Refinement-based Exact Response-Time Analysis

Martin Stigge

Uppsala University, Sweden

Joint work with Nan Guan and Wang Yi
Response-Time Analysis

- Useful for
 - Schedulability analysis
 - Jitters in larger systems
 - ...

- Standard RTA for static priorities + periodic/sporadic tasks

\[R_j = C_j + \sum_{i \in hp(j)} \left\lceil \frac{R_j}{T_i} \right\rceil C_i \]
Not everything is periodic!
The Digraph Real-Time (DRT) Task Model
(S. et al., RTAS 2011)

- Generalizes periodic, sporadic, GMF, RRT, …
- **Directed graph** for each task
 - Vertices v: jobs to be released (with WCET and deadline)
 - Edges (u, v): minimum inter-release delays $p(u, v)$
DRT: Semantics

Path $\pi = (v_4)$

Path $\pi = (v_4, v_2)$

Path $\pi = (v_4, v_2, v_3)$
DRT: Semantics

Path $\pi = (v_4)$

$\langle 2, 5 \rangle$ $\langle 1, 8 \rangle$ $\langle 1, 5 \rangle$

$\langle 3, 8 \rangle$ $\langle 5, 10 \rangle$

Martin Stigge

Refinement-based Response-Time Analysis
DRT: Semantics

Path $\pi = (v_4, v_2)$
Path $\pi = (v_4, v_2, v_3)$
Response-Time Analysis for DRT
Problem: Path Combinations

Combinatorial Explosion!

Response time

Response time
Problem: Path Combinations

Combinatorial Explosion!
Fahrplan
Fahrplan
Step 1: From Paths to Functions
Step 1: From Paths to Functions

\[v_1 \langle 2, 5 \rangle \rightarrow v_2 \langle 1, 8 \rangle \rightarrow v_3 \langle 3, 8 \rangle \]
\[v_1 \langle 2, 5 \rangle \rightarrow v_2 \langle 1, 8 \rangle \rightarrow v_4 \langle 5, 10 \rangle \]
\[v_1 \langle 2, 5 \rangle \rightarrow v_5 \langle 1, 5 \rangle \]

\[rf(t) \]

\[rf(v_4, v_2, v_3) \]
Request Functions

Useful for deriving response time:

\[R_{SP}(v, \bar{rf}) = \min \left\{ t \geq 0 \mid e(v) + \sum_{T' > T} rf(T')(t) \leq t \right\} \]

\[R_{SP}(v) = \max_{rf \in RF(\tau)} R_{SP}(v, \bar{rf}) \]
Request Functions

Useful for deriving response time:

\[R_{SP}(v, \bar{rf}) = \min \left\{ t \geq 0 \mid e(v) + \sum_{T' > T} rf(T')(t) \leq t \right\} \]

\[R_{SP}(v) = \max_{\bar{rf} \in RF(\tau)} R_{SP}(v, \bar{rf}) \]

Combinatorial Explosion?!
Step 2: Abstraction Trees
Abstract Request Functions

\[rf(t) \]

\[rf(v_4, v_2, v_3) \]

Refinement-based Response-Time Analysis
Abstract Request Functions

\[rf(t) \]

\[rf(v_4, v_2, v_3) \]

\[rf(v_5, v_4, v_2) \]
Abstract Request Functions

\[rf(t) \]

Martin Stigge
Refinement-based Response-Time Analysis
Abstraction Tree

Define an *abstraction tree* per task:

- Leaves are concrete rf
- Each node: maximum function of child nodes
- Root is maximum of *all* rf
Define an *abstraction tree* per task:

- Leaves are concrete *rf*
- Each node: maximum function of child nodes
- Root is maximum of all *rf*
Define an *abstraction tree* per task:

- Leaves are concrete *rf*
- Each node: maximum function of child nodes
- Root is maximum of *all* *rf*
Define an *abstraction tree* per task:

- Leaves are concrete rf
- Each node: maximum function of child nodes
- Root is maximum of all rf
Define an *abstraction tree* per task:

- Leaves are concrete \(rf \)
- Each node: maximum function of child nodes
- Root is maximum of *all* \(rf \)
Define an *abstraction tree* per task:

- Leaves are concrete rf
- Each node: maximum function of child nodes
- Root is maximum of *all* rf

Allows stepwise refinement!
Step 3: Refinement Algorithm
Step 3: Refinement Algorithm

Tuple: \(\overline{rf} = (rf(T_1), rf(T_2), rf(T_3)) \)
Step 3: Refinement Algorithm

Tuple: \[
\bar{r}_f = (rf(T_1), rf(T_2), rf(T_3))
\]

Response time: \[
R_{SP}(v, \bar{r}_f) = 23
\]

Using: \[
R_{SP}(v, \bar{r}_f) = \min \left\{ t \geq 0 \mid e(v) + \sum_{T' > T} rf(T')(t) \leq t \right\}
\]
Step 3: Refinement Algorithm

Store

(23, \bar{f}_1)
Step 3: Refinement Algorithm

Step:

\[\bar{rf}_1 = (rf(T_1), rf(T_2), rf(T_3)) \]

\[\downarrow \]

\[\bar{rf}_2 = (rf'(T_1), rf(T_2), rf(T_3)) \]

\[\bar{rf}_3 = (rf''(T_1), rf(T_2), rf(T_3)) \]

In \(T_1 \):

\[rf' \]

\[rf'' \]

Store

(23, \(\bar{rf}_1 \))
Step 3: Refinement Algorithm

Step:

\[
\bar{rf}_1 = (rf(T_1), rf(T_2), rf(T_3))
\]

\[
\downarrow
\]

\[
\bar{rf}_2 = (rf'(T_1), rf(T_2), rf(T_3)) \rightarrow 18
\]

\[
\bar{rf}_3 = (rf''(T_1), rf(T_2), rf(T_3)) \rightarrow 21
\]

In \(T_1 \):

[Diagram of a tree showing \(rf' \) and \(rf'' \) as children of \(rf \)]

Store

(23, \(\bar{rf}_1 \))
Step 3: Refinement Algorithm

Step:

\[\bar{rf}_1 = (rf(T_1), rf(T_2), rf(T_3)) \]

\[\downarrow \]

\[\bar{rf}_2 = (rf'(T_1), rf(T_2), rf(T_3)) \rightarrow 18 \]

\[\bar{rf}_3 = (rf''(T_1), rf(T_2), rf(T_3)) \rightarrow 21 \]

In \(T_1 \):

Store

- (23, \(\bar{rf}_1 \))
- (21, \(\bar{rf}_2 \))
- (18, \(\bar{rf}_3 \))

Using:

\[R_{SP}(v, \bar{rf}) = \min \{ t \geq 0 | e(v) + \sum_{T'} T' > T_{rf}(T') \leq t \} \]
Step 3: Refinement Algorithm

Store

(21, \bar{rf}_2)

(18, \bar{rf}_3)
Step 3: Refinement Algorithm

Step:

\[\bar{rf}_2 = (rf(T_1), rf(T_2), rf(T_3)) \]

Store

(21, \bar{rf}_2)

(18, \bar{rf}_3)
Step 3: Refinement Algorithm

Step:

\[
\bar{r}_f_2 = (r_f(T_1), r_f(T_2), r_f(T_3))
\]

\[
\downarrow
\]

\[
\bar{r}_f_4 = (r_f(T_1), r'_f(T_2), r_f(T_3))
\]

\[
\bar{r}_f_5 = (r_f(T_1), r''_f(T_2), r_f(T_3))
\]

In \(T_2 \):

Store

(21, \bar{r}_f_2)

(18, \bar{r}_f_3)
Step 3: Refinement Algorithm

In T_2:

1. $\bar{rf}_2 = (rf(T_1), rf(T_2), rf(T_3))$
2. $\bar{rf}_4 = (rf(T_1), rf'(T_2), rf(T_3)) \rightarrow 20$
3. $\bar{rf}_5 = (rf(T_1), rf''(T_2), rf(T_3)) \rightarrow 17$

Store:

- $(21, \bar{rf}_2)$
- $(18, \bar{rf}_3)$
Step 3: Refinement Algorithm

Step:

\[\tilde{r}_f_2 = (rf(T_1), rf(T_2), rf(T_3)) \]

\[\downarrow \]

\[\tilde{r}_f_4 = (rf(T_1), rf'(T_2), rf(T_3)) \rightarrow 20 \]

\[\tilde{r}_f_5 = (rf(T_1), rf''(T_2), rf(T_3)) \rightarrow 17 \]

In \(T_2 \):

Store
- \((21, \tilde{r}_f_2) \)
- \((20, \tilde{r}_f_4) \)
- \((18, \tilde{r}_f_3) \)
- \((17, \tilde{r}_f_5) \)
Step 3: Refinement Algorithm

Store

(20, \(\bar{r}f_4\))

(18, \(\bar{r}f_3\))

(17, \(\bar{r}f_5\))

\ldots

Using:

\[R_{SP}(v, \bar{r}f) = \min \{ t \geq 0 | e(v) + \sum_{t' < T_{rf}(T')} t \leq t \} \]

...
Step 3: Refinement Algorithm

Initialization:
• Most abstract functions

Each iteration:
• Replace functions along *abstraction trees*

Termination:
• All functions are *concrete*
Step 3: Refinement Algorithm

Initialization:
 • Most abstract functions

Each iteration:
 • Replace functions along *abstraction trees*

Termination:
 • All functions are *concrete*

Store

(20, $\bar{r}f_4$)
(18, $\bar{r}f_3$)
(17, $\bar{r}f_5$)

Pluggable Path Abstractions!
Step 3: Refinement Algorithm

Initialization:
- Most abstract functions

Each iteration:
- Replace functions along *abstraction trees*

Termination:
- All functions are *concrete*

Pluggable Path Abstractions!
Path Abstractions: SP + EDF
Path Abstractions: Static Priorities

\[rf_{\pi}(t) := \max \{ e(\pi') | \pi' \text{ is prefix of } \pi \text{ and } p(\pi') < t \} \]
Path Abstractions: EDF

\[p(\pi) < t \text{ and } d(\pi) \leq t' \]
Path Abstractions: EDF

\[wf_{\pi}(t, t') := \max\{e(\pi') \mid \pi' \text{ is prefix of } \pi, \]
\[p(\pi') < t \text{ and } d(\pi') \leq t' \}. \]
Evaluation
Evaluation: Run-time Scaling

10-20 tasks with 5-10 vertices each, branching degree 1-3

(Busy window extension for EDF.)
Evaluation: Precision Improvement

Type A: lower parameter variance
Type B: higher parameter variance
Summary

- Exact solution for NP-hard problem
 - *Efficient* method
 - Iterative refinement
- Pluggable path abstractions
 - Static Priorities
 - EDF
 - *Flexible*

- Ongoing work:
 - Apply to other problems
Q & A

Thanks!