
Brief Announcement: Queue Delegation Locking

David Klaftenegger
Dept. of Information Technology

Uppsala University, Sweden
david.klaftenegger@it.uu.se

Konstantinos Sagonas
Dept. of Information Technology

Uppsala University, Sweden
kostis@it.uu.se

Kjell Winblad
Dept. of Information Technology

Uppsala University, Sweden
kjell.winblad@it.uu.se

ABSTRACT
The scalability of parallel programs is often bounded by the
performance of synchronization mechanisms used to protect
critical sections. The performance of these mechanisms is in
turn determined by their ability to use modern hardware effi-
ciently and do useful work while or instead of waiting. This
brief announcement sketches the idea and implementation of
queue delegation locking, a synchronization mechanism that
provides high throughput by allowing threads to efficiently
delegate their critical sections to the thread currently holding
the lock and by allowing threads that do not need a result
from their critical section to continue executing immediately
after delegating their work. Experiments show that queue
delegation locking outperforms leading synchronization mech-
anisms due to the combination of its fast operation transfer
with its ability to allow threads to continue doing useful work
instead of waiting. Thanks to its simple building blocks, even
its uncontended overhead is low, making queue delegation
locking useful in a wide variety of applications.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming

Keywords
locking; multi-core; NUMA; synchronization

1. INTRODUCTION
Lock-based synchronization is a simple way to ensure

that shared data structures are always in a consistent state.
Threads synchronize on a lock, and only the lock holder can
execute a critical section on the protected data. To be effi-
cient, locking algorithms aim to minimize the time required
to acquire and release locks when not contended and the
lock handover time when locks are contended. In this work
we focus on a locking approach that sends operations to
the thread holding the lock instead of transferring the lock

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SPAA’14, June 23–25, 2014, Prague, Czech Republic.
ACM 978-1-4503-2821-0/14/06.
http://dx.doi.org/10.1145/2612669.2612714.

between threads. This locking approach is called delegation,
and the thread executing other threads’ critical sections is
called the helper. The main reason why delegation algorithms
perform well is improved locality as the helper thread only
seldomly needs to wait for memory transfers between caches
in different cores or even NUMA nodes. In addition, detached
execution allows threads to continue execution before the
delegated critical section has been executed. However, in its
original form [6] the detached execution algorithm has some
overhead and severe starvation issues for the helper thread.
Newer approaches [1, 2, 4] require threads to wait until their
delegated sections are performed. By making the delegation
itself faster they aim to further reduce the communication
overhead. In comparison to these approaches, our locking
mechanism, called Queue Delegation (QD) locking , allows
efficient delegation while also permitting detached execution
without starving the helper thread.

Main Ideas. The main idea of QD locking is simple. When
a lock is contended, the threads do not wait for the lock to be
released. Instead, they try to delegate their operation to the
thread currently holding the lock. If successful, this thread
becomes responsible for eventually executing the operation.
The other threads can immediately continue their execution,
possibly delegating more operations.

Delegated operations are placed in a delegation queue. As
the queue preserves FIFO order, the correct order of oper-
ations is ensured. The linearization point is the successful
enqueueing into the delegation queue. However, the enqueue-
ing can fail when the lock holder is not accepting any more
operations. This allows limiting the amount of work that the
helper performs, and ensures that no operations are accepted
when the lock is about to be released. If delegation fails the
thread has to retry, until it succeeds to either take the lock
itself or delegate its operation to a new lock holder.

The QD locking algorithm thus puts the burden of exe-
cuting operations on the thread that succeeds in taking the
lock. After performing its own operation, this thread must
perform, in order, all operations it finds in the delegation
queue. When it eventually finds no more operations in the
delegation queue, it must make sure no further enqueue call
succeeds before the lock is released.

All requirements for queue delegation locking are met by
assembling two simple components: a mutual exclusion lock
to determine which thread is executing operations, and a
queue to delegate operations to the lock holder. We will
describe these components in the next section. In the full
paper [3] we also describe how to extend the basic algorithm



1 void delegate(QDLock* l, Operation op) {
2 while (true) {
3 if (try_lock(&l->lock)) {
4 open(&l->queue);
5 execute(op);
6 flush(&l->queue);
7 unlock(&l->lock);
8 return;
9 } else if (enqueue(&l->queue, op)) return;

10 yield();
11 }
12 }

Figure 1: The delegate function

to allow parallel access to multiple readers efficiently, and
hierarchical variants for NUMA systems.

2. IMPLEMENTATION
As mentioned, queue delegation locks are built from two

components: a mutual exclusion lock and a delegation queue.
The mutual exclusion lock is used to determine whether

the lock is free or taken. Its minimal interface consists of
only two functions. The first is try_lock, which takes the
lock if it is free and returns whether the lock has been taken.
The second is unlock, which releases the lock.

The second component, the delegation queue, is required
to store delegated operations. Semantically, it is a tantrum
queue [5]. Calls to its enqueue operation are not guaranteed
to succeed, but can return a closed value instead. This
allows the QD lock to stop accepting more operations. The
required interface for the delegation queue consists of only
three functions: open, enqueue and flush. The first two are
straightforward: open resets the queue from closed state to
empty, and enqueue adds an element to the queue. The flush
function is used instead of a dequeue operation: it dequeues
all elements (performing their operation) and changes the
queue’s state to closed.

2.1 Queue Delegation Lock Implementation
We use the building blocks outlined above to assemble a

QD lock as follows: The mutual exclusion lock determines in
which way operations are accepted by the QD lock. When the
mutual exclusion lock is free, it is taken, the delegation queue
is opened, the operation is executed, the queue is flushed and
finally the mutual exclusion lock is unlocked. However, when
the mutual exclusion lock is already taken, the delegation
queue is used to accept additional operations. The resulting
QD lock therefore accepts operations even when the mutual
exclusion lock is locked; threads only need to retry if the
mutual exclusion lock is locked and the queue is closed.

The QD lock interface only consists of a delegate function
which takes an operation as an argument; see Figure 1. It is
guaranteed that the operation will be executed before any
operations from subsequent calls to delegate are executed.
The operation is semantically a self-contained function object,
which means that it needs to store all required parameters
from the local scope when delegated, similar to a closure.
For returning values from operations, the QD lock uses the
semantics of futures; i.e., the value is not returned immedi-
ately, but the operation can promise to provide the value at a
specific location upon its execution. When the calling thread
needs to read the return value, it has to wait until this value

1 void open(DelegationQueue* q) {
2 q->counter = 0;
3 q->closed = false;
4 }
5

6 bool enqueue(DelegationQueue* q, Operation op) {
7 if (q->closed) return CLOSED;
8 int index = fetch_and_add(&q->counter, 1);
9 if (index < ARRAY_SIZE) {

10 q->array[index] = op; /* atomic */
11 return SUCCESS;
12 } else return CLOSED;
13 }
14

15 void flush(DelegationQueue* q) {
16 int todo = 0;
17 bool open = true;
18 while (open) {
19 int done = todo;
20 todo = q->counter;
21 if (todo == done) { /* close queue */
22 todo = swap(&q->counter, ARRAY_SIZE);
23 open = false;
24 q->closed = true;
25 }
26 if (todo >= ARRAY_SIZE) { /* queue closed */
27 todo = ARRAY_SIZE;
28 open = false;
29 q->closed = true;
30 }
31 for (int index = done; index < todo; index++) {
32 while (q->array[index].fun_ptr == NULL); /* spin */
33 execute(q->array[index]);
34 q->array[index].fun_ptr = NULL; /* reset */
35 }
36 }
37 }

Figure 2: The delegation queue implementation

is available. This can either be exposed to the application
programmer or hidden by using a wrapper that immediately
waits for the return value and returns the result.

2.2 Delegation Queue Implementation
The delegation queue can be efficiently implemented with

a fixed-size buffer array and an index counter. The enqueue
function tries to allocate a slot in the buffer array by incre-
menting the index counter with an atomic fetch_and_add
operation. The queue is closed if the value of the index
counter is greater than the index of the last slot in the array
buffer. The flush function executes enqueued operations
until the queue is closed and all operations have been pro-
cessed. Pseudocode for the delegation queue is shown in
Figure 2. Note that the closed flag in the pseudocode is just
a performance optimization and is not needed for correctness.

2.3 Extensions
The basic QD locking algorithm can be extended in various

ways, which we present in the full paper [3]. In particular, we
describe a hierarchical variant (HQD), which targets NUMA
systems as well as multi-reader QD (MR-QD) locks, which
allow parallel access for readers as in traditional reader-
writer locks. We also discuss how to adapt the algorithm
to guarantee starvation freedom for all threads, and how to
extend the interface to ease the porting process.



3. PERFORMANCE
Here we give a summary of a performance evaluation com-

paring QD locking with related synchronization algorithms.
Refer to the full paper [3] for graphs and for more details.

3.1 Benchmark Descriptions
We measured the performance of different locking algo-

rithms with a varying amount of threads and contention
on a machine with four Intel(R) Xeon(R) E5-4650 CPUs
(2.70GHz), eight cores each (i.e., a total of 64 hardware
threads running on 32 cores), using three benchmarks. The
first measures the throughput of random operations on
a shared priority queue (insert and extract_min) imple-
mented by protecting a sequential priority queue with the
synchronization algorithms of Oyama et al. [6], with flat com-
bining [2], with CC-Synch and H-Synch [1], and with QD
lock and HQD lock. The second benchmark compares MR-
QD locks with state of the art readers-writer locks. Finally,
we applied MR-QD locks on the code of the Kyoto Cabinet
in-memory database (version 1.2.76) to evaluate their perfor-
mance on a code base that uses traditional locks.

3.2 Summary of the Results
The QD and HQD variants perform better than or simi-

lar to the best of the other synchronization mechanisms in
all scenarios we tested. As clarified by experiments with
variants of QD and HQD in the full paper [3], there are
several reasons for this. First, QD locking allows a thread
that performs a write only operation (insert) to continue
execution directly after delegating the operation. Except
for the QD variants, the Oyama et al. algorithm is the only
locking scheme where threads can continue without waiting
for delegated operations. However, that algorithm performs
poorly compared to the QD variants because of the overheads
it contains and its inability to take advantage of modern hard-
ware. We also noticed that the helper thread is often starved
in the scheme of Oyama et al. The positive effect of being
able to continue without waiting for the issued operation
becomes more apparent when the threads have more local
work to do between the priority queue operations. Since
continuing execution means the next priority operation is
issued faster, there can be more helped operations per lock
acquisition even under low contention. The high number
of helped operations per lock acquisition is also the reason
why QD locking performs better than HQD and H-Synch
(the NUMA-aware variant of CC-Synch) with low contention
levels even when the threads are running on different NUMA
nodes. The node level contention is not large enough to
fill the delegation queue while contention on a system level
is high enough to fill it. Secondly, the helper thread can
read and execute delegated operations extremely efficiently
in the QD variants. Since a continuous array is used to store
operations in the delegation queue, several operations can be
read with only one cache miss which is not the case in the
other delegation algorithms. Finally, we note that the atomic
fetch_and_add instruction used to enqueue operations in the
delegation queue is, unsurprisingly, better than simulating
the fetch_and_add with a CAS loop, even though the CAS
loop variant still performs well.

The results of the second benchmark show that traditional
readers-writer locks can be outperformed by a QD lock with
the MR extension on some workloads. Being able to delegate
write operations without waiting for their actual execution

plays very well with parallel read-only operations. Threads
can continue and issue read operations directly after issuing a
write operation so that read-only operations can bulk up and
execute in parallel. Similar results are observed in the Kyoto
Cabinet benchmark, which also shows that performance is
dependent on both fast delegation and not having to wait
for the execution of critical sections.

4. CONCLUDING REMARKS
We have sketched the idea and implementation of a novel

synchronization mechanism called queue delegation locking,
showing the essential building blocks only. A key advantage
of QD locking is its ability to delegate operations without
waiting for response, its simplicity and its small communica-
tion cost. Experiments show that QD locking can outperform
current state-of-the-art synchronization algorithms such as
that of Oyama et al., flat combining, CC-Synch and H-Synch.
Our results also suggest that multi-reader QD locks can be a
more performant alternative to readers-writer locks for some
use cases. For a more in-depth explanation of QD locking
and its variants and for an extensive comparison with related
work refer to the full paper [3].

Acknowledgments
This work has been supported in part by the European Union
grant IST-2011-287510 “RELEASE: A High-Level Paradigm
for Reliable Large-scale Server Software” and the Uppsala
Programming for Multicore Architectures Research Center.

5. REFERENCES
[1] P. Fatourou and N. D. Kallimanis. Revisiting the

combining synchronization technique. In Proceedings of
the 17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 257–266, New
York, NY, USA, 2012. ACM.

[2] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat
combining and the synchronization-parallelism tradeoff.
In Proceedings of the 22nd ACM Symposium on
Parallelism in Algorithms and Architectures, pages
355–364, New York, NY, USA, 2010. ACM.

[3] D. Klaftenegger, K. Sagonas, and K. Winblad. Queue
delegation locking, 2014. Preprint available from
http://www.it.uu.se/research/group/languages/
software/qd_lock_lib.

[4] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and
G. Muller. Remote core locking: Migrating
critical-section execution to improve the performance of
multithreaded applications. In Proceedings of the 2012
USENIX Annual Technical Conference, pages 65–76,
Berkeley, CA, USA, 2012. USENIX Association.

[5] A. Morrison and Y. Afek. Fast concurrent queues for x86
processors. In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, pages 103–112, New York, NY, USA, 2013.
ACM.

[6] Y. Oyama, K. Taura, and A. Yonezawa. Executing
parallel programs with synchronization bottlenecks
efficiently. In Proceedings of the International Workshop
on Parallel and Distributed Computing for Symbolic and
Irregular Applications, pages 182–204. World Scientific,
1999.

http://www.it.uu.se/research/group/languages/software/qd_lock_lib
http://www.it.uu.se/research/group/languages/software/qd_lock_lib

	Introduction
	Implementation
	Queue Delegation Lock Implementation
	Delegation Queue Implementation
	Extensions

	Performance
	Benchmark Descriptions
	Summary of the Results

	Concluding Remarks
	References

