

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2767046, IEEE
Transactions on Parallel and Distributed Systems

15

10
1

10
2

10
3

Local Work

0

2

4

6

8

10

12

O
pe

ra
tio

ns
 /

M
ic

ro
se

co
nd

QD lock

HQD lock

FC

CC-Synch

H-Synch

DetachExec

Priority Queue (64 Threads)

101 102 103

Local Work

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Op
er

at
io

ns
 /

He
lp

 S
es

si
on

QD lock
HQD lock
FC
CC-Synch
H-Synch

Priority Queue (64 Threads)

Fig. 15. The graph on the left shows operations per microsecond under different contention levels (amount of local work between operations). The
graph on the right shows the average number of helped operations for all help sessions.

1 2 4 8 16 32 64
Number of Threads

0

2

4

6

8

Op
er

at
io

ns
 /

M
icr

os
ec

on
d

QD
QD (MCS)
QD (CAS)
QD (nodetach)
QD (TATAS)

Priority Queue (local work: 32)

1 2 4 8 16 32 64
Number of Threads

0

1

2

3

4

5

6

7

Op
er

at
io

ns
 /

M
icr

os
ec

on
d

QD
QD (MCS)
QD (CAS)
QD (nodetach)
QD (TATAS)

Priority Queue (local work: 64)

1 2 4 8 16 32 64
Number of Threads

0

1

2

3

4

5

Op
er

at
io

ns
 /

M
icr

os
ec

on
d

QD
QD (MCS)
QD (CAS)
QD (nodetach)
QD (TATAS)

Priority Queue (local work: 128)

Fig. 16. Different variants of QD locks in the scenarios of Fig. 13.

1 2 4 8 16 32 64
Number of Threads

0

2

4

6

8

Op
er

at
io

ns
 /

M
icr

os
ec

on
d

HQD
HQD (futex)
HQD (CAS)
HQD (nodetach)
HQD (TATAS)

Priority Queue (local work: 32)

1 2 4 8 16 32 64
Number of Threads

0

1

2

3

4

5

Op
er

at
io

ns
 /

M
icr

os
ec

on
d

HQD
HQD (futex)
HQD (CAS)
HQD (nodetach)
HQD (TATAS)

Priority Queue (local work: 64)

1 2 4 8 16 32 64
Number of Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Op
er

at
io

ns
 /

M
icr

os
ec

on
d

HQD
HQD (futex)
HQD (CAS)
HQD (nodetach)
HQD (TATAS)

Priority Queue (local work: 128)

Fig. 17. Different variants of HQD locks in the scenarios of Fig. 14.

handover takes significantly longer, resulting in overall worse
performance. For the lines identified as QD (CAS based) and
HQD (CAS based), the fetch_and_add call in the enqueue
function (line 10 of Fig. 6) is simulated with a CAS loop.
We did this to find out how QD locking would perform in
processors without a fetch_and_add (FAA) instruction. It is
clear that FAA is beneficial for QD locking’s implementation.
It is also clear that even without using the FAA instruction,
QD and HQD perform similar or better than the other
algorithms we compare against. The implementations labeled
QD (nodetach) and HQD (nodetach) have insert calls that
wait for an acknowledgment from the delegated operation,
even when the return value is not used. From these lines,
it is clear that a large part of QD locking’s performance
advantage in this benchmark comes from the ability to do
detached execution. However, QD locking still performs
slightly better than other algorithms even without detaching
critical sections. Finally, QD (TATAS) and HQD (TATAS)
refer to implementations that use a simple TATAS lock
internally and do not set a limit for retries to avoid starvation.
This leads to at most a minuscule advantage in performance,
which shows that the cost of avoiding starvation is not severe.

Further experiments with combinations of the above
variants as well as with padding delegation queue entries to

entire cachelines have not shown much deviation from the
results shown here and are thus omitted from the figures.

7.2 Readers-Writer Benchmark

To evaluate our multi-reader QD lock implementations
and compare them to other readers-writer locks we use a
benchmark especially designed for RW locks. The benchmark
is implemented from the description of RWBench that has
been presented by Calciu et al. [4]. RWBench is similar to our
data structure benchmark in that it measures throughput: the
number of critical sections that N threads, which alternate
between critical section work and thread-local work, can
execute during t seconds. A shared array A with 64 integer
entries is used for the protected shared memory. According to
a specified probability for reading, it is determined randomly
whether the critical section is a read or a write operation.

The read critical section work is placed inside a loop that
iterates for four times. Inside this loop, the values of two
random array slots from the shared array A are loaded.

The loop iteration count is also 4 for the write critical
section. In the loop body, two of the 64 entries of A are
updated in the following way: The two entries are randomly
selected and an additional random integer I is generated.

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2767046, IEEE
Transactions on Parallel and Distributed Systems

16

1 2 4 8 16 32 64
Number of Threads

0

2

4

6

8
Op

er
at

io
ns

 /
M

icr
os

ec
on

d

Cohort
DR-MCS
MR-HQD lock
MR-QD lock
WPRW-Cohort

50% reads, Local Work=0

1 2 4 8 16 32 64
Number of Threads

0

1

2

3

4

5

6

7

Op
er

at
io

ns
 /

M
icr

os
ec

on
d

Cohort
DR-MCS
MR-HQD lock
MR-QD lock
WPRW-Cohort

50% reads, Local Work=32

1 2 4 8 16 32 64
Number of Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Op
er

at
io

ns
 /

M
icr

os
ec

on
d

Cohort
DR-MCS
MR-HQD lock
MR-QD lock
WPRW-Cohort

50% reads, Local Work=128

1 2 4 8 16 32 64
Number of Threads

0

2

4

6

8

10

12

14

Op
er

at
io

ns
 /

M
icr

os
ec

on
d

Cohort
DR-MCS
MR-HQD lock
MR-QD lock
WPRW-Cohort

80% reads, Local Work=0

1 2 4 8 16 32 64
Number of Threads

0

1

2

3

4

5

6

7

8

Op
er

at
io

ns
 /

M
icr

os
ec

on
d

Cohort
DR-MCS
MR-HQD lock
MR-QD lock
WPRW-Cohort

80% reads, Local Work=32

1 2 4 8 16 32 64
Number of Threads

0

1

2

3

4

5

Op
er

at
io

ns
 /

M
icr

os
ec

on
d

Cohort
DR-MCS
MR-HQD lock
MR-QD lock
WPRW-Cohort

80% reads, Local Work=128

1 2 4 8 16 32 64
Number of Threads

0

5

10

15

20

25

Op
er

at
io

ns
 /

M
icr

os
ec

on
d

Cohort
DR-MCS
MR-HQD lock
MR-QD lock
WPRW-Cohort

95% reads, Local Work=0

1 2 4 8 16 32 64
Number of Threads

0

2

4

6

8

10

Op
er

at
io

ns
 /

M
icr

os
ec

on
d

Cohort
DR-MCS
MR-HQD lock
MR-QD lock
WPRW-Cohort

95% reads, Local Work=32

1 2 4 8 16 32 64
Number of Threads

0

1

2

3

4

5

6

Op
er

at
io

ns
 /

M
icr

os
ec

on
d

Cohort
DR-MCS
MR-HQD lock
MR-QD lock
WPRW-Cohort

95% reads, Local Work=128

Fig. 18. Results for a readers-writer benchmark varying amount of readers (vertical) and thread-local work (horizontal).

Then I is added to the value stored in the first entry and
subtracted from the value of the second entry. Thus, the sum
of all array elements should be zero after the benchmark
completes and can be used as a sanity check.

The thread-local work uses the same loop as the write
operation, but writes in a thread-local array instead. One
iteration in this loop is defined as one unit of thread-local
work. This thread-local work is also used in the data structure
benchmark (Section 7.1).

We compare our multi-reader QD lock (MR-QD) and
its hierarchical variant (MR-HQD) with the DR-MCS and
WPRW-Cohort algorithms of Calciu et al. [4]. All locks are
constructed using the same algorithm; see Section 6. DR-MCS
is a readers-writer variant of the MCS queue lock and WPRW-
Cohort is based on a Cohort lock. For comparison we also
show the performance of a mutual exclusion Cohort lock.
The benchmark was run with different combinations of
read probability and thread-local work. Figure 18 shows
the results for 50%, 80% and 95% reads combined with 0, 32
and 128 thread-local work loop iterations.

The left column shows the somewhat unrealistic scenario
of no thread-local work. Under such high contention, all
algorithms perform best when operating on a single chip, but
only the QD locking algorithms scale when there are many
write operations. In the right column, with a high amount
of thread-local work, it can be seen that with 50% and 80%
readers only MR-QD continues to scale when running on
multiple chips. Overall, it can be seen that MR-QD and MR-
HQD outperform the other algorithms on a single processor
chip when there is high contention or many write sections.
Furthermore, MR-QD outperforms all other algorithms when
running on multiple chips. MR-HQD, on the other hand, does
not work as well on multiple chips. We reason that this is

because the contention on the delegation queue drops too
low, and therefore the lock is released frequently.

With only 50% read operations and 64 threads the
mutual exclusion Cohort lock performs better than DR-MCS
and comparably to WPRW-Cohort. This shows that our
algorithms, which perform better when enough contention
is maintained, can be used efficiently in scenarios with
many writers. Established readers-writer locks have been
limited to applications with very high amounts of readers
to amortize the additional cost over mutual exclusion locks.
Fewer readers are required for multi-reader QD locks to
amortize their cost and be useful in applications traditionally
not considered for readers-writer locking. But even with high
amounts of readers, MR-QD consistently outperforms the
other algorithms. In our experiments this is true even for 99%
readers, albeit the difference becomes less pronounced. With
only readers all four algorithms use only the read indicator,
and therefore behave identically.

7.3 Kyoto Cabinet Benchmark
We also tested our multi-reader QD locks on the kccachetest
program from the Kyoto Cabinet (version 1.2.76, compiled
with -O2) to evaluate the feasibility of using it in existing
software and how well it performs compared to other
algorithms. The kccachetest uses CacheDB, an in-memory
database designed for use as a cache. In particular, we
run 100,000 iterations of the wicked workload, which uses
a user-defined amount of workers to perform operations
on a CacheDB. As the workload is changed depending on
the number of threads, it is not easily possible to compare
performance with different numbers of workers. However, a
comparison of different algorithms running with the same
number of workers is possible.

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2767046, IEEE
Transactions on Parallel and Distributed Systems

17

TABLE 1
Times (secs) to run kccachetest wicked -th $threads 100000.

threads 1 2 4 8 12 16 24 32 48 64
Pthreads RW .06 .13 .31 .65 1.12 1.45 4.66 6.78 13.99 21.64
DR-MCS .06 .10 .18 .38 .69 1.05 3.14 5.17 11.33 17.43
WPRW-Cohort .06 .11 .23 .53 .96 1.47 3.15 5.22 10.14 15.57
MR-QD .06 .10 .18 .39 .73 1.08 3.18 4.67 9.46 13.86
MR-HQD .06 .10 .19 .40 .71 1.06 3.21 4.65 9.43 14.50
MR-QD (p) .06 .09 .18 .38 .68 1.03 2.92 4.07 7.74 12.31
MR-HQD (p) .06 .09 .18 .39 .69 1.00 2.87 3.95 8.89 12.83

CacheDB uses Pthreads RW locks to protect its data, which
can be replaced by other readers-writer locks. But since multi-
reader QD locks do not strictly conform to the interface of
readers-writer locks, some porting was required. We changed
the code manually, but note that there exist techniques to
perform these kinds of transformations automatically [25].
The porting was done with some glue code to make the
multi-reader QD lock usable from the existing C++ code.
This additional layer needs to store the parameters used by
the critical sections in an accessible format. We store them in
an std::tuple, which is then the pointer-sized parameter to
the delegated operation. For return values we use a structure
that also has a flag which signals when the value has been
written to it. With these tools ready, the porting itself was
straightforward. For using a thread-local variable signaling
errors, a pointer to it had to be included in the parameter
tuple, so that the error code arrives at the correct thread.

The results in Table 1 show runtime in seconds for varying
numbers of worker threads. The row labeled Pthreads RW
shows the performance of the original code of Kyoto Cabinet.
The kccachetest is a kind of worst case scenario for our
algorithms. It is designed to act as a benchmark but also to
test the database. Therefore it always checks return values
immediately to verify correctness. Besides that, outside the
critical sections it only generates random numbers to decide
which database operation to perform next. To make better
use of delegation, we also patched the benchmark itself. For
the two rows marked with (p) some error-checking has been
postponed until at least 64 return values can be checked in
bulk. This patch did not affect performance of the non-QD
locking algorithms. Even without this patch, the results show
that MR-QD and MR-HQD perform slightly better than other
readers-writer locks. In contrast to Section 7.2, here MR-QD
performs only slightly better than MR-HQD. This benchmark
benefits less from detached execution as return values still
need to be read for error checking and memory needs to be
transferred to read the return value.

All in all, this shows that QD locks can be used in real
applications for immediate benefit. Even better results are
achieved when utilizing the time between a delegation and
the use of return values.

All benchmark programs are available at http://www.it.
uu.se/research/group/languages/software/qd_lock_lib.

7.4 Experience from Two Use Cases
We have also employed QD locking in two bigger systems.
The first of them is in the implementation of the Erlang Term
Storage (ETS). ETS is Erlang’s in-memory key-value store and
is the only shared memory between Erlang processes. Being
shared memory, ETS has become a scalability concern on
multicore machines [20]. As ETS tables are protected by locks,

QD locks were used to improve performance. Using our C
QD locking library to gradually transform the code [21], we
first used MR-QD locks without detaching execution (MRQD-
wait). Then, we passed all required parameters in an allocated
struct to the algorithm so detaching execution was possible
(MRQD-malloc). Finally, we wrote a version that passes the
parameters directly into the MR-QD lock instead of allocating
an object on the heap (MRQD-copy). It was shown [21]
that all three versions significantly outperform the existing
ETS implementation in contended scenarios. While MRQD-
copy performed best under most circumstances, the cost of
copying parameters made MRQD-malloc more efficient for
large parameter sizes (above 150 bytes per critical section).

The second use case for QD locking is in the Argo
Distributed Shared Memory System [19]. ArgoDSM provides
a shared memory layer for running applications on multiple
cluster computer nodes. There, traditional locking does not
perform due to the enormous communication cost even for
spin-waiting on values. Thus HQD locks were chosen as a
provider for mutual exclusion, as they allow the single-node
performance to be available in such systems.

For more information on these use cases, we refer the
readers to these two publications [19], [21].

8 CONCLUDING REMARKS

We have presented the details of a novel synchronization
mechanism called queue delegation locking and variations
to support multiple readers as well as NUMA systems. Our
experiments show that QD locking can outperform current
state-of-the-art delegation algorithms such as flat combining,
CC-Synch and H-Synch. A key advantage of QD locking is its
ability to delegate operations without waiting for a response,
its simplicity and its small communication cost. Our results
also suggest that multi-reader QD locks can be a better
performing alternative to readers-writer locks for some use
cases, especially with workloads that frequently require a full
exclusive lock but still can exploit some read-only parallelism.
It remains as future work to look into is how QD locking
can be used for data structures with fine-grained locking
such as hash tables. Finally, an important practical issue to
investigate is how tools can help programmers in migrating
from traditional synchronization mechanisms and get the
highest benefit possible from queue delegation locking.

REFERENCES

[1] T. E. Anderson. The performance of spin lock alternatives for
shared-memory multiprocessors. IEEE Transactions on Parallel and
Distributed Systems, 1(1):6–16, Jan. 1990.

[2] H. C. Baker, Jr. and C. Hewitt. The incremental garbage collection
of processes. In Proceedings of the 1977 Symposium on Artificial
Intelligence and Programming Languages, pages 55–59, New York, NY,
USA, 1977. ACM.

[3] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich.
OpLog: a library for scaling update-heavy data structures. Technical
report, MIT CSAIL, 2014.

[4] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and N. Shavit.
NUMA-aware reader-writer locks. In Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 157–166, New York, NY, USA, 2013. ACM.

[5] M. Chabbi, M. Fagan, and J. Mellor-Crummey. High performance
locks for multi-level NUMA systems. In Proceedings of the 20th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 215–226, New York, NY, USA, 2015. ACM.

http://www.it.uu.se/research/group/languages/software/qd_lock_lib
http://www.it.uu.se/research/group/languages/software/qd_lock_lib

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2767046, IEEE
Transactions on Parallel and Distributed Systems

18

[6] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control
with “readers” and “writers”. Commun. ACM, 14(10):667–668, 1971.

[7] T. S. Craig. Building FIFO and priority-queuing spin locks from
atomic swap. Technical report, Dept. of Computer Science and
Engineering, University of Washington, Seattle, 1993.

[8] D. Dice, V. J. Marathe, and N. Shavit. Flat-combining NUMA
locks. In Proceedings of the 23rd ACM Symposium on Parallelism in
Algorithms and Architectures, pages 65–74, New York, NY, USA, 2011.
ACM.

[9] D. Dice, V. J. Marathe, and N. Shavit. Lock cohorting: a general
technique for designing NUMA locks. In Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 247–256, New York, NY, USA, 2012. ACM.

[10] D. Dice and N. Shavit. TLRW: return of the read-write lock. In
Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms
and Architectures, pages 284–293, New York, NY, USA, 2010. ACM.

[11] E. W. Dijkstra. Solution of a problem in concurrent programming
control. Commun. ACM, 8(9):569–, Sept. 1965.

[12] U. Drepper. Futexes are tricky, 2004.
[13] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI: scalable NonZero

indicators. In Proceedings of the 26th Annual ACM Symposium on
Principles of Distributed Computing, pages 13–22, New York, NY,
USA, 2007. ACM.

[14] P. Fatourou and N. D. Kallimanis. Revisiting the combining
synchronization technique. In Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages
257–266, New York, NY, USA, 2012. ACM.

[15] H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes and
furwocks: Fast userlevel locking in linux. In Proceedings of the
2002 Ottawa Linux Summit, pages 479–495, 2002.

[16] The GNU C library (glibc), low level lock implementation.
Code available at https://sourceware.org/git/?p=glibc.git;a=
blob;f=sysdeps/unix/sysv/linux/x86_64/lowlevellock.h;hb=
beb0f59498c3e0337df298f9d7a3f8f77eb39842.

[17] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and
the synchronization-parallelism tradeoff. In Proceedings of the 22nd
ACM Symposium on Parallelism in Algorithms and Architectures, pages
355–364, New York, NY, USA, 2010. ACM.

[18] M. P. Herlihy and J. M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Trans. Prog. Lang. Syst.,
12(3):463–492, July 1990.

[19] S. Kaxiras, D. Klaftenegger, M. Norgren, A. Ros, and K. Sagonas.
Turning centralized coherence and distributed critical-section
execution on their head: A new approach for scalable distributed
shared memory. In Proceedings of the 24th International Symposium
on High-Performance Parallel and Distributed Computing, HPDC ’15,
pages 3–14, New York, NY, USA, 2015. ACM.

[20] D. Klaftenegger, K. Sagonas, and K. Winblad. On the scalability of
the Erlang term storage. In Proceedings of the Twelfth ACM SIGPLAN
Workshop on Erlang, pages 15–26, New York, NY, USA, 2013. ACM.

[21] D. Klaftenegger, K. Sagonas, and K. Winblad. Delegation locking
libraries for improved performance of multithreaded programs. In
Euro-Par 2014 Parallel Processing, volume 8632 of Lecture Notes in
Computer Science, pages 572–583. Springer, 2014.

[22] A. Kogan and M. Herlihy. The future(s) of shared data structures.
In Proceedings of the 2014 ACM Symposium on Principles of Distributed
Computing, pages 30–39, New York, NY, USA, 2014. ACM.

[23] Y. Lev, V. Luchangco, and M. Olszewski. Scalable reader-writer
locks. In Proceedings of the 21st annual Symposium on Parallelism in
Algorithms and Architectures, pages 101–110, New York, NY, USA,
2009. ACM.

[24] J. Lindén and B. Jonsson. A skiplist-based concurrent priority
queue with minimal memory contention. In Principles of Distributed
Systems, volume 8304 of Lecture Notes in Computer Science, pages
206–220. Springer, 2013.

[25] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller. Fast and
portable locking for multicore architectures. ACM Transactions on
Computer Systems, 33(4):13:1–13:62, Jan. 2016.

[26] V. Luchangco, D. Nussbaum, and N. Shavit. A hierarchical CLH
queue lock. In Proceedings of the 12th International Conference on
Parallel Processing, pages 801–810, Berlin, Heidelberg, 2006. Springer.

[27] P. S. Magnusson, A. Landin, and E. Hagersten. Queue locks on
cache coherent multiprocessors. In Proceedings of the 8th International
Symposium on Parallel Processing, pages 165–171, Washington, DC,
USA, 1994. IEEE Computer Society.

[28] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM Trans.
Comput. Syst., 9(1):21–65, Feb. 1991.

[29] J. M. Mellor-Crummey and M. L. Scott. Scalable reader-writer
synchronization for shared-memory multiprocessors. In Proceedings
of the third ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 106–113, New York, NY, USA, 1991.
ACM.

[30] A. Morrison and Y. Afek. Fast concurrent queues for x86 processors.
In Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 103–112, New York, NY,
USA, 2013. ACM.

[31] Y. Oyama, K. Taura, and A. Yonezawa. Executing parallel programs
with synchronization bottlenecks efficiently. In Proceedings of the
International Workshop on Parallel and Distributed Computing for
Symbolic and Irregular Applications, pages 182–204. World Scientific,
1999.

[32] D. Petrović, T. Ropars, and A. Schiper. Leveraging hardware
message passing for efficient thread synchronization. ACM
Transactions on Parallel Computing, 2(4):24:1–24:26, Jan. 2016.

[33] Z. Radović and E. Hagersten. Hierarchical backoff locks for nonuni-
form communication architectures. In Proceedings of the Ninth
International Symposium on High-Performance Computer Architecture,
pages 241–252. IEEE Computer Society, 2003.

[34] J. Shirako, N. Vrvilo, E. G. Mercer, and V. Sarkar. Design,
verification and applications of a new read-write lock algorithm. In
Proceedings of the 24th ACM Symposium on Parallelism in Algorithms
and Architectures, pages 48–57, New York, NY, USA, 2012. ACM.

[35] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. Ac-
celerating critical section execution with asymmetric multi-core
architectures. In Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 253–264, New York, NY, USA, 2009. ACM.

David Klaftenegger received his M.Sc. in Com-
puter Science from the University of Edinburgh in
2011. He is currently a Ph.D. student at Uppsala
University supported by UPMARC (Uppsala Pro-
gramming for Multicore Architectures Research
Center). His research focuses on synchroniza-
tion algorithms and their application to multicore,
NUMA, and cluster-scale shared memory sys-
tems.

Konstantinos Sagonas received his Ph.D. in
Computer Science from Stony Brook University,
U.S.A. in 1996. He is a faculty member at the
School of Electrical and Computer Engineering
of NTUA, Greece and at the Dept. of Information
Technology of Uppsala University, Sweden. At
Uppsala, he has been the director of ASTEC
and ProFuN centers, and he is one of the main
PIs of UPMARC, the center which funded this
work. His research interests include programming
languages and systems, concurrency and distri-

bution, and techniques and tools for the effective analysis and testing of
programs.

Kjell Winblad is currently pursuing his Ph.D.
degree at Uppsala University, from which he
also got his computer science M.Sc. degree in
2011. Besides locking algorithms, his research
focuses on design and implementation of con-
current data structures. His research has been
funded in part from the EU project RELEASE
(IST-2011-287510) and from UPMARC.

https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/x86_64/lowlevellock.h;hb=beb0f59498c3e0337df298f9d7a3f8f77eb39842
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/x86_64/lowlevellock.h;hb=beb0f59498c3e0337df298f9d7a3f8f77eb39842
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/x86_64/lowlevellock.h;hb=beb0f59498c3e0337df298f9d7a3f8f77eb39842

