
Erlang’s Exception Handling Revisited

Richard Carlsson
Department of

Information Technology,
Uppsala University, Sweden

richardc@csd.uu.se

Björn Gustavsson
Ericsson, Sweden

bjorn@erix.ericsson.se

Patrik Nyblom
Ericsson, Sweden

pan@erix.ericsson.se

ABSTRACT
This paper describes the new exception handling in the
Erlang programming language, to be introduced in the
forthcoming Release 10 of the Erlang/OTP system. We give
a comprehensive description of the behaviour of exceptions
in modern-day Erlang, present a theoretical model of the
semantics of exceptions, and use this to derive the new try-
construct.

1. INTRODUCTION
The exception handling in Erlang is an area of the lan-

guage that is not completely understood by most program-
mers. There are several details that are often overlooked,
sometimes making the program sensitive to changes, or hid-
ing the reasons for errors so that debugging becomes diffi-
cult. The existing catch mechanism is inadequate in many
respects, since it has not evolved along with the actual be-
haviour of exceptions in Erlang implementations. The ad-
dition of a new exception handling construct to replace the
existing catch has long been discussed, but has not yet made
its way into the language.

The purpose of this paper is twofold: first, to explain the
realities of exceptions in Erlang, and why the creation of
a new exception-handling construct has been such a long
and complicated process; second, to describe in detail the
syntax and semantics of the finally accepted form of the try-
construct, which is to be introduced in Erlang/OTP R10.

The layout of the rest of the paper is as follows: Section 2
describes in detail how exceptions in Erlang actually work,
and the shortcomings of the current catch operator. Sec-
tion 3 explains how the new try-construct was derived, and
why try in a functional language has different requirements
than in an imperative language such as C++ or Java. In
Section 4, we refine the exception model and give the full
syntax and semantics of try-expressions, along with some
concrete examples. Section 5 discusses related work, and
Section 6 concludes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Erlang Workshop ’04 22/09/2004, Snowbird, Utah, USA
Copyright 2004 ACM 1-58113-772-9/03/08 ...$5.00.

2. EXCEPTION HANDLING IN ERLANG

2.1 Exceptions as we know them
The exception handling in Erlang, as described in [2],

was designed to be simple and straightforward. An excep-
tion can occur when a built-in operation fails, such as an
arithmetic operation, list operation, pattern matching, or
case-clause selection, or when the user calls one of the built-
in functions exit(Term) or throw(Term).

The exception is then described by an ordinary Erlang

term (often called the reason), such as an atom badarg or
badarith, or a tuple like {badmatch, Value} where Value is
the data that could not be matched. To prevent exceptions
from propagating out of an expression, the expression can
be placed within a catch operator, as in

X = (catch f(Y))

(the parentheses are needed in this case because of the low
precedence of catch), or more often

case catch f(Y) of

...

end

to immediately switch on the result. If the expression within
the catch completes normally, the resulting value is returned
as if the catch had not been there.

When an exception occurs, one of two things can happen:
either the exception is not caught by the executing process,
and in that case the process terminates, possibly propagat-
ing a signal to other processes; otherwise, the execution had
entered (but not yet exited) one or more catch-expressions
before the exception happened, and execution is resumed at
the latest entered catch, unrolling the stack as necessary.
The result of the catch expression then depends on how
the exception was caused: if it occurred because of a call
to throw(Term), the result is exactly Term.1 Otherwise, the
result will have the form of a tuple {’EXIT’, Term}. For
example,

catch (1 + foo)

returns {’EXIT’, badarith} (since foo is an atom), while

catch throw(foo)

returns the atom foo, the intention being that throw should
be used for “nonlocal returns” (e.g., for escaping out of a
deep recursion) and other user-level exceptions. The exit

function, on the other hand, is intended for terminating the
process, and behaves like a run-time failure, so that
1Much like catch/throw in Common Lisp.

catch exit(user_error)

returns {’EXIT’, user error}.
One of the consequences of this (explicitly described in [2]

as a design decision) was that it became possible to “fake” a
run-time failure or exit, by calling throw({’EXIT’, Term}),
or by simply returning the value {’EXIT’, Term}. For ex-
ample, in the following code:

R = catch (case X of

1 -> 1 + foo;

2 -> exit(badarith);

3 -> throw({’EXIT’, badarith});

4 -> {’EXIT’, badarith}

5 -> throw(ok);

6 -> ok

end),

case R of

{’EXIT’, badarith} -> "1-4";

ok -> "5-6"

end

the semantics of catch makes it impossible to tell whether
the value of R (depending on X) is the result of catching
a run-time failure or a call to exit or throw, or if the ex-
pression completed execution in a normal way. Usually, this
is not a problem; for example, most Erlang programmers
would never use a tuple {’EXIT’, Term} in normal code.

2.2 Where’s the catch?
In some contexts, it becomes more important to know

what has actually happened. For example, consider:

lookup(X, F, Default) ->

case catch F(X) of

{’EXIT’, Reason} -> handle(Reason);

not_found -> Default;

Value -> Value

end.

where F is bound to some function, which should either re-
turn a value depending on X, or call throw(not found).

Note that the possible returned values cannot include the
atom not found. To solve this in general, the return val-
ues would need a wrapper, such as {ok, Value}, to separate
them from any thrown terms (assuming that {ok, ...} is
never thrown, much like it is assumed that {’EXIT’, ...} is
not normally returned by any function). This limits the use-
fulness of throw somewhat, since it requires that the normal-
case return values are marked, rather than the exceptional
values, which is counterintuitive and bothersome.

An idiom used by a few knowledgeable Erlang program-
mers to create almost-foolproof catches is the following:

lookup(X, F, Default) ->

case catch {ok, F(X)} of

{ok, Value} -> Value;

{’EXIT’, Reason} -> exit(Reason);

not_found -> Default;

Term -> throw(Term)

end.

Since it is guaranteed that the creation of a tuple such as
{ok, Expr } will never cause an exception if the subexpres-
sion Expr completes normally, we have a way of separating
exceptions in F(X) from normal return values – as long as

we trust that nobody calls throw({ok, ...}) within F(X).
Furthermore, any caught exceptions that are not of inter-
est at this point can simply passed to throw or exit again,
hoping that some other catch will handle it.

This way of writing safer catches is however rarely seen
in practice, since not many programmers know the trick,
or bother enough to use it, since their catches mostly work
anyway – at least until some other part of the code changes.

2.3 Current practice
The difficulty in properly separating exceptions from re-

turn values appears to be the main reason why although
Erlang has a catch/throw mechanism, it is still the case
that in existing code, the predominant way of signalling the
success or failure of a function is to make it return tagged tu-
ples like {ok, Value} in case of success and {error, Reason}
otherwise, forcing the caller to check the result and either
extract the value or handle the error. This often leads to a
clumsy programming style, in the many cases where errors
are actually rare and it is even rarer that the caller wants to
handle them. (If a significant part of all calls to a function
tend to fail, the above can still be a good way of structuring
the function interface, but typically, failure happens in only
a very small fraction of all calls.)

In C programs [5], the code is often interspersed with
many checks to see if function calls have returned valid re-
sults, even though there is seldom much that the program-
mer can do if this was not the case, except terminate the
program. The lack of an exception mechanism makes the
code less readable, more time-consuming to write, and more
error prone since forgetting to check a value can be fatal.
Erlang programs suffer similar problems: even if the pro-
grammer cannot do anything constructive to handle an er-
ror, he must still remember whether a called function returns
a naked value or {ok, Value}, and in the latter case must
also decide what should happen if instead {error, Reason}
is returned. The following idiom is often used:

{ok, Value} = f(X)

so that if the call succeeds, the relevant part of the result
is bound to Value, and if the call instead returns {error,
Reason}, it will cause a badmatch exception. The main
drawback is that it points out the wrong cause of the prob-
lem, which was a failure within f(X), and not in the pattern
matching. Also, the wrapping convention remains a cause of
irritation because one is forced to write awkward code like

{ok, Y} = f(X),

{ok, Z} = g(Y),

{ok, Value} = h(Z)

when it would have sufficed with

Value = h(g(f(X)))

if the functions had returned naked values and used excep-
tions to signal errors.

Sometimes, programmers attempt to handle the error case
as follows:

case f(X) of

{error, Reason} -> exit(Reason);

{ok, Value} -> ...

end

but often, the error term Reason returned by the function
is very particular to that function, and is not suitable for
passing to exit, so that anyone who catches the resulting
exception will only be confused since there is no longer any
context available for interpreting the term. So even though
the programmer simply wishes to pass on the problem to be
handled by someone else, it really requires interpreting the
error and creating a more comprehensible report. In fact,
the badmatch solution above is to be preferred, because it
will show precisely where the program gave up, rather than
pass on a cryptic term with exit.

2.4 Processes and signals
Since Erlang is a concurrent language, every program is

executed by a process (similar to a thread), and many pro-
cesses can be running concurrently in an Erlang runtime
system. A signalling system is used for informing processes
about when other processes terminate. As for exceptions,
an exit signal is described by a term, which if the process
terminated normally (by returning from its initial function
call) is the atom normal. If the process terminated because
it called exit(Term) (and did not catch the exception), the
exit term is exactly the value of Term; thus, a process can
also terminate “normally” by calling exit(normal), e.g. in
order to easily exit from within a deep call chain. Similarly,
if the process terminated because of a run-time failure that
was not caught, the exit term is the same term that would
be reported as {’EXIT’, Term} in a catch-expression, as for
instance badarg or {badmatch, Value}.

A special case is when a process terminates because it
called throw(Term) and did not catch the exception. In this
case, the exit term will be changed to {nocatch, Term}, to
distinguish this case from other kinds of exits.

2.5 The Truth. . .
To simplify the above discussion (as many readers will

doubtless have noticed), we have left out a few details about
exceptions as they appear in modern Erlang implementa-
tions. The presentation in the preceding sections follows the
description of exceptions in “The Erlang Book” [2] (Con-
current Programming in Erlang, Second Ed., 1996).

The most apparent change since then is that when a run-
time failure occurs (and is then either caught in a catch or
causes the process to terminate), the term that describes
the error will also include a symbolic representation of the
topmost part of the call stack at the point where the error
occurred. (This does not happen for calls to exit or throw.)
The general format is {Reason, Stack}, where Reason is the
normal error term as described in the previous sections. For
example, calling f(foo) where:

f(X) -> "1" ++ g(X).

g(X) -> "2" ++ h(X).

h(X) -> X ++ ".".

will generate an exception with a descriptor term such as
the following:

{badarg,[{erlang,’++’,[foo,"."]},

{foo,h,1},

{foo,g,1},

{foo,f,1}]}

Details in the stack representation may vary depending on

If evaluation of Expr completed normally with result R

then
the result of catch Expr is R,

else
the evaluation threw an exception 〈term, thrown〉;
if thrown is true

then
the result of catch Expr is term,

else
the result of catch Expr is {’EXIT’, term}

Figure 1: Semantics of catch Expr

implementation, cause of error, and call history.2 (Also note
that because of tail call optimization, many intermediate
function calls cannot be reported, since there is by definition
no trace left of them.)

Thus, for example the call f(0) where

f(X) -> catch 1/X.

will actually return

{’EXIT’, {badarith, [{foo,f,1}, ...]}}

in a modern system, rather than {’EXIT’, badarith}. How-
ever, the following code:

catch exit(Term)

will still yield {’EXIT’, Term}, without any symbolic stack
trace, and similarly

catch throw(Term)

yields just Term, as before.

2.6 . . . The Whole Truth. . .
Now, the observant reader may have noticed that although

it would appear that an exception is fully determined by the
“reason” term only, in fact at least one other component is
necessary to completely describe an exception, namely, a flag
that signals whether or not it was caused by throw(Term).
(This follows from the semantics of process termination and
signals; cf. Section 2.4.)

Internally, an exception is then a pair 〈term, thrown〉, where
thrown is either true or false, and term is the “reason”
term. The semantics of catch Expr can now be described
as shown in Figure 1. Note that it is the catch operator
that decides (depending on the thrown flag) whether or not
to wrap the reason term in {’EXIT’, ...}.

2.7 . . . And Nothing But The Truth
Something, however, is still missing. When throw(Term)

is not caught, and causes the process to terminate (as de-
scribed in Section 2.4), the exit term is no longer simply
{nocatch, Term}, but rather {{nocatch, Term}, [...]}, with
a symbolic stack trace just as for a run-time failure. This
means that the stack trace cannot be added onto the “rea-
son” term until it is known what will happen to the exception,

2The actual arguments to the last called function are not
always included; only the arity of the function. The next-
to-last call is often missing because its return address was
never stored on the stack and could not be recovered.

If evaluation of Expr completed normally with result R

then
the result of catch Expr is R,

else
the evaluation threw exception 〈term, thrown, trace〉;
if thrown is true

then
the result of catch Expr is term,

else
if trace is null
then

the result is {’EXIT’, term}
else

the result is {’EXIT’, {term, trace}}

Figure 2: Modified semantics of catch Expr

If evaluation of the initial call completed normally
then

the exit term is the atom normal

else
the evaluation threw exception 〈term, thrown, trace〉;
if thrown is true

then
the exit term is {{nocatch, term}, trace}

else
if trace is null
then

the exit term is term
else

the exit term is {term, trace}

Figure 3: Semantics of process termination

since if it is caught in a catch, it must not include any stack
trace.

As a consequence, we have to extend the full description
of an exception to a triple 〈term, thrown, trace〉, where trace
is either a symbolic stack trace or a special value null, so
that trace is null if and only if the exception was caused by
a call to exit.

The semantics of catch must also be modified as shown
in Figure 2, so that in the case where the expression has
thrown an exception, and thrown is false, we have a choice
depending on the value of trace. The exit term for a ter-
minating process is determined in a similar way, shown in
Figure 3.

One last, not very well documented, detail is that when a
process terminates due to an exception, and the exception
was not caused by a call to exit(Term), this event will be
reported by the Erlang runtime system to the error logger
service. (In other words, as long as a process terminates
normally, or through a call to exit, it is considered a normal
event from the runtime system’s point of view.) This shows
once again that it is necessary to preserve the information
about whether or not the exception was caused by exit,
until it is known how the exception will be handled.

2.8 Love’s Labour’s Lost in Space
For the programmer, currently the only means of inter-

cepting and inspecting an exception is the catch operator,

but as we have seen, this will lose information which cannot
be re-created. For example, as described in Section 2.2, the
following code attempts to separate exceptions from normal
execution, and transparently pass on all exceptions that do
not concern it:

case catch {ok, ...} of

{ok, Value} -> ...;

{’EXIT’, Reason} -> exit(Reason);

not_found -> ...;

Term -> throw(Term)

end

However, when throw(Term) is executed in the last clause,
it will create a new exception 〈term, thrown, trace〉 having
the same values for term and thrown as the caught exception,
but with a different trace. This is observable if the exception
causes the process to terminate, and since the original stack
trace was lost, it will hide the real reason for the exception.

Furthermore, in the exit(Reason) case, the trace compo-
nent of the new exception will be set to null by exit. Now
note that if the caught exception had a non-null trace com-
ponent, the catch will already have added that trace onto
Reason, so in a sense, the term has been “finalized”: if the
new exception is caught in another catch, or causes the pro-
cess to terminate, the term will look exactly the same as if
it had never been intercepted by the above code. But there
is one problem: since we used exit to pass on the excep-
tion, it will not be reported to the error logger if it causes
the process to terminate – even if the original exception was
caused by a run-time failure, which ought to be reported.

One built-in function that we have not mentioned so far,
because it is not well known, and has mostly been used
in some of the standard libraries, is erlang:fault(Term),
which is similar to exit but instead causes a run-time failure
exception, i.e., such that trace 6= null and thrown = false.
We could then try to improve on the above code by splitting
the {’EXIT’, Reason} case in two:

{’EXIT’, {Reason, Stack}} when list(Stack) ->

erlang:fault(Reason);

{’EXIT’, Reason} ->

exit(Reason);

which will preserve the error logging functionality, as long as
we can trust that the first clause matches all run-time errors,
and nothing else. But like in the throw case, we now lose the
original stack trace when we call erlang:fault(Reason).
What if we tried erlang:fault({Reason, Stack}) instead?
Well, if the exception is caught again, it will then get the
form {{Reason, Stack1}, Stack2}, and so on if the process
is repeated. This preserves all the information, but could
cause problems for code that expects to match on the Reason
term and might not recognize the case when it is nested
within more than one {..., Stack} wrapper.

Thus, with a fair amount of careful coding, we can now
catch exceptions, examine them, and pass them on if they
are not of interest, but still not without affecting their se-
mantics in most cases – for throw, we lose the stack trace,
and for run-time failures we modify the “reason” term. The
method is also not foolproof – calls to throw({ok, Value}),
throw({’EXIT’, Reason}), or exit({Term, [...]}) will all
cause the wrong clause to be selected. Not to mention that
the code is difficult to understand for anyone who is not very
familiar with the intricacies of exceptions.

There really should be a better way.

try

Expressions

catch

Exception 1 -> Body 1;

...

Exception n -> Body n

end

Figure 4: Basic form of try-expression

3. TRY AND TRY AGAIN
At least a few of the problems with catch have been

widely known by Erlang programmers, and for several
years, there has been an ongoing discussion among both
language developers and users about the addition of a new,
more flexible and powerful construct for exception handling
to the language. The following attempts to be a complete
list of requirements for such a construct:

1. It should be possible to strictly separate normal com-
pletion of execution from the handling of exceptions.

2. It should be possible to safely distinguish exceptions
caused by throw from other exceptions.

3. It should be possible to safely distinguish exceptions
caused by exit from run-time failures.

4. The behaviour of the existing catch must not change;
nor the behaviour when an exception causes process
termination. Existing programs should work exactly
as before.

5. It should be possible to use ordinary pattern matching
to select which exceptions are to be handled. Excep-
tions which do not match any of the specified cases
should automatically be re-thrown without changing
their semantics.

6. It should be straightforward to rewrite all or most uses
of catch to the new construct, so that there is no in-
centive for using catch in new code.

7. It should be simple to write code that guarantees the
execution of “cleanup code” regardless of how the pro-
tected section exits.

3.1 A first try
A form of try...catch...end construct for Erlang was

first described in the tentative Standard Erlang Language
Specification [3] (only available in a draft version) by Bark-
lund and Virding; however, this work was never completed.
Their suggested construct (mainly inspired by C++ [10],
Java [4], and Standard ML [7]) had the general form shown
in Figure 4, where if evaluation of Expressions succeeded
with result R, the result of the try would also be R; oth-
erwise, the clauses would be matched in top-down order
against either {’THROW’, Value}, for an exception caused by
a throw, or {’EXIT’, Reason} for other exceptions. In the
terminology of Section 2.6, it would make the thrown flag of
the exception explicit (which the catch operator does not).

This would fulfill requirements 1 and 2 above, and par-
tially requirements 5 and 4; in particular, the distinction
between exit and run-time failures was not noted in [3]. In

fact, it was during an early attempt by the first author of the
present paper to implement the try construct, that many of
the complications described in Section 2 were first uncov-
ered. As it turned out, the de facto behaviour of exceptions
in the Erlang/OTP implementation was no longer consistent
with any existing description of the language. The only re-
sult at that time was that the inner workings of the exception
handling were partially rewritten in preparation for future
extension, but it was apparent that the try construct had
to be redesigned before it could be added to the language.

3.2 Making a better try
Since then, several variations of the try construct have

been considered, but all have been found lacking in various
respects. The main problem has turned out to be the bal-
ance between simplicity and power of expression. For exam-
ple, most of the time, the programmer who wishes to catch a
throw will not be interested in viewing the stack trace, and
should preferably not be forced to write a complicated pat-
tern like {’THROW’, Term, Stack} when the only important
part is Term. (Also, it would be a waste of time to con-
struct a symbolic trace which is immediately discarded by
the catcher.) However, the stack trace should be available
when needed.

Also, point 6 above was more of a problem than expected.
As seen in some of our previous examples, the following is a
common way of using catch in existing programs:

case catch f(X) of

{’EXIT’, Reason} -> handle(Reason);

Pattern 1 -> Body 1;

...

Pattern n -> Body n

end

i.e., which uses a single list of patterns for matching both in
the case of success and in the case of catching an exception.
As we have described, this makes it possible to mistake a
returned result for an exception and vice versa. However,
it is an extremely convenient idiom, because it is very often
the case that regardless if the evaluation succeeds or throws
an exception, a switch will be performed on the result in
order to decide exactly how to proceed.

With the try...catch...end as suggested in [3], the same
effect could only be achieved as follows:

R = try {ok, f(X)}
catch

Exception -> Exception

end,

case R of

{ok, Pattern 1}} -> Body 1;

...

{ok, Pattern n}} -> Body n;

{’THROW’, Term} -> ...;

{’EXIT’, Reason} -> ...

end

using the trick from Section 2.2 to make sure that the result
of normal evaluation is always tagged with ok; the main
difference being that the try version cannot be fooled by
e.g. calling throw({ok, Value}). So, although the above
code is safe, it is quite inconvenient to have to write such a
complicated expression for what could be so easily expressed
using catch.

Analyzing the try construct in terms of continuations
helps us understand what is going on here. (A continuation
is simply “that code which will take the result R of the cur-
rent expression and continue”, and can thus be described as
a function c(R); for example, when a function call finishes,
it conceptually passes the return value to its continuation,
i.e., the return address.3) First of all, we have a main con-
tinuation c0 which will receive the final result of evaluating
the whole try...catch...end expression. Now consider the
expression between try...catch: if its evaluation succeeds
with result R, it will use the same continuation c0(R), i.e.,
R becomes the result of the whole try. On the other hand,
if the expression throws an exception E, it will use another
continuation cf (E), which we call the “fail-continuation”.

The code in cf is that which does the pattern matching on
the exception E over the clauses between catch...end. If
none of the patterns match, the exception will be re-thrown,
and we are done. Otherwise, the first matching clause is se-
lected, and its body is evaluated. (If this should throw a new
exception, it will not be caught here since it is not within the
try...catch section.) The resulting value is finally passed
to c0, and becomes the result of the try.

Now let’s look at what the continuation c0(R) gets: its
input R is either the result of evaluating the try...catch

section (if that succeeded), or otherwise it is a value returned
by one of the catch...end clauses. This is useful in typical
situations where exceptions are handled by substituting a
default value, as in:

Value = try lookup(Key, Table)

catch

not_found -> 0

end

However, if we want to perform a different action in case
the try...catch part succeeds, than if an exception occurs,
we have no choice but to pass to c0 not only the result, but
also an indication of which path was actually taken. (This
is what we did in the previous example, using {ok, ...}
to tag the result upon success.) It is this limitation of the
try...catch...end that forces us to go from control flow
to a data representation and back to control flow again. It
should be noted here that the exception handling in Stan-
dard ML [7] (and possibly other functional languages with
exceptions) suffers from the same limitation.

A much more elegant solution would be if the programmer
could specify code to be executed only in the success case,
before control is transferred to the main continuation c0. In
addition to cf , we therefore introduce a success-continuation
cs, so that if evaluation of the try...catch section succeeds
with result R, the continuation used would be cs(R), rather
than c0(R).

A practical syntax for expressing both the success case
and the exception case in a single try is shown in Figure 5,4

where the code in cs(R) does pattern matching on R over the
clauses between of...catch. If a clause matches, its body
is evaluated, and the result is passed to c0, just like for an
exception-handling clause. (If no clause should match, it is
a run-time error, and will cause a try clause exception.)
Each clause may also have a guard, apart from the pattern,

3If it helps, just think of continuations as goto-labels.
4First suggested by Fredrik Linder, who also pointed out the
weakness in the original try, in a discussion at the Erlang

Workshop in Firenze, Italy, 2001.

try Expressions of

Pattern 1 -> Body 1;

...

Pattern n -> Body n

catch

Exception 1 -> Handler 1;

...

Exception m -> Handler m

end

Figure 5: General form of try-expression

just like any case-clause; we have left this out for the sake
of readability.

Note that the old syntax from Figure 4, which leaves out
the of... part, can still be allowed, by simply defining it
as equivalent to

try Expressions of

X -> X

catch

Exception 1 -> Handler 1;

...

Exception m -> Handler m

end

(where X is a fresh variable), in effect making cs(R) = c0(R),
as before.

At this point, the reader might be wondering why the
problem could not have been solved as follows, using the
original form of try:

try

case Expressions of

Pattern 1 -> Body 1;

...

Pattern n -> Body n

end

catch

Exception 1 -> Handler 1;

...

Exception m -> Handler m

end

The difference is that in this case, all the success actions
Body i, as well as the pattern matching, are now within the
protected part of the code. Thus, the catch...end section
will handle all exceptions that may occur – not only those
within Expressions. If this was what we wanted, we might
as well have moved the whole case...end to a new function
f and simply written

try f(...)

catch

...

end

however, often we do not want the same exception handling
for both the protected part and the success actions.

It is interesting to note that in the imperative languages
which pioneered and made popular the try...catch para-
digm, i.e., mainly Ada [6], C++ [10] and Java [4], there
has never been any need for an explicit success-continuation
syntax. The reason is simple: in these languages, the pro-
grammer can change the flow of control by use of “escapes”

such as return, goto, break, and continue; for example,
forcing an early return from within an exception-handling
branch. In a functional language such as Erlang, this is
not an option.

4. PUTTING IT ALL TOGETHER
Now we are ready to specify the full syntax and semantics

of the new try construct as it will appear in Release 10
of Erlang/OTP. We begin by revising the exception model
from Section 2.

In Section 2.7, we came to the conclusion that excep-
tions had to be described by a triple 〈term, thrown, trace〉,
and gave the semantics of catch and process termination in
terms of this. In retrospect, we can refactor the representa-
tion to make it more intuitive and easier to work with.

4.1 Semantics of exceptions in Erlang
We define an Erlang exception to be a triple

〈class, term, trace〉

such that:

• class specifies the class of the exception: this must be
either error, exit, or throw,

• term is any Erlang term, used to describe the excep-
tion (also referred to as the “reason”),

• trace is a partial representation of the stack trace at the
point when the exception occurred. The trace may also
include the actual parameters passed in function calls;
the details are implementation-dependent. There is no
special null value for the trace component.

The different classes of exceptions can be raised as follows:

• When a run-time failure occurs (with reason term),
or the program calls erlang:fault(term), the raised
exception will have the form 〈error, term, trace〉.

• When the program calls exit(term), the exception
will have the form 〈exit, term, trace〉.

• When the program calls throw(term), the exception
will have the form 〈throw, term, trace〉.

Let T be a function that creates a symbolic representation
of a trace as an Erlang term. The modified semantics of
the catch operator is shown in Figure 6, and the semantics
of process termination in Figure 7. Note that the behaviour
remains functionally equivalent to what we described earlier
in Figures 2 and 3.

4.2 Syntax and semantics of try-expressions
First, we note that the convention of using tagged tuples

such as {’EXIT’, ...} was introduced only as a means of
distinguishing errors and exits from normal return values
and thrown terms in the catch operator. In our new try

construct, it is not necessary to stick to this convention.
Instead, we will use a syntax which is both easier to read
and requires less typing.

A try-expression has the general form from Figure 5,
where Expressions and (for i ∈ [1, n], and j ∈ [1, m]) all
the Body i, and Handler j are comma-separated sequences
of one or more expressions, and the Pattern i are arbitrary

If evaluation of Expr completed normally with result R

then
the result of catch Expr is R,

else
the evaluation threw exception 〈class, term, trace〉;
if class is throw

then
the result of catch Expr is term,

else if class is exit

then
the result is {’EXIT’, term}

else
the result is {’EXIT’, {term, T (trace)}}

Figure 6: Final semantics of catch Expr

If evaluation of the initial call completed normally
then

the exit term is the atom normal

else
the evaluation threw exception 〈class, term, trace〉;
if class is exit

then
the exit term is term

else
the event will be reported to the error logger;
if class is throw

then
the exit term is {{nocatch, term}, T (trace)}

else
the exit term is {term, T (trace)}

Figure 7: Final semantics of process termination

patterns. As noted in Section 3.2, the of... part may be
left out. Like in a case-expression, variable bindings made
in Expressions are available within the of...catch section
(but not between catch...end), and variables are exported
from the clauses if and only if they are bound in all cases.

The exception patterns Exception j have the following
general form:

Class:Reason

where Class is either a variable or a constant. If it is a
constant, or a variable which is already bound, the value
should be one of the atoms error, exit, or throw.

The Class: part of each exception pattern may be left
out, and the pattern is then equivalent to

throw:Reason

The reason for this shorthand is that typically, only throw

exceptions should be intercepted. error exceptions should
in general be allowed to propagate upwards, usually termi-
nating the process, so that unexpected run-time failures are
not masked. Furthermore, an exit exception means that a
decision was made to terminate the process, and a program-
mer should only override that decision if he knows what he
is doing. Therefore, the default class is throw.

The semantics of try is shown in Figure 8. (As before,
clause guards have been left out for the sake of readabil-
ity, and for the same reason, we do not show the variable

If evaluation of Expressions completed normally
with result R,
then

the result of try...end is equivalent to that of
case R of

Pattern 1 -> Body 1;

...

Pattern n -> Body n

end

else
the evaluation threw exception 〈class, term, trace〉;
for each Exception j = Class j :Reason j

let Triple j = {Class j, Reason j, }
and for each Exception j = Reason j

let Triple j = {throw, Reason j, };
the result of try...end is then equivalent to that of

case {class, term, trace} of

Triple 1 -> Handler 1;

...

Triple m -> Handler m;

X -> rethrow(X)
end

where X is a fresh variable.

Figure 8: Semantics of try-expressions

scoping rules.) The rethrow operator is a built-in primitive
which cannot be accessed directly by the programmer; its
function is simply to raise the caught exception again, with-
out losing any information. Note that the trace component
of an exception is assumed to have a cheap, implementation-
dependent representation which we do not want to expose
to users.

To inspect the stack trace of an exception, a new built-in
function erlang:get stacktrace() is added, which returns
T (trace) where trace is the stack trace component of the
last occurred exception of the current process, and T is the
function used in the semantics of catch in Figure 6. If no
exception has occurred so far in the process, an empty list
is returned.

Finally, we could add a generic exception-raising function
erlang:raise(Class, Reason), where Class must be one
of the atoms error, exit, and throw, and Reason may be
any term. We will see one possible use of such a function in
the following section.

4.3 Cleanup code
A very common programming pattern is to first prepare

for a task (e.g. by allocating one or more resources), then
execute the task, and finally do the necessary cleanup. It is
then often important that the cleanup stage is executed inde-
pendently of how the main task is completed, i.e., whether it
completes normally or throws an exception. Figure 9 shows
an example of how this could be done using try-expressions.
However, the code has several weak points:

• The cleanup code, in this example the calls to close,
must be repeated in each case. (We only show two
cases, but in general there could be any number.)

• In the success case, we must bind the result to a new
variable just to hold it temporarily while we perform
the cleanup.

read_file(Filename) ->

FileHandle = open(Filename, [read]),

try

read_opened_file(FileHandle)

of

Data ->

close(FileHandle),

Data

catch

Class:Reason ->

close(FileHandle),

erlang:raise(Class, Reason)

end.

Figure 9: Allocate/use/cleanup example

try

Expressions

after

Cleanup

end

Figure 10: try...after...end expressions

• The generic failure-case, i.e., the code that catches any
exception, performs the cleanup, and then re-throws
the exception, is unnecessarily verbose.

• The explicit re-throw using erlang:raise() will not
preserve the stack trace of the original exception.

All of the above problems can be solved by adding one
more feature to our try-expressions. In Common Lisp [9],
the special form unwind-protect is used to guarantee exe-
cution of cleanup-code; in Java [4], this is done by including
a finally section in try-expressions. The same idea can
be used in Erlang. We start out by defining a new form
of try-expression, shown in Figure 10,5 with a well-defined
meaning.

The semantics of try...after...end is shown in Fig-
ure 11. We can now easily allow the use of after directly
together with try...catch...end, by defining the fully gen-
eral syntax shown in Figure 12 as equivalent to

try

try Expressions of

Pattern 1 -> Body 1;

...

Pattern n -> Body n

catch

Exception 1 -> Handler 1;

...

Exception m -> Handler m

end

after

Cleanup

end

(where as before, the of... part may be left out), which
guarantees that in all cases, the Cleanup code will be exe-

5The use of the after keyword for this purpose is not yet
decided; possibly, a new keyword such as finally will be
added instead.

If evaluation of Expressions completed normally
with result R,
then

the result of try...after...end is equivalent
to that of

begin

X = R,

Cleanup,

X

end

where X is a fresh variable,
else

the evaluation threw exception 〈class, term, trace〉;
the result is then equivalent to that of

begin

Cleanup,

rethrow({class, term, trace})
end

Figure 11: Semantics of try...after...end

try Expressions of

Pattern 1 -> Body 1;

...

Pattern n -> Body n

catch

Exception 1 -> Handler 1;

...

Exception m -> Handler m

after

Cleanup

end

Figure 12: Fully general try-expression

cuted, after evaluation of one of the Body i or Handler j has
completed. This is expected to be the desired behaviour
in most cases, since it gives the exception handling clauses
a chance to act before any resources are deallocated by
the cleanup code. It is also easy to manually nest try-
expressions to get another evaluation order, e.g.:

try

try

Expressions

after

Cleanup

end

of

Pattern 1 -> Body 1;

...

Pattern n -> Body n

catch

Exception 1 -> Handler 1;

...

Exception m -> Handler m

end

4.4 Examples
To demonstrate some uses of try-expressions, we begin

by showing in Figure 13 how the catch operator may be

try Expr

catch

throw:Term -> Term;

exit:Term -> {’EXIT’, Term};

error:Term ->

Trace = erlang:get_stacktrace(),

{’EXIT’, {Term, Trace}}

end

Figure 13: catch Expr implemented with try

open(Filename, ModeList) ->

case file:open(Filename, ModeList) of

{ok, FileHandle} ->

FileHandle;

{error, Reason} ->

throw({file_error, Reason})

end.

Figure 14: Wrapper for file:open/2.

implemented in a transparent way using try. The reader
is invited to compare this to the semantics in Figure 6 and
verify that they are equivalent.

Figure 14 shows a wrapper function for the standard li-
brary file:open/2 function. The functions in the file

module return {ok, Value} or {error, Reason}, while the
wrapper always returns a naked value upon success, and
otherwise throws {file error, Reason}. The latter makes
it easy to identify a file-handling exception even if it is not
caught close to where it occurred. Note that if an exception
is generated within file:open/2, we do not catch it, but
allow it to be propagated exactly as it is.

Figure 15 demonstrates the use of after in a typical sit-
uation where the code allocates a resource, uses it, and af-
terwards does the necessary cleanup (cf. Figure 9). Note
the two-stage application of try: First it is used to handle
errors in open (see Figure 14). Since FileHandle is only de-
fined if the call to open succeeds, only then need we (or can
we) close the file. The next try makes sure that the cleanup
is done regardless of how the code is exited. An important
detail is that by keeping the allocation and the release of
the resource close together in the code, no other part of the
program needs to know that there is any cleanup to be done.

In an imperative language like Java, it is common to ini-
tially assign a null value to variables, and then let the pro-
tected section attempt to update them when it is allocating
resources. The cleanup section can then test for each re-
source whether it needs to be released or not. In a functional
language where variables cannot be updated, it is cleaner to
handle each resource individually, and separate the alloca-
tion from the use-and-cleanup, as we did above.

5. RELATED WORK
The concept of user-defined exception handling seems to

have originated in PL/I [1], and from there made its way (see
e.g. [8]) in different forms into both Lisp [9] and Ada [6],
as well as other languages. Ada in its turn was a direct
influence on C++ [10], and thus indirectly on Java [4].

In the Object-Oriented languages C++ and Java, an ex-
ception is completely described by the thrown object. In

read_file(Filename) ->

try open(Filename, [read]) of

FileHandle ->

try

read_opened_file(FileHandle)

after

close(FileHandle)

end

catch

{file_error, Reason} ->

print_file_error(Reason),

throw(io_error)

end.

Figure 15: Allocate/use/cleanup with try...after

C++, any object can be thrown; in Java, only subclasses
of Throwable may be thrown. For Java, this means that
implementation-specific information like a stack trace may
be easily stored in the object without exposing its internal
representation. Since this cannot be done in Erlang with-
out adding a new primitive data type to the language, we
have instead chosen to make the stack trace and any other
debugging information part of the process state.

In Common Lisp [9], catch and throw are used for non-
local return, and only indirectly for handling actual errors.
Also, setting up a catch requires specifying a tag (any ob-
ject, e.g. a symbol) for identifying the catch point, to be
used later in the throw. To guarantee execution of cleanup-
code regardless of how an expression is exited, the special
form unwind-protect is used. The same effect is achieved
in Java by including a finally section in try-expressions.

In Standard ML [7], the exception handling works much
like in Ada, using the operators raise and handle. As in the
originally suggested try...catch...end for Erlang, there
is no way of explicitly specifying a success-continuation.

6. CONCLUDING REMARKS
Exceptions in Erlang has been a not very well under-

stood area of the language, and the behaviour of the ex-
isting catch operator has for a long time been insufficient.
We have given a detailed explanation of how exceptions in
modern-day Erlang actually work, and presented a new
theoretical model for exceptions in the Erlang program-
ming language. Using this model, we have derived a general
try-construct to allow easy and efficient exception handling,
which will be introduced in the forthcoming Release 10 of
Erlang/OTP.

7. ACKNOWLEDGMENTS
The authors would like to thank Robert Virding, Fredrik

Linder, and Luke Gorrie for their comments and ideas.

8. REFERENCES
[1] American National Standards Institute, New York.

American National Standard: programming language
PL/I, 1979 (Rev 1998). ANSI Standard X3.53-1976.

[2] J. Armstrong, R. Virding, C. Wikström, and
M. Williams. Concurrent Programming in Erlang.
Prentice Hall Europe, Herfordshire, Great Britain,
second edition, 1996.

[3] J. Barklund and R. Virding. Specification of the
Standard Erlang Programming Language. Draft
version 0.7, June 1999.

[4] J. Gosling, B. Joy, and G. Steele. The JavaTM

Programming Language. The Java Series.
Addison-Wesley, 3rd edition, 2000.

[5] B. W. Kernighan and D. M. Ritchie. The C
Programming Language. Prentice-Hall, second edition,
1989.

[6] Military Standard. Reference Manual for the Ada
Programming Language. United States Government
Printing Office, 1983. ANSI/MIL-STD-1815A-1983.

[7] R. Milner, M. Tofte, R. Harper, and D. MacQueen.
The Definition of Standard ML (Revised). The MIT
Press, Cambridge, Massachusetts, 1997.

[8] K. Pitman. Condition handling in the Lisp language
family. In A. Romanovsky, C. Dony, J. L. Knudsen,
and A. Tripathi, editors, Advances in Exception
Handling Techniques, number 2022 in LNCS.
Springer-Verlag, 2001.

[9] G. L. Steele. Common Lisp: The Language. Digital
Press, second edition, 1990.

[10] B. Stroustrup. The C++ Programming Language.
Addison-Wesley, second edition, 1991.

