
Static Detection of Race Conditions in Erlang

Maria Christakis1 and Konstantinos Sagonas1,2

1 School of Electrical and Computer Engineering,
National Technical University of Athens, Greece

2 Department of Information Technology, Uppsala University, Sweden
{mchrista,kostis}@softlab.ntua.gr

Abstract. We address the problem of detecting some commonly oc-
curring kinds of race conditions in Erlang programs using static analy-
sis. Our analysis is completely automatic, fast and scalable, and avoids
false alarms by taking language characteristics into account. We have
integrated our analysis in dialyzer, a commonly used tool for detecting
software defects in Erlang programs which is part of Erlang/OTP, and
evaluate its effectiveness and performance on a suite of widely used in-
dustrial and open source programs of considerable size. The analysis has
detected a significant number of previously unknown race conditions.

1 Introduction

Concurrency is fundamental in computer programming, both as a method to
better structure programs and as a means to speed up their execution. Nowadays
concurrent programming is also becoming a necessity in order to take advantage
of multi-core machines which are ubiquitous. The only catch is that concurrent
programming is harder and more error-prone than its sequential counterpart.

To make concurrent programming simpler and better suited for some tasks,
different programming languages support different concurrency models. Some of
them totally avoid some hazards associated with concurrent execution. One such
language is Erlang, a language whose concurrency model is based on user-level
processes that communicate using asynchronous message passing [1]. Erlang con-
siderably simplifies the programming of some tasks and has been proven very
suitable for some kinds of highly-concurrent applications. However, it does not
avoid all problems associated with concurrent execution. In particular, the lan-
guage currently provides no atomicity construct and its implementation in the
Erlang/OTP system allows for many kinds of race conditions in programs, i.e.,
situations where one execution thread accesses some data value while some other
thread tries to update this value [2]. In fact, there is documented evidence that
race conditions are a serious problem when developing and troubleshooting large
industrial Erlang applications [3].

To ameliorate the situation and building upon successful prior work on de-
tecting software defects on the sequential part of Erlang [4,5], we have embarked
on a project aiming to detect concurrency errors in Erlang programs using static
analysis. In this paper we take a very important first step in that direction by

2 Maria Christakis and Konstantinos Sagonas

presenting an effective analysis that detects race conditions in Erlang. So far,
analyses for race detection have been developed for languages that support con-
currency using lock-based synchronization and their techniques rely heavily on
the presence of locking statements in programs. Besides tailoring the analysis to
the characteristics of concurrency in Erlang, the main challenges for our work
have been to develop an analysis that: 1) is completely automatic and requires
no guidance from its user; 2) strikes a proper balance between soundness and
precision; 3) is fast and scalable and thus able to handle large and possibly open
programs; and 4) integrates smoothly with the existing defect detection analyses
of the underlying tool. As we will see, we have achieved these goals.

The contributions of this paper are as follows:

– It documents the most important kinds of data races in Erlang programs;
– it presents an effective and scalable analysis that detects these races, and
– it demonstrates the effectiveness of the analysis by running it against a suite

of widely used industrial and open source applications of significant size and
reports on the number of race conditions that were detected.

The next section overviews the Erlang language and the defect detection tool
which is the vehicle for our work. Section 3 describes commonly occurring kinds
of data races in Erlang programs, followed by Sect. 4 which presents in detail
the analysis we use to detect them. The effectiveness and performance of our
analysis is evaluated in Sect. 5 and the paper ends by reviewing related work
and some final remarks.

2 Erlang and Dialyzer

Erlang [1] is a strict, dynamically typed functional programming language with
support for concurrency, communication, distribution, fault-tolerance, on-the-fly
code reloading, automatic memory management and support for multiple plat-
forms. Erlang’s primary application area has been in large-scale embedded con-
trol systems developed by the telecom industry. The main implementation of
the language, the Erlang/OTP (Open Telecom Platform) system from Ericsson,
has been open source since 1998 and has been used quite successfully both by
Ericsson and by other companies around the world to develop software for large
commercial applications. Nowadays, applications written in the language are
significant, both in number and in code size, making Erlang one of the most
industrially relevant declarative languages.

Erlang’s main strength is that it has been built from the ground up to support
concurrency. In fact, its concurrency model differs from most other programming
languages out there. Processes in Erlang are extremely light-weight (lighter than
OS threads), their number in typical applications is quite large and their allo-
cated memory starts very small (currently, 233 bytes) and can vary dynamically.
Erlang’s concurrency primitives spawn, ! (send) and receive allow a process
to spawn new processes and communicate with others through asynchronous

Static Detection of Race Conditions in Erlang 3

message passing. Any data can be sent as a message and processes may be lo-
cated on any machine. Each process has a mailbox, essentially a message queue,
where each message sent to the process will arrive. Message selection from the
mailbox occurs through pattern matching. To support robust systems, a pro-
cess can register to receive a message if another one terminates. Erlang provides
mechanisms for allowing a process to timeout while waiting for messages and a
try/catch-style exception mechanism for error handling.

In Erlang, scheduling of processes is primarily the responsibility of the run-
time system of the language. In the single-threaded version of the runtime sys-
tem, there is a single scheduler which picks up processes from a single ready
queue. The selected process gets assigned a number of reductions to execute.
Each time the process does a function call, a reduction is consumed. A process
gets suspended when the number of remaining reductions reaches zero, or when
the process tries to execute a receive statement and there are no matching mes-
sages in its mailbox, or when it gets stuck waiting for I/O. In the multi-threaded
version of the system, which nowadays is more common and the default on
multi-core architectures, there are multiple schedulers (typically one for each
core) each having its own ready queue. On top of that, the runtime system of
Erlang/OTP R13B (the version released on March 2009) also employs a redistri-
bution scheme based on work stealing when some scheduler’s run queue becomes
empty. A side-effect of all this is that the multi-threaded version of Erlang/OTP
makes many more process interleavings possible and more likely to occur than
in earlier versions. Indeed, in some applications written long ago, concurrency
bugs that have laid hidden for a number of years have recently been exposed.

Since 2007 the Erlang/OTP distribution includes a static analysis tool, called
dialyzer [4,5], for finding software defects (such as type errors, exception-raising
code, code which has become unreachable due to some logical error, etc.) in
single Erlang modules or entire applications. In fact, dialyzer has been surpris-
ingly effective in locating software bugs even in heavily used, well-tested code.
Dialyzer3 is totally automatic, extremely easy to use and supports various modes
of operation: command-line vs. GUI, starting the analysis from source vs. byte
code, focussing on some kind of defects only, etc. The details of dialyzer’s anal-
yses are beyond the scope of this paper — we refer the interested reader to the
relevant publications [4,6] — but notable characteristics of its core analysis are
that it is sound for defect detection (i.e., it produces no false positives), fast
and scalable. The core analysis is supported by various components for creat-
ing and manipulating function call graphs for a higher-order language (which
also requires escape analysis), taking control-flow into account, efficiently repre-
senting sets of values and computing fixpoints, etc. Nowadays, dialyzer is used
extensively in the Erlang programming community and is often integrated in
the build environment of many applications.4 However, we note that dialyzer’s

3 DIscrepancy AnaLYZer for ERlang; www.it.uu.se/research/group/hipe/dialyzer.
4 A survey of tools for developing and testing Erlang programs [7], published in the

fall of 2008, showed that dialyzer is by a wide margin the software tool which is the
most widely known (70%) and used (47%) by Erlang developers.

www.it.uu.se/research/group/hipe/dialyzer

4 Maria Christakis and Konstantinos Sagonas

analysis was restricted to detecting defects in the sequential part of Erlang when
we started this work. Before we see how we extended its analysis to also detect
data races, let us first see the kinds of race conditions that exist in Erlang.

3 Race Conditions in Erlang

Näıvely, one may think that race conditions are impossible in Erlang. After all,
the language is often advertized as supporting a shared nothing concurrency
model [1]. A Google search on the term might even convince some readers that
this is indeed the case. For example, the Wikipedia article on concurrent com-
puting currently mentions that “Erlang uses asynchronous message passing with
nothing shared”.5 If nothing is shared between processes, how can there be
race conditions? In reality, the “shared nothing” slogan is an oversimplification:
both of the language’s copying semantics, which e.g. allows for a shared mem-
ory implementation of processes, and of its actual implementation by Ericsson.
While it is indeed the case that the Erlang language does not provide any con-
structs for processes to create and modify shared memory, applications written
in Erlang/OTP often employ — and rely upon — system built-ins which allow
processes to share data, make decisions based on the values of this data and
destructively update them.

This is exactly what leads to data races in programs and the definition of race
conditions we adopt in this paper: “a race occurs when two threads (or processes)
can access (read or write) a data variable simultaneously, and at least one of the
two accesses is a write”. Intuitively, we think of race conditions occurring when
a process reads some variable and then decides to take some action based on the
value of that variable. If it is possible for another process to succeed in changing
the value stored on that variable in between the read and the action in such a
way that the action about to be taken is no longer appropriate, then we say that
our program has a race condition.

In the context of Erlang programs, use of certain Erlang/OTP built-ins leads
to data races between processes. Let’s first see the simplest of them.

3.1 Data Races in the Process Registry

In Erlang, each created process has a unique identifier (known as its “pid”),
which is dynamically assigned to the process upon its creation. To send a message
to a process one must know its pid. Besides addressing a process by using its pid,
there is also a mechanism, called the process registry, which acts as a node-local
name server, for registering a process under a certain name so that messages
can be sent to this process using that name. Names of processes are currently
restricted to atoms. The virtual machine of Erlang/OTP provides built-ins:

register(Name,Pid) which adds a table entry associating a certain Pid with a
given Name and generates a run-time exception if the Name already appears
in the registry,

5 http://en.wikipedia.org/wiki/Concurrent_computing (September 2009).

http://en.wikipedia.org/wiki/Concurrent_computing

Static Detection of Race Conditions in Erlang 5

proc_reg(Name) ->

...

case whereis(Name) of

undefined ->

Pid = spawn(...),

register(Name,Pid);

Pid -> % already

true % registered

end,

...

P1 P2

proc_reg(gazonk)

. . . proc_reg(gazonk)

whereis(gazonk)

. . .
Pid1 = spawn(...)

whereis(gazonk)

register(gazonk,Pid1)

Pid2 = spawn(...)

register(gazonk,Pid2)

Fig. 1. A function manipulating the process registry which contains a race con-
dition (left) and an interleaving of two processes that shows the race (right)

registered() which returns the list of names of all registered processes, and
whereis(Name) which returns the pid associated with Name or the special value

undefined if no process is currently registered under the given Name.

The registry holds only live processes; processes that finish their execution or
crash (e.g., due to some uncaught exception) get automatically unregistered.

Many programs manipulating the process registry are written in a defensive
programming style similar to the code shown on the left box of Fig. 1. This code
contains a race condition if executed concurrently by two or more processes. The
right box of the same figure shows an interleaving of the concurrent execution
of two processes running the code of the proc reg function. This interleaving
will result in a runtime exception at the point where P2 will attempt to register
the process with pid Pid2 under a name which has already been inserted in the
process registry by process P1. As a result of this exception, P2 will crash.

That process P2 will crash is unfortunate, but this is not the only problem
of this code. Another problem here is that any action that P2 has taken between
the whereis and register calls which affects the state needs to be undone.
In our example run, Pid2 is now a ghost process. In more involved examples,
many more actions affecting the state may have occurred in code that executed
between these two calls.

The real problem with the program of Fig. 1 is that the code that lays between
the whereis and the register calls needs to execute atomically but Erlang
currently lacks a construct that allows programmers to express this intention.
Not only is there currently no construct like atomic in Erlang, but there is also
nothing that can be conveniently used as a mutex to protect blocks containing
sequences of built-in function calls. In the single-threaded implementation of
Erlang/OTP, the probability of a process exhausting its reductions somewhere
between the whereis and register calls is small, especially if the two calls are
as close to each other as in our example, thus the race condition is there alright
in the program but the actual race is quite unlikely to occur in practice. Not
so in the multi-threaded version of Erlang/OTP which nowadays is more or less
ubiquitous. Similar problems exist in code that uses a call to the registered

6 Maria Christakis and Konstantinos Sagonas

run() ->
Tab = ets:new(some_tab_name,[public]),
Inc = compute_inc(),
Fun = fun () -> ets_inc(Tab,Inc) end,
spawn_some_processes(Fun).

ets_inc(Tab,Inc) ->
case ets:lookup(Tab,some_key) of

[] ->
ets:insert(Tab,{some_key,Inc});

[{some_key,OldValue}] ->
NewValue = OldValue + Inc,
ets:insert(Tab,{some_key,NewValue})

end.

-export([table_func/2]).

table_func(...) ->
create_time_stamp_table(), ...

create_time_stamp_table() ->
Props = [{type,set}, ...],
create_table(time_stamp,Props,ram_copies,false),
NRef =

case mnesia:dirty_read(time_stamp,ref_count) of
[] -> 1;
[#time_stamp{data = Ref}] -> Ref + 1

end,
mnesia:dirty_write(#time_stamp{data = NRef}).

Fig. 2. Programs containing race conditions related to ETS and Mnesia

built-in to make a decision whether to register some process under a name or
not, although such code is considerably less common.

3.2 Data Races in the Erlang Term Storage

The second category of data races are those related to the Erlang Term Storage
(ETS) facility of Erlang/OTP. This facility provides the ability to store very
large quantities of data, organized as a set of dynamic tables in memory, and to
have effectively constant time access to this data. Each ETS table is created by
a process using the ets:new(Name,Options) built-in and is given a Name which
then can be used to refer to this table (in addition to the table identifier, “tid”,
which is the return of the ets:new/2 built-in). Access rights can also be specified
for the table by declaring it in Options as private, protected, or public. Any
process can read from or write to tables that are public. Reading and writing
happens primarily with the built-ins:6

ets:lookup(Table,Key) which returns a list of objects currently associated
with the given Key in the Table (which is a name or a tid), and

ets:insert(Table,Object) which inserts an Object (a tuple with its first po-
sition designated as a key) to a given Table.

The program on the left box of Fig. 2 shows a made up example of Erlang code
which contains an ETS-related race condition. Note that function ets inc has
a race condition only if the ETS table, which is created outside this function, is
designated as public.

3.3 Data Races in the Mnesia Database

The last category of race conditions we examine are those related to mnesia [8],
the distributed Database Management System of Erlang/OTP. Being a database
6 The ets module contains more built-ins for reading from and updating ETS tables,

e.g., ets:lookup element(Table,Key,Pos) and ets:insert new(Table,Object),
but we do not describe them here as their treatment is similar to lookup and insert.

Static Detection of Race Conditions in Erlang 7

system, mnesia actually contains constructs for enclosing series of table manip-
ulation operations into atomic transactions and support to automatically deal
with data races which take place within a transaction. However, for performance
reasons, mnesia also provides a whole bunch of dirty operations — among them
mnesia:dirty read(Table,Key) and mnesia:dirty write(Table,Record) —
which, as their name suggests, perform database reads and writes without any
guarantees that they will not cause data races when executed concurrently. De-
spite the warning in their name, these dirty operations are used by programmers
more often than they really need to in applications. The right box of Fig. 2 shows
a function from the code of the snmp application of Erlang/OTP R13B01.

Having presented the most commonly occurring kinds of race conditions in
Erlang, which also are the categories of race conditions that our tool currently
detects, let us now present the static analysis that we use to detect them.

4 Detecting Race Conditions Using Static Analysis

No doubt the reader has noticed that all the examples of race conditions we
presented in the previous section have some characteristics in common. They all
involve a built-in that reads a data item, some decision is then taken based on the
value which was read, and execution continues with a built-in performing a write
operation of the same data item on either some (Fig. 1) or on all execution paths
(Fig. 2) following the read. Of course, that our examples follow this pattern is not
a coincidence. After all, this pattern reflects the definition of race conditions we
gave in the beginning of Sect. 3. However, one should not conclude that detecting
this small code pattern is all that our analysis needs to do. In the programs we
want to handle, the built-ins performing the reads and writes may be spatially
far apart, they may be hidden in the code of higher-order functions, or even be
located in different modules. In short, race detection in Erlang requires control-
flow analysis. Also, the race detection needs to be able to reason about data-flow :
if at some program point the analysis locates a call to say whereis(N) and from
that point on control reaches a program point where a call to register(M,Pid)
appears, the analysis has to determine whether N and M can possibly refer to
the same process name or not. If they can, we have detected a possible race
condition; otherwise, there is none. Finally, to avoid false alarms, the analysis
has to take language characteristics into account. For example, the fact that in
Erlang only escaping functions (i.e., functions that are exported from a module
or function closures returned as results) can be used in some spawn.

Conceptually, the analysis has three distinct phases: an initial phase that
scans the code to collect information needed by the subsequent phases, a phase
where all code points with possible race conditions are identified as suspects, and
a phase where suspects that are clearly innocent are filtered out. For efficiency
reasons, the actual implementation blurs the lines separating these phases and
also employs some optimizations. Let’s see all these in detail.

8 Maria Christakis and Konstantinos Sagonas

4.1 Collecting Information for the Analysis

We have integrated our analysis in dialyzer because many of the components that
it relies upon were already available or could be easily extended to provide the
information that the analysis needs. The analysis starts by the user specifying a
set of directories/files to be analyzed. Rather than operating directly on Erlang
source, all of dialyzer’s passes operate at the level of Core Erlang [9], the language
used internally by the Erlang compiler. Core Erlang significantly eases analysis
and optimization by removing syntactic sugar and by introducing a let construct
which makes the binding occurrence and scope of all variables explicit.

As the source code is translated to Core Erlang, dialyzer constructs the
control-flow graph (CFG) of each function or function closure and then uses
a simplified version of the escape analysis of Carlsson et al. [10] to determine
closures that escape their defining function. For example, for the code on the left
box of Fig. 2 the escape analysis will determine that function run defines a func-
tion closure that escapes this function as it is used as an argument to function
spawn some processes, which presumably uses this argument in some spawn.
Given this information, dialyzer also constructs the inter-modular call graph of
all functions and closures, so that subsequent analyses can use this information
to speed up their fixpoint computations. For the example in the same figure, the
call graph will contain three nodes for functions whose definitions appear in the
code (functions run, ets inc, and the closure) and an edge from the node of the
function closure to that of ets inc.

Besides control-flow, the analysis also needs data-flow information and more
specifically it needs information whether variables can possibly refer to the same
data item or not. Without race detection this information is not explicitly main-
tained by dialyzer, so we added a sharing/alias analysis component that com-
putes and maintains this information. The precision of this analysis is often
helped by the fact that dialyzer computes type information at a very fine-grained
level. For example, different atoms a1, . . . , an are represented as different single-
ton types in the type domain and their union a1| . . . |an is mapped to the super-
type atom() only when the size of the union exceeds a relatively high limit [6].
We will see how this information is used by the race analysis in Sect. 4.3.

4.2 Determining Code Points with Possible Race Conditions

The second phase of the analysis collects pairs of program points possibly in-
volved in a race condition. These pairs are of the form 〈P1, P2〉 where P1 is a
program point containing a read built-in (e.g., whereis, ets:lookup, . . .) and P2

is a program point containing a write built-in (e.g., register, ets:insert, . . .)
and such that there is a control-flow path from P1 to P2.

In order to collect these pairs, we need to inspect every possible execution
path of the program. To this end, we find the root nodes in the inter-modular call
graph and start by traversing their CFGs using depth-first search. This depth-
first search starts by identifying program points containing a read built-in and

Static Detection of Race Conditions in Erlang 9

then tries to find a program point “deeper” in the graph containing a write built-
in. In case a call to some other function is encountered and this function is stati-
cally known, the traversal continues by examining its CFG. The case of unknown
higher-order calls, as in the code on the right where the Fun(N) call is a call to

foo(Fun, N, M) ->

...

case whereis(N) of

undefined ->

...,

Fun(M);

Pid -> ...

end,

...

some unknown closure, gives us an implementation
choice. One option is to ignore such calls. This gives
an analysis which is sound for defect detection (i.e.,
an analysis that completely avoids false alarms). The
other option, which gives an analysis sound for cor-
rectness (i.e., an analysis that finds all data races but
may also produce some false alarms), is to continue
the traversal starting from all root nodes correspond-
ing to a function of arity one and continue the analysis
until every path is traversed. This exhaustive traversal creates the complete set
of pairs of program points where race conditions are possible. Loops require spe-
cial attention. A pre-processing step detects cycles in the call graph and checks
whether a write built-in is followed by a read built-in in some path in that cycle.

4.3 Filtering False Alarms

There are two main problems in what we have just described. There is an obvi-
ous performance problem related to the search being exhaustive and there is a
precision problem in that the candidate set of race conditions may contain false
alarms. We deal with the latter problem in this section.

False alarms are avoided by taking variable sharing, type information, and
the characteristics of the race conditions we aim to detect into account. Suppose
we opt for an analysis that finds all data races. Then, for the case of function foo
above, consider the set of functions that Fun can possibly refer to which directly
or indirectly lead to a call to register. The set of possible race conditions will
consist of pairs 〈Pw, Pri〉 where Pw denotes the program point corresponding to
the whereis call in foo and Pri

denotes the program points corresponding to
the register calls. For simplicity, let us assume that in all these register calls
their first argument is a term which shares with M (i.e., it is M or a variable which
is an alias of M). Finally let AN and AM denote the set of atoms that type analysis
has determined as possible values for N and M respectively. If AN ∩ AM = ∅ then
all these race conditions are clearly false alarms and can be filtered out. Note
that what we have just described is actually the complicated case where the call
leading to the write built-in is a call to some unknown function. In most cases,
function calls are to known functions which makes the filtering process much
simpler. Similarly, AN or AM are often singleton sets, which also simplifies the
process. Similar filtering criteria, regarding the name of the table, are applied
to race conditions related to ETS and mnesia. In addition, ETS-related possible
data races which do not involve a public table or that involve objects associated
with different keys are also filtered out in this analysis phase.

The method we have described has the following property. In programs where
the function call graph is precise (i.e., when there are no unknown calls or when

10 Maria Christakis and Konstantinos Sagonas

the escape analysis offers precise information about these calls) the analysis
produces no false alarms.

4.4 Some Optimizations

Although we have described the computing and filtering phases of the analysis
as being distinct, our implementation blurs this distinction, thereby avoiding the
exhaustive search and speeding up the analysis. In addition, we also employ the
following optimizations:

Control-flow graph and call graph minimization. The CFGs that dialyzer con-
structs by default contain the complete Core Erlang code of functions. This
makes sense as most of its analyses, including the type and sharing analyses, need
this information. However, note that the path traversal procedure of Sect. 4.2
requires only part of this information. For example, in the program illustrated
on the right box of Fig. 2, both the Props variable assignment and the list con-
struction on the same line, as well as the complete code of the case statement
are irrelevant for determining the candidate set of race conditions. Our analysis
takes advantage of this by a pre-processing step that removes all this code from
the CFGs and by recursively removing CFGs of leaf functions that do not con-
tain any calls to the built-ins we search for. In the same spirit, CFGs of functions
that are not reachable from some escaping function (i.e., from a root node of the
traversal) are also removed.

Avoiding repeated traversals and benefiting from temporal locality. After the call
graph is minimized as described above, the depth-first CFG traversal starts from
some root. The traversal of all paths from this root often encounters a split in
the CFG (e.g., a point where a case statement begins) which is followed by a
CFG join (the point where the case statement ends). All the straight-line code
which lies between the join point and the next split, including any straight-line
code in CFGs of functions called there, does not need to be repeatedly traversed
if it is found to contain no built-ins during the traversal of its first depth-first
search path. This optimization effectively prunes common sub-paths by condens-
ing them to a single program point. Another optimization is to collect, during
the construction of the CFGs of functions, the set of program points containing
read and write built-ins that result in race conditions and perform a search fo-
cussed around these points, effectively exploiting the fact that in most programs
pairs of program points that are involved in race conditions are temporally close
to each other (i.e., not necessarily in the same function but only a small number
of function calls apart).

Making unknown function calls less unknown. When we described how unknown
higher-order calls like Fun(N) could be handled, we made the pessimistic assump-
tion that Fun can refer to any function with arity one. This is correct but way
too conservative. By taking into account information about the type of N and of

Static Detection of Race Conditions in Erlang 11

the return value of the function, the set of these functions is reduced, often sig-
nificantly so. Even though in Erlang there is no guarantee that calls will respect
the type discipline, calls that do not do so will result in a crash which is a defect
that dialyzer will report to its user anyway, albeit in another defect category.
The user can correct these defects first and re-run the race analysis.

5 Experimental Evaluation

The analysis we described in the previous section has been implemented and
incorporated in the development version of dialyzer. We have paid special atten-
tion to integrate it smoothly with the existing analyses, reuse as much of the
underlying infrastructure as possible, and fine-tune the race detection so that
it incurs relatively little additional overhead to dialyzer’s default mode of use.
The main module of the race analysis is about 2,200 lines of Erlang code and
the user can turn on race detection either via a GUI button or a command-line
option. Another analysis option controls whether the analysis will examine calls
to unknown functions or not (Sect. 4.2).

With this option off, we have measured the effectiveness and performance
of the analysis by applying it on a corpus of Erlang code of significant size:
more than a million lines of code. In this paper we restrict our attention to
Erlang/OTP libraries and open source applications which were found to contain
race conditions in their code. A short description of the code bases we focus on
appears in Table 1. All of them are heavily used. For open source applications
we used the code from their public repositories at the end of August 2009.

Table 1. Brief description of applications found to contain race conditions

Application libraries from the Erlang/OTP R13B01 distribution

asn1 Provides support for Abstract Syntax Notation One
common test A portable framework for automatic testing
gs A Graphics System used to write platform independent user interfaces
kernel Functionality necessary to run the Erlang/OTP system itself
otp mibs SNMP Management Information Base for Erlang/OTP nodes
percept A concurrency profiler tool
runtime tools Tools to include in a production system
snmp Simple Network Management Protocol (SNMP) support including a

Management Information Base compiler and tools for creating agents
stdlib The Erlang standard libraries
tv An Erlang term store and mnesia graphical Table Visualizer

Open source Erlang applications

ejabberd A distributed, fault-tolerant Jabber/XMPP application server
Erlang Web A framework for applications based on HTTP protocols
yaws (Yet another web server) An HTTP, high-performance 1.1 web server,

particularly well-suited for dynamic-content web applications

12 Maria Christakis and Konstantinos Sagonas

Table 2. Effectiveness and performance of the race analysis

Num Race Conditions Time (mins) Space (MB)

Application LOC Total ProcR ETS Mnesia w/o race w race w/o race w race

asn1 38,965 2 2 - - 3:30 4:04 182 282
common test 15,573 1 1 - - 0:22 0:22 74 78
gs 15,819 2 2 - - 1:00 2:01 111 170
kernel 36,618 6 4 2 - 1:00 1:05 86 130
otp mibs 196 2 - - 2 0:00 0:00 32 33
percept 4,457 3 3 - - 0:11 0:11 40 43
runtime tools 8,277 2 2 - - 0:28 0:28 62 71
snmp 52,071 6 - 3 3 1:54 2:00 141 192
stdlib 72,297 1 1 - - 6:23 6:45 189 310
tv 20,050 1 1 - - 0:13 0:13 71 72

ejabberd 72,788 6 1 4 1 0:39 0:40 113 142
Erlang Web 22,229 7 - 7 - 0:33 0:35 115 122
yaws 37,270 3 3 - - 1:33 1:39 167 245

Table 2 shows the lines of code (LOC) of each application, the number of
race conditions detected (total and categorized as being related to the process
registry, to ETS or to Mnesia), and the elapsed wall clock time (in minutes) and
memory requirements (in MB) for running dialyzer without and with the analysis
that detects race conditions on these programs. The performance evaluation was
conducted on a machine with a dual processor Intel Pentium 2GHz CPU with
3GB of RAM, running Linux. (Currently, the analysis utilizes only one core.)

In analyzing these results, first notice that the number of race conditions
is significant, especially considering that our technique currently tracks only
some specific categories of possible data races in Erlang. Since the analysis does
not examine execution paths starting from statically unknown function calls,
it produces no false alarms. In fact, we have manually examined all these race
conditions and confirmed that indeed all are possible. Regarding performance,
in most cases, data race detection adds only a small overhead, both in time
and in space, to dialyzer’s default analysis. The only outliers are gs where the
analysis time is doubled and stdlib where analysis with race condition detection
on requires 66% more space than analysis without. Still, viewed in absolute
terms, both the time and the space overhead are reasonable given the size of
these applications. Since the analysis is totally automatic, we see very little
reason not to use it regularly when developing Erlang programs.

6 Related Work

The problem of detecting data races and other concurrency errors in programs is
fundamental and well studied. In the literature one can find various approaches,
which can be broadly classified as static, dynamic, or hybrid.

Static Detection of Race Conditions in Erlang 13

Dynamic race detectors instrument the program and monitor its execution
during runtime either using some variant of the lockset algorithm [11,12] to see
whether the locking discipline (i.e., the assumption that all shared variables
must be accessed within the protection of a lock) is violated or by checking
whether Lamport’s happens-before relation between thread accesses to a given
piece of data holds. State-of-the-art dynamic detectors are scalable and easy
to use but cannot guarantee the absence of races and require comprehensive
test suites. Their efficiency and precision can be improved with static analysis,
thereby yielding hybrid race detectors [13]. For more information on dynamic and
hybrid approaches to race detection we refer the reader to a recent survey [14].

Static approaches either prevent some kinds of races completely by imposing
a type system to the language that guarantees the absence of these races if
the program type checks, or use path sensitive model checkers or flow sensitive
static analyzers to detect them. The latter techniques are more related to what
we do, so we examine them more closely. Model checkers find race conditions
by considering all possible interleavings in a model of the software which is
under scrutiny and try to fight combinatorial explosion by using various clever
representations of the search space and heuristics to cut down the number of
interleavings that need to be explored. The key advantage of model checkers
is that they detect actual data races and often also produce counterexamples
for them. On the other hand, existing software model checkers do not scale
to the size of programs we need to handle. Moreover, it is not clear what the
property to check should be since the kinds of atomicity violations that our tool
detects are not easily expressible in the language of most model checkers. Static
analyzers have been shown to be more scalable. They either employ a static
version of the lockset algorithm [15,16], flow sensitive analysis [17,18,19], or are
based on abstract interpretation [20]. A big challenge for static analyzers is to
strike a proper balance between soundness and precision. Soundness is often
threatened by how well they abstract certain nasty features of the language [16]
or by the effectiveness of the alias and escape analyses that they employ [17,18].
Most analyzers try to reduce the number of false alarms either using heuristics
inspired from common programming idioms [16] or by using a carefully thought
out sequence of analysis stages and taking context sensitivity into account [18].
In this respect they are very much related to what we do. However, all these
approaches have been developed and investigated in the context of imperative
languages (C, C++, and Java), where the implementation of multi-threading
is via locks and synchronization, so naturally the techniques on which they are
based differ significantly from ours.

Very recently, Claessen et al. proposed a method to detect race conditions in
Erlang programs by employing property-based testing using QuickCheck and a
special purpose randomizing user-level scheduler for Erlang called PULSE [21].
Their method is only semi-automatic as it relies on the user to specify, using a
special QuickCheck module (eqc par statem) that models a parallel state ma-
chine, the properties for which to test for possible atomicity violations. As a case
study, the method was applied to a small (200 line) Erlang program detecting two

14 Maria Christakis and Konstantinos Sagonas

race conditions. While we prefer our method because it is completely automatic
and more scalable, the two methods are complementary to each other. Dialyzer
cannot detect one of the two race conditions in that program because this race
depends on the semantics of the operations which are supplied by the user (in
the form of QuickCheck properties that should hold). The other race condition
is detectable by dialyzer when enhancing its analysis with information about the
behaviour of the gen server module of Erlang/OTP. More generally, it is clear
that in both tools the more the information which is supplied to them about
which operations and built-ins can cause atomicity violations, the more the race
conditions that the tools can detect. But a fundamental difference between them
is that in our tool the responsibility for supplying this information lies in the
hands of the tool implementor while in QuickCheck’s case in the programmer’s.

7 Concluding Remarks

In this paper we showed kinds of data races that Erlang programs can exhibit
and presented an effective static analysis technique that detects them. By im-
plementing this analysis in a publicly available and commonly used tool for
detecting software defects in Erlang programs not only were we able to measure
its effectiveness and performance by applying it to several large applications,
but we also contribute in a concrete way to raising the awareness of the Erlang
programming community on these issues and helping programmers fix the corre-
sponding bugs. Data races are subtle and notoriously difficult for programmers
to avoid and reason about, independently of language. In Erlang there are fewer
potential race conditions and they are less likely to manifest themselves during
testing, which unfortunately also makes it less likely that programmers will be
paying special attention to be watching out for them when programming. De-
spite the restricted nature of data races in Erlang, our experimental results have
shown that the number of race conditions is not negligible even in widely used
applications. Tools to detect them definitely have their place in the developer’s
tool suite.

References

1. Armstrong, J.: Programming Erlang: Software for a Concurrent World. The Prag-
matic Bookshelf, Raleigh, NC (2007)

2. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7) (1978) 558–565

3. Cronqvist, M.: Troubleshooting a large Erlang system. In: Proceedings of the 3rd
ACM SIGPLAN Workshop on Erlang, New York, NY, USA, ACM (2004) 11–15

4. Lindahl, T., Sagonas, K.: Detecting software defects in telecom applications
through lightweight static analysis: A war story. In Wei-Ngan, C., ed.: Program-
ming Languages and Systems: Proceedings of the Second Asian Symposium. Vol-
ume 3302 of LNCS., Berlin, Germany, Springer (2004) 91–106

Static Detection of Race Conditions in Erlang 15

5. Sagonas, K.: Experience from developing the Dialyzer: A static analysis tool de-
tecting defects in Erlang applications. In: Proceedings of the ACM SIGPLAN
Workshop on the Evaluation of Software Defect Detection Tools. (2005)

6. Lindahl, T., Sagonas, K.: Practical type inference based on success typings. In:
Proceedings of the 8th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, New York, NY, USA, ACM (2006) 167–178

7. Nagy, T., Nagyné Vı́g, A.: Erlang testing and tools survey. In: Proceedings of
the 7th ACM SIGPLAN Workshop on Erlang, New York, NY, USA, ACM (2008)
21–28

8. Mattsson, H., Nilsson, H., Wikström, C.: Mnesia - a distributed robust DBMS
for telecommunications applications. In Gupta, G., ed.: Practical Applications
of Declarative Languages: Proceedings of the PADL Symposium. Volume 1551 of
LNCS., Berlin, Germany, Springer (1999) 152–163

9. Carlsson, R.: An introduction to Core Erlang. In: Proceedings of the PLI’01
Workshop on Erlang. (2001)

10. Carlsson, R., Sagonas, K., Wilhelmsson, J.: Message analysis for concurrent pro-
grams using message passing. ACM Transactions on Programming Languages and
Systems 28(4) (July 2006) 715–746

11. Dinning, A., Schonberg, E.: Detecting access anomalies in programs with critical
sections. In: Proceedings of the ACM/ONR Workshop on Parallel and Distributed
Debugging, New York, NY, USA, ACM (1991) 85–96

12. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A
dynamic data race detector for multithreaded programs. In: Proceedings of the
16th ACM Symposium on Operating Systems Principles, New York, NY, USA,
ACM (1997) 27–37

13. O’Callahan, R., Choi, J.D.: Hybrid dynamic data race detection. In: Proceedings
of the 9th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, New York, NY, USA, ACM (2003) 167–178

14. Beckman, N.E.: A survey of methods for preventing race conditions (2006)
15. Sterling, N.: Warlock: A static data race analysis tool. In: Proceedings of the

Usenix Winter Technical Conference. (1993) 97–106
16. Engler, D., Ashcraft, K.: RacerX: Effective, static detection of race conditions and

deadlocks. In: Proceedings of the 19th ACM Symposium on Operating Systems
Principles, New York, NY, USA, ACM (2003) 237–252

17. Choi, J.D., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., Shidharan, M.: Ef-
ficient and precise datarace detection for multithreaded object oriented programs.
In: Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, New York, NY, USA, ACM (2002) 258–269

18. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In:
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, New York, NY, USA, ACM (2006) 308–319

19. Voung, J.W., Jahla, R., Lerner, S.: Relay: static race detection of million of lines
of code. In: Proceedings of the 6th Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, New York, NY, USA, ACM (2007) 205–214

20. Mathworks: Code verification and run-time error detection through abstract in-
terpretation. White paper (2004)

21. Claessen, K., Pa lka, M., Smallbone, N., Hughes, J., Svensson, H., Arts, T., Wiger,
U.: Finding race conditions in Erlang with QuickCheck and PULSE. In: Proceed-
ings of the 14th ACM SIGPLAN International Conference on Functional Program-
ming, New York, NY, USA, ACM (2009)

	Static Detection of Race Conditions in Erlang
	Maria Christakis and Konstantinos Sagonas

