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Fig. 15. The graph on the left shows operations per microsecond under different contention levels (amount of local work between operations). The
graph on the right shows the average number of helped operations for all help sessions.
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Fig. 16. Different variants of QD locks in the scenarios of Fig. 13.
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Fig. 17. Different variants of HQD locks in the scenarios of Fig. 14.

handover takes significantly longer, resulting in overall worse
performance. For the lines identified as QD (CAS based) and
HQD (CAS based), the fetch_and_add call in the enqueue
function (line 10 of Fig. 6) is simulated with a CAS loop.
We did this to find out how QD locking would perform in
processors without a fetch_and_add (FAA) instruction. It is
clear that FAA is beneficial for QD locking’s implementation.
It is also clear that even without using the FAA instruction,
QD and HQD perform similar or better than the other
algorithms we compare against. The implementations labeled
QD (nodetach) and HQD (nodetach) have insert calls that
wait for an acknowledgment from the delegated operation,
even when the return value is not used. From these lines,
it is clear that a large part of QD locking’s performance
advantage in this benchmark comes from the ability to do
detached execution. However, QD locking still performs
slightly better than other algorithms even without detaching
critical sections. Finally, QD (TATAS) and HQD (TATAS)
refer to implementations that use a simple TATAS lock
internally and do not set a limit for retries to avoid starvation.
This leads to at most a minuscule advantage in performance,
which shows that the cost of avoiding starvation is not severe.

Further experiments with combinations of the above
variants as well as with padding delegation queue entries to

8
Number of Threads

16 E 64 1 2 4 8 16 E 64
Number of Threads

entire cachelines have not shown much deviation from the
results shown here and are thus omitted from the figures.

7.2 Readers-Writer Benchmark

To evaluate our multi-reader QD lock implementations
and compare them to other readers-writer locks we use a
benchmark especially designed for RW locks. The benchmark
is implemented from the description of RWBench that has
been presented by Calciu et al. [4]. RWBench is similar to our
data structure benchmark in that it measures throughput: the
number of critical sections that N threads, which alternate
between critical section work and thread-local work, can
execute during ¢ seconds. A shared array A with 64 integer
entries is used for the protected shared memory. According to
a specified probability for reading, it is determined randomly
whether the critical section is a read or a write operation.
The read critical section work is placed inside a loop that
iterates for four times. Inside this loop, the values of two
random array slots from the shared array A are loaded.
The loop iteration count is also 4 for the write critical
section. In the loop body, two of the 64 entries of A are
updated in the following way: The two entries are randomly
selected and an additional random integer I is generated.
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Fig. 18. Results for a readers-writer benchmark varying amount of readers (vertical) and thread-local work (horizontal).

Then I is added to the value stored in the first entry and
subtracted from the value of the second entry. Thus, the sum
of all array elements should be zero after the benchmark
completes and can be used as a sanity check.

The thread-local work uses the same loop as the write
operation, but writes in a thread-local array instead. One
iteration in this loop is defined as one unit of thread-local
work. This thread-local work is also used in the data structure
benchmark (Section 7.1).

We compare our multi-reader QD lock (MR-QD) and
its hierarchical variant (MR-HQD) with the DR-MCS and
WPRW-Cohort algorithms of Calciu et al. [4]. All locks are
constructed using the same algorithm; see Section 6. DR-MCS
is a readers-writer variant of the MCS queue lock and WPRW-
Cohort is based on a Cohort lock. For comparison we also
show the performance of a mutual exclusion Cohort lock.
The benchmark was run with different combinations of
read probability and thread-local work. Figure 18 shows
the results for 50%, 80% and 95% reads combined with 0, 32
and 128 thread-local work loop iterations.

The left column shows the somewhat unrealistic scenario
of no thread-local work. Under such high contention, all
algorithms perform best when operating on a single chip, but
only the QD locking algorithms scale when there are many
write operations. In the right column, with a high amount
of thread-local work, it can be seen that with 50% and 80%
readers only MR-QD continues to scale when running on
multiple chips. Overall, it can be seen that MR-QD and MR-
HQD outperform the other algorithms on a single processor
chip when there is high contention or many write sections.
Furthermore, MR-QD outperforms all other algorithms when
running on multiple chips. MR-HQD, on the other hand, does
not work as well on multiple chips. We reason that this is

because the contention on the delegation queue drops too
low, and therefore the lock is released frequently.

With only 50% read operations and 64 threads the
mutual exclusion Cohort lock performs better than DR-MCS
and comparably to WPRW-Cohort. This shows that our
algorithms, which perform better when enough contention
is maintained, can be used efficiently in scenarios with
many writers. Established readers-writer locks have been
limited to applications with very high amounts of readers
to amortize the additional cost over mutual exclusion locks.
Fewer readers are required for multi-reader QD locks to
amortize their cost and be useful in applications traditionally
not considered for readers-writer locking. But even with high
amounts of readers, MR-QD consistently outperforms the
other algorithms. In our experiments this is true even for 99%
readers, albeit the difference becomes less pronounced. With
only readers all four algorithms use only the read indicator,
and therefore behave identically.

7.3 Kyoto Cabinet Benchmark

We also tested our multi-reader QD locks on the kccachetest
program from the Kyoto Cabinet (version 1.2.76, compiled
with -02) to evaluate the feasibility of using it in existing
software and how well it performs compared to other
algorithms. The kccachetest uses CacheDB, an in-memory
database designed for use as a cache. In particular, we
run 100,000 iterations of the wicked workload, which uses
a user-defined amount of workers to perform operations
on a CacheDB. As the workload is changed depending on
the number of threads, it is not easily possible to compare
performance with different numbers of workers. However, a
comparison of different algorithms running with the same
number of workers is possible.
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TABLE 1
Times (secs) to run kccachetest wicked -th $threads 100000.
threads 1124|812 |16 |24 | 32| 48 64
Pthreads RW [.06|.13|.31|.65|1.12|1.45|4.66|6.78 | 13.99 | 21.64
DR-MCS .06(.10].18|.38| .69|1.05|3.14(5.17|11.33|17.43
WPRW-Cohort | .06 |.11|.23|.53| .96|1.47|3.15|5.22|10.14|15.57
MR-QD .06(.10].18|.39| .73|1.08|3.18|4.67 | 9.46|13.86
MR-HQD .06(.10].19|.40| .71|1.06|3.21|4.65| 9.43|14.50
MR-QD (p) .06(.09].18|.38| .68[1.03|2.92(4.07| 7.74|12.31
MR-HQD (p) |.06].09|.18|.39| .69|1.00(2.87|3.95| 8.89|12.83

CacheDB uses Pthreads RW locks to protect its data, which
can be replaced by other readers-writer locks. But since multi-
reader QD locks do not strictly conform to the interface of
readers-writer locks, some porting was required. We changed
the code manually, but note that there exist techniques to
perform these kinds of transformations automatically [25].
The porting was done with some glue code to make the
multi-reader QD lock usable from the existing C++ code.
This additional layer needs to store the parameters used by
the critical sections in an accessible format. We store them in
an std: :tuple, which is then the pointer-sized parameter to
the delegated operation. For return values we use a structure
that also has a flag which signals when the value has been
written to it. With these tools ready, the porting itself was
straightforward. For using a thread-local variable signaling
errors, a pointer to it had to be included in the parameter
tuple, so that the error code arrives at the correct thread.

The results in Table 1 show runtime in seconds for varying
numbers of worker threads. The row labeled Pthreads RW
shows the performance of the original code of Kyoto Cabinet.
The kccachetest is a kind of worst case scenario for our
algorithms. It is designed to act as a benchmark but also to
test the database. Therefore it always checks return values
immediately to verify correctness. Besides that, outside the
critical sections it only generates random numbers to decide
which database operation to perform next. To make better
use of delegation, we also patched the benchmark itself. For
the two rows marked with (p) some error-checking has been
postponed until at least 64 return values can be checked in
bulk. This patch did not affect performance of the non-QD
locking algorithms. Even without this patch, the results show
that MR-QD and MR-HQD perform slightly better than other
readers-writer locks. In contrast to Section 7.2, here MR-QD
performs only slightly better than MR-HQD. This benchmark
benefits less from detached execution as return values still
need to be read for error checking and memory needs to be
transferred to read the return value.

All in all, this shows that QD locks can be used in real
applications for immediate benefit. Even better results are
achieved when utilizing the time between a delegation and
the use of return values.

All benchmark programs are available at http:/ /www.it.
uu.se/research/group/languages/software/qd_lock_lib.

7.4 Experience from Two Use Cases

We have also employed QD locking in two bigger systems.
The first of them is in the implementation of the Erlang Term
Storage (ETS). ETS is Erlang’s in-memory key-value store and
is the only shared memory between Erlang processes. Being
shared memory, ETS has become a scalability concern on
multicore machines [20]. As ETS tables are protected by locks,
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QD locks were used to improve performance. Using our C
QD locking library to gradually transform the code [21], we
first used MR-QD locks without detaching execution (MRQD-
wait). Then, we passed all required parameters in an allocated
struct to the algorithm so detaching execution was possible
(MRQD-malloc). Finally, we wrote a version that passes the
parameters directly into the MR-QD lock instead of allocating
an object on the heap (MRQD-copy). It was shown [21]
that all three versions significantly outperform the existing
ETS implementation in contended scenarios. While MRQD-
copy performed best under most circumstances, the cost of
copying parameters made MRQD-malloc more efficient for
large parameter sizes (above 150 bytes per critical section).

The second use case for QD locking is in the Argo
Distributed Shared Memory System [19]. ArgoDSM provides
a shared memory layer for running applications on multiple
cluster computer nodes. There, traditional locking does not
perform due to the enormous communication cost even for
spin-waiting on values. Thus HQD locks were chosen as a
provider for mutual exclusion, as they allow the single-node
performance to be available in such systems.

For more information on these use cases, we refer the
readers to these two publications [19], [21].

8 CONCLUDING REMARKS

We have presented the details of a novel synchronization
mechanism called queue delegation locking and variations
to support multiple readers as well as NUMA systems. Our
experiments show that QD locking can outperform current
state-of-the-art delegation algorithms such as flat combining,
CC-Synch and H-Synch. A key advantage of QD locking is its
ability to delegate operations without waiting for a response,
its simplicity and its small communication cost. Our results
also suggest that multi-reader QD locks can be a better
performing alternative to readers-writer locks for some use
cases, especially with workloads that frequently require a full
exclusive lock but still can exploit some read-only parallelism.
It remains as future work to look into is how QD locking
can be used for data structures with fine-grained locking
such as hash tables. Finally, an important practical issue to
investigate is how tools can help programmers in migrating
from traditional synchronization mechanisms and get the
highest benefit possible from queue delegation locking.
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