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Abstract—The scalability of parallel programs is often bounded by the performance of synchronization mechanisms used to protect
critical sections. The performance of these mechanisms is in turn determined by their sequential execution time, efficient use of hardware,
and ability to avoid waiting. In this article, we describe queue delegation (QD) locking, a family of locks that both delegate critical sections
and enable detaching execution. Threads delegate work to the thread currently holding the lock and are able to detach, i.e., immediately
continue their execution until they need a result from a previously delegated critical section. We show how to use queue delegation to
build synchronization algorithms with lower overhead and higher throughput than existing algorithms, even when critical sections need to
communicate results back immediately. Experiments when using up to 64 threads to access a shared priority queue show that QD locking
provides 10 times higher throughput than Pthreads mutex locks and outperforms leading delegation algorithms. Also, when mixing
parallel reads with delegated write operations, QD locking outperforms competing algorithms with an advantage ranging from 9.5% up to
207% increased throughput. Last but not least, continuing execution instead of waiting for the execution of critical sections leads to
increased parallelism and better scalability. As we will see, queue delegation locking uses simple building blocks whose overhead is low
even in uncontended use. All these make the technique useful in a wide variety of applications.

Index Terms—Locking, Synchronization, Delegation, Detached execution, Multi-core, NUMA
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1 INTRODUCTION

LOck-based synchronization is a simple way to ensure
that shared data structures are always in a consistent

state. Threads synchronize on a lock, and only the current
holder can execute a critical section on the protected data.
To be efficient, locking algorithms aim to minimize the time
required to acquire and release locks when not contended
and the lock handover time when locks are contended.

Queue-based locks, like MCS [28] and CLH [7], [27],
try to minimize the handover time by reducing cache
coherence traffic. However, these locks strictly order the
waiting threads, which harms performance when thread
preemption is common. Moreover, on NUMA systems MCS
and CLH are outperformed by less fair locks that exploit the
NUMA structure, e.g., the HBO lock [33], the hierarchical
CLH lock [26] or more recently the Cohort lock [9]. These
locks let threads on a particular NUMA node execute critical
sections for longer periods of time without interference from
threads on other nodes. This avoids expensive coherence
traffic between NUMA nodes for the lock and the memory it
protects, but not between the cores within a node.

In this article we focus on a different approach, which
sends critical sections to the lock data structure instead
of transferring the lock. This way, a single thread can
execute multiple critical sections without transferring the
data between caches of different cores or NUMA nodes.
This locking approach is called delegation, and the thread
performing other threads’ critical sections is called helper. Put
simply, delegation lets the operation come to the data while
traditional locks let the data come to the operation. This
can result in reduced cache misses since delegation makes it
possible to let many operations on the shared data execute
one after another on a single processor core. Besides these
benefits, some algorithms employ detached execution, i.e., they
allow threads to continue execution before the delegated
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critical section has been executed. In its original form [31],
the detaching algorithm has some overhead and severe
starvation issues for the helper thread. Newer approaches,
like flat combining [17] or remote core locking [25], steered
away from detached execution in favor of faster delegation
and in order to provide a simpler semantics. As we show in
this article, in contrast to these earlier approaches our locking
mechanism allows efficient delegation while it also permits
detaching execution without starving the helper thread.

Main Ideas. We introduce Queue Delegation (QD) locking,
a new efficient delegation algorithm whose idea is simple.
When a lock is contended, the threads do not wait for
the lock to be released. Instead, they try to delegate their
operation to the thread currently holding the lock (helper). If
successful, the helper is responsible for eventually executing
the operation. The threads may either wait for the opera-
tion to complete or alternatively continue their execution
immediately, possibly delegating more operations.

Delegated operations are placed in a delegation queue. As
the queue preserves FIFO order, the correct order of opera-
tions is maintained, and QD locking ensures linearizability.
The linearization point is the successful enqueueing into the
delegation queue. However, the enqueueing can fail when
the lock holder is not accepting any more operations. This
allows the helper to limit the amount of work it performs,
providing starvation freedom for the helper, and ensures
that no operations are accepted when the lock is about to
be released. If delegation fails, a thread has to retry until it
succeeds to either take the lock itself or delegate its operation
to a new lock holder. The QD locking algorithm thus puts the
burden of executing operations on the thread that succeeds
in taking the lock. After performing its own operation, this
thread must perform, in order, all operations it finds in
the delegation queue. When it eventually finds no more
operations in the delegation queue, it must make sure that
no further enqueue call succeeds before the lock is released.

To communicate return values from a delegated operation
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to the thread that delegated it, the operation may pass an
address to store the return value as well as the address of
a flag. The helper then has to store the return value before
setting the flag, on which the delegating thread is waiting.
This also means that, optionally, threads that do not require a
return value can continue their execution immediately after
a successful delegation. We refer to the former option as
delegate and wait and the latter option plainly as delegate.

All requirements for QD locking are met by assembling
two simple components: (i) a mutual exclusion lock to deter-
mine which thread is executing operations, and (ii) a queue
to delegate operations to the lock holder. By using a reader
indicator as an optional third component it is also possible to
allow multiple readers to efficiently execute in parallel.

Contributions. The main contribution of this article is a
detailed description of a new delegation algorithm that we
call QD locking. It is novel in that it efficiently delegates
operations while also allowing to detach the delegation from
the eventual execution. We discuss its prerequisites and
properties in detail, introduce multi-reader QD locks which
allow multiple parallel readers, and a hierarchical QD locking
variant which targets NUMA systems. Last but not least,
we quantify the performance and scalability aspects of QD
locking by comparing them against state-of-the-art scalable
synchronization mechanisms. As we will see, QD locking
offers performance that is on par and often much better than
that of existing synchronization algorithms.

Overview. The rest of the article is structured as follows.
The next section reviews the necessary background in mutual
exclusion algorithms and related work. The following four
sections present the different QD locking variants (Section 3),
their implementation (Section 4), their properties (Section 5),
as well as how the algorithm is extended to support reader-
writer locking semantics (Section 6). Subsequently, QD lock-
ing is compared with related synchronization mechanisms
on the experimental level (Section 7), and the article ends
with some concluding remarks.

2 BACKGROUND AND RELATED WORK

This section discusses various algorithms that can be used to
implement mutual exclusion. Starting with the most simple
locking algorithms, we take a look at their abilities step
by step. Furthermore, we showcase other algorithms that
employ helper threads to improve performance, highlighting
their respective features and limitations.

2.1 Locking
Locking (also called mutual exclusion), has been introduced
by Dijkstra in 1965 [11]. Since then it has been a dominating
synchronization mechanism for concurrent programming
with shared memory. The most basic algorithm is the test-and-
set (TAS) lock, which uses a simple flag to indicate the state
of the lock and functions lock() and unlock() to modify
this state as shown in Fig. 1. Atomic test-and-set is used to
ensure that only one thread can take the lock at a time. Two
additional functions are commonly also available. The first,
is_locked(), returns true if the lock is currently taken and
false otherwise. The second, try_lock(), takes the lock if it
is available and then returns true, but does not wait (block)
when it is unavailable; instead it simply returns false.

1 class tas_lock {
2 std::atomic<bool> locked; /* or atomic_flag */
3 void lock() { while(test_and_set(&this->locked)); }
4 void unlock() { this->locked = false; }
5 bool is_locked() { return this->locked; }
6 bool try_lock() { return !test_and_set(&this->locked); }
7 };

1 class tatas_lock {
2 std::atomic<bool> locked;
3 void lock() { while(!this->try_lock()); }
4 void unlock() { /* ... */ }
5 void is_locked() { /* ... */ }
6 bool try_lock() {
7 if(this->locked) return false;
8 return !test_and_set(&this->locked);
9 }

10 };

Fig. 1. The test-and-set (TAS) and the test-and-test-and-set (TATAS) lock.

While the TAS lock is a functionally correct locking
algorithm, its performance is lacking: When multiple threads
try to take the lock at the same time, i.e., there is contention
for the lock, each thread will repeatedly issue write-accesses
to the locked-flag. This causes the flag to be removed from
any other private caches it may currently be in, and thereby
causes lots of cache coherence traffic. This traffic can be
reduced by first checking the flag before writing to it. The
resulting test-and-test-and-set (TATAS) algorithm, also shown
in Fig. 1, avoids repeatedly writing when the lock is taken,
but will still cause traffic by the waiting threads whenever
the lock is unlocked. However, when locks are usually
uncontended this algorithm provides decent performance [1].

2.2 Dealing with Oversubscription
One of the problems TATAS does not solve is that waiting
threads can take away CPU cycles from the thread currently
holding the lock. The probably easiest way to avoid this
is by adding exponential backoff so that this happens less
often [1]. Another option is to tell the operating system to

1 class futex_lock {
2 enum status { free, taken, contended };
3 std::atomic<status> locked;
4 void lock() {
5 int c = free;
6 if(!this->locked.compare_exchange_strong(c, taken)) {
7 if(c != contended) { c = this->locked.exchange(contended); }
8 while(c != free) {
9 sys_futex_wait(&this->locked, contended);

10 c = this->locked.exchange(contended);
11 }
12 }
13 }
14 void unlock() {
15 int old = this->locked.exchange(free);
16 if(old == contended) { sys_futex_wake(&this->locked); }
17 }
18 bool is_locked() { return this->locked != free; }
19 bool try_lock() {
20 if(this->is_locked()) return false;
21 int c = free;
22 return this->locked.compare_exchange_strong(c, taken);
23 }
24 };

Fig. 2. The futex lock.
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wake up the thread when the lock is released, which on
Linux is used by glibc’s implementation of the ubiquitous
Pthreads mutex lock [12], [15], [16]. Fig. 2 shows how this
can be implemented using the (Linux-specific) futex syscall.
This futex lock uses three internal states: free, taken and
contended. It only involves the operating system when there
is contention, which causes the state to be set to contended.
Otherwise it functions as the TAS and TATAS locks, using free
and taken as the flag’s values. As syscalls can be expensive,
another option is to attempt to take the lock multiple times
before going into the contended state. This allows higher
performance if the waiting time is expected to be low at a
limited computational cost [15].

2.3 Fairness
All locking algorithms described so far lack fairness: When
a lock is released, all threads waiting for it have a chance of
obtaining the lock. The probability of obtaining the lock is
largely dependent on the hardware properties, but there is
markedly no upper limit for the time a thread may have to
wait until it obtains the lock.

A simple way of obtaining fairness is to issue tickets to
threads by fetch-and-incrementing a field in the lock [28]. A
thread has obtained the lock when the number it received
matches a second field representing the next ticket to be
called. On unlock(), threads simply increment this second
field, allowing the next thread to proceed. However, this
approach is memory intensive: All threads waiting need to
fetch the next ticket field whenever it is updated, but only
one of them will be allowed to proceed.

This issue is solved by queue-based locks that allow
each thread to wait on a separate memory address instead.
The earliest such locks are MCS [28] locks, which have a
queue node per thread. The threads compare-and-swap their
node’s pointer with an initially null field when calling lock().
The first thread obtains null as the previous value and is
allowed to proceed its critical section, while subsequent
threads obtain the previous thread’s node pointer instead.
They then reset a flag in their own node and set a next-
pointer in the previous thread’s node. When unlocking, the
thread tries to compare-and-swap the MCS lock field back to
null, which fails if another thread arrived in the meantime.
In that case, the thread follows its node’s next-pointer to set
the flag in the next thread’s node, waking only that thread.

A further improvement of this scheme is the CLH [7], [27]
lock, which does not require a swap operation for unlocking.
(It takes a spare node from the lock which is not returned, but
reused as the thread’s node on the next lock() operation.)

Queue-based schemes improve performance over ticket
locks due to the lower cache coherence traffic. However, the
strict ordering of waiting threads can harm performance
when thread preemption is common: The next thread to
execute may have to wait for processing time first. In Fig. 3
the performance of CLH is compared with the ubiquitous
Pthreads lock and the Cohort lock, which is described below.
Note that, in all graphs, the x-axis (# threads) is in log scale.

2.4 NUMA-aware Algorithms
On Non-Uniform Memory Access (NUMA) systems, the
strict FIFO ordering of threads using CLH locks becomes
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Fig. 3. Throughput for a concurrent priority queue implemented using
different locks. The benchmark runs a loop in each worker thread
that executes a critical section followed by a number of thread-local
computations. The first 16 threads are pinned to a single processor
socket. Additional threads run on additional sockets and thus use a
NUMA system. (Refer to Section 7 for more details about the benchmark
and the platform used.) CLH performs best on non-NUMA, while Cohort
locks maintain their performance when using more sockets.

a performance bottleneck. The locking algorithm needs to
synchronize the lock’s state between the thread unlocking
the lock and the one subsequently locking it. Such syn-
chronization slows down when information needs to be
communicated to another processor chip. It thus follows
that hierarchical approaches are required for faster lock
handovers in NUMA systems, at the cost of a potentially
lower degree of fairness. Several NUMA-aware locking
algorithms that exploit the hierarchical structure of NUMA
systems exist by now [8], [26], [33]. Recently Dice et al. have
proposed lock cohorting as a general mechanism to create
NUMA-aware hierarchical locks [9]. A Cohort lock has one
lock for every NUMA node in the system and an additional
global lock. The holder of the global lock and a local lock
has the right to execute a critical section and hand over the
local lock to a waiting thread, if there is one, provided that
the hand-over limit has not been reached. This reduces the
number of expensive memory transfers that have to be done
between NUMA nodes. The performance of the Cohort lock
is also shown in Fig. 3. Chabbi et al. recently generalized
Cohort locks for deep NUMA hierarchies [5]. The resulting
hierarchical MCS (HMCS) lock allows to take advantage of
locality within each different NUMA level individually.

NUMA-aware approaches are much more efficient on
NUMA machines under high contention than traditional
locks. However, their performance is inferior to other ap-
proaches, such as those based on delegation, when operating
within only one NUMA node (cf. Fig. 4 in Section 2.6).

2.5 Detached Execution
The poor cache locality due to data transfers between private
caches was identified by Oyama et al. [31] back in 1999 as a
major bottleneck for locking algorithms. To improve this, they
suggested that threads should not execute critical sections
themselves, but they should be detached from their execution.
While the threads lose control over the execution of their
critical section, the scheme allows a single thread to execute
critical sections efficiently due to the ability to exploit data
locality. The algorithm for detached execution by Oyama et al.
stores critical sections in a LIFO queue-based on a linked
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list. A thread that successfully executes a compare-and-swap
(CAS) instruction on a lock word that also functions as head
of the LIFO queue becomes the helper.

Not discussed by Oyama et al. is that their detached
critical sections cannot directly return data to the thread
detaching them. If threads require knowledge about the
success of a critical section or need to read data in a
critical section to guarantee consistency, the scheme requires
additional synchronization. For example, a communication
variable could be defined, which can then be used store the
desired information in. Read-spinning on and writing to this
communication variable must still ensure consistency.

Another problem in the algorithm by Oyama et al. is that
the helper continues executing requests that are put by other
threads as long as the LIFO queue is not empty. Therefore, it
is possible for the helper to starve while executing requests
for other threads. Furthermore, threads delegate operations
by performing a CAS operation on the pointer to the LIFO
queue. As noted by other researchers [14], [17], this pointer
can become a contended hot spot which limits scalability.
The original algorithm also suffers from the cost of memory
management of LIFO queue nodes, which can be mitigated
by pre-allocation of nodes. The resulting variant of the
algorithm of Oyama et al. is called DetachExec in this article.

Despite these known problems, DetachExec can achieve
some performance benefits through the ability to detach
worker threads from the execution of their critical sections: If
the programmer does not explicitly synchronize with the end
of a critical section, threads will continue with their execution
immediately after storing their operation in the LIFO queue.

2.6 Delegation Algorithms

The idea of a single thread executing many critical sections
without any need for synchronization in between has been
used by a number of approaches, which we call delegation
algorithms. For consistent terminology, we say that worker
threads delegate their critical sections to a helper thread. The
following algorithms all differ from DetachExec in that
they ensure that threads continue execution only when the
delegated critical section has been executed.

Flat Combining. One approach to coalesce operations on
a shared data structure into a single thread is flat combining
(FC) [17]. Flat combining uses a lock and a list of request
nodes L. Each thread has a single request node that can
be put into L. To perform an operation on the shared data
structure, the operation is first published on the thread’s
request node. Subsequently, the thread spins in a loop that
switches between checking whether the response value has
been written back to its request node and trying to take the
lock. A thread that successfully acquires the lock becomes
the helper (in FC also called combiner), traverses the list of
requests (a number of times), and performs the requests it
finds there. The FC algorithm also has a way of removing
nodes that have not been used for a long time from the
list of requests. A thread that is waiting for a response has
to occasionally check that its node is still in the list and
put it back with a CAS operation if it has been removed.
Flat combining’s delegation mechanism has been shown to
perform better than the original algorithm of Oyama et al.
for contended workloads [14], [17], but these comparisons

do not consider an optimized variant of the algorithm, like
DetachExec, that is better suited for modern machines.

Synch Algorithms. CC-Synch, DSM-Synch, and H-Synch
are queue-based delegation algorithms developed by Fa-
tourou and Kallimanis [14]. In all three algorithms, a thread
T announces an operation by inserting its queue node, which
contains the operation, at the tail of the request queue. T
then needs to wait on a flag in the queue node until the flag
is unset. If T then sees that the operation is completed it can
continue normal execution, otherwise T becomes the helper.
A helper thread first performs its own operation and then
traverses the queue performing all requests until it reaches
the end of the queue or a limit is reached.

The queue in the CC-Synch algorithm is based on the
CLH lock [7], [27], while the queue in DSM-Synch is based on
the MCS lock [28]. CC-Synch is slightly more efficient than
DSM-Synch, but DSM-Synch is expected to also work well on
systems without cache coherence. H-Synch is in spirit similar
to lock cohorting, and has one CC-Synch data structure on
every NUMA node and an additional global lock. Threads
put their queue node in the Synch data structure located at
their local NUMA node and a helper needs to take the global
lock before starting to execute operations.

The Synch algorithms have been shown to perform better
than flat combining for implementing queues and stacks [14].

Dedicated Core Locking. Locking mechanisms where
cores are dedicated to only execute critical sections for
specified locks have been studied both from a hardware and
a software angle. Suleman et al. have proposed hardware
support for the execution of critical sections [35]. Their sug-
gested hardware has an asymmetric multi-core architecture
where fat cores are dedicated to critical sections and have
special instructions to execute them. Remote core locking [25]
is a software locking scheme where one processor core is
dedicated to execution of critical sections. The dedicated core
spins in a loop checking a request array for new requests.
All seen requests are executed and the response value or
acknowledgment is written back in a provided memory
location. Compared to delegation mechanisms, dedicated
core locking has the disadvantage that the programmer has
to decide which locks shall have a dedicated core and the
cores that should be used for this. Furthermore, dedicated
core locking is not well-suited for applications that have
different phases where the lock is sometimes contended and
sometimes not. Finally, remote core locking suffers from the
same kind of overhead that flat combining has in that it
needs to scan request nodes even when they are empty.

Hardware Message Passing. Recently, several algorithms
using hardware message passing to optimize cache coherence
interactions have been proposed [32]. The algorithms include
an MCS lock variant called HybLock and two delegation
algorithms, called mp-server and HybComb. While mp-
server uses dedicated cores for execution of critical sections,
HybComb promotes an existing thread to execute critical
sections, similar to FC and CC-Synch. All three algorithms
rely on a hardware message queue to avoid negatively
affecting performance through the cache coherence protocol.

Delaying Updates. In update-heavy scenarios it can be
beneficial to not update the global state until there is a
read that needs to see the updates. OpLog [3] is such an
approach. It uses core cycle timestamps provided by the
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Fig. 4. Throughput for the same priority queue benchmark as in Fig. 3 with
various delegation algorithms. Note that the y-axis scale has changed.

CPU to establish a total order of operations, which is shown
to perform well in several Linux kernel use cases.

The performance of some delegation algorithms dis-
cussed above is shown in Fig. 4. For comparison, the Pthreads
and Cohort locks are also shown. It is clear that all delegation
algorithms perform better than traditional locking algorithms
that do not use a helper thread to execute critical sections.

3 QUEUE DELEGATION LOCKS

This section describes the different QD locking variants. We
start with the necessary components, and then use them to
assemble a basic QD lock. We also show that QD locks can
be used in a way that gives programmers more flexibility
and allows them to achieve better performance than the one
using only basic QD locks. Then we extend the algorithm to
a multi-reader QD locking variant that allows multiple read-
only operations to execute in parallel. Last, we sketch how
QD locks can also provide the functionality of traditional
mutual exclusion locks.

3.1 Building Blocks
Queue delegation locks are built from two main components:
a mutual exclusion lock and a delegation queue.

The mutual exclusion lock is used to determine whether
the lock is free or taken. QD locks can use most locking
algorithms, as long as they provide a try_lock function in
addition to the standard lock/unlock mechanisms.1 We also
use the is_locked function of the mutual exclusion lock
when we later build a multi-reader QD lock.

The other building block, the delegation queue, is re-
quired to store delegated operations. Semantically, it is a
tantrum queue as described by Morrison and Afek [30]. Calls
to its enqueue operation are not guaranteed to succeed, but
can return a closed value instead. This allows the QD lock to
stop accepting more operations. The required interface for
the delegation queue consists of only three functions: open,
enqueue and flush. The first two are simple: open resets
the queue from closed state to empty, and enqueue adds an
element to the queue. The flush function is used instead of
a dequeue operation: it dequeues all elements (performing
their operation) and changes the queue’s state to closed.

1. In fact, the lock mechanism for taking the lock unconditionally is
not strictly required. Still, lock is useful in order to provide stronger
guarantees and makes it easier to adapt legacy code to use QD locking.

3.2 Queue Delegation Lock
We use the building blocks outlined above to assemble a QD
lock. A thread attempting to execute an operation under the
QD lock first attempts to lock (using try_lock) the mutual
exclusion lock. If this succeeds, the thread will first open
the delegation queue (which then accepts other threads’
operations). Then the operation will be executed, followed
by a flush operation on the delegation queue. Finally, the
mutual exclusion lock is unlocked again. However, if the
try_lock fails, the thread instead attempts to enqueue its
operation into the delegation queue. When this succeeds, the
thread has detached the critical section. At that point, the
thread can either wait for the critical section to complete
or continue its execution (and possibly wait for the result
of the critical section at a later point). The resulting QD
lock therefore accepts operations even when the mutual
exclusion lock is locked; threads only need to retry if the
mutual exclusion lock is locked and the queue is closed.

An operation that can be submitted to QD locks is
semantically a self-contained function object, which means it
needs to store all required parameters from the local scope
when delegated, similar to a closure. For implementation
details of this mechanism, see Fig. 6 and 7.

The basic QD lock interface only consists of a
delegate_and_wait function which takes an operation as
an argument. It also creates a flag (initially set to false) and
augments the operation with a final step that sets the flag
to true. The call to delegate_and_wait then waits until this
flag is true. This is semantically equivalent to the way the
delegation algorithms in Section 2.6 operate.

However, the delegate_and_wait function can also be
separated into delegate and wait functions, which can be
called individually. It is then still guaranteed that the dele-
gated operation will be executed before any operations from
subsequent calls to delegate are executed, but the execution
is detached until wait is called. Additional performance can
be leveraged by a thread that delegates multiple operations
before waiting for them. Finally, if the operation has no
return value that needs to be obtained, the wait call can be
omitted entirely. In this case it is also not required to create
and set a flag that can be waited on, which further reduces
the overhead incurred by the algorithm.

This separation of delegate and wait can be explained
using the semantics of futures [2]. Namely, the value is not
returned immediately, but the delegate call can promise to
provide the value at a specific location upon the execution
of the operation, i.e., it returns a future. When the calling
thread needs to read the return value, it has to wait until it
is available. The waiting can be done by the programmer by
calling wait, or by hiding the call in a wrapper that does it
automatically when the value is read.

3.3 Multi-Reader Queue Delegation Lock
Readers-writer locks can be built from mutual exclusion
locks in a generic way. This is applicable to QD locking as
well. For Multi-Reader QD (MR-QD) locks, which is our
variant of readers-writer locks, a third building block is
required: an indicator that shows whether there are any
threads currently holding the lock in reading mode. Note
that it is not necessary to count the readers. Instead, all we
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need is a query function [13] that returns true when there
are readers and false when there are none. Readers use the
functions arrive and depart to indicate when they start and
stop reading. This is needed so that delegated operations can
wait until it is safe to write.

A reader indicator extends QD locks to MR-QD locks,
which allow many concurrent readers that efficiently execute
in parallel when there is no writer or when the writer
releases the lock. The interface of an MR-QD lock contains
the additional functions rlock and runlock that work as in
traditional readers-writer locks.

3.4 Queue Delegation Locks with a Wider Interface
We can easily extend the interface of QD and MR-QD locks
to allow critical sections that are not delegated or to offer
other functionality provided by mutual exclusion locks. To
do so, we only need to expose the functions from the mutual
exclusion lock component. This interface may be required for
critical sections that need to lock multiple locks and release
them in an order other than last in, first out, or because a
critical section needs to run in a specific thread. We do not
further discuss or evaluate this kind of extended QD locks,
as their performance depends mostly on the performance of
the mutual exclusion lock.

4 IMPLEMENTATION

We will now describe how QD locks can be realized by
presenting our implementation. However, we note that the
range of possible implementations of QD locking is not
restricted to the ones we describe in this article. In fact,
the components we use can be replaced by other ones
providing the required interface. The ones we chose to base
our implementation on may not be the “best” (whatever
that means), but are easy to understand and, as we will see,
provide good performance and scalability.

4.1 Mutual Exclusion Lock
The mutual exclusion lock component is not as important for
QD locking as one might expect. As delegating operations
is preferred over waiting for the lock, there is virtually no
write contention on the lock. The basic algorithm only uses
try_lock, while locking algorithms mainly differ in their
way to wait for taking the lock. Our implementation works
very well with the TATAS lock, whose implementation was
shown in Fig. 1. However, as we will show in Section 5, the
guarantees of the lock used here can be used to extend similar
guarantees to the entire QD lock. Thus, for our implementa-
tion, we chose the MCS-futex lock, whose implementation is
shown in Fig. 5. It is a simple extension of MCS locks that use
futex syscalls to wait for their turn instead of spin-waiting.
Additionally, there is a try_lock function (equivalent to the
one in the futex lock), which does not provide fairness. There
is also a function try_lock_or_wait, which acts similar to
try_lock but before returning false also makes threads sleep
until the helper finishes all operations delegated to it and
calls unlock. This allows spin-waiting for a limited period
before sleep-waiting, which is a common optimization.

This MCS-futex lock provides a lock function, which is
used in Section 5 to provide starvation freedom. It can also be

1 class mcsfutex_lock {
2 thread_local static std::map<mcs_futex_lock*, mcs_node>
3 mcs_node_store; // each thread gets one node per lock
4 std::atomic<mcs_node*> locked;
5 void lock() {
6 mcs_node* mynode = &mcs_node_store[this];
7 mynode->next = NULL;
8 mcs_node* c = this->locked.exchange(mynode);
9 if(c != NULL) {

10 mynode->is_locked = true;
11 c->next = mynode;
12 while(mynode->is_locked) {
13 sys_futex_wait(&mynode->is_locked, true);
14 }
15 }
16 }
17 void unlock() {
18 mcs_node* mynode = &mcs_node_store[this];
19 mcs_node* c = mynode;
20 if(mynode->next == NULL) {
21 if(this->locked.compare_exchange_strong(c, NULL)) {
22 if(this->sleep) {
23 this->sleep = false;
24 sys_futex_wake(&this->sleep);
25 }
26 return;
27 }
28 }
29 while(mynode->next == NULL) { /* wait for nextpointer */ }
30 mynode->next->is_locked = false;
31 sys_futex_wake(&mynode->next->is_locked);
32 }
33 bool is_locked() { return this->locked != NULL; }
34 bool try_lock() { return try_lock_may_wait(false); }
35 bool try_lock_or_wait() { return try_lock_may_wait(true); }
36 bool try_lock_may_wait(bool wait) {
37 if(this->is_locked()) return false;
38 mcs_node* mynode = &mcs_node_store[this];
39 mcs_node* c = NULL;
40 if(!this->locked.compare_exchange_strong(c, mynode)) {
41 if(wait) {
42 if(!this->sleep) { this->sleep = true; }
43 sys_futex_wait(&this->sleep, true);
44 }
45 return false;
46 }
47 return true;
48 }
49 };

Fig. 5. The MCS-futex lock.

used in the QD lock interface to deal with situations where
delegation is not possible, like unlocking in an order other
than last in, first out as mentioned in Section 3.4.

4.2 Delegation Queue
On the other hand, the delegation queue component is impor-
tant for QD locking since it is used by all contending threads.
It therefore must be fast when enqueueing operations.

Our delegation queue implementation, shown in Fig. 6,
uses a fixed-size buffer array to store operations. A counter is
used to keep track of how many elements are already in the
queue. The queue is defined to be closed when the counter
is greater than or equal to the size of the array. Initially,
the counter is set to a value greater than the size of the
array and thus the queue is in closed state. The enqueue
function increases the counter using an atomic fetch_and_add
instruction2 (line 10), which gives each delegated operation

2. As not all platforms have a fetch_and_add (FAA) instruction, we’ve
also done experiments where FAA is simulated with a CAS loop (Sect. 7).
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1 class delegation_queue {
2 std::atomic<long> counter;
3 std::atomic<Function> entries[ENTRIES];
4 char array[ENTRIES * ENTRY_SIZE];
5 void open() { counter = 0; }
6 bool enqueue(Function f, Parameters p) {
7 int size = sizeof(int) + sizeof(p);
8 int req = (size+ENTRY_SIZE-1)/ENTRY_SIZE; /* ceil */
9 if(counter > (ENTRIES - req)) return CLOSED;

10 int index = counter.fetch_and_add(req);
11 if(index <= (ENTRIES - req)) {
12 int os = index*ENTRY_SIZE;
13 memcpy(&array[os], &req, sizeof(int)); /* non-atomic */
14 os = os + sizeof(int);
15 memcpy(&array[os], &p, sizeof(p)); /* non-atomic */
16 entries[index].store(f); /* atomic */
17 return SUCCESS;
18 } else {
19 if(index < ENTRIES) {
20 int os = index*ENTRY_SIZE;
21 int r = ENTRIES-index;
22 memcpy(&array[os], &r, sizeof(int)); /* non-atomic */
23 entries[index].store(no_op); /* atomic */
24 }
25 return CLOSED;
26 }
27 }
28 void flush() {
29 long todo = 0;
30 bool open = true;
31 while(open) {
32 long done = todo;
33 todo = counter;
34 if(todo == done) { /* close queue */
35 todo = counter.exchange(ENTRIES);
36 open = false;
37 }
38 if(todo >= ENTRIES) { /* queue closed */
39 todo = ENTRIES;
40 open = false;
41 }
42 for(int index = done; index < todo; ) {
43 Function f = entries[index];
44 while(!f) {
45 Function f = entries[index];
46 }
47 int req = *((int*)&array[index]);
48 int offset = index + sizeof(int);
49 Parameters* p = &array[offset];
50 (*f)(*p);
51 index += req;
52 }
53 }
54 std::fill(&entries[0], &entries[todo], 0);
55 }
56 };

Fig. 6. The delegation queue implementation.

its index in the buffer array. This way, the queue automati-
cally closes when the buffer fills up, and can also be closed
by atomically changing the counter field with a CAS or a
swap instruction (as in line 35). The flush function repeatedly
reads the counter and dequeues operations until the queue
has been put to closed state by an enqueue function (line 38
detects this) or because the counter has not been updated
since the last check (line 34).

Special care is needed when writing and reading the
delegated operation; i.e., in lines 12–16 and 43–49. First
of all, the operation needs to be self-contained: besides
the operation, all parameters needed to execute it must
be provided. In our implementation, we use a function

pointer in the entries array, a size field and a variable-sized
parameter field for each operation. Each function pointer
entry is associated with a fixed amount of buffer space in the
parameter array. If more space is needed, multiple entries
can be used for a single function. The amount of required
entries is stored in the size field, which always comes at the
beginning of the associated buffer space. To ensure that no
partially-written operations are used, the function pointer
is written last and read first. The entries array content is
reset to all zero (line 54) after the delegated operations have
been executed. This allows to wait in the next iteration of
the for loop until the function pointer entry contains a valid
value. As the function pointer entry is written last, the entire
operation can be read safely when the function pointer entry
has a non-zero value.

The observant reader may wonder whether the counter
field in the delegation queue could also be used for deciding
which thread becomes the helper. While this is possible and
gives high performance, it is then not possible to use the
additional properties (fairness and sleeping while waiting)
provided by an MCS-futex lock. When such properties are
desired, a separation of lock and delegation queue allows
simplified reasoning about them, as we will see in Section 5.

4.3 Queue Delegation Lock Implementation
With the mutual exclusion lock and the tantrum queue
available, only the actual delegation functions have to be pro-
vided to build a QD lock. The delegate_and_wait function
provides an interface that enforces the stronger semantics of
most other locking algorithms. It extends the operation with
a flag that will be set after the operation has been executed.
This flag will be waited on before delegate_and_wait returns.
The extended operation is handled by the delegate function,
which can also be used by the programmer directly. As can
be seen in Fig. 7, this function initially checks whether the
lock is contended (line 5), so that it can avoid overheads
if there is no contention. It then alternates between trying
to delegate the operation (line 11) and trying to acquire
the lock (lines 12–18) until one of them succeeds or the
maximum number of tries is reached. If the enqueue function
call succeeds, it is guaranteed that the operation will be
executed and the delegate function can return. As described
earlier, a delegate caller that does not need a return value
from the operation can just continue execution at this point.
An operation that requires a return value needs to write this
value to a location that the caller of delegate can wait on.
If the try_lock call succeeds, the thread opens the queue,
executes its own operation and all enqueued operations until
the queue is closed. Finally it unlocks the mutual exclusion
lock. However, if the maximum number of tries is reached
(in line 10) then the algorithm reverts to using the mutual
exclusion lock directly (line 27), which will achieve progress
if a starvation-free lock is used.

5 PROPERTIES

Let us now discuss some of the properties of QD locking;
most notably starvation freedom and linearizability. We also
show how to extend QD locking to be better suited for
NUMA systems, and discuss issues related to how QD locks
can be used for practical programming.
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1 class qd_lock {
2 mcsfutex_lock lock;
3 delegation_queue queue;
4 void delegate(Function f, Parameters p) {
5 if(lock.try_lock()) { /* check for contention */
6 f(p);
7 lock.unlock();
8 return;
9 }

10 for(int i = 1; i <= MAX_TRIES; i++) {
11 if(queue.enqueue(f,p)) return;
12 bool lock_acquired;
13 if(i % (TRIES_WITHOUT_WAIT + 1) != 0) {
14 lock_acquired = lock.try_lock();
15 } else {
16 lock_acquired = lock.try_lock_or_wait();
17 }
18 if(lock_acquired) {
19 queue.open();
20 f(p);
21 queue.flush();
22 lock.unlock();
23 return;
24 }
25 }
26 /* maximum retries reached, revert to internal lock */
27 lock.lock();
28 f(p);
29 lock.unlock();
30 }
31 Returntype delegate_and_wait(Function f, Parameters p) {
32 std::atomic<bool> flag = false;
33 Returntype r;
34 Function waiting_op = [&r,&flag](Parameters p) {
35 r = f(p);
36 flag = true;
37 };
38 delegate(waiting_op, p);
39 while(!flag) { /* wait */ }
40 return r;
41 }
42 };

Fig. 7. The delegate function and its waiting counterpart.

5.1 Starvation Freedom
The delegate function implementations shown in Fig. 7
and 12 are starvation free, meaning that a thread cannot get
starved while executing them. When a thread fails too many
times in both try_lock and enqueue calls, the algorithm uses
lock as a fair fallback. This can happen if a thread always
executes the enqueue function when the queue is closed and
the try_lock function when the mutual exclusion lock is
locked. According to our experience this does not seem to be
a problem in practice, and experiments (in Section 7) show
that the additional code does not harm performance severely.

However, one can easily replace the internal locking
algorithm and remove the limit for retrying try_lock and
enqueue to gain a little bit higher performance. As long as
this limit exists and the mutual exclusion lock is starvation
free, it is easy to see that the whole delegate function is
also starvation free. This is because, in the worst case, the
delegate function only does a fixed amount of work in
the retry loop before it acquires the starvation free mutual
exclusion lock unconditionally.

5.2 Linearizability
Linearizability [18] is a correctness criterion for concurrent
data structures. Methods on a linearizable concurrent object

appear as if they happen atomically at a linearization point
during the methods’ execution. We discuss linearization of
QD locking algorithms here, dealing with the problem that
detached execution allows continuing to work even before
critical sections have been executed. Still, if all accesses to
a data structure are protected using a lock of the QD lock
family, the resulting data structure is linearizable as we argue
below.

Up front we note that the delegation queue is linearizable.
The enqueue function, if successful, linearizes delegated
operations exactly in the order in which they appear in the
queue. When delegate enqueues successfully, linearization
of operations is therefore given by the linearization of
the delegation queue. When try_lock is successful, the
linearization point is just before the opening of the queue
(the point between lines 18 and 19 in Fig. 7). This is true
because try_lock can only succeed when the lock is free,
which implies that any previous holder must have executed
all previously delegated operations. Likewise, concurrent
delegate calls cannot succeed before the queue is opened,
thus their operations must have a linearization point later on.

For completeness, we note that delegate returns a future
of the operation’s result, not the actual result. This allows the
linearization point of reading the return value to be distinct
from the operation’s linearization point. This linearization
point is after the actual execution of the operation, right after
the return value has been written successfully. It should
be noted that the returned value is still consistent with
the linearization of the operations and does not reorder
them. This linearization model has been independently
described as strong future linearizability [22], albeit in that
paper it is restricted to data structures and does not support
general critical sections. However, when queue delegation
is used with operations that have side effects outside the
data structure protected by the lock, linearizability is not
guaranteed. In such code, the program may have to wait
for the result of the future before it is safe to depend on the
actual execution of the operation.

5.3 NUMA Awareness
In this section, we present a NUMA-aware hierarchical queue
delegation lock called hierarchical QD lock (or HQD lock for
short). The HQD lock is derived from the QD lock in a way
that is in spirit similar to how Cohort locks [9] are constructed
from traditional mutual exclusion locks and to how the
H-Synch algorithm is constructed from CC-Synch [14]. An
HQD lock uses one mutual exclusion lock and one delegation
queue per NUMA node. Additionally, the lock contains
a global mutual exclusion lock that is used to determine
which NUMA node is allowed to execute operations. We
have chosen an MCS lock [28] as both the global lock and
the per-node mutual exclusion lock. MCS is a fair queue-
based lock that provides starvation freedom. These choices
guarantee that all NUMA nodes will be able to execute
operations in a reasonably fair order at high performance.
(We have not used futex syscalls to deal with threads that
spin-wait, as this hierarchical algorithm is highly sensitive
to the timing between handovers and operating system calls
are too expensive in this scenario.)

The implementation for the HQD lock algorithm is shown
in Fig. 8. As with other hierarchical locking approaches each
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1 class hqd_lock {
2 qd_lock local_locks[NUMA_NODES]; /* MCS based */
3 mcs_lock lock;
4 void delegate(Function f, Parameters p) {
5 qd_lock* local_lock = &local_locks[my_numa_node];
6 if(local_lock->try_lock()) { /* no contention? */
7 lock.lock();
8 f(p);
9 lock.unlock();

10 local_lock->unlock();
11 return;
12 }
13 for(int i = 1; i <= MAX_TRIES; i++) {
14 if(queue.enqueue(f,p)) return;
15 bool lock_acquired;
16 if(i % (TRIES_WITHOUT_WAIT + 1) != 0) {
17 lock_acquired = local_lock->try_lock();
18 } else {
19 lock_acquired = local_lock->try_lock_or_wait();
20 }
21 if(lock_acquired) {
22 lock.lock();
23 queue.open();
24 f(p);
25 queue.flush();
26 lock.unlock();
27 local_lock->unlock();
28 return;
29 }
30 }
31 /* maximum retries reached, revert to internal lock */
32 local_lock->lock();
33 lock.lock();
34 f(p);
35 lock.unlock();
36 local_lock->unlock();
37 }
38 };

Fig. 8. The delegate function in the HQD lock.

thread needs to know which NUMA node it is running
on (see line 5). The delegate function is using the lock and
delegation queue of the local NUMA node to perform the QD
locking algorithm. Additionally, it needs to take the global
lock before opening its delegation queue in line 23. The same
lock must also be acquired in all code paths that perform
only a single critical section (lines 7 and 33). Constructed
this way, the amount of expensive communication between
the NUMA nodes can be significantly reduced. This allows
HQD locks to perform better under high contention as we
will see in Section 7. On the other hand, when the contention
is low, a QD lock can perform better than an HQD lock on
NUMA systems. QD locks can achieve higher parallelism at a
higher communication cost compared to HQD locks. Threads
on other NUMA nodes have to wait instead of delegating
and continuing with their local work, which itself can limit
performance. Also, it means there are less workers supplying
the lock holder with additional work, which can mean the
lock is released and taken again instead of the lock holder
helping other threads. It is therefore not the case that HQD
is always a better choice than QD on NUMA systems.

5.4 More Threads than Hardware Supports

In high-performance applications, programs often spawn
exactly as many worker threads as the hardware can effi-
ciently run at the same time. However, a general purpose
mutual exclusion algorithm should also consider the case

1 MyStruct data; // global shared
2 futex_lock l;
3 void foo() {
4 Value v = calculate_value();
5 l.lock()
6

7 data.insert(v);
8 l.unlock();
9 }

1 MyStruct data; // global shared
2 qd_lock q;
3 void foo() {
4 Value v = calculate_value();
5 q.delegate_and_wait(
6 [](Param p) {
7 data.insert(p);
8 }, v);
9 }

Fig. 9. Code tranformation of a regular lock to a QD lock.

1 futex_lock l;
2 void bar() {
3 Key k = calculate_key();
4

5 Value v1;
6 l.lock()
7

8

9 v1 = data.lookup(k);
10 l.unlock();
11

12 Value v2 = calculate_value();
13

14

15 if(v1 > v2) do_something();
16 }

1 qd_lock q;
2 void bar() {
3 Key k = calculate_key();
4 std::atomic<bool> f(false);
5 Value v1;
6 q.delegate(
7 [&f, &v1](Param p) {
8 v1 = data.lookup(p);
9 f = true;

10 }, k);
11 // may run parallel to lookup
12 Value v2 = calculate_value();
13 // wait for detached operation
14 while(!f); // cf. Fig.7, l.39
15 if(v1 > v2) do_something();
16 }

Fig. 10. Code transformation with detached execution using a QD lock.

where there are more threads contending for the lock than
hardware supports. In this case, locking algorithms need to
cooperate with the operating system by putting themselves
to sleep while waiting, in order to avoid that threads waiting
to access the lock prevent execution of the thread holding
it. In QD locking, this is not an issue as long as delegations
succeed. However, once the delegation queue is filled up,
the other threads can waste resources by repeated attempts
to delegate, which are bound to fail until the helper finishes
with its current workload. To limit the extent of spinning,
the implementation of QD locks can use try_lock_or_wait
to make threads sleep until the helper finishes, and there is
thus a chance of progress again. This has been implemented
for the Linux operating system using futex syscalls within
the mutex lock’s try_lock call. Measurements have shown
that the performance impact of this extension is reasonably
small, but can increase performance significantly when there
are more threads than cores, especially when threads are not
pinned to cores. However, this ability does not extend to
the spinning done by threads waiting for return values, as
waking them up individually causes significant overheads.
Fortunately, each of them spins on its own flag which can
be cached and therefore interferes little with the rest of the
system as long as there is only a limited number of threads
spin-waiting for a return value.

5.5 Usage Examples
The use of QD locks is straightforward. A comparison with
lock/unlock-based critical sections is shown in Fig. 9. The
critical section is turned into a lambda function, so that it can
be delegated to a QD lock. By using delegate_and_wait the
code guarantees that the critical section has completed. To
also benefit from detached execution, the example in Fig. 10
uses delegate in conjunction with a boolean flag f to signal
availability of the return value v1. The lambda function
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captures both f and v1 by reference so that it can write to
them. This allows the lookup in the critical section lambda
(line 8) and an expensive computation (line 12) to be executed
in parallel when the operation is delegated to another thread.
Waiting on the flag (line 14) immediately before the value is
needed guarantees that v1 has been written to by the helper
thread. If the current thread happens to become a helper, the
execution would still be serial, but this will only affect one
thread at a time, benefitting all other worker threads.

5.6 Structured Locking and Practical Considerations

In many situations one may need to use structured locking
with multiple nested locks. For QD locking, the case of
delegating to one lock while executing a critical section
under another lock is not problematic. If there is already a
helper for the inner lock, the critical section will be delegated.
When both locks are required for an operation, the outer
lock’s helper thread issues the inner lock’s operation and
then just needs to wait for its execution, thus ensuring no
other operation is executed under the outer lock. However,
this does not cause any additional delays over classical
locking algorithms, as with them the thread would stall
until it acquires the inner lock as well. In the case where
there is no helper yet, the thread issuing the operation
will become a helper for the inner lock as well, helping
any additionally delegated calls before resuming the help
session on the outer lock. This can be seen as starving the
helper thread, as the maximum amount of work during
the outermost help session increases exponentially with
the locking depth. If this becomes a problem, mitigation is
possible by spawning additional threads to become helpers.
Alternatively, a flag could be passed to delegate_and_wait
and delegate to indicate that the call should not become a
helper. This would allow benefitting from existing helpers,
but fall back to lock/unlock if there is no helper available.
However, with this flag the performance of a call that never
helps becomes harder to predict and having too many such
calls can cause the scheme to degrade in performance.

More discussion on porting existing applications to use
QD locks and programmability aspects of QD locking can be
found in a paper describing our QD locking libraries [21].

5.7 Comparison with Other Delegation Algorithms

QD locking provides a broader set of functionality than other
delegation algorithms, and there is a number of differences
regarding the limitations of and choices by these algorithms.

When DetachExec by Oyama et al. executes critical sec-
tions, there is no upper limit for how many critical sections
can be executed by the thread, causing starvation of the
helper. This is not the case for QD locking which uses a
tantrum queue with limited size. DetachExec has a potential
hot spot where critical sections are delegated, and QD locking
has a similar potential hot spot. However, it is less of an
issue as we use a fetch-and-add instruction instead of a
CAS loop to synchronize between threads, which reduces
the already small impact of the hot spot. A final difference
between DetachExec and QD locking is that in order to make
DetachExec linearizable, the LIFO queue of operations needs
to be reversed, which also imposes extra cost.

Compared to flat combining, the QD locking approach
is offloading work to the lock’s holder and does not need
to wait for the critical section’s execution. FC cannot easily
detach execution because of happens-before relations: An-
other thread could synchronize with the detaching thread
and issue an operation to FC, which then might be executed
before the detached operation. Also, unlike FC, the helper in
QD locking does not need to traverse empty request nodes
which potentially can become a performance problem for FC
when the number of threads is big but contention is low.

Compared to CC-Synch, DSM-Synch and H-Synch, QD
locking has two advantages. First, it does not require
threads to wait until an operation has been applied to the
data structure that is protected by the lock. Instead, the
programmer can specify if and when a return value is needed,
allowing for the same strict or more relaxed semantics. If the
Synch algorithms were to be extended to support detached
execution, significant changes in their implementation would
be required to maintain starvation freedom. Second, our
implementations are using a queue that is based on an array
buffer. This approach causes fewer cache misses (external
loads fed from other cores) than the Synch based algorithms.
Since the operations are stored continuously in the array
buffer, several operations can be loaded per cache miss
compared to the Synch algorithms that require one cache
miss per loaded operation.

6 MULTI-READER QUEUE DELEGATION LOCKS

All locking algorithms reduce the amount of available
parallelism, which can become a bottleneck even if the
locking algorithm itself is very efficient. The most common
way to mitigate this problem is to allow limited parallelism
even when accessing shared data. By using readers-writer
locks, programmers can allow multiple read-only critical
sections to execute in parallel. This section describes how
QD locks can be extended to also support parallel read-only
critical sections. But let us start with some background.

The extension of mutex locks to readers-writer locks
was first proposed by Courtois et al. in 1971 [6]. Since then,
the idea has been used numerous times to extend various
algorithms [4], [10], [23], [29], [34]; in particular, it has been
employed on top of plain queue locks as well as other locking
algorithms mentioned in Section 2. A readers-writer (RW)
lock is an extension to the mutual exclusion lock that offers
two levels of locking: 1) The read lock level is usually used
for critical sections that do not modify shared data. Several
read critical sections protected by the same lock can execute
concurrently. 2) The write lock level is usually used for critical
sections that modify shared data. If a thread is inside a write
critical section, all other accesses (read and write) must wait
for it to complete before they can proceed. Since read critical
sections can execute concurrently, an RW lock can offer better
performance than a mutual exclusion lock for applications
that frequently execute read-only critical sections.

Calciu et al. described a general method to extend mutual
exclusion locks to RW locks [4]. This method can be adapted
to QD locks as well by applying the construction to delegate.
The chosen write-preference policy extends the interface of
QD locks by rlock/runlock functions, which neither dele-
gate nor detach read-only critical sections. Instead, read-only
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1 class reader_indicator {
2 std::atomic<long> counters[MAX_THREADS]; /* padded */
3 bool query() {
4 for(counter : counters)
5 if(counter > 0) return true;
6 return false;
7 }
8 void arrive() { counters[ThreadID] += 1; /* atomic */ }
9 void depart() { counters[ThreadID] -= 1; /* atomic */ }

10 };

Fig. 11. The reader indicator.

critical sections are executed in the thread requesting them,
potentially in parallel. Write-preference (up to a limit) aims
to execute delegated operations (i.e., write critical sections)
first, so that there is more time for read-only critical sections
to arrive and execute in parallel once the mutual exclusion
lock is released. The preference is limited to avoid starvation.

There are two transitions that need to be explained in
some detail: (i) going from executing delegated operations
to parallel reading, and (ii) going from parallel reading to a
thread becoming a helper. We use the internal mutex lock’s
status to determine whether there is a helper thread currently
executing delegated operations. If there is, all reads will
defer to delegated operations unless their patience limit is
reached. When a thread reaches the patience limit, it will set a
barrier that prevents further delegate calls from proceeding,
which means that only delegated operations that have been
delegated before will be executed. Therefore, delegated
operations are preferred over read-only critical sections, but
there is no starvation of readers. For the opposite transition
of parallel read-only critical sections being executed and
a thread calling delegate, we use a reader indicator (as
mentioned in Section 3.3) to wait until all read-only critical
sections have been completed before executing the delegated
operation. The internal mutex lock will still be locked before
waiting, which guarantees that further rlock calls will wait
until this delegate call has completed. Furthermore we can
open the delegation queue before waiting, as this guarantee
also ensures correct order of operations, even if a thread
delegates an operation and then calls rlock.

We use a simple reader indicator algorithm; see Fig. 11.
Its rationale is to not have a single counter for the readers,
which would be a bottleneck, but to split that counter into
several cache lines. This reduces write contention on the
counter significantly, and is easy to implement. By having
at least as many counters as threads, the counters become
simple flags, and there is no contention at all. Checking
this reader indicator requires iterating over all counters to
check that they are all zero, which is relatively expensive.
That cost notwithstanding, we chose this algorithm because
it performed better in our experiments than the ingress-
egress counter used by Calciu et al. [4]. The third available
algorithm, SNZI [13], was not used due to its complexity. For
sufficiently large systems it may be a better choice.

The implementation of multi-reader QD locks (Fig. 12)
is derived from the writer-preference readers-writer lock al-
gorithm [4]. In fact, functions rlock and runlock are un-
changed; we include them just for completeness and refer
the reader to that paper [4] for their explanation. The queue
delegation algorithm itself requires only two changes to allow

1 class mrqd_lock {
2 std::atomic<long> writeBarrier;
3 reader_indicator indicator;
4 mcsfutex_lock lock;
5 delegation_queue queue;
6 void delegate(Function f, Parameters p) {
7 while(writeBarrier > 0) yield();
8 while(true) {
9 if(lock.try_lock()) {

10 queue.open();
11 while(indicator.query()) yield();
12 f(p);
13 queue.flush();
14 lock.unlock();
15 return;
16 } else if(queue.enqueue(f,p)) return;
17 yield();
18 }
19 }
20 void rlock() {
21 bool bRaised = false;
22 int readPatience = 0;
23 start:
24 indicator.arrive();
25 if(lock.is_locked()) {
26 indicator.depart();
27 while(lock.is_locked()) {
28 yield();
29 if(readPatience == READ_PATIENCE_LIMIT && !bRaised) {
30 writeBarrier.fetch_and_add(1);
31 bRaised = true;
32 }
33 readPatience += 1;
34 }
35 goto start;
36 }
37 if(bRaised) writeBarrier.fetch_and_sub(1);
38 }
39 void runlock() { indicator.depart(); }
40 };

Fig. 12. The code for multi-reader QD locks.

multiple parallel readers; refer to Fig. 12. The first is on line 7
where execution can be blocked on a write barrier to avoid
starvation of readers. The second change is on line 11 where
the code waits for all readers to leave their critical section.

One might be wondering why the delegation queue can
be opened on line 10 while readers still can be active. With
this code a read critical section can execute during the same
time that one or more delegate calls are issued. However,
this is not a problem because the delegated operations can
never be executed while there are active readers; the loop in
line 11 ensures this. Likewise, the lock used by the helper
will prevent any readers from becoming active before all
successfully delegated critical sections have been executed.

The main advantage of multi-reader QD locks compared
to traditional readers-writer locks is that a writer does not
need to wait for the readers. This makes it possible for writers
to continue doing useful work after delegating their critical
section whereas they would have to wait if a traditional
readers-writer lock was used. This can also have the effect
of making more read critical sections bulk up, which can
increase parallelism even further.

7 EVALUATION

Having compared queue delegation locking with other
synchronization mechanisms on the algorithmic level, we
now compare its performance experimentally. For this, we
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use two synthetic benchmark sets and a benchmark program
from the Kyoto Cabinet, which is a library of routines for
managing a database and an application of considerable size
and code complexity. The program we use is the kccachetest
benchmark, which exercises an in-memory database that
is designed to be used as a cache (cf. Section 7.3). We
will compare QD lock variants mostly against the latest
implementations of three state-of-the-art delegation algo-
rithms as provided by their authors: flat combining, CC-
Synch and H-Synch.3 We will also compare against our own
implementation of DetachExec, based on the pseudocode by
Oyama et al. [31]. The main difference between the original
code and DetachExec is that the latter preallocates 4,096
thread local queue nodes. The queue nodes have a free flag
that is changed before a queue node is delegated and after
it has been executed so that they can be reused. In order to
put performance numbers into perspective, we also include
measurements for Pthreads, CLH and Cohort locks. The
implementation of the CLH lock is taken from the Synch
repository; the Cohort lock one is written by us. In the data
structure benchmark we also use a recently proposed lock-
free implementation of the priority queue data structure [24].

Parameters. All delegation algorithms except that by
Oyama et al. have a help_limit constant that limits the
number of operations that can be performed by a helper
during a help session. We use the term help session to
refer to the period of time from when a thread starts
executing delegated operations to the time when it hands
over this responsibility. The original flat combining (FC)
implementation has two additional parameters: num_rep and
rep_threshold. The num_rep constant decides the maximum
number of traversals of the request list per help session.
After every request list traversal the lock is handed over
to another thread if less than rep_threshold operations
have been performed. We also added a condition to FC
that will hand over the lock to another thread if help_limit
or more operations have been helped during the help session.
The help_limit was set to 4,096 in all experiments that we
present graphs for in this article. For FC, num_rep was set
to 4,096 and rep_threshold was set to 1. We found these
parameters to work well with all algorithms; increasing the
value further gave only a very small increase in throughput.

Benchmark Environment. All benchmarks were run on
a Dell server with four Intel(R) Xeon(R) E5-4650 CPUs
(2.70GHz), eight cores each, with simultaneous multithread-
ing (SMT) and TurboBoost (up to 3.30GHz) enabled. I.e., the
system has a total of 64 SMT-threads running on 32 cores. The
machine ran Debian Linux 3.16.0-4-amd64 and had 128GB
of RAM. The two synthetic benchmarks are written in C,
Kyoto Cabinet in C++, and the lock implementations in C
and C++. All code was compiled using GCC version 4.9.2-10
with -O3. The duration of runs for all synthetic benchmarks
was two seconds and we took measurements five times. The
graphs show the average of these five runs, and bars for the
minimum and maximum values we observed.

Thread Pinning. We pin threads to SMT-threads for two
reasons. First, in order to avoid arbitrary thread migrations
as a source of unreliability in the measurements. Second,

3. Available at https://github.com/mit-carbon/Flat-Combining and
https://github.com/nkallima/sim-universal-construction.

pinning allows us to both show the performance on a single
processor chip and a NUMA system in the same graph. Our
pinning policy first fills all SMT-threads on one NUMA node,
then on two NUMA nodes, and so on. The pinning policy on
a NUMA node level aims to achieve the best performance
that our machine can give when running a low number of
threads: It first pins a thread to a core without any previously
pinned thread (i.e., it first uses all physical cores of the
NUMA node) and then fills the SMT-threads without any
previously pinned thread (i.e., it then uses the hyperthreads).
Measurements with up to eight threads will therefore run on
the eight physical cores on a single chip on our machine. Up
to 16 threads will run on a single chip with all SMT-threads
occupied, up to 32 threads will run on two chips, and so on.

7.1 Data Structure Benchmark

This benchmark, also used in other papers [14], [17], is used
to evaluate QD locking as a way of constructing concurrent
data structures. Both FC and the Synch algorithms have been
shown to perform very well for this kind of task [14], [17].
Delegation is especially beneficial for data structures such as
queues, stacks, and priority queues, whose operations can
not be parallelized easily. The data structure we have chosen
is a priority queue implemented using a pairing heap. This is
a high-performance implementation of a priority queue that,
when using flat combining, has been shown to outperform
the best previously proposed concurrent implementations
as well as the then fastest lock-free implementation [17]. We
verify this by comparing against a more recent lock-free pri-
ority queue implementation [24], using the implementation
provided by its authors. A priority queue is well-suited for
comparing synchronization algorithms for a concurrent data
structure because it has a natural mix of operations that do
not return a value (insert) and operations that return one
(extract_min). However, both are write operations.

The benchmark measures throughput: the number of
operations that N threads can perform during t seconds.
All N threads start at the same time and execute a loop
until t seconds have passed. The loop body consists of
some amount of thread-local work and a global operation
(either insert or extract_min) which is selected randomly
with equal probability. The seed for the random number
generator is thread-local to avoid false sharing between
threads. The thread-local work uses a thread-local array L
with 64 integer entries. Each local work unit consists of
randomly selecting two of the 64 entries of L, an additional
random integer I , adding I to the value stored in the first
entry, and subtracting I from the value of the second entry.

Figures 13 through 17 show the results of the benchmark
for different thread counts and different amount of work
between the operations. We use four scenarios in total: the
case with no local work, and the cases with 32, 64 and 128
units of local work between each two accesses to the lock.

In Fig. 13, QD locks are compared with DetachExec,
FC, and CC-Synch, as well as the standard CLH lock,
the Pthreads mutex lock and the lock-free priority queue
implementation. The graph at the top left corner shows
the case with no local work. All algorithms except the
lock-free one show a big performance drop when going
from the sequential case to two threads. For all delegation

https://github.com/mit-carbon/Flat-Combining
https://github.com/nkallima/sim-universal-construction
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Fig. 13. Throughput for a priority queue benchmark with 50% insert and 50% extract_min operations varying the amount of local work.

algorithms except DetachExec the performance is similar
to the sequential case again when running on eight cores.
To investigate the reason for the performance drop with
two threads, we ran experiments that collect statistics about
the number of operations performed per help session. We
found that with only two threads the contention is not high
enough to keep the same helper for long periods of time.
The data structure will therefore get transferred frequently
between the two cores while the transfer happens much less
frequently as the number of threads increases. DetachExec
performs relatively badly compared to the other delegation
algorithms in the case when there is no local work. This
can be explained by the CAS loop that DetachExec uses to
delegate work and by the overhead of reversing the LIFO
queue. Another performance drop is apparent when going
beyond 16 threads, which coincides with using more than
one NUMA node in this setting. CC-Synch performs better
than FC on a single NUMA node, which is reversed with
more threads, but neither is designed for NUMA systems.

The graph in the top right corner of Fig. 13 shows results
for 32 units of local work between the operations. In this
scenario, there is some amount of thread-local work between
critical sections which benefits from parallelization. Thus,
the single-threaded case is no longer the optimal choice.
The lock-free algorithm scales best until eight cores are
used, but does not benefit from additional SMT-threads as
much as delegation algorithms. Again, performance drops
significantly when using multiple NUMA nodes and again
the algorithms are affected roughly the same by this.

The two graphs at the bottom of Fig. 13 show a different
picture. Performance between different algorithms up to 16
threads becomes more similar, and in the bottom right graph

even CLH locks perform well up to 16 threads. In the bottom
left graph, algorithms other than QD locks still somewhat
drop in performance when using more than 16 threads while
QD locks maintain their performance. Even more striking,
no delegation algorithm drops in performance in the bottom
right graph, but only QD locking continues to scale with
more threads.

Figure 14 shows how hierarchical algorithms deal with
NUMA effects. Here we see that Cohort locks maintain their
performance when going beyond 16 threads, albeit at a lower
level than delegation algorithms. The hierarchical delegation
algorithms, HQD lock and H-Synch, outperform the other
algorithms when using more than one NUMA node in the
zero local work case. This is due to their ability to reduce the
amount of memory transfers between NUMA nodes.

The reason why the HQD lock performs better than
H-Synch and the QD lock performs better than FC and
CC-Synch is twofold: First, the QD and HQD locks can
delegate their insert operations without having to wait for
them to be applied to the underlying data structure. Second,
the QD and HQD locks can have fewer cache misses because
approximately 50% of the operations do not need a value
written back and the helper can read several operations from
the delegation queue with one cache miss. This is because the
operations are stored one after the other in an array buffer
so that several operations can fit in a single cache line. Both
flat combining and the Synch algorithms require at least one
cache miss for the helper thread to read an operation and
one cache miss for the thread issuing the operation to read
the response value or an acknowledgment. Due to the cost
of transferring the data structure between the cores on the
same NUMA node, the Cohort lock is not able to perform
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Fig. 14. Same benchmark as in Fig. 13, but showing hierarchical algorithms.

well compared to delegation algorithms on this workload.
This downside of Cohort locks could potentially be mitigated
by HMCS locks [5], which also aim to reduce data transfers
between cores.

In the top right scenario in Fig. 14, the QD lock performs
better than H-Synch even when using more than one NUMA
node. The reason for this is again twofold: First, the QD lock’s
ability to delegate insert operations without waiting is more
beneficial in this scenario. A thread that delegates an insert
operation is guaranteed to be able to execute at least 32
units of work until it executes another global operation again
(and possibly waits). In the zero local work scenario, there
is 50% chance that a thread needs to wait for the result of
an extract_min operation almost directly after completing
an insert operation. Second, the drop in performance of
H-Synch when using more than one NUMA node shows a
problem with the hierarchical delegation approaches when
contention is not high enough.

This problem is clearly illustrated in the graphs in Fig. 15.
The graphs to the left of this figure show performance with
varied amount of local work units. The graphs to the right
show the average number of helped operations per help
session instead of performance. Note that we have excluded
the DetachExec lines from the graphs to the right because
they show millions of helped operations per help session
due to the lack of support for limiting the number of helped
operations per help session in the algorithm. This means the
helper thread is starved with the method by Oyama et al. It
is clear that the drop in number of operations that are helped
per help session drops earlier for the hierarchical variants
than the non-hierarchical ones. The reason for this is easy to
understand if one considers that the contention on a NUMA

node level is lower than on the system level. The drop in
operations that are helped per help session correlates well
with the drop in performance for the hierarchical variants
which can be explained with the increased traffic between the
nodes. The two graphs at the bottom part of Fig. 14 can also
be explained with a similar reasoning: More work between
the operations is more beneficial for QD locks and HQD
locks compared to the other locking algorithms because of
the ability to delegate insert operations without needing
to wait for a response. Because QD locks allow for more
parallelism, they benefit from this effect more strongly than
HQD locks. Therefore, when there is not enough contention,
QD locks can outperform hierarchical algorithms.

A Deeper Look into QD Locking’s Performance

The graphs in Fig. 16 and 17 investigate the performance
effect of different implementation aspects of QD and HQD
locks. Lines for QD and HQD locks are included in these
graphs as reference points, while the other lines correspond
to implementations with a twist. QD (MCS) refers to a QD
lock that uses a standard MCS lock instead of an MCS-
futex lock internally, while HQD (futex) refers to an HQD
lock that uses an MCS-futex lock instead of an MCS lock.
The QD (MCS) lock performs very similar to the standard
QD lock, showing that in the scenarios measured there
is no worrisome overhead for using MCS-futex locks. For
the HQD (futex) lock this is different: Using an MCS-futex
lock causes HQD locks to drop in performance drastically
when more NUMA nodes are added. The cause here is that
only one NUMA node is active at a time in HQD locks,
which causes the MCS-futex locks on all other nodes to
enter the sleep state. However, this means the eventual lock
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Fig. 15. The graph on the left shows operations per microsecond under different contention levels (amount of local work between operations). The
graph on the right shows the average number of helped operations for all help sessions.
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Fig. 16. Different variants of QD locks in the scenarios of Fig. 13.
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Fig. 17. Different variants of HQD locks in the scenarios of Fig. 14.

handover takes significantly longer, resulting in overall worse
performance. For the lines identified as QD (CAS based) and
HQD (CAS based), the fetch_and_add call in the enqueue
function (line 10 of Fig. 6) is simulated with a CAS loop.
We did this to find out how QD locking would perform in
processors without a fetch_and_add (FAA) instruction. It is
clear that FAA is beneficial for QD locking’s implementation.
It is also clear that even without using the FAA instruction,
QD and HQD perform similar or better than the other
algorithms we compare against. The implementations labeled
QD (nodetach) and HQD (nodetach) have insert calls that
wait for an acknowledgment from the delegated operation,
even when the return value is not used. From these lines,
it is clear that a large part of QD locking’s performance
advantage in this benchmark comes from the ability to do
detached execution. However, QD locking still performs
slightly better than other algorithms even without detaching
critical sections. Finally, QD (TATAS) and HQD (TATAS)
refer to implementations that use a simple TATAS lock
internally and do not set a limit for retries to avoid starvation.
This leads to at most a minuscule advantage in performance,
which shows that the cost of avoiding starvation is not severe.

Further experiments with combinations of the above
variants as well as with padding delegation queue entries to

entire cachelines have not shown much deviation from the
results shown here and are thus omitted from the figures.

7.2 Readers-Writer Benchmark

To evaluate our multi-reader QD lock implementations
and compare them to other readers-writer locks we use a
benchmark especially designed for RW locks. The benchmark
is implemented from the description of RWBench that has
been presented by Calciu et al. [4]. RWBench is similar to our
data structure benchmark in that it measures throughput: the
number of critical sections that N threads, which alternate
between critical section work and thread-local work, can
execute during t seconds. A shared array A with 64 integer
entries is used for the protected shared memory. According to
a specified probability for reading, it is determined randomly
whether the critical section is a read or a write operation.

The read critical section work is placed inside a loop that
iterates for four times. Inside this loop, the values of two
random array slots from the shared array A are loaded.

The loop iteration count is also 4 for the write critical
section. In the loop body, two of the 64 entries of A are
updated in the following way: The two entries are randomly
selected and an additional random integer I is generated.
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Fig. 18. Results for a readers-writer benchmark varying amount of readers (vertical) and thread-local work (horizontal).

Then I is added to the value stored in the first entry and
subtracted from the value of the second entry. Thus, the sum
of all array elements should be zero after the benchmark
completes and can be used as a sanity check.

The thread-local work uses the same loop as the write
operation, but writes in a thread-local array instead. One
iteration in this loop is defined as one unit of thread-local
work. This thread-local work is also used in the data structure
benchmark (Section 7.1).

We compare our multi-reader QD lock (MR-QD) and
its hierarchical variant (MR-HQD) with the DR-MCS and
WPRW-Cohort algorithms of Calciu et al. [4]. All locks are
constructed using the same algorithm; see Section 6. DR-MCS
is a readers-writer variant of the MCS queue lock and WPRW-
Cohort is based on a Cohort lock. For comparison we also
show the performance of a mutual exclusion Cohort lock.
The benchmark was run with different combinations of
read probability and thread-local work. Figure 18 shows
the results for 50%, 80% and 95% reads combined with 0, 32
and 128 thread-local work loop iterations.

The left column shows the somewhat unrealistic scenario
of no thread-local work. Under such high contention, all
algorithms perform best when operating on a single chip, but
only the QD locking algorithms scale when there are many
write operations. In the right column, with a high amount
of thread-local work, it can be seen that with 50% and 80%
readers only MR-QD continues to scale when running on
multiple chips. Overall, it can be seen that MR-QD and MR-
HQD outperform the other algorithms on a single processor
chip when there is high contention or many write sections.
Furthermore, MR-QD outperforms all other algorithms when
running on multiple chips. MR-HQD, on the other hand, does
not work as well on multiple chips. We reason that this is

because the contention on the delegation queue drops too
low, and therefore the lock is released frequently.

With only 50% read operations and 64 threads the
mutual exclusion Cohort lock performs better than DR-MCS
and comparably to WPRW-Cohort. This shows that our
algorithms, which perform better when enough contention
is maintained, can be used efficiently in scenarios with
many writers. Established readers-writer locks have been
limited to applications with very high amounts of readers
to amortize the additional cost over mutual exclusion locks.
Fewer readers are required for multi-reader QD locks to
amortize their cost and be useful in applications traditionally
not considered for readers-writer locking. But even with high
amounts of readers, MR-QD consistently outperforms the
other algorithms. In our experiments this is true even for 99%
readers, albeit the difference becomes less pronounced. With
only readers all four algorithms use only the read indicator,
and therefore behave identically.

7.3 Kyoto Cabinet Benchmark
We also tested our multi-reader QD locks on the kccachetest
program from the Kyoto Cabinet (version 1.2.76, compiled
with -O2) to evaluate the feasibility of using it in existing
software and how well it performs compared to other
algorithms. The kccachetest uses CacheDB, an in-memory
database designed for use as a cache. In particular, we
run 100,000 iterations of the wicked workload, which uses
a user-defined amount of workers to perform operations
on a CacheDB. As the workload is changed depending on
the number of threads, it is not easily possible to compare
performance with different numbers of workers. However, a
comparison of different algorithms running with the same
number of workers is possible.
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TABLE 1
Times (secs) to run kccachetest wicked -th $threads 100000.

threads 1 2 4 8 12 16 24 32 48 64
Pthreads RW .06 .13 .31 .65 1.12 1.45 4.66 6.78 13.99 21.64
DR-MCS .06 .10 .18 .38 .69 1.05 3.14 5.17 11.33 17.43
WPRW-Cohort .06 .11 .23 .53 .96 1.47 3.15 5.22 10.14 15.57
MR-QD .06 .10 .18 .39 .73 1.08 3.18 4.67 9.46 13.86
MR-HQD .06 .10 .19 .40 .71 1.06 3.21 4.65 9.43 14.50
MR-QD (p) .06 .09 .18 .38 .68 1.03 2.92 4.07 7.74 12.31
MR-HQD (p) .06 .09 .18 .39 .69 1.00 2.87 3.95 8.89 12.83

CacheDB uses Pthreads RW locks to protect its data, which
can be replaced by other readers-writer locks. But since multi-
reader QD locks do not strictly conform to the interface of
readers-writer locks, some porting was required. We changed
the code manually, but note that there exist techniques to
perform these kinds of transformations automatically [25].
The porting was done with some glue code to make the
multi-reader QD lock usable from the existing C++ code.
This additional layer needs to store the parameters used by
the critical sections in an accessible format. We store them in
an std::tuple, which is then the pointer-sized parameter to
the delegated operation. For return values we use a structure
that also has a flag which signals when the value has been
written to it. With these tools ready, the porting itself was
straightforward. For using a thread-local variable signaling
errors, a pointer to it had to be included in the parameter
tuple, so that the error code arrives at the correct thread.

The results in Table 1 show runtime in seconds for varying
numbers of worker threads. The row labeled Pthreads RW
shows the performance of the original code of Kyoto Cabinet.
The kccachetest is a kind of worst case scenario for our
algorithms. It is designed to act as a benchmark but also to
test the database. Therefore it always checks return values
immediately to verify correctness. Besides that, outside the
critical sections it only generates random numbers to decide
which database operation to perform next. To make better
use of delegation, we also patched the benchmark itself. For
the two rows marked with (p) some error-checking has been
postponed until at least 64 return values can be checked in
bulk. This patch did not affect performance of the non-QD
locking algorithms. Even without this patch, the results show
that MR-QD and MR-HQD perform slightly better than other
readers-writer locks. In contrast to Section 7.2, here MR-QD
performs only slightly better than MR-HQD. This benchmark
benefits less from detached execution as return values still
need to be read for error checking and memory needs to be
transferred to read the return value.

All in all, this shows that QD locks can be used in real
applications for immediate benefit. Even better results are
achieved when utilizing the time between a delegation and
the use of return values.

All benchmark programs are available at http://www.it.
uu.se/research/group/languages/software/qd_lock_lib.

7.4 Experience from Two Use Cases
We have also employed QD locking in two bigger systems.
The first of them is in the implementation of the Erlang Term
Storage (ETS). ETS is Erlang’s in-memory key-value store and
is the only shared memory between Erlang processes. Being
shared memory, ETS has become a scalability concern on
multicore machines [20]. As ETS tables are protected by locks,

QD locks were used to improve performance. Using our C
QD locking library to gradually transform the code [21], we
first used MR-QD locks without detaching execution (MRQD-
wait). Then, we passed all required parameters in an allocated
struct to the algorithm so detaching execution was possible
(MRQD-malloc). Finally, we wrote a version that passes the
parameters directly into the MR-QD lock instead of allocating
an object on the heap (MRQD-copy). It was shown [21]
that all three versions significantly outperform the existing
ETS implementation in contended scenarios. While MRQD-
copy performed best under most circumstances, the cost of
copying parameters made MRQD-malloc more efficient for
large parameter sizes (above 150 bytes per critical section).

The second use case for QD locking is in the Argo
Distributed Shared Memory System [19]. ArgoDSM provides
a shared memory layer for running applications on multiple
cluster computer nodes. There, traditional locking does not
perform due to the enormous communication cost even for
spin-waiting on values. Thus HQD locks were chosen as a
provider for mutual exclusion, as they allow the single-node
performance to be available in such systems.

For more information on these use cases, we refer the
readers to these two publications [19], [21].

8 CONCLUDING REMARKS

We have presented the details of a novel synchronization
mechanism called queue delegation locking and variations
to support multiple readers as well as NUMA systems. Our
experiments show that QD locking can outperform current
state-of-the-art delegation algorithms such as flat combining,
CC-Synch and H-Synch. A key advantage of QD locking is its
ability to delegate operations without waiting for a response,
its simplicity and its small communication cost. Our results
also suggest that multi-reader QD locks can be a better
performing alternative to readers-writer locks for some use
cases, especially with workloads that frequently require a full
exclusive lock but still can exploit some read-only parallelism.
It remains as future work to look into is how QD locking
can be used for data structures with fine-grained locking
such as hash tables. Finally, an important practical issue to
investigate is how tools can help programmers in migrating
from traditional synchronization mechanisms and get the
highest benefit possible from queue delegation locking.
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[32] D. Petrović, T. Ropars, and A. Schiper. Leveraging hardware
message passing for efficient thread synchronization. ACM
Transactions on Parallel Computing, 2(4):24:1–24:26, Jan. 2016.
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