
Schedulability Analysis and
Software Synthesis for

Graph-based Task Models
with Resource Sharing

Jakaria Abdullah, Gaoyang Dai,
Morteza Mohaqeqi, Wang Yi

Uppsala University

April 13, 2018



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Outline

1 Problem

2 Algorithm

3 Evaluation

4 Synthesis

5 Conclusion

RTAS18 Dept. of Information Technology - 2 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Outline

1 Problem

2 Algorithm

3 Evaluation

4 Synthesis

5 Conclusion

RTAS18 Dept. of Information Technology - 3 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Graph-based Task Model

Motivation
• Execute different functions in different contexts
• Model multi-rate execution

General Features
• Supports different jobtypes
• Uses graph as release pattern

Applications
• Stateflow blocks of Simulink
• Angle-synchronous task (automotive)
• Frame processing (multimedia)

RTAS18 Dept. of Information Technology - 4 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Digraph Real-Time (DRT) Task Model
(Stigge et al, RTAS 2011)

Features
• Arbitrary directed graph as sporadic release pattern
• Generalizes graph-based task models like Generalized

MultiFrame (GMF), Recurring Branching (RB), . . .

J1

〈2,10〉

J2

〈4,20〉

J3

〈1,20〉
J4

〈3,15〉

<WCET, deadline>minimum inter-release

10

10

20

15

20
10

RTAS18 Dept. of Information Technology - 5 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

What about resource sharing?

Resource sharing
• Sharing memory for inter-task communication
• Original DRT model supports

• Fully preemptive execution - no resource sharing
• Fully non-preemptive execution - all jobs can share

Observation
In a multi-periodic system all jobs of a task do not require
resource sharing

Producer
t

Consumer
t

RTAS18 Dept. of Information Technology - 6 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

What about resource sharing?

Resource sharing
• Sharing memory for inter-task communication
• Original DRT model supports

• Fully preemptive execution - no resource sharing
• Fully non-preemptive execution - all jobs can share

Observation
In a multi-periodic system all jobs of a task do not require
resource sharing

Producer
t

Consumer
t

RTAS18 Dept. of Information Technology - 6 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Communication-by-Sampling

Oversampling in Communication
Reuse old data for slower producer

Producer
t

Consumer
t

Undersampling in Communication
Write data only for potential reader

Producer
t

Consumer
t

RTAS18 Dept. of Information Technology - 7 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Our Proposal

Resource sharing DRT
• DRT with Preemptive + Non-preemptive execution
• Resource sharing jobtypes - non-preemptive execution
• Other jobtypes - preemptive execution

J1

〈2,10〉

J2

〈4,20〉

J3

〈1,20〉
J4

〈3,15〉

non-preemptive

10

10

20

15

20

RTAS18 Dept. of Information Technology - 8 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Schedulability Analysis

Settings
• DRT tasks with preemptive + non-preemptive jobs
• Fixed task-level unique priority
• Constrained deadline
• Uniprocessor

Existing analysis
1 Fully preemptive execution (Stigge et al. 13)
2 Fully non-preemptive execution (Stigge et al. 15)

Research question
Does mixed execution require new analysis? Let’s look
deep

RTAS18 Dept. of Information Technology - 9 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Preemptive Vs. Non-preemptive

Fully Preemptive Case
• Lower priority has no effect on higher priority execution
• Critical instant : Simultaneous release of all higher

priority tasks

H Task1
t

H Task2
t

L Task
t

Worst-case

RTAS18 Dept. of Information Technology - 10 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Preemptive Vs. Non-preemptive

Fully Non-preemptive Case
• Lower priority can push execution of higher priority
• First job released in critical instant does not give

worst-case situation
• Requires checking multiple jobs in continuously busy

execution interval known as busy window (BW)

H Task
t

M Task
t

L Task
t

BW

RTAS18 Dept. of Information Technology - 11 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Preemptive Vs. Non-preemptive

Preemptive Job Test

t

Interference

Response time

tr d

Non-preemptive Job Test

t

Interference

tr Start time Latest start d

RTAS18 Dept. of Information Technology - 12 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Challenges in our case

Preemptive job in mixed execution
• DRT releases different jobtypes following different

paths
• Predecessor jobs can be non-preemptive
• Interfering jobs (other tasks) can be non-preemptive
• BW analysis for non-preemptive job will not work
• Requires new BW based analysis

Busy window
• Exact length of worst-case BW for a job is unknown
• Need to check different intervals to see whether a job

under test can be part of a BW

RTAS18 Dept. of Information Technology - 13 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Contributions

Timing Analysis
An exact test for fixed priority schedulability analysis of
DRT task with preemptive + non-preemptive execution

Software Synthesis
Ada code synthesis of DRT tasks with resource sharing

RTAS18 Dept. of Information Technology - 14 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Outline

1 Problem

2 Algorithm

3 Evaluation

4 Synthesis

5 Conclusion

RTAS18 Dept. of Information Technology - 15 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Algorithm

Main Idea
• Different BW based analysis for preemptive and

non-preemptive jobs
• Start with an interval for smallest possible BW
• Check whether the job under test can finish

(preemptive) or start (non-preemptive) within it
• Increment the interval to include predecessor jobs until

it reaches upper bound on BW length
• If a job passes all possible scenario, it is schedulable
• If all jobs of a task pass, the task is schedulable

RTAS18 Dept. of Information Technology - 16 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Algorithm Step 1
Preemptive Job

Initialization
Start with scheduling window of job under test J as
potential busy window (PBW)

t

Jrelease Jdeadline

PBW

RTAS18 Dept. of Information Technology - 17 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Algorithm Step 2
Preemptive Job

Workload Computation
Compute total workload TW = (High priority interference +
Non-preemptive blocking + task under test) in PBW

Workload Abstraction
Use path based workload abstraction for DRT tasks (Stigge
et al. 13)

RTAS18 Dept. of Information Technology - 18 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Algorithm Step 2
Preemptive Job

Workload Computation
Compute total workload TW = (High priority interference +
Non-preemptive blocking + task under test) in PBW

Workload Abstraction
Use path based workload abstraction for DRT tasks (Stigge
et al. 13)

RTAS18 Dept. of Information Technology - 18 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Request Functions

J1

〈2,10〉

J2

〈4,20〉

J3

〈1,20〉
J4

〈3,15〉

10

10

20

15

20

rf (t)

t
0 5 10 15 20 25 30 35 40

0
2
4
6
8

10
rf (J1,J2,J3)

rf (J3,J4,J2)<

RTAS18 Dept. of Information Technology - 19 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Workload Abstraction

Over-approximation

rf (t)

t

rf 1

rf 2

rf 1t rf 2

Abstraction tree

rf 1 rf 2 rf 3 rf 4

mrf
Maximum of all rf (T )(t) for a task T

Abstract rf (T )(t)s

Concrete rf (T )(t)s

RTAS18 Dept. of Information Technology - 20 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Workload Abstraction

Over-approximation

rf (t)

t

rf 1

rf 2
rf 1t rf 2

Abstraction tree

rf 1 rf 2 rf 3 rf 4

mrf
Maximum of all rf (T )(t) for a task T

Abstract rf (T )(t)s

Concrete rf (T )(t)s

RTAS18 Dept. of Information Technology - 20 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Workload Abstraction

Over-approximation

rf (t)

t

rf 1

rf 2
rf 1t rf 2

Abstraction tree

rf 1 rf 2 rf 3 rf 4

mrf
Maximum of all rf (T )(t) for a task T

Abstract rf (T )(t)s

Concrete rf (T )(t)s

RTAS18 Dept. of Information Technology - 20 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Algorithm Step 2
Preemptive Job

Workload Computation
Compute total workload TW = (High priority interference +
Non-preemptive blocking + task under test) in PBW

Higher priority
t

Task under test
t

Lower priority
t

BW

Maximum Blocking
1 One lower priority blocking per BW
2 Longest lower priority non-preemptive job maximizes

RTAS18 Dept. of Information Technology - 21 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Algorithm Step 2
Preemptive Job

Workload Computation
Compute total workload TW = (High priority interference +
Non-preemptive blocking + task under test) in PBW

Higher priority
t

Task under test
t

Lower priority
t

BW

Multiple jobs in BW
Include predecessor jobs for BW > scheduling window

RTAS18 Dept. of Information Technology - 22 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Algorithm Step 3
Preemptive Job

Is TW >= Length of PBW?

Step 4: Workload refinement

Step 5: Busy window extension

Yes No

RTAS18 Dept. of Information Technology - 23 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Algorithm Step 4
Preemptive Job

Workload Refinement
• If TW includes only concrete workload , then the job is

unschedulable

• If TW includes any abstract workload then refine it and
go back to step 2

abstract request functions: candidates for refinement

concrete request functions

Task T1

A

B C

D E

Task T3

A

B C

Task T3

A

B C

D E F G

RTAS18 Dept. of Information Technology - 24 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Algorithm Step 4
Preemptive Job

Workload Refinement
• If TW includes only concrete workload , then the job is

unschedulable
• If TW includes any abstract workload then refine it and

go back to step 2

abstract request functions: candidates for refinement

concrete request functions

Task T1

A

B C

D E

Task T3

A

B C

Task T3

A

B C

D E F G

RTAS18 Dept. of Information Technology - 24 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Algorithm Step 5
Preemptive Job

Busy Window (BW) extension
Extend PBW backwards to include another release of task
under test

t

Jrelease JdeadlineJrelease−1

PBWi−1

PBWi

extension

RTAS18 Dept. of Information Technology - 25 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Algorithm Step 5
Preemptive Job

Busy Window (BW) extension
Extend PBW backwards to include another release of task
under test

t

Jrelease JdeadlineJrelease−1

PBWi−1

PBWi

extension

RTAS18 Dept. of Information Technology - 25 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Algorithm Step 5
Preemptive Job

Busy Window (BW) extension
• If new PBW < MBW, go to step 2, otherwise feasible
• MBW is the smallest t where ∑T∈τ mrf (T )(t)6 t

∑mrf (T )(t)

t
Maximum Busy Window (MBW)

RTAS18 Dept. of Information Technology - 26 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Algorithm
Non-preemptive Job

Differences
• Start time computation excludes job under test
• High priority jobs can not preempt non-preemptive

execution

Change 1
The initial PBW = Scheduling window - WCET of Job under
test

t

Jrelease JdeadlineLatest start

WCETJ

PBW

RTAS18 Dept. of Information Technology - 27 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Algorithm
Non-preemptive Job

Differences
• Start time computation excludes job under test
• High priority jobs can not preempt non-preemptive

execution

Change 2
High priority interference (request functions) should include
jobs released at the end of an interval

rf (t)

t
0 5 10 15 20 25 30 35 40

0
2
4
6
8

10 rf 1

RTAS18 Dept. of Information Technology - 28 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Algorithm Summary
Generalization

Exactness
Our test is exact for sporadic release as
• Pass means taskset is schedulable
• Fail generates a set of job releases that is not

schedulable

Our algorithm

Fully preemptive test

Fully non-preemptive test

Preemptive only Non-preemptive only

RTAS18 Dept. of Information Technology - 29 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Outline

1 Problem

2 Algorithm

3 Evaluation

4 Synthesis

5 Conclusion

RTAS18 Dept. of Information Technology - 30 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Evaluation
Experimental Settings

Random tasksets
• 200 DRT tasksets/3% utilization
• Maximum 25 tasks/taskset
• Randomly assigned unique priority to each task
• Randomly marked jobtypes as non-preemptive

Realistic workload
• A fully non-preemptive angle-synchronous DRT task

v1 v2 v3

〈5,22〉 〈3,13〉 〈1,9〉

22

22

13

13

23 13 9

• Bosch case study (2015) + Mohaqeqi et al. 17
RTAS18 Dept. of Information Technology - 31 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Evaluation
Acceptance Vs. Utilization

0% 10% 20% 30% 40% 50% 60% 70% 80%
0

0.2

0.4

0.6

0.8

1

Task Set Utilization

A
cc

ep
ta

nc
e

R
at

io

5% NPR
10% NPR
20% NPR
40% NPR

Table: Random Task set parameters

Job types Branching degree p d/p e/d

[3,5] [1,3] [50,200] [0.5,1] [0.01,0.05]

RTAS18 Dept. of Information Technology - 32 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Evaluation
Runtime Vs. Utilization

0% 10% 20% 30% 40% 50% 60% 70% 80%
0

10

20

30

Task Set Utilization

A
ve

ra
ge

A
na

ly
si

s
R

un
-T

im
e

(s
ec

on
ds

)

5% NPR
10% NPR

Table: Random Task set parameters

Job types Branching degree p d/p e/d

[3,5] [1,3] [50,200] [0.5,1] [0.01,0.05]

RTAS18 Dept. of Information Technology - 33 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Evaluation
Observations

On acceptance
• Ratio of non-preemptive jobtypes has little effect
• Priority assignment influences acceptance in higher

utilization
• Taskset schedulable in mixed execution may not be

schedulable in fully preemptive or fully non-preemptive
settings

On runtime
• Testing time for schedulable tasksets < 10 seconds
• Depends on length of MBW
• Complexity: Strongly co-NP hard (from fully preemptive

case)

RTAS18 Dept. of Information Technology - 34 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Outline

1 Problem

2 Algorithm

3 Evaluation

4 Synthesis

5 Conclusion

RTAS18 Dept. of Information Technology - 35 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Software Synthesis

How to generate code for resource sharing DRT?
Two key features need implementation:

1 Event-triggered (sporadic) release of different jobtypes
2 Mixed preemptive and non-preemptive execution

Our Approach
We use Ada programming language and its runtime for
generating DRT code

RTAS18 Dept. of Information Technology - 36 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Software Synthesis

Event-triggered release
• Use Ada Protected Object (PO) to release based on

event
• Interrupt handlers are attached with POs
• Jobs can block on a PO entry

Example

-- Event receiver is a protected object

-- Task blocked here for next release

Event_receiver.Wait(event_id );

if event_id = u then

-- call jobtype for u

else if event_id = v then

-- call jobtype for v

RTAS18 Dept. of Information Technology - 37 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Software Synthesis

Preemptive + Non-preemptive execution
• Assign one global PO maximum system priority
• Put all non-preemptive job procedures in the global PO
• PO uses Immediate Ceiling Priority Protocol (ICPP)

Example

-- Entry for blocking tasks

entry Wait (Event: event_type ID);

-- Highest System priority

pragma Interrupt_Priority (Priority_Max );

-- Declaration for non -preemptive procedures

procedure NPR_Job1_task_a;

procedure NPR_Job2_task_a;

procedure NPR_Job1_task_b;

...

RTAS18 Dept. of Information Technology - 38 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Outline

1 Problem

2 Algorithm

3 Evaluation

4 Synthesis

5 Conclusion

RTAS18 Dept. of Information Technology - 39 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Summary and Future Work

Summary
• Exact fixed priority schedulability test for DRT with

job-level non-preemptive resource sharing
• Quick analysis for schedulable taskset
• Software synthesis using Ada without runtime

modification

Future Work
• Analysis for co-operative scheduling
• Apply classical resource sharing protocols
• Compute end-to-end latency
• Abstraction refinement on busy window extension

RTAS18 Dept. of Information Technology - 40 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

Questions?

RTAS18 Dept. of Information Technology - 41 - Jakaria Abdullah | jakaria.abdullah@it.uu.se



Problem

Algorithm

Evaluation

Synthesis

Conclusion

References

• M. Stigge, P. Ekberg, N. Guan, and W. Yi, The digraph
real-time task model, RTAS, 2011, pp. 71–80.

• M. Stigge and W. Yi, Combinatorial abstraction
refinement for feasibility analysis, RTSS, 2013, pp.
340–349.

• M. Stigge and W. Yi, Combinatorial abstraction
refinement for feasibility analysis of static priorities,
Real-Time Systems, vol. 51, no. 6, pp. 639–674, 2015.

• M. Mohaqeqi, J. Abdullah, P. Ekberg, and W. Yi,
Refinement of Workload Models for Engine Controllers
by State Space Partitioning, ECRTS, 2017, pp.
11:1–11:22.

• A. Hamann, D. Dasari, S. Kramer, M. Pressler, F.
Wurst, and D. Ziegenbein, Waters industrial challenge
2017.

RTAS18 Dept. of Information Technology - 42 - Jakaria Abdullah | jakaria.abdullah@it.uu.se


	Problem
	Algorithm
	Evaluation
	Synthesis
	Conclusion

