at least two hosts,
one in each of the groups, are at a safe distance.

The system consists only of safe groups with unique identifiers. Con-
sidering safe groups gives the advantage of predictable disconnections. An
isolated host is considered as a group with only one member. Each group
has a group leader which periodically gathers location information from all
group members. Every host periodically broadcasts its location information
and its group identifier. If it discovers another group at a safe distance, it
passes this information to the group leader which initiates the group merging
protocol which involves agreement on merging between the group leaders.
On the other hand, if the group leader identifies that some group of hosts is
leaving the safe distance of its group, it initiates the group splitting protocol
where it determines the members and the leader of the new group.

2.3.2 Adaptations of classical GCSs to the new network model

We distinguish between deterministic and probabilistic ways to relax the
specifications of classical GCS services such that they can be implemented
in wireless ad hoc networks.

Deterministic approaches

Briesemeister and Hommel [BH02] extend the idea of partitionable group
membership service and propose localized group membership service in order
to cope with highly mobile ad hoc networks. Each process keeps track of
its neighbors via heartbeat messages. Only neighbors of the process can be
included into its group view. The authors rigorously specified their group
membership service, proved its properties, and applied it to the inter-vehicle
communication for traffic jam detection.

Fuzzy group membership is another idea to cope with the node mobility
and wireless communication [Fri03]. It is incorporated into the JazzEnsem-
ble group communication system for ad hoc networks [Jaz]. Instead of binary
group membership where the members are either considered alive or dead,
each group member is associated with a fuzziness level which depends on

11

ability of the process to send protocol and control messages. Members with
various fuzziness levels are treated differently by the system. For example,
usually messages are buffered by the group members until every group mem-
ber acknowledges that it received the message. Only then the messages are
delivered. Using fuzzy group membership, messages may be delivered even
if some members with a high fuzziness level did not acknowledge them. To
the best of my knowledge, JazzEnsemble is the only fully implemented GCS
for ad hoc networks.

The next two works on GCSs do not present formal specifications, such
that their properties are somewhat unclear.

A location-aware group membership middleware for collaborative appli-
cations in pervasive computing AGAPE is presented in [BCM03]. Instead
of global views on group membership, location-dependent local views are
considered. If for some application, the global group membership view is
needed, it can be obtained by merging the local views. The network consists
of cells, each cell contains a base station which manages local group mem-
bership views in its cell. In particular, it processes join and leave requests,
and detects network partitions.

Liu et al. present a group management system for ad hoc networks under
assumption that any node is able to detect coming and leaving neighbors
(e.g., by means of beacons). Groups are formed according to several at-
tributes. Local attributes apply to individual devices: location, proximity,
available resources. Group attributes apply to the whole group, e.g., group
size or reputation. Each group has a group leader which manages all group
membership operations and group communication. The role of the group
leader can be rotated in case of leader failure.

Probabilistic approaches

Luo et al. [LEH04] propose group communication with probabilistic guaran-
tees on group membership and reliable multicast. In contrast to the classical
group communication systems, no guarantees can be given that all members
receive a message in the same view, as the notion of the global group view
does not exist in the system. Instead, each group member only has a par-
tial view on group membership. To update their partial views, members
exchange membership information. Information is disseminated using gos-
siping : Each host randomly selects a certain number of group members from
its view and sends the message to them.

Another way to relax the GCS specifications probabilistically is by uti-
lizing random walks. In [BYFK06], a random walk based group membership

12

service provides every node with a partial group view such that the nodes in
this view are selected uniformly and randomly out of all network nodes. In
[DSW06], a mobile agent collects and distributes information about group
membership in the network during a random walk. Their group membership
algorithm is self-stabilizing such that eventually, with a high probability, all
group members become aware of the current group membership.

13

Chapter 3

Secure group communication
systems

Secure group communication systems (GCSs) should offer security guaran-
tees on their two main services: group membership and reliable ordered
message delivery to the group members (multicast).

There are two main kinds of secure GCSs: (1) GCSs secure against
Byzantine (i.e., arbitrary, including malicious) failures of the group mem-
bers, and (2) GCSs secure against outsider attacks under the assumptions
that all group members behave correctly or fail benignly (e.g., crash, or fail
to send or to receive messages). This kind of secure group communication
is called the fortress security model in [RBD01].

In the following, we first identify requirements on secure group com-
munication, and then give an overview over secure GCSs of both kinds for
classical as well as for ad hoc networks.

3.1 Requirements on Secure Group Communica-
tion

Following issued should be considered when developing a secure GCS in the
fortress as well as in the Byzantine security models:

Access control to the group One of the most important questions is
admission to groups. Which entities are allowed to create a group, and on
which grounds are new members admitted to the group? Furthermore, how
may a member be excluded from the group? What happens in case the

14

group partitions due to network disconnection? In which cases are some
groups allowed to merge? All named issues are actually trust issues and
depend on the security policies of the system.

In the fortress security model, access control to the group plays a very
important role, as any process admitted to the group is trusted. Of course,
also in the Byzantine model, access control is needed in order to limit the
number of Byzantine nodes. In classical groups, access control is usually
realized using some centralized authentication service. Especially in ad hoc
GCSs access control and trust management between the system participants,
and between different groups is a very important issue, as these systems
cannot rely on always available centralized trust management services, such
as certification authorities or centrally managed access control lists.

Group authentication Apart from being able to control which processes
may become a member of a group, the group members should also be able
to prove to the outside world that they belong to a particular group. That
means that the group as a whole should be able to prove its authenticity.
For example, if a process wants to join a particular group, it should be
impossible for any outsider to impersonate this group to the process.

Secure group membership protocol A group membership protocol
should provide the participants with a correct estimation of currently alive
and connected group members. It should be impossible (or hard) for an at-
tacker to disrupt the protocol such that an incorrect view is accepted by the
participants. For example, if the view change protocol is coordinated by a
designated leader, an attacker should not be able to impersonate the leader,
or to change in transit the list of the group members. Thus, integrity and
authenticity of any group membership view should be assured. Moreover,
in the Byzantine model, the protocol should tolerate a Byzantine leader.

Secure group communication After a group is established, the group
communication must be protected from eavesdropping and impersonation
attacks. That is, confidentiality and integrity of the messages sent in the
group must be guaranteed. This is usually achieved through symmetric en-
cryption and authentication using the group key which is known only to
the group members. Group key management is often studied separately in
the literature, as it is a complex issue involving several cryptographic pro-
tocols. Group key management includes the initial group key establishment
and the subsequent key establishment associated with changes in the group

15

membership. On every group membership change, the group key should
be recalculated in order to prohibit the members which left the group from
eavesdropping on further communication, and the members which recently
joined the group from decryption of past group messages. Group key estab-
lishment protocols are considered in Chapter 4.

On the other hand, if some guarantees exist on message delivery, such
as causal or FIFO order, the group communication protocols should be pro-
tected from violations of these properties by outside attackers and by com-
promised group members (in the Byzantine security model).

Interplay between the group key establishment and the group
membership protocols During the group membership change, secure
group communication using the old group key is impossible, as it is not
clear which of the old group members are going to leave the group. On the
other hand, it is also impossible to establish a new group key, as the mem-
bers of the new group membership view are not known yet. Therefore, all
messages sent during the group membership protocol should be secured in
some other way than by using the group key. For example, this may involve
public key cryptography. Moreover, only after the new view is installed at
all group members, the group key establishment protocol for this view can
start.

3.2 Group Communication Secure against Byzan-
tine Failures

There are not many GCSs which are secure against Byzantine failures. The
reason for this lies in a very severe communication load in such systems,
as the group members have to reach agreement on every single protocol
message. This has a great impact on performance of the whole system.
Accordingly, none of the current Byzantine tolerant GCSs was developed
with wireless ad hoc networks in mind, as communication overhead is often
considered prohibitively high even in wired networks.

Rampart Rampart [Rei95] is the first Byzantine tolerant GCS. It facili-
tates the realization of trusted services, such as certification authority. These
services are replicated to achieve high availability, which makes it easier for
an attacker to penetrate one of the replica servers. Therefore, the services
should work correctly despite compromise of some of their components by

16

attackers. If less than one third of sites is compromised, the service continues
working correctly.

Rampart assumes an asynchronous network and comprises a Byzantine
tolerant group membership and reliable multicast protocols. In reliable mul-
ticast, all messages from the same sender are received by all group members
in the FIFO order. These protocols are used to implement atomic mul-
ticast, which is core component for realization of replicated services. In
atomic multicast, all messages should be received in the same order as they
were sent. Access control in Rampart is based on public key cryptography.
Each server is given the public keys of all other servers in the system. This
happens either manually by an operator, or can rely on a PKI.

SecureRing The SecureRing GCS [KMMS01] also tolerates up to one
third Byzantine group members. The processes are organized in a logical
ring, and the communication is organized via multicasting a token. From
this token, the members processor conclude which process will be sending
messages in the next communication round. SecureRing utilizes a Byzantine
fault detector which, among other things, detects the processes which do not
properly handle the token, a Byzantine group membership protocol, and a
secure and reliable message delivery protocol.

Secure JazzEnsemble The Byzantine tolerant extension to the JazzEnsem-
ble GCS [Jaz] is described in [DFK06]. Although JazzEnsemble (see Sec-
tion 2.3.2) was developed for ad hoc networks, its secure version can only
be used in wired networks. Its performance, however, is much better than
the the performance of the previously presented Byzantine GCSs at the
cost of lower number of tolerated Byzantine processes. Thus, its member-
ship protocol tolerates not more than 1/6 fraction of the participants to be
Byzantine. According to the authors, the system can be extended to the
ad hoc networks. However, the performance of such a system in ad hoc
networks remains unclear.

The Byzantine tolerant version of JazzEnsemble was tested on up to 50
processors, whereas the group size of Rampart and SecureRing should be
not more than 10 processors.

17

3.3 Fortress-Inspired Secure Group Communica-
tion

In the fortress security model, the members of a group are considered trust-
worthy, such that the groups have to be protected from outsider attacks.

Secure ISIS The first security architecture of the fortress kind was devel-
oped for ISIS [RBG92]. Access to the groups is organized via access control
lists (ACLs). Although this method lacks flexibility in large networks with
frequent group membership changes, it fitted the properties of ISIS very
well, as group joins were supposed to be rare events in this GCS. The pro-
cess which creates the group (the group initiator) specifies the corresponding
ACL as the set of pairs (owner, site) describing the process owner and the
site (machine) where the process runs. Thus, the creating process specifies
users and machines which it trusts.

Moreover, the site on which the group initiator resides, also creates a
public/private key pair for the group for the purpose of group authentica-
tion. Each group member receives the private key, called the group authen-
tication key, after it joins the group. The public key is included into the
group address. Thus, any process which joins the group firstly has to obtain
the authentic address of the group. This is done by asking the name ser-
vice, which should be implemented as a Byzantine tolerant, highly available
service, see e.g. [RB94]. After the address is obtained, the joining process
can verify the authenticity of the group it wishes to join.

On the other hand, the authenticity of the joining process can be veri-
fied by means of its certificate, which is issues by an authentication service
which should, as well as the name service, be Byzantine tolerant and highly
available. The certificates are actually issued to the sites where the pro-
cesses run, and all cryptographic keys are also hold by the sites and not by
the processes. It is done in order to prevent malicious processes residing on
uncorrupted sites from improper using of these keys.

Further, the ISIS security architecture protects group communication
using a symmetric group communication key. This key is created by the
group initiator and is distributed to the group members during the join
protocol. If a process sends messages to a group for the first time, its
site creates a connection to all group members, and generates a symmetric
authentication key for this connection. This key is distributed using the
group communication key. Thus, different keys are used for each multicast
source.

18

Finally, secure ISIS provides secure causal multicast. In uncorrupted
groups, causality of message delivery is assured by the “normal” ISIS causal
multicast protocols combined with authentication and integrity protection of
messages. However, if a process is a member in several groups, and some of
them are corrupted, then the processes in the corrupted groups were shown
to be able to manipulate the ISIS protocols in the following way. Assume
the process p is a member of groups G and G′, and a message m was sent
in group G before message m′ was sent in group G′. The if the group G′

is corrupt, it can manipulate the causal multicast protocol such that m′ is
delivered to p before m. This is called the backdating attack, and secure
causal multicast provides protection against this type of attacks.

Enclaves Enclaves [Gon97] is system which enables secure ad hoc col-
laboration over the Internet. An enclave is created by a designated group
leader, and users which want to join the enclave should be able to authen-
ticate each other and the group leader by means of passwords or public
key certificates. To join the group, a new user should authenticate to the
group leader. Group communication is protected using a shared group key
disseminated by the leader. It is not a GCS in the classical sense, as it
is not fault-tolerant and does not employ group membership and reliable
ordered multicast protocols. If the leader on an enclave fails or becomes
disconnected, the the whole enclave ceases to exist.

Secure Spread Spread is a partitionable client/server based GCS for
WANs. Each group includes a small number of servers where the resource
consuming distributed protocols, such as group membership, run, and a
large number of clients. This greatly improves performance and scalability
of the system.

In [ANRST05], four versions of a security architecture for Spread are
presented and analyzed. They differ in the place where the cryptographic
operations and the group key management protocols are executed. In the
layered security architecture, all cryptographic and key management oper-
ations are executed on the clients. The advantage here is that all crypto-
graphic secrets are kept at clients, thus the end user does not need to trust
the servers to keep his secrets. However, cryptographic operations and key
management slow down the system’s performance quite considerably.

On the other hand, the integrated security architecture executes crypto-
graphic operations partly on the servers. Three variants of this architecture
are presented. In the first variant, group key management and secure group

19

communication are offloaded to the servers. Clients establish secure channels
with the servers. On the second variant, clients encrypt and authenticate
messages using a group key which is generated by the servers for each view.
This means, among other things, that the messages should be delivered in
the same view in which they were sent, as otherwise, the group key will
have changed (this is called “sending view delivery”). The third variant is
similar, but the it supports a different GCS semantics, called “same view
delivery”, where the messages need not to be delivered in the view in which
they were sent. In this case, the servers need to keep the group keys from
the previous views in order to reencrypt the messages which were sent in
previous views with the current group key. Most of Secure Spread vari-
ants use Tree-Based Group Diffie-Hellman key agreement protocol (TGDH)
[KPT04b] which is described in Chapter 4. This protocol is contributory : it
requires each participants to contribute a secret during the key generation.

Secure Ensemble Ensemble [RBD01] is a partitionable GCS which can
support groups of hundreds of members. All processes have access to a
trusted authentication and authorization services which can be organized in
a centralized fashion (e.g., Kerberos) or in a distributed fashion (e.g., PGP).
The emphasis is on use of symmetric key cryptography whenever possible.
In particular, no Diffie-Hellman based group key agreement protocols are
used. The emphasis in secure Ensemble is made on efficient merge and group
rekeying protocols. Users may specify security policies in the form of access
control lists (ACLs). Trust relationships are assumed to be symmetric and
transitive. Only processes which mutually trust each other can form a group.
If the security policy of a group member changes, it requests exclusion of
the untrusted member and rekeying. Trusted processes are allowed to join
a group without rekeying.

Secure Ensemble comprises a protocol for fast and secure merging of
groups which were split due to networks partitions. After the network be-
comes connected again, the group components from the different partitions
are likely to be using different keys, such that a common key should be
established in the course of the merge procedure. Actually, in the course
of the mutual key establishment, one group component securely switches to
the key of another group component. To this purpose, the group leaders
of each component engage in authenticated two-party Diffie-Hellman key
exchange. Here the trusted authentication service is used. Then one of the
group leaders (chosen deterministically on the basis of its name) gives its
group key to another group leader, encrypted with the key resulted from

20

the Diffie-Hellman protocol. Only after this event the actual merge protocol
can be started.

Secure Ensemble also utilizes a group rekeying protocol which efficiently
supports joins, merges, and single leaves. It is called the Diamond protocol
and organizes the group participants in a diamondlike graph. The nodes of
the graph are participants, and the edges represent secure channels between
the participants. Secure channels are created using authenticated Diffie-
Hellman key exchange and are, therefore, expensive. For this reason, an
algorithm makes sure that, in case of rekeying, the number of new channels
to be created is kept as small as possible. For example, when two groups
merge, the channels already existent in the groups should be used. The
new key is distributed along the edges. The diamond graph is guaranteed to
have logarithmic diameter, which favorably influences latency of the rekeying
protocol.

3.4 Trust and Relationship Management in Mo-
bile Ad Hoc Groups

As already mentioned above, there exists no rigorously specified secure GCSs
which were specifically designed for ad hoc networks. For example, the
AGAPE system [BCM03] is said to posses a security layer in its architecture,
but no further description of this layer is given. Similarly, the GCS for ad
hoc networks described in [LSSI05] uses a group key agreement protocol
[ABIS05], and considers reputation as one of the attributes of the system
participants, but no further explanations on how these security measures
are integrated into the system can be found in the literature. Both systems
are briefly described in Section 2.3.2.

Generally, the notion of a group in ad hoc networks is different from the
notion of groups in the classical meaning of a group communication system.
The groups do not longer consist of the processes, but more often of per-
sonal mobile devices closely associated with their users. The requirements
of consistent group membership and reliable ordered message delivery to the
group members are often relaxed, as shown in Section 2.3.

However, a specific and very difficult question about secure group man-
agement in ad hoc networks arises which was not a big issue in the clas-
sical groups. This issue is trust and relationship management, especially
in connection with the access control to the groups. How should security
policies of the system be organized in order to allow devices from different
users/domains to cooperate securely on a collaborative task? For example,

21

if a device wants to join a group, how can the mutual trust be established?
The Resurrecting Duckling [SA00, Sta01] is one of the most famous

paradigms for trust management in ad hoc networks. It introduces group
formation according to the muster/slave principle, where a dedicated user’s
device, called controller, builds secure transient associations with other de-
vices which belong to the same user. An association is built during the
imprinting process, where the master device translates the shared key to
the slave through some secure channel, e.g., physical contact. Topics such
as change of the controller (the user gives the device to somebody as a gift,
or lends the device), multiple controllers with different access rights (user
versus manufacturer), and collaboration of devices which belong to different
users are also considered. Further extensions to the Resurrecting Duckling
policy model are presented in [Roh04]. They comprise the ownership model
which helps to establish trust associations between devices which belong to
the same user,and the security policy definition language which supports
authentic key exchange and delegation mechanisms.

In [AM02], a distributed security architecture for access control to groups
in ad hoc networks based on public key certificates is presented.

A new group is created by the creating a public/private key pair for the
group by its first member, which is called group leader. Each new member
gets a member certificate signed with the group key. The certificates contain
the group public key (group identifier), the public key of the new member,
validity period, and the signature. Leader can delegate leadership by issuing
leader certificates. Multiple leaders make the group fault-tolerant. However,
a protocol for coordinating the information on group membership is needed
(it is not given in the paper). Groups can be nested. A subgroup is created
using a subgroup certificate.

The main problem in this security architecture is the distribution of
membership revocation lists. A best-effort solution is proposed where the
revocation lists are propagated from member to member. In case the leader
is revoked, the whole group may perish, as the membership certificates would
not be valid anymore. The proposed solution utilizes multiple leaders and
redundant certificate chains.

22

Chapter 4

Group key management for
secure group communication

The evolution of group key management schemes goes in parallel with the
evolution of the group concept in distributed systems. The first group key
management schemes were developed for static wired networks with a small
number of participants. Key management protocols for large and very large
dynamic groups followed, to be used with, e.g., IP multicast. With the
advances of wireless ad hoc networks, group key management protocols for
this kind of networks emerged.

Group key management protocols are numerous, as well as surveys on
this topic. The latter include [DMS99b], [Bha03], [RH03] [CS05], [DB05],
[CS05], [Man06]. This chapter gives an overview based on these surveys,
and presents some protocols which were developed for ad hoc networks.

4.1 An Overview of Group Key Management Al-
gorithms

Group key is a secret key known to all group members and only to them. It
is used to protect messages which are sent in the group from eavesdropping,
and sometimes also from malicious changes by outsider attackers. Usually,
this is accomplished by means of symmetric encryption and message au-
thentication codes. In case of integrity protection, it is clear that if all
participants share the same key, they are able impersonate each other and
change message content. Therefore, if impersonation and tampering with
message contents is an issue inside the group, other means than the group
key should be used for integrity protection. In the following, we only con-

23

sider the case where all group members want to share a key for protection
from outsider attacks.

Key management denotes the set of procedures which establish and
maintain keys. To the key maintenance operations belong initial key es-
tablishment, key transport, and rekeying.

Key transport Group key management protocols can be classified ac-
cording to the trust placed on group participants to the system and to
each other. In centralized approaches, a designated entity (e.g., the group
leader, or a key server) is responsible for calculation and distribution of the
group key. In decentralized approaches, this function is distributed between
several hierarchically organized entities. Both centralized and decentralized
approaches are also called key transport protocols, as in these schemes, some
designated entities create and securely transfer the secret key to the group
members. In both approaches, group participants trust the key distribution
entities to behave correctly according to the security requirements on the
group key (see below), and be always available in case rekeying is needed.

Key agreement On the other hand, in distributed, or contributory key
management protocols, all group participants cooperate in establishing the
common secret. This kind of group key establishment is also called group
key agreement. In this case, even if there is a designated group leader which
plays a special part in the protocol (e.g., collects some protocol messages and
makes some calculations on them), the security of the resulting key does not
depend on it. That is, no group member can influence the key generation
process or the resulting key to its benefit.

4.1.1 Security Requirements on Group Key Management

The following security requirements can be identified for group key manage-
ment protocols.

• Secrecy is the most obvious requirement that the current group key
be known only to the current group members and cannot be derived
by non-participants at any time.

• Forward secrecy means that knowing past group keys should not enable
calculation of current or future group key. In particular, past group
members should not be able to decrypt group messages after they left
the group. This means that a rekeying procedure should be started
after every leave or partition event.

24

• Backward secrecy : knowing current group key, it is impossible to ob-
tain any group keys used in the past.

• Perfect forward secrecy means that compromising any long-term se-
crets held by the participants should not reveal group keys.

• Key independence: knowing a subset of group keys does not enable
calculation of any other group keys.

The decision whether satisfying all these requirements is actually neces-
sary for the system depends on the security policy of. For example, if past
group members can be trusted not to eavesdrop on the future group commu-
nication, or are known to be disconnected from the network, no immediate
rekeying after a leave or partition event is required. Moreover, if a group
splits due to a network partition, each part of the group may keep the group
key in order to make the subsequent group merge more efficient.

Similarly, if a new member joins the group, it may be even necessary for
it to know the past group communication. For example, a video conference
participant which is late should be able to know what was going on in the
part of the meeting which he missed.

4.1.2 Group Key Transport

The description of group key transport protocols in based on the surveys
[RH03] and [CS05].

Centralized approaches

In the centralized case, a designated entity, called the key server in the
following, distributes the group key to all participants.

In the pairwise key approach, the key server shared pairwise keys with
each participant. For example, in [HM97], apart from pairwise keys and the
group key, all current group participants know a group key encryption key
(gKEK). If a new participant joins the group, the server generates a new
group key and a new gKEK. These keys are sent to the new member using
the key it shares with key server, and to the old group member using the
old gKEK.

The secure lock [CC89] uses the Chinese Reminder Theorem (CRT) for
traffic encryption. The key serves shares pairwise keys with each participant.
The traffic is actually encrypted with a random key, and this random key
is then “locked” such that it becomes the solution to a particular system of

25

linear congruences. The server computes the lock using the CRT and the
pairwise keys, and sends the lock to the members together with the group
message. It is not clear, however, how join and leave events can be handled
by the system. The idea of secure lock is extended to the decentralized key
management in [SLBE02].

Most efficient approach to rekeying in the centralized case is the hierarchy
of keys approach. Here, the key server shares keys with subgroups of the
participants, in addition to the pairwise keys. If in the previous approaches,
each participant needed to be sent a separate message encrypted with its
personal key, in the hierarchical approach most group members get the new
group key encrypted with the key of its subgroup. On the other hand,
group members have to store not only the pairwise keys, but also a number
of subgroup keys, as the subgroups are organized hierarchically (e.g., in
a tree). Thus, the hierarchical approach trades off storage for number of
transmitted messages. Below, some approaches are outlined.

Logical key hierarchy was proposed independently in [WHA99] and [WGL00].
The key server maintains a tree with subgroup keys in the intermediate nodes
and the individual keys in the leaves. Each node knows, apart from the in-
dividual keys shared with the key server, all keys on the path to the root. In
root, the group key is stored. As the depths of the balanced binary three is
logarithmical in the number of the leaves, each member stores a logarithmi-
cal number of keys, and the number of rekey messages is also logarithmic in
the number of group members instead of linear, as in previously described
approaches.

In [WGL00], an an extension of LKH to k-ary trees [WGL00] is proposed.
One-way function trees (OFT) [SM03] enables the group members to cal-
culate the new keys based on the previous keys using a one-way function,
which further reduces the number of rekey messages.

In the Diamond protocol [RBD01], no hierarchical key tree is maintained.
The participants are required to be able to establish pairwise keys on de-
mand. The group is organized into a diamondlike graph with a designated
leader. Graph edges correspond to the secure channels established between
the nodes. Each time a member or a subgroup joins or leaves, the leader cal-
culates the most efficient rekeying schedule and, if necessary, rebalances the
diamond structure. Nodes pass the key to each other over secure channels
according to the diamond graph.

The performance of the protocols is compared in [RH03] and [CS05]
in detail, including message and storage overhead for join and leave events.
The pairwise key approach exhibits linear complexity. Secure lock, although
most efficient in number of messages, poses serious load on the server and

26

can be used only for small groups. All tree-based protocols have logarithmic
communication and storage complexity at the members, and linear storage
complexity at the key server. The Diamond protocol has linear message
complexity and requires a small number of Diffie-Hellman key exchanges
per membership change event.

Decentralized approaches

In the decentralized approaches, instead of one key server, there is a hierar-
chy of key servers which distribute the new keys to the group members, see
[RH03] and [CS05] for examples and analysis.

4.1.3 Group Key Agreement

The contributory protocols are very enthusiastically studies in the cryp-
tographic community. Indeed, they pose a very interesting problem. In
addition to the mentioned above security requirements, a key agreement
protocol should satisfy the following:

• The key management protocols should be contributory meaning that
all members should contribute to the key, and it should be infeasible
to derive the key in the absence of one contribution.

• There is no central authority, although a protocol leader may be se-
lected for a particular execution. However, the role of the leader should
be interchangeable.

• The derived key cannot be predicted or influenced by any protocol
participant, including the leader. That is, the resulting key should be
random.

• Authenticated GKA makes sure that all group member, and only them,
compute the group key.

There exist more than 20 group key agreement (GKA) protocols, and
there are also numerous comparison papers on their performance and se-
curity. Thus, [RH03] compare 8 protocols with respect to their number of
rounds, communication and computational complexity. In [CS05], 11 proto-
cols are analyzed. Finally, [Man06] presents over 20 GKA protocols which
are analyzed with respect to their security. This survey does not include
some of the protocols described in the previously mentioned surveys. Effi-
ciency is not considered in the latter survey.

27

GKA protocols can be classified according to their communication pat-
tern, to the use of broadcast communication, and to the use of Diffie-Hellman
(DH) key agreement.

Ring based GKA In some protocols, members are organized in a ring.
The first member starts the protocol by sending its contribution which is
usually a DH public exponent gr, where g is generator of a cyclic group
and r a fresh random value, to its neighbor. Each participant then com-
putes its contribution using a fresh random value and the message received
from its neighbor. At some points of the protocol, a designated member
(or members) broadcast the resulting partial group key values. The round
and message complexity of these protocols is linear in the number of partic-
ipants. The CLIQUES protocol suite [STW00] is an example of ring-based
cooperation.

Hierarchical GKA In the hierarchical GKA protocols, the members are
organized according to some structure. For example, in the Octopus protocol
[BW98], the participants are divided into four groups. Each group agrees
on a partial group key value using DH, and then the subgroup leaders agree
on the final group key. In Hypercube [BW98], the users are organized into
a d-dimensional hypercube, i.e., a graph where each user is connected to d
other users.

Most popular form of hierarchical GKA protocols is tree-based coopera-
tion. If a balanced tree is used, the costs of group operations, especially, the
number of partial group key value calculations, is logarithmic. For example,
in the Tree-based Group Diffie-Hellman (TGDH) protocol the participants
are organized into leaves of a balanced binary tree, and compute the partial
DH key values starting from the tree leaves, such that in each round, the
partial values in one tree level are computed.

Protocols dLKH (distributed Logical Key Hierarchy) [RBD00] and dOFT
(distributed One-way Function Tree) [DMS99a] are the contributory vari-
ants of the centralized LKH and OFT protocols (Section 4.1.2) which also
use balanced binary trees for cooperation.

In the STR protocol [KPT04a] uses the linear binary tree (the binary
tree with linear depth) for cooperation and provides communication-efficient
protocols with especially efficient join and merge operations.

Trenary trees are used in [LKKR03] and [DBS04]. These protocols are
based on three-party DH key exchange [Jou00].

28

Broadcast based GKA Broadcast based protocols have constant num-
ber of rounds. For example, in three-round Burmester-Desmedt (BD) pro-
tocol [BD05] each participant broadcasts intermediate values to all other
participants in each round. The communication and computational load
is shared equally between all parties. In the one-round protocol [BN03], a
designated participant experiences a much more severe computational load
than all other participants. Among other things, it has to compute n − 1
public key encryptions, whereas all other participants are not required to to
any cryptographic operations apart from computing the group key using a
cryptographic hash function.

Efficiency comparisons As the number of GKA protocols is very large,
a comparison of all these protocols would be too complex. Usually, one has
to choose some GKA protocols which are appropriate in a certain situation,
and then compare their complexities. Such comparisons are numerous in
the literature. Usually, protocols are compared with respect to the join,
leave, merge and partition operations. Appropriate metrics are round and
message complexity, number of broadcast and unicast messages, and com-
putational complexity (e.g., number of modular exponentiations). For ex-
ample, [Bha03] compares CLIQUES, TGDH and STR. The performance of
CLIQUES, TGDH, STR and the BD protocols protocols is also compared
in [AKNRT04] and [ZAFL05]. The latter paper also proposes two new GKA
protocols. In [Man05], the above protocols are compared not only with re-
spect to the above metrics, but also with respect to message size and memory
requirements.

4.2 Group Key Management in Ad Hoc Networks

In the setting of ad hoc networks, it is often argued that the contributory
key agreement should be preferred, as participants of an ad hoc network
do not trust each other. However, trust issues really depend on the con-
sidered system. For example, if all properly authenticated and authorized
group members are trusted, and the authorization takes part before the
group key establishment, there should be no objection to the centralized
approach where the group key is calculated and distributed by the group
leader. Centralized group key management algorithms are often much more
computation and communication effective than the contributory ones, as the
latter are often based of Diffie-Hellman key exchange, or on otherwise usage
of modular exponentiations.

29

Asokan et al. [AG00] describe a password-based GKA protocol for small
ad hoc groups. If people in a room want to share a group key, they share
a short secret (e.g., write it on the blackboard), and then perform a series
of modular exponentiations and communication in order to derive a strong
shared secret from this weak shared secret.

Yasinsac et al. [YTCC02] propose a verifiably contributory GKA where
each participant can be sure that its contribution was indeed used in the
final key calculation.

Augot et al. [ABIS05] present This protocol is integrated into the GCS
for ad hoc networks [LSSI05], see Section 2.3.2.

Manulis [Man05] distinguishes between protocols for homogeneous groups
where all members experience approximately the same load, and the pro-
tocols for heterogeneous groups where some members have to execute more
operations or to send more (or larger) messages than the other. Further-
more, he presents optimized versions of CLIQUES, BD, STR and TGDH
which use elliptic curve cryptography and compares their performance.

30

Chapter 5

Conclusion

The concept of group communication in ad hoc networks is different from
the classical group communication systems (GCSs), which were designed
for LANs or WANs. Groups do not longer consist of the processes, but
more often of personal mobile devices closely associated with their users.
Classical GCSs provided to the application consistent group membership and
reliable ordered group communication (multicast). In ad hoc networks, these
consistency requirements have to be relaxed considerably. For example,
group members are only provided with partial membership information, and
with probabilistic guarantees on message delivery.

Also the purpose of groups has changed. Classical GCSs were designed
as middleware for developing fault-tolerant applications. Members of ad
hoc groups often engage in peer-to-peer collaboration without synchroniza-
tion with the other group members, and the main questions are trust and
relationship management, especially access control to the group.

In light of this paradigm shift, interesting questions arise which are worth
investigation. For example, how can partial membership information be
combined with group key agreement protocols. These protocols usually as-
sume that all group members are known. Also the concept of fuzzy group
membership, which yields efficient group membership protocols for ad hoc
networks, has not been combined with a key establishment protocol yet.
Another question to investigate is a possibility for two groups which use
different key management schemes to merge and choose the appropriate key
management scheme optimally.

31

Bibliography

[ABIS05] Daniel Augot, Raghav Bhaskar, Valerie Issarny, and Daniele
Sacchetti. An efficient group key agreement protocol for ad
hoc networks. In First International IEEE WoWMoM Work-
shop on Trust, Security and Privacy for Ubiquitous Computing,
2005.

[AG00] N. Asokan and Philip Ginzboorg. Key-agreement in ad-
hoc networks. Computer Communications, 23(17):1627–1637,
2000.

[AKNRT04] Yair Amir, Yongdae Kim, Cristina Nita-Rotaru, and Gene
Tsudik. On the performance of group key agreement proto-
cols. ACM Trans. Inf. Syst. Secur., 7(3):457–488, 2004.

[AM02] T. Aura and S. Maki. Towards a survivable security architec-
ture for ad-hoc networks. In Security protocols 9th interna-
tional workshop, LNCS 2467, 2002.

[AMMS+95] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and
P. Ciarfella. The totem single-ring ordering and membership
protocol. ACM Trans. Comput. Syst., 13(4):311–342, 1995.

[ANRST05] Yair Amir, Cristina Nita-Rotaru, Jonathan Stanton, and Gene
Tsudik. Secure spread: An integrated architecture for secure
group communication. IEEE Trans. Dependable Secur. Com-
put., 2(3):248–261, 2005.

[BCM03] Dario Bottazzi, Antonio Corradi, and Rebecca Montanari.
Agape: a location-aware group membership middleware for
pervasive computing environments. 8th IEEE International
Symposium on Computers and Communications, 2003.

32

[BD05] Mike Burmester and Yvo Desmedt. A secure and scalable
group key exchange system. Information Processing Letters,
94(3):137–143, May 2005.

[BH02] Linda Briesemeister and Günter Hommel. Localized group
membership service for ad hoc networks. In International
Workshop on Ad Hoc Networking (IWAHN), pages 94–100,
August 2002.

[Bha03] Raghav Bhaskar. Group key agreement in ad hoc networks.
Technical report, INRIA, 2003.

[Bir93] Kenneth P. Birman. The process group approach to reliable
distributed computing. Commun. ACM, 36(12):37–53, 1993.

[BN03] Colin Boyd and Juan Manuel González Nieto. Round-optimal
contributory conference key agreement. In PKC ’03: Proceed-
ings of the 6th International Workshop on Theory and Prac-
tice in Public Key Cryptography, pages 161–174, London, UK,
2003. Springer-Verlag.

[BW98] Klaus Becker and Uta Wille. Communication complexity of
group key distribution. In CCS ’98: Proceedings of the 5th
ACM conference on Computer and communications security,
pages 1–6, New York, NY, USA, 1998. ACM Press.

[BYFK06] Ziv Bar-Yossef, Roy Friedman, and Gabriel Kliot. RaWMS:
random walk based lightweight membership service for wireless
ad hoc network. In MobiHoc ’06: Proceedings of the seventh
ACM international symposium on Mobile ad hoc networking
and computing, pages 238–249, New York, NY, USA, 2006.
ACM Press.

[CC89] Guang-huei Chiou and Wen-Tsuen Chen. Secure broadcasting
using the secure lock. IEEE Trans. Softw. Eng., 15(8):929–934,
1989.

[Cha05] Yacine Challal. Group communication security. PhD thesis,
Universite de Technologie Compiegne, France, 2005.

[CKV01] Gregory V. Chockler, Idid Keidar, and Roman Vitenberg.
Group communication specifications: a comprehensive study.
ACM Comput. Surv., 33(4):427–469, 2001.

33

[CS05] Yacine Challal and Hamida Seba. Group key management
protocols: A novel taxonomy. International Journal of Infor-
mation Technology, 2(1), 2005.

[DB05] Ratna Dutta and Rana Barua. Overview of key agreement
protocols. Cryptology ePrint Archive, Report 2005/289, 2005.

[DBS04] R. Dutta, R. Barua, and P. Sarkar. Provably secure authen-
ticated tree based group key agreement. In Proceedings of
ICICS’04, LNCS. Springer-Verlag, 2004.

[DFK06] Vadim Drabkin, Roy Friedman, and Alon Kama. Practical
byzantine group communication. In ICDCS ’06: Proceedings of
the 26th IEEE International Conference on Distributed Com-
puting Systems, page 36, Washington, DC, USA, 2006. IEEE
Computer Society.

[DM96] Danny Dolev and Dalia Malki. The transis approach to high
availability cluster communication. Commun. ACM, 39(4):64–
70, 1996.

[DMS99a] L. Dondeti, S. Mukherjee, and A. Samal. A distributed group
key management scheme for secure many-to-many communi-
cation. Technical report, Technical Report PINTL-TR-207-99,
1999.

[DMS99b] L. Dondeti, S. Mukherjee, and A. Samal. Survey and compar-
ison of secure group communication protocols, 1999.

[DSW06] Shlomi Dolev, Elad Schiller, and Jennifer Welch. Random walk
for self-stabilizing group communication in ad-hoc networks.
IEEE Transactions on Mobile Computing, 5(7), July 2006.

[Fri03] Roy Friedman. Fuzzy group membership. In A. Schiper, A.A.
Shvartsman, H. Weatherspoon, and B.Y. Zhao, editors, Future
Directions in Distributed Computing: Research and Position
Papers, volume 2584 of LNCS, pages 114 – 118. Springer, 2003.

[Gon97] Li Gong. Enclaves: Enabling secure collaboration over the
Internet. IEEE Journal on Selected Areas in Communications,
pages 567–575, 1997.

[HM97] H. Harney and C. Muckenhirn. Group key management pro-
tocol (gkmp) specification. RFC2093, 1997.

34

[Jaz] JazzEnsemble Homepage.
http://dsl.cs.technion.ac.il/projects/JazzEnsemble/.

[Jou00] Antoine Joux. A one round protocol for tripartite diffie-
hellman. In ANTS-IV: Proceedings of the 4th International
Symposium on Algorithmic Number Theory, pages 385–394,
London, UK, 2000. Springer-Verlag.

[KMMS01] Kim Potter Kihlstrom, L. E. Moser, and P. M. Melliar-Smith.
The SecureRing group communication system. ACM Trans.
Inf. Syst. Secur., 4(4):371–406, 2001.

[KPT04a] Yongdae Kim, Adrian Perrig, and Gene Tsudik. Group key
agreement efficient in communication. IEEE Transactions on
Computers, 53(7):905–921, 2004.

[KPT04b] Yongdae Kim, Adrian Perrig, and Gene Tsudik. Tree-based
group key agreement. ACM Trans. Inf. Syst. Secur., 7(1):60–
96, 2004.

[LEH04] Jun Luo, Patrick Th. Eugster, and Jean-Pierre Hubaux. Pi-
lot: Probabilistic lightweight group communication system for
ad hoc networks. IEEE Transactions on Mobile Computing,
3(2):164–179, 2004.

[LKKR03] Sangwon Lee, Yongdae Kim, Kwangjo Kim, and Dae-Hyun
Ryu. An efficient tree-based group key agreement using bilin-
ear map. In First International Conference on Applied Cryp-
tography and Network Security (ACNS’03), pages 357–371,
2003.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The
byzantine generals problem. ACM Trans. Program. Lang.
Syst., 4(3):382–401, 1982.

[LSSI05] Jinshan Liu, Daniele Sacchetti, Francoise Sailhan, and Valerie
Issarny. Group management for mobile ad hoc networks: de-
sign, implementation and experiment. In MDM ’05: Proceed-
ings of the 6th international conference on Mobile data man-
agement, pages 192–199, New York, NY, USA, 2005. ACM
Press.

35

[Man05] Mark Manulis. Contributory group key agreement protocols,
revisited for mobile ad-hoc groups. In International Work-
shop on Wireless and Sensor Networks Security (WSNS 2005),
2005.

[Man06] Mark Manulis. Security-Focused Survey on Group Key Ex-
change Protocols. Technical Report 2006/03, Horst-Görtz In-
stitute, Network and Data Security Group, November 2006.

[PB98] Ravi Prakash and Roberto Baldoni. Architecture for group
communication in mobile systems. In SRDS ’98: Proceedings
of the The 17th IEEE Symposium on Reliable Distributed Sys-
tems, page 235, Washington, DC, USA, 1998. IEEE Computer
Society.

[PH03] Pushkar Pradhan and Abdelsalam (Sumi) Helal. An efficient
algorithm for maintaining consistent group membership in ad
hoc networks. In ICDCSW ’03: Proceedings of the 23rd Inter-
national Conference on Distributed Computing Systems, page
428, Washington, DC, USA, 2003. IEEE Computer Society.

[RB94] Michael K. Reiter and Kenneth P. Birman. How to se-
curely replicate services. ACM Trans. Program. Lang. Syst.,
16(3):986–1009, 1994.

[RBD00] Ohad Rodeh, Ken Birman, and Danny Dolev. Optimized group
rekey for group communications systems. In Network and Dis-
tributed Systems Security, 2000.

[RBD01] Ohad Rodeh, Kenneth P. Birman, and Danny Dolev. The ar-
chitecture and performance of security protocols in the Ensem-
ble group communication system: Using diamonds to guard
the castle. ACM Trans. Inf. Syst. Secur., 4(3):289–319, 2001.

[RBG92] Michael Reiter, Kenneth Birman, and Li Gong. Integrating
security in a group oriented distributed system. In SP ’92:
Proceedings of the 1992 IEEE Symposium on Security and Pri-
vacy, page 18, Washington, DC, USA, 1992. IEEE Computer
Society.

[Rei95] Michael K. Reiter. The rampart toolkit for building high-
integrity services. In Selected Papers from the International

36

Workshop on Theory and Practice in Distributed Systems,
pages 99–110, London, UK, 1995. Springer-Verlag.

[RH03] Sandro Rafaeli and David Hutchison. A survey of key manage-
ment for secure group communication. ACM Comput. Surv.,
35(3):309–329, 2003.

[RHH01] Gruia-Catalin Roman, Qingfeng Huang, and Ali Hazemi. Con-
sistent group membership in ad hoc networks. In ICSE ’01:
Proceedings of the 23rd International Conference on Software
Engineering, pages 381–388, Washington, DC, USA, 2001.
IEEE Computer Society.

[Roh04] Christian Rohner. Building secure communities in sponta-
neously networked environments. In 4th Scandinavian Work-
shop on Wireless Ad-hoc Networks (AdHoc’04), 2004.

[SA00] Frank Stajano and Ross J. Anderson. The resurrecting duck-
ling: Security issues for ad-hoc wireless networks. In Proceed-
ings of the 7th International Workshop on Security Protocols,
pages 172–194, London, UK, 2000. Springer-Verlag.

[SLBE02] Oskar Scheikl, Jonathan Lane, Robert Boyer, and Mohamed
Eltoweissy. Multi-level secure multicast: The rethinking of
secure locks. In ICPPW ’02: Proceedings of the 2002 Interna-
tional Conference on Parallel Processing Workshops, page 17,
Washington, DC, USA, 2002. IEEE Computer Society.

[SM03] Alan T. Sherman and David A. McGrew. Key establishment
in large dynamic groups using one-way function trees. IEEE
Trans. Softw. Eng., 29(5):444–458, 2003.

[Sta01] Frank Stajano. The resurrecting duckling - what next? In Re-
vised Papers from the 8th International Workshop on Security
Protocols, pages 204–214, London, UK, 2001. Springer-Verlag.

[STM04] Narasimha Prasad Subraveti, Soontaree Tanaraksiritavorn,
and Shivakant Mishra. Flexible intrusion tolerant group mem-
bership protocol. In ICPADS ’04: Proceedings of the Parallel
and Distributed Systems, Tenth International Conference on
(ICPADS’04), page 437, Washington, DC, USA, 2004. IEEE
Computer Society.

37

[STW00] Michael Steiner, Gene Tsudik, and Michael Waidner. Key
agreement in dynamic peer groups. IEEE Trans. Parallel Dis-
trib. Syst., 11(8):769–780, 2000.

[vRBM96] Robbert van Renesse, Kenneth P. Birman, and Silvano Maf-
feis. Horus: a flexible group communication system. Commun.
ACM, 39(4):76–83, 1996.

[WGL00] Chung Kei Wong, Mohamed Gouda, and Simon S. Lam. Secure
group communications using key graphs. IEEE/ACM Trans.
Netw., 8(1):16–30, 2000.

[WHA99] D. Wallner, E. Harder, and R. Agee. Key management for
multicast: Issues and architectures. RFC 2627, 1999.

[YTCC02] Alec Yasinsac, Vikram Thakur, Stephen Carter, and Ilkay
Cubukcu. A family of protocols for group key generation in
ad hoc networks. In IASTED International Conference on
Communications and Computer Networks (CCN), 2002.

[ZAFL05] Shanyu Zheng, Jim Alves-Foss, and Stephen S. Lee. Perfor-
mance of group key agreement protocols over multiple opera-
tions. In International Conference on Parallel and Distributed
Computing Systems (IASTED PDCS), pages 600–606, Novem-
ber 2005.

38

