Computing Strong and Weak Bisimulations for Psi-Calculi

Magnus Johansson, Björn Victor*, Joachim Parrow

Dept. of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden

Abstract

We present a symbolic transition system and strong and weak bisimulation equivalences for psi-calculi, and show that they are fully abstract with respect to bisimulation congruences in the non-symbolic semantics. An algorithm which computes the most general constraint under which two agents are bisimilar is developed and proved correct.

A psi-calculus is an extension of the pi-calculus with nominal data types for data structures and for logical assertions representing facts about data. These can be transmitted between processes and their names can be statically scoped using the standard pi-calculus mechanism to allow for scope migrations. Psi-calculi can be more general than other proposed extensions of the pi-calculus such as the applied pi-calculus, the spi-calculus, the fusion calculus, or the concurrent constraint pi-calculus.

Symbolic semantics are necessary for an efficient implementation of the calculus in automated tools exploring state spaces, and the full abstraction property means the symbolic semantics makes exactly the same distinctions as the original.

Keywords: Symbolic semantics, Bisimulation, Psi-calculi, Decision procedure

*Corresponding author. Tel +46-70-4250239, fax +46-18-511925.

Email addresses: magnus.johansson@it.uu.se (Magnus Johansson), bjorn.victor@it.uu.se (Björn Victor), joachim.parrow@it.uu.se (Joachim Parrow)
1. Introduction

A multitude of extensions of the pi-calculus have been defined, allowing higher-level data structures and operations on them to be used as primitives when modelling applications. Ranging from integers, lists, or booleans to encryption/decryption or hash functions, the extensions increase the applicability of the basic calculus. In order to implement automated tools for analysis and verification using state space exploration (e.g. bisimilarity or model checking), each extended calculus needs a symbolic semantics, where the state space of agents is reduced to a manageable size – the non-symbolic semantics typically generates infinite state spaces even for very simple agents.

The extensions thus require added efforts both in developing the theory of the calculus for each variant, and in constructing specialised symbolic semantics for them. As the complexity of the extensions increases, producing correct results in these areas can be very hard. For example the labelled semantics of the applied pi-calculus [1] and of the concurrent constraint pi-calculus [2] have both turned out to be non-compositional; another example is the rather complex bisimulations which have been developed for the spi-calculus [3] (see [4] for an overview of non-symbolic bisimulations, or [5, 6, 7] for symbolic ones).

The psi-calculi [8, 9] improve the situation: a single framework allows a range of specialised calculi to be formulated with a lean and compositional labelled semantics: with the parameters appropriately instantiated, the resulting calculus can be used to model applications such as cryptographic protocols and concurrent constraints, but also more advanced scenarios with polyadic synchronization or higher-order data and logics. The expressiveness and modelling convenience of psi-calculi exceeds that of earlier pi-calculus extensions, while the purity of the semantics is on par with the original pi-calculus. Its meta-theory has been proved using the theorem prover Isabelle [10, 11].

In this paper we develop a symbolic semantics for psi-calculi, admitting large parts of this range of calculi to be verified more efficiently. We define symbolic versions of labelled bisimulation equivalence and its weak counterpart, and show that they are fully abstract with respect to the corresponding bisimulation congruences in the original semantics. This means that our new symbolic semantics does not change which processes are considered equivalent. This paper is an extended version of [12] that adds clarifications and proofs, a symbolic treatment of weak bisimulation, and an algorithm for
checking if two agents are weakly bisimilar.

A symbolic semantics abstracts the values received in an input action. Instead of a possibly infinite branching of concrete values, a single name is used to represent them all. When the received values are used in conditional constructions (e.g. if-then-else) or as communication channels, we do not know their precise value, but need to record the constraints which must be satisfied for a resulting transition to be valid.

A (non-symbolic) psi-calculus transition has the form $\Psi \triangleright P \xrightarrow{\alpha} P'$, with the intuition that P can perform α leading to P' in an environment that asserts Ψ. For example, if P can do an α to P' then if $\text{prime}(x)$ then P can make an α-transition to P' if we can deduce $\text{prime}(x)$ from the environment, e.g.

$$\{x = 3\} \triangleright \text{if prime}(x) \text{ then } P \xrightarrow{\alpha} P'.$$

In the symbolic semantics where we might not have the precise value of x, we instead decorate the transition with its requirement, so for any Ψ we have

$$\Psi \triangleright \text{if prime}(x) \text{ then } P \xrightarrow{\alpha_{C \wedge \{\Psi \vdash \text{prime}(x)\}}} P'$$

where C is the requirement for P to do an α to P' in the environment Ψ. Constraints also arise from communication between parallel agents, where, in the symbolic case, the precise channels might not be known; instead we allow communication over symbolic representations of channels and record the requirement in a transition constraint. As an example consider

$$a(x) . a(y) . (\overline{x} . P | y(z) . Q)$$

which after its initial inputs only has symbolic values of x and y. The resulting agent has the symbolic transition

$$\Psi \triangleright \overline{x} . P | y(z) . Q \xrightarrow{\tau_{\{\Psi \vdash x \leftrightarrow y\}}} P | Q[z := x]$$

where $x \leftrightarrow y$ means that x and y represent the same channel.

Communication channels in psi-calculi may be structured data terms, not only names. This leads to a new possibility of infinite branching: a subject in a prefix may be rewritten to another equivalent term before it is used in a transition. E.g., when $\text{first}(x,y)$ and x represent the same channel, $P = \text{first}(a,b)c . P'$ can be rewritten to P', but also $P \xrightarrow{\text{first}(a,c)c} P'$, etc. The possibility
of using structured channels gives significant expressive power (see [8]). Our symbolic semantics abstracts the equivalent forms of channel subject by using a fresh name as subject, and adds a suitable constraint to the transition label.

Given the symbolic semantics we proceed to define symbolic bisimulations, both strong and weak, closely following [13]. A symbolic bisimulation is a ternary relation containing triples (C, P, Q), where C is a constraint that denotes under which conditions P and Q are bisimilar. As an example, if

$$Q = \textbf{if } x = 3 \textbf{ then } P \textbf{ else } P$$

we have that P and Q are bisimilar under the constraint \textbf{true}. To see this consider $P \xrightarrow{\alpha}_{C_P} P'$ (eliding the environmental assertion Ψ). The definition of simulation allows a case analysis to partition C_P into an equivalent disjunction and requires that Q can simulate for each disjunct, e.g.

$$C_P \iff (C_P \land \{x = 3\}) \lor (C_P \land \{x \neq 3\})$$

and $Q \xrightarrow{\alpha}_{C_P \land \{x = 3\}} P'$ and $Q \xrightarrow{\alpha}_{C_P \land \{x \neq 3\}} P'$.

This partitioning is the key to a sound and complete symbolic semantics. Weak symbolic bisimulation is defined in essentially the same way, but requires Q to simulate with weak transitions that treats τ-transitions as invisible.

Finally we present a depth-first algorithm which computes the most general constraint under which a pair of agents are bisimilar, again closely following [13]. It follows transitions from pairs of agents and adds them to a table that ultimately will be a bisimulation. The algorithm terminates if the agents have finite symbolic transition graphs.

1.1. Comparison to related work

Symbolic bisimulations for process calculi have a long history. Our work is to a large extent based on the pioneering work by Hennessy and Lin [13] for value-passing CCS, later specialised for the pi-calculus by Boreale and De Nicola [14] and independently by Lin [15, 16]. While [13] is parametrised by general boolean expressions on an underlying data signature it does not handle names and mobility; on the other hand [14, 15, 16] handle only names and no other data structures. The number of follow-up works to these is huge, with applications ranging from pi-calculus to constraint programming; here we focus on the relation to the ones for applied pi-calculus and spi-calculus.
The existing tools for calculi based on the applied pi-calculus (e.g. [17, 18, 19]), are not fully abstract with regards to bisimulation. A symbolic semantics and bisimulation for applied pi-calculus has been defined in [20], but it is not complete. A complete version is instead defined in [21], and an axiomatisation is given in [22]. The original labelled bisimulation of applied pi-calculus is however not compositional (see [8]). The situation for the spi-calculus is better: fully abstract symbolic bisimulation for hedged bisimulation has been defined in [7], and for open hedged bisimulation in [6]. According to the authors, neither is directly mechanizable. The only symbolic bisimulation which to our knowledge has been implemented in a tool is not fully abstract [5].

It can be argued [5] that incompleteness is not a problem when verifying authentication and secrecy properties of security protocols, which appears to have been the main application of the applied pi-calculus so far. When going beyond security analysis we claim, based on experience from the Mobility Workbench [23], that completeness is very important: when analysing agents with huge state spaces, a positive result (the agents are equivalent) may be more difficult to achieve than a negative result (the agents differ). However, such a negative result can only be trusted if the analysis is fully abstract.

Our symbolic semantics is relatively simple compared to the ones presented for the applied pi-calculus or spi-calculus. In relation to the former, we are helped significantly by the absence of structural equivalence rules, which in the applied pi-calculus are rather complex. In [20, 21] an intermediate semantics is used to handle the complexity, while in contrast we can directly relate the original and symbolic semantics. In relation to the symbolic semantics for the spi-calculus, our semantics has a straightforward treatment of scope opening due to the simpler psi-calculi semantics. In addition, the complexities of spi-calculus bisimulations are necessarily inherited by the symbolic semantics, introducing e.g. explicit environment knowledge representations with timestamps on messages and variables. In psi-calculi, bisimulation is much simpler and the symbolic counterpart is not significantly more complex than the one for value-passing CCS.

Disposition. In the next section we review the basic definitions of syntax, semantics, and strong bisimulation of psi-calculi. Section 3 presents the symbolic semantics and bisimulation, while Section 4 illustrates the concrete and symbolic transitions and bisimulations by examples. In Section 5 we turn to the weak semantics and bisimulation for psi-calculi, and Section 6 de-
scribes the symbolic counterparts. In Section 7 we show our main results: the correspondence between concrete and symbolic transitions and the full abstraction of bisimulations. Section 8 presents and proves correct an algorithm for deciding bisimilarity, while Section 9 concludes and presents plans and ideas for future work. The appendices contain detailed proofs of results in Sections 7 and 8.

2. Psi-calculi

This section is a brief recapitulation of psi-calculi and nominal data types. Unless stated otherwise all definitions are from [8], which contains a more extensive treatment including motivations and examples.

2.1. Nominal datatypes

We assume a countably infinite set of atomic names \(\mathcal{N} \) ranged over by \(a, b, \ldots, x, y, z \). Intuitively, names will represent the symbols that can be statically scoped, and also represent symbols acting as variables in the sense that they can be subjected to substitution. A nominal set [24, 25] is a set equipped with name swapping functions written \((a \ b)\), for any names \(a, b \). An intuition is that for any member \(X \) it holds that \((a \ b)\cdot X\) is \(X \) with \(a \) replaced by \(b \) and \(b \) replaced by \(a \). One main point of this is that even though we have not defined any particular syntax we can define what it means for a name to “occur” in an element: it is simply that it can be affected by swappings. The names occurring in this way in an element \(X \) constitute the support of \(X \), written \(n(X) \).

We write \(a \# X \), pronounced “\(a \) is fresh for \(X \)”, for \(a \notin n(X) \). If \(A \) is a set of names we write \(A \# X \) to mean \(\forall a \in A . \ a \# X \). We require all elements to have finite support, i.e., \(n(X) \) is finite for all \(X \).

A function \(f \) on nominal sets is equivariant if \((a \ b)\cdot f(X) = f((a \ b)\cdot X)\) holds for all \(X, a, b \), and similarly for functions and relations of any arity. Intuitively, this means that all names are treated equally.

A nominal datatype is just a nominal set together with a set of functions on it. In particular we shall consider a substitution function which intuitively substitutes elements for names. If \(X \) is an element of a datatype, \(\tilde{a} \) is a sequence of names without duplicates and \(\tilde{Y} \) is an equally long sequence of elements of possibly another datatype, the substitution \(X[\tilde{a} := \tilde{Y}] \) is an element of the same datatype as \(X \). We need not define exactly what a substitution does; it is enough to assume the following properties:
1: if $\tilde{a} \subseteq n(X)$ and $b \in n(\tilde{T})$ then $b \in n(X[\tilde{a} := \tilde{T}])$
2: if $\tilde{b} \# X, \tilde{a}$ then $X[\tilde{a} := \tilde{T}] = ((\tilde{b} \tilde{a}) \cdot X)[\tilde{b} := \tilde{T}]

The first says that a substitution $X[\tilde{a} := \tilde{T}]$ may not erase names in \tilde{T}, and
the second is a kind of alpha-conversion; see [8] for further explanations.

2.2. Agents

A psi-calculus is defined by instantiating three nominal data types and
four operators:

Definition 1 (Psi-calculus parameters). A psi-calculus requires the three
(not necessarily disjoint) nominal data types:

- T the (data) terms, ranged over by M, N
- C the conditions, ranged over by φ
- A the assertions, ranged over by Ψ

and the four equivariant operators:

- $\leftrightarrow: T \times T \rightarrow C$ Channel Equivalence
- $\otimes: A \times A \rightarrow A$ Composition
- $1: A$ Unit
- $\vdash \subseteq A \times C$ Entailment

and substitution functions $[\tilde{a} := \tilde{M}]$, substituting terms for names, on all of
$T, C,$ and A.

The binary functions above will be written in infix. Thus, if M and N
are terms then $M \leftrightarrow N$ is a condition, pronounced “M and N are channel
equivalent” and if Ψ and Ψ' are assertions then so is $\Psi \otimes \Psi'$. Also we write
$\Psi \vdash \varphi$, “Ψ entails φ”, for $(\Psi, \varphi) \in \vdash$.

The data terms are used to represent all kinds of data, including com-
unication channels. Conditions are used as guards in agents, and $M \leftrightarrow N$ is a
particular condition saying that M and N represent the same channel. The
assertions will be used to declare information necessary to resolve the condi-
tions. Assertions can be contained in agents and thus represent information
postulated by that agent; they can contain names and thereby be syntacti-
cally scoped and thus represent information known only to the agents within
that scope. The intuition of entailment is that $\Psi \vdash \varphi$ means that given the
information in Ψ, it is possible to infer φ. We say that two assertions are
equivalent if they entail the same conditions:
Definition 2 (Assertion equivalence). Two assertions are equivalent, written $\Psi \simeq \Psi'$, if for all φ we have that $\Psi \vdash \varphi \iff \Psi' \vdash \varphi$.

A psi-calculus is formed by instantiating the nominal data types and morphisms so that the following requisites are satisfied:

Definition 3 (Requisites on valid psi-calculus parameters).

Channel symmetry: $\Psi \vdash M \Leftrightarrow N \implies \Psi \vdash N \Leftrightarrow M$

Channel transitivity: $\Psi \vdash M \Leftrightarrow N \land \Psi \vdash N \Leftrightarrow L \implies \Psi \vdash M \Leftrightarrow L$

Composition: $\Psi \simeq \Psi' \implies \Psi \otimes \Psi'' \simeq \Psi' \otimes

Identity: $\Psi \otimes 1 \simeq \Psi$

Associativity: $(\Psi \otimes \Psi') \otimes \Psi'' \simeq \Psi \otimes (\Psi' \otimes

Commutativity: $\Psi \otimes \Psi' \simeq \Psi' \otimes \Psi$

Weakening: $\Psi \vdash \varphi \implies \Psi \otimes \Psi' \vdash \varphi$

Our requisites on a psi-calculus are that the channel equivalence is a partial equivalence relation, that \otimes preserves equivalence, and that the equivalence classes of assertions form an abelian monoid. The last, Weakening, is not required in our previous expositions of psi-calculi, and means that non-monotonic logics cannot be used. It simplifies our proofs in the present paper although we do not know if it is absolutely necessary. It is only used in one place in the proof of Theorem 32. Furthermore it allows us to only consider the simpler definition of weak bisimulation from [9] presented in Section 5.

In the following \tilde{a} means a finite (possibly empty) sequence of names, a_1, \ldots, a_n. The empty sequence is written ϵ and the concatenation of \tilde{a} and \tilde{b} is written $\tilde{a} \tilde{b}$. When occurring as an operand of a set operator, \tilde{a} means the corresponding set of names $\{a_1, \ldots, a_n\}$. We also use sequences of terms, conditions, assertions etc. in the same way.

A frame can intuitively be thought of as an assertion with local names:

Definition 4 (Frame). A frame is of the form $(\nu\tilde{b})\Psi$ where \tilde{b} is a sequence of names that bind into the assertion Ψ. We identify alpha variants of frames.

We use F, G to range over frames. Since we identify alpha variants we can always choose the bound names freely.

Notational conventions: We write just Ψ for $(\nu\epsilon)\Psi$ when there is no risk of confusing a frame with an assertion, and \otimes to mean composition on frames.
defined by \((\nu b_1)\Psi_1 \otimes (\nu b_2)\Psi_2 = (\nu b_1 \tilde{b}_2)\Psi_1 \otimes \Psi_2\) where \(\tilde{b}_1 \neq \tilde{b}_2, \Psi_2\) and vice versa. We write \((\nu c)((\nu b)\Psi)\) to mean \((\nu c\tilde{b})\Psi\).

Intuitively a condition is entailed by a frame if it is entailed by the assertion and does not contain any names bound by the frame. Two frames are equivalent if they entail the same conditions:

Definition 5 (Equivalence of frames). We define \(F \vdash \varphi\) to mean that there exists an alpha variant \((\nu \tilde{b})\Psi\) of \(F\) such that \(\tilde{b} \# \varphi\) and \(\Psi \vdash \varphi\). We also define \(F \simeq G\) to mean that for all \(\varphi\) it holds that \(F \vdash \varphi\) iff \(G \vdash \varphi\).

Definition 6 (Psi-calculus agents). Given valid psi-calculus parameters as in Definitions 1 and 3, the psi-calculus agents, ranged over by \(P, Q, \ldots\), are of the following forms.

\[
\begin{align*}
\text{0} & \quad \text{Nil} \\
MN.P & \quad \text{Output} \\
M(x).P & \quad \text{Input} \\
case \varphi_1 : P_1 \quad \cdots \quad \varphi_n : P_n & \quad \text{Case} \\
(\nu a)P & \quad \text{Restriction} \\
P | Q & \quad \text{Parallel} \\
!P & \quad \text{Replication} \\
(\|\Psi\|) & \quad \text{Assertion}
\end{align*}
\]

In the Input \(M(x).P\), \(x\) binds its occurrences in \(P\). Restriction binds \(a\) in \(P\). An assertion is guarded if it is a subterm of an Input or Output. An agent is well formed if in a replication \(!P\) there are no unguarded assertions in \(P\), and that in case \(\varphi_1 : P_1 \quad \cdots \quad \varphi_n : P_n\) there are no unguarded assertion in any \(P_i\).

In the Output and Input forms \(M\) is called the subject and \(N\) and \(x\) the objects, respectively. Output and Input are similar to those in the pi-calculus, but arbitrary terms can function as both subjects and objects. Our previous exposition [8] uses a more general form of input with pattern matching; as we discuss in Section 9 we here restrict attention to the traditional input form with one bound name, \(M(x)\), for simplicity. The general form of input prefix in [8] is \(M(\lambda x)N\), where \(N\) is a term, and \(M(x)\) is simply a short hand for the special case \(M(\lambda x)x\) where we assume that names are terms, i.e. \(\mathcal{N} \subseteq \mathcal{T}\). The case construct works by performing the action of any \(P_i\) for which the corresponding \(\varphi_i\) is true. So it embodies both an if (if there
is only one branch) and an internal non-deterministic choice (if the conditions are overlapping). It is sometimes written as case $\tilde{\phi} : \tilde{P}$, or if $n = 1$ as if ϕ_1 then P_1. The input subject is underlined to facilitate parsing of complicated expressions; in simple cases we often conform to a more traditional notation and omit the underline.

2.3. Operational semantics

In the standard pi-calculus the transitions from a parallel composition can be uniquely determined by the transitions from its components, but in psi-calculi the situation is more complex. Here the assertions contained in P can affect the conditions tested in Q and vice versa. For this reason we introduce the notion of the frame of an agent as the combination of its top level assertions, retaining all the binders. It is precisely this that can affect a parallel agent.

Definition 7 (Frame of an agent). The frame $\mathcal{F}(P)$ of an agent P is defined inductively as follows:

$$
\begin{align*}
\mathcal{F}(0) &= \mathcal{F}(M(x).P) = \mathcal{F}(\overline{M} N.P) = \mathcal{F}(\text{case } \tilde{\phi} : \tilde{P}) = \mathcal{F}(!P) = 1 \\
\mathcal{F}(\nu c) &= (\nu c)P \\
\mathcal{F}(P | Q) &= \mathcal{F}(P) \otimes \mathcal{F}(Q) \\
\mathcal{F}((\nu b)P) &= (\nu b)\mathcal{F}(P)
\end{align*}
$$

Our previous presentation of psi-calculi [8] gives a semantics of an early kind, where input actions are of kind $M N$. In the present paper we give an operational semantics of the late kind, meaning that the labels of input transitions contain variables, in this case represented as names, for the object to be received. With this kind of semantics it is easier to establish a relation to the symbolic semantics.

Definition 8 (Actions). The actions ranged over by α, β are of the following three kinds: $\overline{M} (\nu \tilde{a}) N$ (Output, where $\tilde{a} \subseteq n(N)$), $\overline{M}(x)$ (Input), and τ (Silent).

For actions we refer to M as the subject and N and x as the objects. We let $\text{subj}(\overline{M} (\nu \tilde{a}) N) = \text{subj}(\overline{M}(x)) = M$. We define $\text{bn}(\overline{M} (\nu \tilde{a}) N) = \tilde{a}$, $\text{bn}(\overline{M}(x)) = \{x\}$, and $\text{bn}(\tau) = \emptyset$. Note that $\text{bn}(\alpha)$ is included in the support of α. Thus $\overline{M} (\nu a)a$ and $\overline{M} (\nu b)b$ are different actions.
\[
\begin{array}{c}
\text{In} & \Psi \vdash M \leftrightarrow K \\
\Psi \triangleright M \cdot P \xRightarrow{K} P \\
\hline
\text{Out} & \Psi \vdash M \leftrightarrow K \\
\Psi \triangleright MN \cdot P \xRightarrow{K} P \\
\hline
\text{Case} & \Psi \triangleright P_i \xrightarrow{\alpha} P' \\
\Psi \triangleright \text{case } \overline{\varphi} : \overline{P} \xrightarrow{\alpha} P' \\
\hline
\text{COM} & \Psi_Q \otimes \Psi_P \otimes \Psi_Q \vdash M \leftrightarrow K \\
\Psi_Q \otimes \Psi_P \triangleright P \xRightarrow{M(\overline{\nu}a)} P' \\
\Psi_P \otimes \Psi \triangleright Q \xRightarrow{K} Q' \xrightarrow{b\#Q} \\
\Psi \triangleright P \mid Q \xrightarrow{\tau} (\nu\overline{\nu}a)(P' \mid Q'[x := N]) \\
\hline
\text{PAR} & \Psi_Q \otimes \Psi \triangleright P \xrightarrow{\alpha} P' \\
\Psi \triangleright P \mid Q \xrightarrow{\alpha} P' \mid Q \\
\hline
\text{SCOPE} & \Psi \triangleright P \xrightarrow{\alpha} P' \\
\Psi \triangleright (\nu b)P \xrightarrow{\alpha} (\nu b)P' \\
\hline
\text{OPEN} & \Psi \triangleright (\nu b)P \xRightarrow{M(\overline{\nu}a \cup \lbrace b \rbrace)} P' \\
\Psi \triangleright (\nu b)P \xrightarrow{b\#a, \Psi, M} b\#\overline{\nu}a, \Psi, M \\
\hline
\text{REP} & \Psi \triangleright P \mid !P \xrightarrow{\alpha} P' \\
\Psi \triangleright !P \xrightarrow{\alpha} P'
\end{array}
\]

Table 1: Late operational semantics. Symmetric versions of COM and PAR are elided. In the rule COM we assume that \(F(P) = (\nu b_P)\Psi_P \) and \(F(Q) = (\nu b_Q)\Psi_Q \) where \(b_P \) is fresh for all of \(\Psi, b_Q, Q, M \) and \(P \), and that \(b_Q \) is correspondingly fresh. In the rule PAR we assume that \(F(Q) = (\nu b_Q)\Psi_Q \) where \(b_Q \) is fresh for \(\Psi, P \) and \(\alpha \). In OPEN the expression \(\nu a \cup \lbrace b \rbrace \) means the sequence \(a \) with \(b \) inserted anywhere.
Table 2: Early structured operational semantics. All other rules are as in the late semantics of Fig. 1.

Definition 9 (Transitions). A transition is of the kind \(\Psi \triangleright P \xrightarrow{\alpha} P' \), meaning that when the environment contains the assertion \(\Psi \) the agent \(P \) can do an \(\alpha \) to become \(P' \). The transitions are defined inductively in Table 1.

Table 2 gives the rules for input and communication of an early kind used in [8]. The following lemma clarifies the relation between the two semantics:

Lemma 10 (Late and early transitions).

1. \(\Psi \triangleright P \xrightarrow{MN} P' \) in the early semantics iff there exist \(P'' \), and \(x \) such that \(\Psi \triangleright P \xrightarrow{M(x)} P'' \) in the late semantics, where \(P' = P''[x := N] \).
2. For output and \(\tau \) actions, \(\Psi \triangleright P \xrightarrow{\alpha} Q \) in the early semantics iff the same transition can be derived in the late semantics.

The proof is by induction over the transition derivations. In the proof of (2), the case \(\alpha = \tau \) needs both (1) and the case where \(\alpha \) is an output. See [26] for further details.

2.4. Bisimulation

We proceed to define early bisimulation with the late semantics:

Definition 11 ((Early) Bisimulation). A bisimulation \(\mathcal{R} \) is a ternary relation between assertions and pairs of agents such that \(\mathcal{R}(\Psi, P, Q) \) implies all of

1. Static equivalence: \(\Psi \otimes F(P) \simeq \Psi \otimes F(Q) \)
2. Symmetry: \(\mathcal{R}(\Psi, Q, P) \)
3. Extension of arbitrary assertion: $\forall \Psi'. R(\Psi \otimes \Psi', P, Q)$

4. Simulation: for all α, P' such that $\text{bn}(\alpha) \# \Psi, Q$

 (a) if $\alpha = M(x)$:

 $\Psi \triangleright P \overset{\alpha}{\rightarrow} P' \implies \forall L \exists Q' . \Psi \triangleright Q \overset{\alpha}{\rightarrow} Q'$ and $R(\Psi, P'[x := L], Q'[x := L]).$

 (b) otherwise:

 $\Psi \triangleright P \overset{\alpha}{\rightarrow} P' \implies \exists Q' . \Psi \triangleright Q \overset{\alpha}{\rightarrow} Q'$ and $R(\Psi, P', Q').$

We define $P \sim Q$ to mean that there exists a bisimulation R such that $R(1, P, Q)$. We also define $P \sim Q$ to mean that $P\sigma \sim Q\sigma$, for all σ, where σ is a sequence of substitutions $[x_1 := L_1][x_2 := L_2] \ldots [x_n := L_n].$

The relation between this definition and the original definition of bisimulation in [8] is:

Lemma 12. A relation is a bisimulation according to Definition 11 precisely if it is a bisimulation according to [8].

The proof is straightforward using Lemma 10. As a corollary the algebraic properties of \sim established in [8] hold, notably that it is a congruence. See [26] for further details.

3. Symbolic semantics and equivalence

The idea behind a symbolic semantics is to reduce the state space of agents. One standard way is to avoid infinite branching in inputs by using a fresh name to represent whatever was received.

In psi-calculi there is an additional source of infinite branching: a subject in a prefix may get rewritten to many terms. Also here we use a fresh name to represent these terms. This means that the symbolic actions are the same as the concrete actions with the exception that only names are used as subjects.

A symbolic transition is of form

$$\Psi \triangleright P \overset{\alpha}{\rightarrow} P'$$

The intuition is that this represents a set of concrete transitions, namely those that satisfy the constraint C. Before the formal definitions we here briefly explain the rationale. Consider a psi-calculus with integers and integer equations; for example a condition can be “$x = 3$”. An example agent is $P = \text{case } x = 3 : P'$. If $P' \overset{\alpha}{\rightarrow} P''$, then there should clearly be a transition
\[
P \xrightarrow{\alpha}_{C \land C'} P''
\]
for some constraint \(C\) that captures that \(x\) must be 3. One context that can make this constraint true is an input, as in \(a(x).P\). The input will give rise to a substitution for \(x\), and if the substitution sends \(x\) to 3 the constraint is satisfied. In this way the constraints are similar to those for the pi-calculus [14, 15]. In psi-calculi there is an additional way that a context can enable the transition: it can contain an assertion as in \(\mid x = 3 \mid P\). Here we should have a transition \(\mid x = 3 \mid P \xrightarrow{\alpha} \mid x = 3 \mid P''\) (where \(D\) is a constraint which is trivially satisfied). Therefore a solution of a constraint will contain both a substitution of terms for names (representing the effect of an input) and an assertion (representing the effect of a parallel component).

Definition 13. A solution is a pair \((\sigma, \Psi)\) where \(\sigma\) is a substitution sequence of terms for names, and \(\Psi\) is an assertion. The transition constraints, ranged over by \(C, C_t\) and corresponding solutions, \(\text{sol}(C)\) are defined by:

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C, C') := true</td>
<td>{((\sigma, \Psi) : \sigma \text{ is a subst. sequence } \land \Psi \in A}}</td>
</tr>
<tr>
<td>false</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>((\nu \tilde{a}){\Psi \vdash \varphi})</td>
<td>{((\sigma, \Psi') : \tilde{a}#\sigma, \Psi' \land \Psi \sigma \otimes \Psi' \vdash \varphi \sigma}}</td>
</tr>
<tr>
<td>(C \land C')</td>
<td>(\text{sol}(C) \cap \text{sol}(C'))</td>
</tr>
</tbody>
</table>

In \((\nu \tilde{a})\{\Psi \vdash \varphi\}\) \(\tilde{a}\) are binding occurrences into \(\Psi\) and \(\varphi\). We let \((\nu \tilde{a})(C \land C')\) mean \((\nu \tilde{a})C \land (\nu \tilde{a})C'\), and we let \((\nu \tilde{a})\text{true}\) mean \text{true}, and similarly for \text{false}. We adopt the notation \((\sigma, \Psi) \models C\) to say that \((\sigma, \Psi) \in \text{sol}(C)\).

A transition constraint \(C\) defines a set of solutions \(\text{sol}(C)\), namely those where the entailment becomes true by applying the substitution and adding the assertion. For example, the transition constraint \(\{1 \vdash x = 3\}\) has solutions \((\{x := 3\}, 1)\) and \((\text{Id}, x = 3)\), where \(\text{Id}\) is the identity substitution.

The purpose of the \(\nu\)-binder in constraints is just to exclude names for use in solutions; this motivates that \((\nu \tilde{a})(C \land C') = (\nu \tilde{a})C \land (\nu \tilde{a})C'\). In contrast, the \(\nu\)-binder on a frame or an agent postulates the existence of a local name and does not distribute over operators in that way.

The structured operational symbolic semantics is defined in Table 3. First consider the **OUT** rule: \(\Psi \triangleright \overrightarrow{M}N.P \xrightarrow{\Psi^N} P\). This constraint means the transition can be taken in any solution that implies that the subject \(M\) of the syntactic prefix is channel equivalent to \(y\).
\[
\begin{align*}
\text{IN} & \quad \Psi \triangleright \mathcal{M}(x).P \xrightarrow{y(x)} \{\Psi \vdash \mathcal{M} \leftrightarrow y\} P \\
\text{CASE} & \quad \Psi \triangleright P \xrightarrow{\alpha}_C \mathcal{P} \xrightarrow{\alpha}_{C \wedge \{\Psi \vdash \varphi_i\}} \mathcal{P}' \\
\text{OUT} & \quad \Psi \triangleright \mathcal{M} N . P \xrightarrow{\pi N} \{\Psi \vdash \mathcal{M} \leftrightarrow y\} P \\
\text{COM} & \quad \Psi \otimes \Psi \triangleright P \xrightarrow{\pi(N)} \{\Psi \vdash \mathcal{M} \leftrightarrow y\} P' \\
\text{PAR} & \quad \Psi \triangleright P \mid Q \xrightarrow{\alpha}_C \{\Psi \vdash \mathcal{M} \leftrightarrow y\} \mathcal{P}' \mid Q' \xrightarrow{\alpha}_C \{\Psi \vdash \mathcal{M} \leftrightarrow y\} \mathcal{P}' \\
\text{SCOPE} & \quad \Psi \triangleright P \xrightarrow{\alpha}_C \{\Psi \vdash \mathcal{M} \leftrightarrow y\} \mathcal{P}' \xrightarrow{b \# \alpha, \Psi} \\
\text{OPEN} & \quad \Psi \triangleright (\nu b) P \xrightarrow{\pi(N)} \{\Psi \vdash \mathcal{M} \leftrightarrow y\} \mathcal{P}' \xrightarrow{b \# \alpha, \Psi} \\
\text{REP} & \quad \Psi \triangleright !P \xrightarrow{\alpha}_C \{\Psi \vdash \mathcal{M} \leftrightarrow y\} \mathcal{P}'
\end{align*}
\]

Table 3: Transition rules for the symbolic semantics. Symmetric versions of \text{COM} and \text{PAR} are elided. In the rule \text{COM} we assume that \(F(P) = (\nu b_P)\Psi_P \) and \(F(Q) = (\nu b_Q)\Psi_Q \) where \(b_P \) is fresh for all of \(\Psi, b_Q, Q \) and \(P \), and that \(b_Q \) is correspondingly fresh. We also assume that \(y, z \# \Psi, b_P, P, b_Q, Q, N, \alpha \). In \text{COM}, \(C_{com} = (\nu b_P, \nu b_Q)(\Psi \vdash M^\Psi \leftrightarrow M^Q) \wedge (\nu b_Q)C_P \wedge (\nu b_P)C_Q \). In the rule \text{PAR} we assume that \(F(Q) = (\nu b_Q)\Psi_Q \) where \(b_Q \) is fresh for \(\Psi, P \) and \(\alpha \). In \text{OPEN} the expression \(\nu \tilde{a} \cup \{b\} \) means the sequence \(\tilde{a} \) with \(b \) inserted anywhere.
The rule Com is of particular interest. The intuition is that the symbolic action subjects are placeholders for the values \(M_P \) and \(M_Q \). In the conclusion the constraint is that these are channel equivalent, while \(y \) and \(z \) will not occur again.

We will often write \(P \xrightarrow{\alpha}_C P' \) for \(1 \triangleright P \xrightarrow{\alpha}_C P' \).

3.1. Symbolic bisimulation

In order to define a symbolic bisimulation we need additional kinds of constraints. If a process \(P \) does a bound output \(\nu \tilde{a} N \) that is matched by a bound output \(\nu \tilde{a} N' \) from \(Q \) we need constraints that keep track of the fact that \(N \) and \(N' \) should be syntactically the same, and that \(\tilde{a} \) is sufficiently fresh.

Definition 14. The constraints, ranged over by \(C \), are of the forms

\[
\begin{align*}
C, C' ::= & \ C_t \\
& \{ \{M = N\}\} \quad M\sigma = N\sigma \\
& \{ \{a\#X\}\} \quad (a\#X)\sigma \text{ and } a\#\text{dom}(\sigma), \Psi \\
& C \land C' \quad (\sigma, \Psi) \models C \text{ and } (\sigma, \Psi) \models C' \\
& C \lor C' \quad (\sigma, \Psi) \models C \text{ or } (\sigma, \Psi) \models C' \\
& C \Rightarrow C' \quad (\sigma, \Psi) \models C \implies (\sigma, \Psi) \models C'
\end{align*}
\]

where \(C_t \) are the transition constraints. In \(\{ \{a\#X\}\} \), \(X \) is any nominal data type.

Note that the assertion part of the solution is irrelevant for constraints of kind \(\{ \{M = N\}\} \) and \(\{ \{a\#X\}\} \), and that the substitution does not affect \(a \) in \(\{ \{a\#X\}\} \). The constraint \(\{ \{M = N\}\} \) is used in the bisimulation for matching output objects, and \(\{ \{a\#X\}\} \) is used in the bisimulation for recording what an opened name must be fresh for. This corresponds to distinctions in open bisimulation for the pi-calculus [27]. We write \(\{ \{a\#X,Y\}\} \) for \(\{ \{a\#X\}\} \land \{ \{a\#Y\}\} \), and we extend the notation to sets of names, e.g. \(\{ \{\tilde{a}\#X\}\} \).

Before we can give the definition of symbolic bisimulation we need to define a symbolic variant of the concrete static equivalence.

Definition 15 (Symbolic static equivalence). Two processes \(P \) and \(Q \) are statically equivalent for \(C \), written \(P \simeq_C Q \), if for each \((\sigma, \Psi) \in \text{sol}(C) \) we have that \(\Psi \otimes F(P)\sigma \simeq \Psi \otimes F(Q)\sigma \).
We now have everything we need to define symbolic bisimulation. This definition follows the corresponding one in [13] closely.

Definition 16 ((Early) Symbolic bisimulation). A symbolic bisimulation \(S \) is a ternary relation between constraints and pairs of agents such that \(S(C, P, Q) \) implies all of

1. \(P \simeq_C Q \), and
2. \(S(C, Q, P) \), and
3. If \(P \overset{\tau}{\xrightarrow{C_p}} P' \) then there exists \(\hat{C} \) such that \(C \land C_P \Leftrightarrow \bigvee \hat{C} \) and for all \(C' \in \hat{C} \) there exists \(Q' \) and \(C_Q \) such that
 - (a) \(Q \overset{\tau}{\xrightarrow{C_Q}} Q' \), and
 - (b) \(C' \Rightarrow C_Q \), and
 - (c) \(S(C', P', Q') \)
4. If \(P \overset{y(x)}{\xrightarrow{C_p}} P' \), \(x\#(P, Q, C, C_P, y) \) and \(y\#(P, Q, C) \) then there exists \(\hat{C} \) such that \(C \land C_P \Leftrightarrow \bigvee \hat{C} \) and for all \(C' \in \hat{C} \) there exists \(Q' \) and \(C_Q \) such that
 - (a) \(Q \overset{y(x)}{\xrightarrow{C_Q}} Q' \), and
 - (b) \(C' \Rightarrow C_Q \), and
 - (c) \(S(C', P', Q') \)
5. If \(P \overset{\pi(\prealloc{\alpha})_{N}}{\xrightarrow{C_p}} P' \), \(\prealloc{\alpha}\#(P, Q, C, C_P, y) \) and \(y\#(P, Q, C) \) then there exists \(\hat{C} \) such that \(C \land C_P \land \{\prealloc{\alpha}#P, Q\} \Leftrightarrow \bigvee \hat{C} \) and for all \(C' \in \hat{C} \) there exists \(Q' \) and \(C_Q \) such that
 - (a) \(Q \overset{\pi(\prealloc{\alpha})_{N}}{\xrightarrow{C_Q}} Q' \), and
 - (b) \(C' \Rightarrow C_Q \land \{N = N'\} \), and
 - (c) \(S(C', P', Q') \)

We write \(P \sim_s Q \) if \((\text{true}, P, Q) \in S\) for some symbolic bisimulation \(S \), and say that \(P \) is symbolically bisimilar to \(Q \).

The set \(\hat{C} \) allows a case analysis on the constraint solutions, as exemplified in the next section. The output objects need to be equal in a solution to \(C' \). Since the solutions of \(\{N = N'\} \) only depend on the substitutions, this constraint corresponds to the fact that the objects must be identical in the
concrete bisimulation. Note that $bn(\alpha)$ may occur in \hat{C}. Based on [14, 15], we conjecture that analogously to the case there, adding the requirement $bn(\alpha)\#\hat{C}$ would give late symbolic bisimulation.

Note that in [12], the case analysis is defined with an implication, e.g. $C \land C_P \Rightarrow \lor \hat{C}$, while here it is defined with equality, $C \land C_P \Leftrightarrow \lor \hat{C}$. This is related to the completeness of the decision algorithm, as explained in Section 8.1.

4. Examples

We now look at a few examples to illustrate the concrete and symbolic transitions and bisimulations. First consider a simple example from the pi-calculus. This can be expressed as a psi-calculus: let the only data terms be names, the only assertion be 1, the conditions be equality and inequality tests on names, and entailment defined by $\forall a.1 \vdash a = a$, $\forall a,b : a \neq b.1 \vdash a \neq b$ and $\forall a.1 \vdash a \leftrightarrow a$. For a more thorough discussion, see [8]. We use $\tau . P$ as a shorthand for $(\nu b)(b . 0 | (b(b) . P)$ for some $b\#P$. In the following examples we drop a trailing . Consider the two agents P_1 and Q_1:

$$
\begin{align*}
P_1 &= a(x) . P'_1 \quad \text{where } P'_1 &= \tau . \bar{a}b \\
Q_1 &= a(x) . Q'_1 \quad \text{where } Q'_1 &= (\text{case } x = b : \tau . \bar{a}b \; | \; x \neq b : \tau . \bar{a}b)
\end{align*}
$$

These are bisimilar. A concrete bisimulation between these agents is

$$
\{(1, P_1, Q_1)\} \cup \bigcup_{n \in \mathbb{N}} \{(1, P'_1, Q'_1[x := n])\} \cup \{(1, \bar{a}b, \bar{a}b)\}
$$

The bisimulation needs to be infinite because of the infinite branching in the input. In contrast, a symbolic bisimulation only contains four triples:

$$
\{(\text{true}, P_1, Q_1), \; (\text{true}, P'_1, Q'_1), \; (\{1 \vdash x = b\}, \bar{a}b, \bar{a}b), \; (\{1 \vdash x \neq b\}, \bar{a}b, \bar{a}b)\}
$$

When checking the second triple $(\text{true}, P'_1, Q'_1)$, the transition of P'_1 is matched by a case analysis: \hat{C} in the definition of symbolic bisimulation (Definition 16) is $\{\{1 \vdash x = b\}, \{1 \vdash x \neq b\}\}$, and a matching transition for Q'_1 can be found for each of these cases, so the agents are bisimilar. In contrast, they are not equivalent in the incomplete symbolic bisimulations in [5] and [20].
Next we look at an example where we have tuples of channels and projection, e.g. the entailment relation gives us that \(1 \vdash \text{first}(M, N) \leftrightarrow M \). Consider the agent

\[R = \overline{M} \cdot N \cdot R' \]

Concretely this agent has infinitely many transitions even in an empty frame: \(R \xrightarrow{\overline{M} \cdot N} R' \), and equivalent actions \(\overline{\text{first}(M, K)} \cdot N \) for all \(K \), and \(\overline{\text{first}(M, L, K)} \cdot N \) for all \(L \) and \(K \), etc. Symbolically, however, it has only one transition: \(R \xrightarrow{\overline{1 \cdot M} \leftrightarrow y} R' \).

For another example, consider the two agents

\[P_2 = T \cdot N \cdot P' \quad Q_2 = 0 \]

where \(T \) is a term such that for no \(\Psi, M \) does it hold that \(\Psi \vdash T \leftrightarrow M \), i.e., \(T \) is not a channel. Then we have that \(P_2 \) and \(Q_2 \) are concretely bisimilar since neither one of them has a transition. But symbolically \(P_2 \) has the transition \(P_2 \xrightarrow{\overline{1 \cdot T} \leftrightarrow y} P' \), while \(Q_2 \) has no symbolic transition. Perhaps surprisingly they are still symbolically bisimilar: Definition 16 requires that we find a disjunction \(\hat{C} \) such that \(C \land C' \leftrightarrow \bigvee \hat{C} \), or in this case such that \(\text{true} \land \{ 1 \vdash T \leftrightarrow y \} \leftrightarrow \bigvee \hat{C} \). Since \(T \) is not channel equivalent to anything, the left hand side has no solutions, which means that an empty \(\hat{C} \) will do, since \(\bigvee \emptyset = \text{false} \). The condition “for all \(C' \in \hat{C} \)” in the definition becomes trivially true, so \(Q_2 \) does not have to mimic the transition.

5. Weak semantics and bisimulation

Weak bisimulation \(\hat{\approx} \) for psi-calculi is introduced in [9], and in this section we briefly recapitulate some key ideas and definitions. Since we adopt Weakening as a requisite we can use the definition which in that paper is notated \(\hat{\approx}^{\text{smp}} \).

As is standard, we define weak bisimulation by adjusting Definition 11 (strong bisimulation) so that \(\tau \) actions can be inserted or removed when simulating a transition. We define weak transitions in the usual way:
Definition 17 (Weak transitions).

\[\Psi \triangleright P \implies P \]

if \(\Psi \triangleright P \xrightarrow{\tau} P'' \land \Psi \triangleright P'' \implies P' \) then \(\Psi \triangleright P \implies P' \)

if \(\Psi \triangleright P \implies P'' \land \Psi \triangleright P'' \xrightarrow{M(\nu\tilde{a})N} P''' \land \Psi \triangleright P''' \implies P' \)

then \(\Psi \triangleright P \xrightarrow{\tilde{M}(\nu\tilde{a})N} P' \)

if \(\Psi \triangleright P \implies P'' \land \Psi \triangleright P'' \xrightarrow{\tau} P''' \land \Psi \triangleright P''' \implies P' \)

then \(\Psi \triangleright P \xrightarrow{\tilde{\tau}} P'' \)

Note that we do not define a weak version of input transitions. In the late semantics, the definition becomes unnecessarily complex, and instead we choose to spell out the transitions in Definition 18 below. We also define \(P \leq_\psi Q \), pronounced \(P \) statically implies \(Q \), to mean that \(\forall \varphi. \Psi \otimes F(P) \vdash \varphi \Rightarrow \Psi \otimes F(Q) \vdash \varphi \). We write \(P \leq Q \) for \(P \leq_1 Q \).

Definition 18 (Weak bisimulation). A weak bisimulation \(R \) is a ternary relation between assertions and pairs of agents such that \(R(\Psi, P, Q) \) implies all of

1. Weak static implication: There exists \(Q' \) such that
 \(\Psi \triangleright Q \implies Q' \) and \(P \leq_\psi Q' \) and \(R(\Psi, P, Q') \).
2. Symmetry: \(R(\Psi, Q, P) \)
3. Extension of arbitrary assertion:
 \(\forall \Psi'. R(\Psi \otimes \Psi', P, Q) \)
4. Weak simulation: for all \(\alpha, P' \) such that \(\text{bn}(\alpha) \# \Psi, Q \) and \(\Psi \triangleright P \xrightarrow{\alpha} P' \) it holds
 \[\begin{align*}
 &\quad \text{if } \alpha = \tau : \quad \exists Q'. \Psi \triangleright Q \Rightarrow Q' \land R(\Psi, P', Q') \\
 &\quad \text{if } \alpha = M(\nu\tilde{a})N : \quad \exists Q'. \Psi \triangleright Q \Rightarrow Q' \land R(\Psi, P', Q') \\
 &\quad \text{if } \alpha = M(x) : \quad \forall L \exists Q'', Q', Q'.
 \end{align*} \]
 \[\begin{align*}
 &\quad \Psi \triangleright Q' \Rightarrow Q'' \land \\
 &\quad \Psi \triangleright Q'' \xrightarrow{\alpha} Q'' \land \\
 &\quad \Psi \triangleright Q''[x := L] \Rightarrow Q' \land \\
 &\quad R(\Psi, P'[x := L], Q')
 \end{align*} \]

We define \(P \sim_\psi Q \) to mean that there exists a weak bisimulation \(R \) such that \(R(\Psi, P, Q) \), and write \(P \sim Q \) for \(P \sim_1 Q \).
Comparing to strong bisimulation (Definition 11), clause 1 in the definition, that \(P \) and \(Q \) are statically equivalent, is adjusted so that if \(P \) can make conditions true, then \(Q \) can make them true possibly after performing some \(\tau \) actions. Clauses 2 and 3 are unchanged. Clause 4 (simulation) is split in three parts. If the action \(\alpha \) to be simulated is \(\tau \) then \(Q \) should simulate by doing zero or more \(\tau \) actions. If it is an output or an input action then \(Q \) simulates by doing an arbitrary number of \(\tau \) actions before and after the action.

The one point which may not be immediately obvious is Clause 1, weak static implication, where the conjunct \(\mathcal{R}(\Psi, P, Q') \) may be surprising. It states that \(Q \) must evolve to a \(Q' \) that is statically implied by \(P \), and also bisimilar to \(P \). This last requirement may seem unnecessarily strong, but in fact without it the resulting weak bisimulation equivalence would not be preserved by the parallel operator. See [9] for examples and further motivation.

In [9] this bisimulation is called simple weak bisimulation, and is defined with the early semantics. The relation between this definition and the corresponding one in [9] is clarified by the following:

Lemma 19. A relation is a weak bisimulation according to Definition 18 precisely if it is a simple weak bisimulation according to [9].

The proof is straightforward using Lemma 10 [26].

Note that weak bisimulation is not preserved by the case construct. The reasoning is analogous to why weak bisimulation is not preserved by the operator + in CCS or the pi-calculus: \(\tau . 0 \approx 0 \) but \(a . 0 + \tau . 0 \not\approx a . 0 + 0 \). If the left-hand process does its \(\tau \) action, the right-hand can only simulate by standing still. In the next step, the right-hand can do the action \(a \) which the left-hand can no longer simulate. This problem is solved in a standard way: in the simulation clause of bisimulation where \(\alpha = \tau \), \(Q \) must simulate the \(\tau \) action made by \(P \) with a \(\tau \) chain containing at least one \(\tau \) action.

Weak bisimulation is also not preserved by input prefixes, again for the same reason as in the pi-calculus. Closing the relation under substitution in the same way as is done for strong bisimulation leads to the definition of weak congruence, denoted \(\approx \).

Definition 20 (Weak congruence). \(P \) and \(Q \) are weakly \(\tau \)-bisimilar, written \(\Psi \triangleright P \tau\approx Q \), if \(P \tau\approx Q \) and they also satisfy weak congruence simulation:

for all \(P' \) such that \(\Psi \triangleright P \tau\rightarrow P' \) it holds:

\[
\exists Q'. \, \Psi \triangleright Q \tau\rightarrow Q' \land P' \tau\approx Q'
\]
and similarly with the roles of P and Q exchanged. We define $P \approx Q$ to mean that for all Ψ, and for all sequences of substitutions σ it holds that $\Psi \triangleright P\sigma \approx Q\sigma$.

6. Weak symbolic semantics and bisimulation

In this section we define the weak symbolic semantics and bisimulation. We begin by defining weak symbolic transitions, similarly to how we defined weak transitions in Definition 17.

Definition 21 (Weak symbolic transitions).

\[
\begin{align*}
\Psi \triangleright P & \quad \iff \quad P \\
\text{if } \Psi \triangleright P & \xrightarrow{C} P'' \land \Psi \triangleright P'' \quad \Rightarrow \quad P' \text{ then } \Psi \triangleright P & \quad \iff \quad P' \\
\text{if } \Psi \triangleright P & \xrightarrow{C} P'' \land \Psi \triangleright P'' \xrightarrow{C'} P'' \land \Psi \triangleright P'' \quad \Rightarrow \quad P' \\
\text{then } \Psi \triangleright P & \quad \iff \quad P \xrightarrow{\alpha_{C \land C' \land C''}} P'
\end{align*}
\]

The constraint of a weak transition is simply the conjunction of the individual steps of the transition. Note in passing that here also the weak input transition is straightforward.

We also need the symbolic counterpart to static implication:

Definition 22 (Symbolic static implication). A process P statically implies another process Q symbolically for C, written $P \leq^C Q$, if for each $(\sigma, \Psi) \in \text{sol}(C)$ we have that $P\sigma \leq \Psi Q\sigma$.

The weak symbolic bisimulation is a straightforward modification of the strong symbolic bisimulation (Definition 16), with the addition of Clause 1 matching the one of weak (non-symbolic) bisimulation (Definition 18).

Definition 23 (Weak Symbolic bisimulation). A weak symbolic bisimulation S is a ternary relation between constraints and pairs of agents such that $S(C, P, Q)$ implies all of

1. there exists a set of constraints \hat{C} such that $C \leftrightarrow C'$ and for all $C' \in \hat{C}$ there exists Q' and C_Q such that
 (a) $Q' \xrightarrow{C_Q}$ Q',
 (b) $C' \Rightarrow C_Q$,

22
(c) \(P \leq_{C'} Q' \), and
(d) \((C', P, Q') \in S\)
2. \(S(C, Q, P) \), and
3. If \(P \overset{\tau}{\rightarrow}_{C_P} P' \) then there exists \(\hat{C} \) such that \(C \land C_P \Leftrightarrow \bigvee \hat{C} \) and for all \(C' \in \hat{C} \) there exists \(Q' \) and \(C_Q \) such that
 (a) \(Q \overset{C_Q}{\rightarrow} Q' \), and
 (b) \(C' \Rightarrow C_Q \), and
 (c) \(S(C', P', Q') \)
4. If \(P \overset{y(x)}{\rightarrow}_{C_P} P' \), \(x\#(P, Q, C, C_P, y) \) and \(y\#(P, Q, C) \) then there exists \(\hat{C} \) such that \(C \land C_P \Leftrightarrow \bigvee \hat{C} \) and for all \(C' \in \hat{C} \) there exists \(Q' \) and \(C_Q \) such that
 (a) \(Q \overset{y(x)}{\rightarrow}_{C_Q} Q' \), and
 (b) \(C' \Rightarrow C_Q \), and
 (c) \(S(C', P', Q') \)
5. If \(P \overset{\tau}{\rightarrow}_{C_P} P' \), \(\bar{a}\#(P, Q, C, C_P, y) \) and \(y\#(P, Q, C) \) then there exists \(\hat{C} \) such that \(C \land C_P \land \{\bar{a}\#P, Q\} \Leftrightarrow \bigvee \hat{C} \) and for all \(C' \in \hat{C} \) there exists \(Q' \) and \(C_Q \) such that
 (a) \(Q \overset{\tau}{\rightarrow}_{C_Q} Q' \), and
 (b) \(C' \Rightarrow C_Q \land \{N = N'\} \), and
 (c) \(S(C', P', Q') \)

We write \(P \overset{\tau}{\rightarrow} Q \) if \((C, P, Q) \in S\) for some symbolic bisimulation \(S \). We write \(P \overset{\tau}{\rightarrow} Q \) for \(P \overset{\tau}{\rightarrow} Q_{true} \), and say that \(P \) is symbolically bisimilar to \(Q \).

We also define the symbolic counterpart to weak congruence:

Definition 24 (Symbolic weak congruence). \(P \) and \(Q \) are symbolic weakly \(\tau \)-bisimilar, written \(P \overset{\tau}{\rightarrow} Q \), if \(P \overset{\tau}{\rightarrow} Q \) and they also satisfy weak congruence simulation:

If \(P \overset{\tau}{\rightarrow}_{C_P} P' \) then there exists \(\hat{C} \) such that \(C \land C_P \Leftrightarrow \bigvee \hat{C} \) and for all \(C'' \in \hat{C} \) there exists \(Q' \) and \(C_Q \) such that

1. \(Q \overset{\tau}{\rightarrow}_{C_Q} Q' \), and
2. $C' \Rightarrow C_Q$, and
3. $P' \simeq^s C$, Q'

and similarly with the roles of P and Q exchanged. We define $P \simeq^s Q$ to mean $P \simeq^s \text{true} Q$.

7. Full abstraction

In this section we show that the symbolic and concrete equivalences coincide in both the strong and the weak case, but first we make precise the form of the concrete agents we consider.

For relating the concrete equivalences presented in Sections 2 and 5 with the symbolic equivalences presented in Section 3 and 6 it is convenient to write a concrete agent as $P\sigma$, where σ is a possibly empty finite sequence of substitutions denoting the values received so far by P. Since it is always possible to α-convert the input object to be fresh for previously received values we only consider sequences of substitutions with the following property:

if $[x_1 := L_1] \ldots [x_n := L_n]$ is a substitution sequence then $x_i \# L_j$ for $j < i$. (1)

Two other properties on sequences of substitutions are:

if $[x_1 := L_1] \ldots [x_n := L_n]$ is a substitution sequence then $x_i \# L_j$ for $j > i$. (2)

if $[x_1 := L_1] \ldots [x_n := L_n]$ is a substitution sequence then $x_i \# x_j$ for $j \neq i$. (3)

The first states that a name in the domain of the sequence does not occur in the range of the rest of the sequence, while the second states that a name in the domain only occurs once in the domain of the sequence. These properties are used in the proofs of the results in this section.

We impose four additional requirements on the substitution function. They are needed in various proofs, and all of them are natural. If X is a member of a nominal set we require that:

$X[x := x] = X$

$x[x := M] = M$

$X[x := M] = X$ if $x \# X$

$X[x := L][y := M] = X[y := M][x := L]$ if $x \# y$, M and $y \# L$
The top two requirements on substitutions are needed since we require names to be terms.

Definition 25 (Interference free). A substitution sequence is interference free if it has properties 1, 2, and 3.

Properties 2 and 3 can be derived for concrete agents:

Lemma 26. Let $P\sigma$ be an agent where σ has property 1. Then there exists a permutation p and an interference free sequence of substitutions σ' such that $(p \cdot P)\sigma' = P\sigma$.

Proof. The proof is by induction on the length of σ. See Appendix A.1. □

For this reason we shall only consider interference free sequences of substitutions. The following lemma holds for interference free sequences of substitutions:

Lemma 27. For every interference free sequence of substitutions σ there exists an interference free substitution $\sigma'[x := L]$ such that $\forall X. X\sigma = X\sigma'[x := L]$.

Proof. The proof is given in Appendix A.2. □

We now turn to showing that the concrete and symbolic equivalences coincide. We define substitution on symbolic actions by $\tau[z := \overline{M}] = \tau$, $(y(x))[\overline{z} := \overline{M}] = y[\overline{z} := \overline{M}](x[\overline{z} := \overline{M}])$, and $(\nu \overline{a}N)[\overline{z} := \overline{M}] = y[\overline{z} := \overline{M}](\nu \overline{a})N[\overline{z} := \overline{M}]$, where $x, \overline{a} \# \overline{M}, \overline{z}$.

The following two lemmas show the operational correspondence between the symbolic semantics and the concrete semantics: given a symbolic transition where the transition constraint has a solution, there is always a corresponding concrete transition (Lemma 28) and vice versa (Lemma 30).

Lemma 28 (Correspondence symbolic-concrete).

1. If $P \xrightarrow{y(x)} C$, $(\sigma, \Psi) \models C$, and $x \# \sigma$ then $\Psi \triangleright P\sigma \xrightarrow{(y(x))\sigma} P'\sigma$.

2. If $P \xrightarrow{\overline{y}(\nu \overline{a})N} C$, $(\sigma, \Psi) \models C$, and $\overline{a} \# \sigma$ then $\Psi \triangleright P\sigma \xrightarrow{\overline{y}(\nu \overline{a})N}\sigma} P'\sigma$.

3. If $P \xrightarrow{\tau} C$ and $(\sigma, \Psi) \models C$ then $\Psi \triangleright P\sigma \xrightarrow{\tau} P'\sigma$.

25
Proof. The proof is by induction on the length of the derivation of the transition. See Appendix B.1.

Lemma 29 (Weak correspondence symbolic-concrete).

1. If \(P \xrightarrow{C} P' \) and \((\sigma, \Psi) \models C \) then \(\Psi \gg P\sigma \Rightarrow P'\sigma \).

2. If \(P \xrightarrow{C'} P'', P'' \xrightarrow{\frac{y(x)}{C''}} P''', \) then \((\sigma[x := L], \Psi) \models C'_p \land C''_p \land C'''_p \), and \(x \# \sigma, P, y \) then \(\Psi \gg P\sigma \Rightarrow P''\sigma \), \(\Psi \gg P''\sigma \xrightarrow{\frac{y(x)}{\sigma}} P'''\sigma \), and \(\Psi \gg P'''\sigma[x := L] \Rightarrow P'\sigma[x := L] \).

3. If \(P \xrightarrow{\frac{\nu \tilde{a}}{C}} P', (\sigma, \Psi) \models C \), and \(\tilde{a} \# \sigma, P, y \) then \(\Psi \gg P\sigma \xrightarrow{\frac{\nu \tilde{a}}{\sigma}} P'\sigma \).

4. If \(P \xrightarrow{\gamma} P', (\sigma, \Psi) \models C \) then \(\Psi \gg P\sigma \Rightarrow P'\sigma \).

Proof. 1. The proof is by induction on the length of the transition.

Base case: In this case the transition is \(P \xrightarrow{\text{true}} P \). By Definition 17 (weak transition) we have that \(\Psi \gg P\sigma \Rightarrow P\sigma \).

Induction step: In this case we have that \(P \xrightarrow{\gamma} P'' \) and \(P'' \xrightarrow{C''} P' \).

By Lemma 28(3) we get that \(\Psi \gg P\sigma \xrightarrow{\gamma} P''\sigma \) and by induction that \(\Psi \gg P''\sigma \Rightarrow P'\sigma \). By Definition 17 (weak transitions) we finally get that \(\Psi \gg P\sigma \Rightarrow P'\sigma \).

2. This case uses case 1, Lemma 28, and some auxiliary lemmas. See Appendix B.2 for details.

3. See Appendix B.2.

4. See Appendix B.2.

Lemma 30 (Correspondence concrete-symbolic).

1. If \(\Psi \gg P\sigma \xrightarrow{M(x)} P'\sigma \), \(y \# \Psi, P, \sigma, x \), where \(x \# \sigma, P \) then there exists \(C \) such that \(P \xrightarrow{\frac{y(x)}{C}} P' \) and \((\sigma[y := M], \Psi) \models C \).

2. If \(\Psi \gg P\sigma \xrightarrow{\frac{\nu \tilde{a}}{N}} P'\sigma \), \(y \# \Psi, P, \tilde{a}, \) and \(\tilde{a} \# \sigma, P \) then there exists \(C \) such that \(P \xrightarrow{\frac{\nu \tilde{a}}{C}} P' \) and \((\sigma[y := M], \Psi) \models C \).
3. If $\Psi \triangleright P\sigma \xrightarrow{\tau} P'\sigma$ then there exists C such that $P \xrightarrow{\tau} P'$ and $(\sigma, \Psi) \models C$.

Proof. The proofs are by induction over the transition derivation (one case for each rule); for the details see Appendix B.3.

Lemma 31 (Weak correspondence concrete-symbolic).

1. If $\Psi \triangleright P\sigma \Rightarrow P'\sigma$ then there exists C such that $P \xrightarrow{\tau} P'$ and $(\sigma, \Psi) \models C$.
2. If $\Psi \triangleright P\sigma \Rightarrow P''\sigma$, $\Psi \triangleright P''\sigma \xrightarrow{(y(x))\sigma} P'''\sigma$, $P'''\sigma[x := L] \Rightarrow P'\sigma[x := L]$, $y \# \Psi$, P, x, and $x \# \sigma, P$ then there exists C such that $P \xrightarrow{(y(x))\sigma} P'$ and $(\sigma[x := L], \Psi) \models C$.
3. If $\Psi \triangleright P\sigma \xrightarrow{(y(\tilde{a})\tilde{N})\sigma} P'\sigma$, $y \# \Psi$, P, \tilde{a}, and $\tilde{a} \# \sigma, P$ then there exists C such that $P \xrightarrow{(y(\tilde{a})\tilde{N})\sigma} P'$ and $(\sigma, \Psi) \models C$.
4. If $\Psi \triangleright P\sigma \xrightarrow{\tau} P'\sigma$ then there exists C such that $P \xrightarrow{\tau} P'$ and $(\sigma, \Psi) \models C$.

Proof. 1. The proof is by induction on the length of the transition.

Base case: In this case we have that $\Psi \triangleright P\sigma \Rightarrow P\sigma$. By Definition 21 (weak symbolic transitions) we have that $P \xrightarrow{\tau} P$. Clearly $(\sigma, \Psi) \models \text{true}$.

Induction step: In this case we have that $\Psi \triangleright P\sigma \xrightarrow{\tau} P''\sigma$ and $\Psi \triangleright P''\sigma \Rightarrow P'\sigma$. By Lemma 30 we get that there exists C' such that $P \xrightarrow{\tau} P''$ and $(\sigma, \Psi) \models C'$. By induction we get that there exists C'' such that $P'' \xrightarrow{\tau} P'$ and $(\sigma, \Psi) \models C''$. By Definition 21 we get that $P \xrightarrow{\tau} P'$ where $C = C' \land C''$. Clearly $(\sigma, \Psi) \models C$.

2. This case uses case 1, Lemma 30, and some auxiliary lemmas. See Appendix B.4 for details.
3. See Appendix B.4.
4. See Appendix B.4.
Theorem 32 (Soundness (strong)). Assume S is a symbolic bisimulation and let $R = \{(\Psi, P\sigma, Q\sigma) : \exists C. (\sigma, \Psi) \models C \text{ and } (C, P, Q) \in S\}$. Then R is a concrete bisimulation.

The full proof is in Appendix B.5. The proof idea to show that R is a concrete bisimulation is to assume $(\Psi, P\sigma, Q\sigma) \in R$ and that $P\sigma$ has a transition in environment Ψ. We use Lemma 30 to find a symbolic transition from P, then the fact that S is a symbolic bisimulation to find a simulating symbolic transition from Q, and finally Lemma 28 to find the required concrete transitions from $Q\sigma$.

Similarly to [13] we need an extra assumption about the expressiveness of constraints: for all R, P, Q such that R is a concrete bisimulation there exists a constraint C such that $(\Psi, \sigma) \models C \iff (\Psi, P\sigma, Q\sigma) \in R$. In order to determine symbolic bisimilarity in an efficient way we need to compute this constraint, which is easy for the pi-calculus [14, 15, 16] and harder (but in many practical cases possible) for cryptographic signatures [7]. These results suggest that our constraints are sufficiently expressive, but for other instances of psi-calculi we may have to extend the constraint language. We leave this as an area of further research.

Theorem 33 (Completeness (strong)). Assume that R is a concrete bisimulation and let $S = \{(C, P, Q) : (\sigma, \Psi) \models C \text{ implies } (\Psi, P\sigma, Q\sigma) \in R\}$. Then S is a symbolic bisimulation.

The full proof is in Appendix B.6. The proof idea is the converse of the proof for Theorem 32. The expressiveness assumption of constraints mentioned above is needed in order to construct the disjunction of constraints in the symbolic bisimulation. From these two theorems we get:

Corollary 34 (Full abstraction (strong)). $P \sim Q$ if and only if $P \sim_s Q$.

We now turn to showing the correspondence between weak bisimulations.

Theorem 35 (Soundness (weak)). Assume S is a weak symbolic bisimulation and let $R = \{(\Psi, P\sigma, Q\sigma) : \exists C. (\sigma, \Psi) \models C \text{ and } S(C, P, Q)\}$. Then R is a weak concrete bisimulation.

Theorem 36 (Completeness (weak)). Assume that R is a weak concrete bisimulation and let $S = \{(C, P, Q) : (\sigma, \Psi) \models C \text{ implies } (\Psi, P\sigma, Q\sigma) \in R\}$. Then S is a weak symbolic bisimulation.
The proofs are very similar to the proof of Theorems 32 and 33, but using the weak versions of the correspondence lemmas. The details are in Appendix B.7 and Appendix B.8.

Theorem 37 (Soundness (weak congruence)). Assume S is a symbolic weak congruence and let $R = \{ (\Psi, P\sigma, Q\sigma) : \exists C. (\sigma, \Psi) \models C$ and $S(C, P, Q) \}$. Then R is a concrete weak congruence.

The proof is very similar to the case of τ-simulation of Theorem 35. It is found in Appendix B.9.

Theorem 38 (Completeness (weak congruence)). Assume that R is a weak concrete congruence and let

$$S = \{ (C, P, Q) : (\sigma, \Psi) \models C$ implies $(\Psi, P\sigma, Q\sigma) \in R \}.$$

Then S is a weak symbolic congruence.

The proof is very similar to the case of τ-simulation of Theorem 36. It is found in Appendix B.10.

From these two theorems we get:

Corollary 39 (Full abstraction (weak)). $P \approx Q$ if and only if $P \approx^s Q$.

8. The bisimulation algorithm and its correctness

In Figures 1-3 we present an algorithm that computes a constraint C such that $P \approx_C Q$ and a witnessing bisimulation. The algorithm, adapted from [13], does a depth-first search of the underlying symbolic transition graph. The main function $\text{bisim}(P, Q)$ calls $\text{close}(P, Q, \text{true}, \emptyset)$. The first two arguments to $\text{close}(P, Q, C, W)$ are the current agents being compared, the third argument are the constraints accumulated so far, which are used to construct a witnessing bisimulation, and the fourth argument contains the pairs of agents that have already been compared.

The function close calls $\text{match-stimp}(P, Q, C, W)$, $\text{match-}\tau(P, Q, C, W)$, $\text{match-out}(P, Q, C, W)$, and $\text{match-in}(P, Q, C, W)$ in order to compute the constraints for static implication and matching τ, output, and input actions respectively. The function $\text{match-stimp}(P, Q, C, W)$ computes a constraint for which P statically implies Q, and a table that represents a witnessing bisimulation. The other functions compute a constraint for which Q simulates P, and a table of the witnessing bisimulation. The conjunction of these
constraints is then returned as a constraint for which \(P \) and \(Q \) are bisimilar. These functions correspond to the different clauses in the definition of weak bisimulation.

The algorithm assumes the presence of yet another type of constraint, \(F \leq G \). This is used to capture static implication, and its solutions are all pairs \((\sigma, \Psi)\) such that \(\forall \varphi. \Psi \otimes (F\sigma) \vdash \varphi \iff \Psi \otimes (G\sigma) \vdash \varphi \). We define \(\bigwedge \emptyset = \text{true} \) and \(\bigvee \emptyset = \text{false} \).

A table is a finite function from pairs of agents to constraints. We write \(T \sqcup T' \) for the union of \(T \) and \(T' \) defined only when \(\text{dom}(T) \cap \text{dom}(T') = \emptyset \). We thus have that \((T \sqcup T')(P, Q) = T(P, Q) \) if \((P, Q) \in \text{dom}(T)\) and \((T \sqcup T')(P, Q) = T'(P, Q) \) if \((P, Q) \in \text{dom}(T')\). The operator \(\sqcup \) is used instead of \(\cup \) in the algorithm since we work under the assumption that the graphs are finite with a tree structure.

When choosing a fresh \(y \) in functions \texttt{match-out} and \texttt{match-in}, the function \texttt{newName} is used. It picks a name that is fresh for all its arguments. The argument \(X \) is the set of names that have been used as subjects previously in the algorithm, and as a side effect, the newly chosen \(y \) is added to this set. The ensures that all such \(y \) are globally unique.

Note that nowhere in the algorithm the constraints are checked for consistency, they are only accumulated. This means that the algorithm can be run also on psi-instances that are equipped with an undecidable entailment relation. However in these cases it might be difficult to interpret the result.

8.1. Correctness

We now turn to show the correctness of the algorithm, and we follow [13] closely. Similarly to [13] we here restrict ourselves to finite symbolic transition graphs, i.e. they are finitely branching and have a finite number of nodes. Like [13], for simplicity we also assume that the graphs have a tree structure. Since every finite graph can be expanded to a finite tree, this restriction is not too limiting.

We first look at termination of the algorithm. For each recursive call to \texttt{close}, the parameter \(W \) is increased by a pair \((P, Q)\) not already in \(W \). For this reason, since we assume that the symbolic transition graphs are finite, eventually the test \((P, Q) \in W\) will be true, and the recursion stop. Hence we have the following lemma:

Lemma 40 (Termination). If the symbolic transition graphs of \(P \) and \(Q \) are finite then \(\text{bisim}(P, Q) \) terminates.
bisim(P, Q)

P and Q are agents. Returns a pair (C, T) where C is a constraint such that $P \approx_C Q$ and T is a table describing a witnessing bisimulation. */

bisim(P, Q) = close($P, Q, \text{true}, \emptyset$)

close(P, Q, C, W)

P and Q are agents, C are the constraints seen so far, and W is a set of pairs of agents that have already been visited by the algorithm. Returns a pair (C', T), where C' is a constraint necessary for P and Q to be bisimilar, and T is a table describing a partial witnessing bisimulation. */

close(P, Q, C, W)

if $(P, Q) \in W$ then
 (true, \emptyset)
else let ($C_{\text{stimp}}, T_{\text{stimp}}$) = match-stimp($P, Q, C, W$)
 ($C'_{\text{stimp}}, T'_{\text{stimp}}$) = match-stimp($Q, P, C, W$)
 (C_{τ}, T_{τ}) = match-τ(P, Q, C, W)
 (C'_τ, T'_τ) = match-τ(Q, P, C, W)
 ($C_{\text{out}}, T_{\text{out}}$) = match-out($P, Q, C, W$)
 ($C'_{\text{out}}, T'_{\text{out}}$) = match-out($Q, P, C, W$)
 ($C_{\text{in}}, T_{\text{in}}$) = match-in($P, Q, C, W$)
 ($C'_{\text{in}}, T'_{\text{in}}$) = match-in($Q, P, C, W$)

in $(C_{\text{stimp}} \land C'_{\text{stimp}} \land C_{\tau} \land C'_\tau \land C_{\text{out}} \land C'_{\text{out}} \land C_{\text{in}} \land C'_{\text{in}})$,
$T_{\text{stimp}} \sqcup T'_{\text{stimp}} \sqcup T_{\tau} \sqcup T'_\tau \sqcup T_{\text{out}} \sqcup T'_{\text{out}} \sqcup T_{\text{in}} \sqcup T'_{\text{in}} \sqcup$
$\{(P, Q) \mapsto \{C \land C_{\text{stimp}} \land C_{\tau} \land C_{\text{out}} \land C_{\text{in}}\}\}$ \sqcup
$\{(Q, P) \mapsto \{C \land C'_{\text{stimp}} \land C'_\tau \land C'_{\text{out}} \land C'_{\text{in}}\}\}$

Figure 1: bisim and close functions
/** match-stimp\((P,Q,C,W)\)
The parameters are as in close\((P,Q,C,W)\). Returns a pair \((C',T)\) where
\(C'\) is a constraint that is necessary for \(P\) to statically imply \(Q\), and \(T\) is
a table describing a partial witnessing bisimulation. */

match-stimp\((P, Q, C, W)\)
let Qtr = \{\((C_{Qi}, Q_i) : Q \implies Q_i\)\}
\((\bar{C}, \bar{T}) = \text{map } \lambda(C_{Qi}, Q_i).\)
let \((C_i, T_i) = \text{close}(P, Q_i, C \land C_{Qi}, W \cup \{(P,Q)\})\)
in \((C_{Qi} \land C_i \land (C_i \land C_{Qi} \Rightarrow \mathcal{F}(P) \leq \mathcal{F}(Q_i)), T_i)\) Qtr
in \((\text{true} \Rightarrow \bigvee \bar{C}, \bigcup \bar{T})\)

/** match-\(\tau\)\((P,Q,C,W)\)
The parameters are as in close\((P,Q,C,W)\). Returns a pair \((C',T)\) where
\(C'\) is a constraint that is necessary for \(Q\) to simulate \(P\) for \(\tau\)-actions,
and \(T\) is a table describing a partial witnessing bisimulation. */

match-\(\tau\)\((P, Q, C, W)\)
let Ptr = \{\((C_{Pi}, P_i) : P \xrightarrow{\tau C_{Pi}} P_i\)\}
Qtr = \{\((C_{Qj}, Q_j) : Q \implies Q_j\)\}
\((\bar{C}, \bar{T}) = \text{map } \lambda(C_{Pi}, P_i).\)
let \((\bar{C}_i, \bar{T}_i) = \text{map } \lambda(C_{Qj}, Q_j).\)
let \((C_{ij}, T_{ij}) = \text{close}(P_i, Q_j, C \land C_{Pi} \land C_{Qj}, W \cup \{(P,Q)\})\)
in \((C_{Qj} \land C_{ij}, T_{ij})\) Qtr
in \((C_{Pi} \Rightarrow \bigvee \bar{C}_i, \bigcup \bar{T}_i)\) Ptr
in \((\land \bar{C}, \bigcup \bar{T})\)

Figure 2: match-stimp and match-\(\tau\) functions
match-out(P, Q, C, W)

The parameters are as in close(P, Q, C, W). Returns a pair (C', T) where C' is a constraint that is necessary for Q to simulate P for outputs, and T is a table describing a partial witnessing bisimulation. */

match-out(P, Q, C, W)

let $Ptr = \{([y(\nu\bar{a})]N, C_{Pi}, P_i) : P \xrightarrow{[y(\nu\bar{a})]N}_{C_{Pi}} P_i$

$(\widetilde{C}, \widetilde{T}) = \text{map } \lambda([y(\nu\bar{a})]N, C_{Pi}, P_i)$.

let $Qtr = \{([z(\nu\bar{c})]N', C_{Qj}, Q_j) : Q \xrightarrow{[z(\nu\bar{c})]N'}_{C_{Qj}} Q_j$

$(\widetilde{C}_i, \widetilde{T}_i) = \text{map } \lambda([z(\nu\bar{c})]N', C_{Qj}, Q_j)$.

let $(C_{ij}, T_{ij}) = $ close($P_i, Q_j, C \land C_{Pi} \land C_{Qj} \land \{N = N'\} \land \{\bar{a}\#P, Q\}, W \cup \{(P, Q)\}$

in $(C_{Qj} \land \{N = N'\} \land C_{ij}, T_{ij})$ Qtr

in $(C_{Pi} \land \{\bar{a}\#P, Q\} \Rightarrow \bigvee C_i, \bigcup T_i)$ Ptr

in $(\bigwedge \widetilde{C}, \bigcup \widetilde{T})$

match-in(P, Q, C, W)

The parameters are as in close(P, Q, C, W). Returns a pair (C', T) where C' is a constraint that is necessary for Q to simulate P for inputs, and T is a table describing a witnessing bisimulation. */

match-in(P, Q, C, W)

let $Ptr = \{([y(x)]N, C_{Pi}, P_i) : P \xrightarrow{[y(x)]N}_{C_{Pi}} P_i$

$(\widetilde{C}, \widetilde{T}) = \text{map } \lambda([y(x)]N, C_{Pi}, P_i)$.

let $Qtr = \{([z(x')]N', C_{Qj}, Q_j) : Q \xrightarrow{[z(x')]N'}_{C_{Qj}} Q_j$

$(\widetilde{C}_i, \widetilde{T}_i) = \text{map } \lambda([z(x')]N', C_{Qj}, Q_j)$.

let $(C_{ij}, T_{ij}) = $ close($P_i, Q_j, C \land C_{Pi} \land C_{Qj}, W \cup \{(P, Q)\}$

in $(C_{Qj} \land C_{ij}, T_{ij})$ Qtr

in $(C_{Pi} \Rightarrow \bigvee C_i, \bigcup T_i)$ Ptr

in $(\bigwedge \widetilde{C}, \bigcup \widetilde{T})$

Figure 3: match-out and match-in functions

33
We now state the soundness and completeness theorems for the algorithm:

Theorem 41 (Soundness of the algorithm).
If $C = \text{bisim}(P,Q)$ then $P \approx_C Q$.

Theorem 42 (Completeness of the algorithm).
If $P \approx_C Q$ and $\text{bisim}(P,Q,C_m,T)$ then $C \Rightarrow C_m$.

Proof sketch: These theorems are proven by defining an invariant that is an approximation of bisimulation, and then showing that the functions `close` and `match-*` maintain this invariant. The proofs follow [13] closely and are found in Appendix C.

The completeness proof only works if the case analysis in the definition of symbolic bisimulation is defined with equality, e.g. $C \land C_P \Leftrightarrow \bigvee \hat{C}$, instead of implication, $C \land C_P \Rightarrow \bigvee \hat{C}$, while the other proofs work with either definition. This is the reason the definition of symbolic bisimulation has changed in this respect, compared to [12]. The same problem manifests itself in [13], where the completeness proof of the algorithm uses a definition with equality instead of implication [28], not found in the paper. The correct definition is given in a subsequent paper by the same authors [29].

8.2. Extensions

To compute the congruence of Definition 24 the algorithm in Figure 4 is used. It calculates a constraint C such that $P \approx^*_{\tau_C} Q$. The additions are straightforward. The function `match-τ-strict` is essentially the same as `match-τ`, but requires Q to simulate with at least one τ-transition. The function `τ-bisim` captures the two requirements of Definition 24 that the agents should be bisimilar and that they satisfy weak congruence simulation (`match-τ-strict`).

The algorithm can easily be made to compute strong bisimulation instead of weak. The modification is to change `match-τ`, `match-in`, and `match-out` to use strong transitions instead, remove the call to `match-stimp` in function `close`, and replace C_{stimp} in `close` with $\mathcal{F}(P) \leq \mathcal{F}(Q)$, and C_{stimp}' with $\mathcal{F}(Q) \leq \mathcal{F}(P)$.

9. Conclusion and Future Work

We have defined a symbolic operational semantics for psi-calculi and both strong and weak symbolic bisimulations which are fully abstract with regards
/* τ-bisim(P, Q)
 P and Q are agents. Returns a pair (C, T) where C is a constraint such
 that $P \approx_{\tau}^ s Q$ and T is a table describing a witnessing bisimulation. */

τ-bisim(P, Q)
 let (C, T) = bisim(P, Q)
 (C', T') = match-τ-strict(P, Q)
 in (C \land C' \land T \cup T' \cup T')

/* match-τ-strict(P, Q)
The parameters are as in close(P, Q) Returns a pair (C', T) where C'
is a constraint that is necessary for Q to simulate P with at least one
τ-action, and T is a table describing a witnessing bisimulation. */

match-τ-strict(P, Q)
 let Ptr = \{(P, C_{Pi}, P_i) : P \xrightarrow{\tau}_{C_{Pi}} P_i\}
 Qtr = \{(Q, C_{Qj}, Q_j) : Q \xRightarrow{\tau}_{C_{Qj}} Q_j\}
 (C̃, T̃) = map (λ(P, CPi, P_i) .
 let (C̃_i, T̃_i) = map (λ(Q, C_{Qj}, Q_j) .
 let (C_{ij}, T_{ij}) = close(P_i, Q_j, CPi \land C_{Qj}, 0)
 in (C_{Qj} \land C_{ij}, T_{ij})) Qtr
 in (CPi \Rightarrow \bigvee C̃_i, \bigcup T̃_i)) Ptr
 in (\land C̃, \bigcup T̃)

Figure 4: Congruence algorithm
to the original semantics. While the developments in [8, 9] give meta-theory for a wide range of calculi of mobile processes with nominal data and logic, the work presented in this paper gives a solid foundation for automated tools for the analysis of systems modelled in such calculi.

As mentioned in the introduction, the purity of the original semantics of psi-calculi has made the symbolic semantics easier to develop. There are no structural equivalence rules, which are a complication in the applied pi-calculus. The scope opening rule is because of this straight-forward which makes knowledge representation simpler than in spi-calculi, and the bisimulation less complex. Nevertheless, the technical challenges have not been absent: the precise design of the constraints and their solution has been delicate. Since assertions may occur under a prefix, the environment can change after a transition. Keeping the assertion Ψ in the transition constraints (on the form $(\nu a)\{\Psi \vdash \varphi\}$) essentially keeps a snapshot of the environment that gives rise to the transition. An alternative would be to use time stamps to keep track of which environment made which condition true, but that approach seems more difficult. It is also worth mentioning the freshness constraints, $\{a\neq X\}$. They solve the problem of keeping track of which names have been opened in the bisimulation. Since this does not need to be part of the partitioning in the bisimulation, another approach is to make this another parameter of the bisimulation as done in [21], but since freshness constraints fit nicely into our formalism we chose this solution.

The original psi-calculi admit pattern matching in inputs. In a symbolic semantics this would lead to complications in the COM-rule, which should introduce a substitution for the names bound in the pattern. This means introducing more fresh names and constraints, and it is not clear that the convenience of pattern matching outweighs such an awkward semantic rule. We leave this as an area for further study.

The work on the algorithm amounted to a straightforward adaptation of the algorithm in [13]. A tool which implements the bisimulation algorithm is currently in development. We intend to interface constraint solvers developed for specific application domains (e.g. security) to it. We will also produce mechanized proofs of the adequacy of the symbolic semantics, using the Isabelle theorem prover.

When typing schemes have been developed for psi-calculi, a natural progression would be to take advantage of those also in the symbolic semantics, to further constrain the possible values and thus the size of state spaces.
References

[8] J. Bengtson, M. Johansson, J. Parrow, B. Victor, Psi-calculi: A framework for mobile processes with nominal data and logic, Logical Methods in Computer Science Accepted for publication. This is an extended version of [30].

URL http://portal.acm.org/citation.cfm?id=646728.703374

Appendix A. Proofs about substitution sequences

Appendix A.1. Proof of Lemma 26

Proof. This follows directly from the following variant of the lemma: Let $P\sigma$ be an agent where σ has property 1. Given a finite set of names B such that $\text{dom}(\sigma)\#B$, there exists a permutation p and an interference free sequence of substitutions σ' such that $(p \cdot P)\sigma' = P\sigma$ and $\text{dom}(\sigma')\#B$.

The proof is by induction on the length of σ. In the base case σ is the empty sequence, and the empty sequence trivially satisfies properties 1, 2, and 3.

In the induction step we have that $\sigma = [x := L]\sigma''$. Let $B' = B \cup (L)$. We know that $x, \text{dom}(\sigma'')\#B$ and since $[x := L]\sigma''$ satisfies property 1 we know that $\text{dom}(\sigma'')\#B'$. By induction we get that there exists a permutation p' and an interference free σ''' such that $(p' \cdot (P[x := L]))\sigma''' = P\sigma$ and $\text{dom}(\sigma''')\#B'$.

Let $y\#B', P, x, \sigma''', p'$, Then by the requirements on substitution we have that $P[x := L] = ((x y) \cdot P)[y := L]$. This gives us that $(p' \cdot (((x y) \cdot P)[y := L]))\sigma''' = P\sigma$. Using properties of permutations we rewrite the left hand side to $(p'(x y) \cdot P)[p' \cdot y := p' \cdot L]\sigma'''$. Since $p'\#y, L$ this is the same as $(p'(x y) \cdot P)[y := L]\sigma'''$. Thus we get that $p = p'(x y)$ and $\sigma' = [y := L]\sigma'''$. Since $\text{dom}(\sigma''')\#B'$ and σ''' is interference free it also satisfies property 1. Since $y\#B'$ and $\text{dom}(\sigma''')\#B'$ we get that $\text{dom}(\sigma')\#B$.

Appendix A.2. Proof of Lemma 27

Proof. First we observe that we can always use the requirement $X[x := L][y := M] = X[y := M][x := L]$ if $x\#y, M$ and $y\#L$ if the sequence $[x := L][y := M]$ is interference free. We also have that if $[x := L][y := M]$ is interference free, then so is $[y := M][x := L]$.

We have two cases to consider: either $x \in \text{dom}(\sigma)$ or $x \notin \text{dom}(\sigma)$. In the second case we use the requirement $X[x := x] = X$ and let $\sigma' = \sigma$.

The first case is proved by induction over the length of the substitution sequence. In the base case we simply have that $\sigma = [x := L]$, and we let $\sigma' = \epsilon$. In the induction step we have that $X\sigma = X\sigma''[y := L']$. By induction we get that $X\sigma'' = X\sigma'''[x := L]$. We then have that $X\sigma = X\sigma'''[x := L][y := L']$. Using the requirement on substitution we get that $X\sigma'''[x := L][y := L'] = X\sigma'''[y := L'][x := L]$. We then have that $\sigma' = \sigma'''[y := L']$. □
Appendix B. Proofs for correspondence, soundness, and completeness

We first present a number of lemmas used in the proofs.

Lemma 43 (Weakening). \((\sigma, \Psi) \models C \implies \forall \Psi' : (\sigma, \Psi \otimes \Psi') \models C\)

Proof. Follows directly from the definitions, since Definition 3 includes Weakening.

Lemma 44. \((\sigma, \Psi) \models (\nu a)C \land a \# \sigma, \Psi \implies (\sigma, \Psi) \models C\)

Proof. Immediate from the definition of solutions for \((\nu a)C\).

Lemma 45 (Change subject). Let \(B\) be any finite set of names and let \(\mathcal{F}(P) = (\nu \tilde{b}_P)\Psi_P\).

\[
\Psi \triangleright P \quad \frac{\pi (\nu \tilde{a})N}{(\nu \tilde{b})\{\Psi \otimes \Psi_P \vdash M_P \leftrightarrow y\} \land C} \quad P' \\

\implies \exists z \text{ such that } z \# \Psi, \tilde{b}, P, B, C \land \Psi \triangleright P'\]

\[
\Psi \triangleright P \quad \frac{\pi (\nu \tilde{a})N}{(\nu \tilde{b})\{\Psi \otimes \Psi_P \vdash M_P \leftrightarrow z\} \land C} \quad P' \\

\implies \exists z \text{ such that } z \# \Psi, \tilde{b}, P, B, C \land \Psi \triangleright P'\]

Proof. By induction on the length of the derivation of the transition. The set of names \(B\) is necessary to be able to use the induction hypothesis is some of the induction cases.

Lemma 46.

\[
\begin{align*}
(\sigma, \Psi) &\models (\nu \tilde{a} \tilde{b})\{\Psi' \vdash M \leftrightarrow N\} \land (\nu \tilde{a})C \\
&\land y \# \sigma, \Psi, \tilde{a}, \tilde{b}, \Psi', M, N, C \\
&\land \tilde{a} \# \tilde{b} \\
&\land \tilde{a}, \tilde{b} \# \sigma, \Psi \\
\implies (\sigma \cdot [y := M\sigma], \Psi) &\models (\nu \tilde{b})\{\Psi' \vdash N \leftrightarrow y\} \land C
\end{align*}
\]
Proof. Just expand the definitions involved and use the freshness assumptions. □

Lemma 47. If \(\Psi \vdash P \xrightarrow{\alpha} C \) \(P' \) and \(a \# P, \text{bn}(\alpha) \) then \(a \# P' \).

Proof. The proof is by induction on the length of the derivation of the transition.

In In this case the transition is derived like:

\[
\begin{align*}
\text{In} & \quad \Psi \vdash M(x) \cdot P \xrightarrow{\frac{y(x)}{|\Psi + M \leftrightarrow y|}} P \\
& \quad y \# \Psi, M, P, x
\end{align*}
\]

We know that \(a \# M(x) \cdot P, x \). Then also \(a \# P \).

Out In this case the transition is derived like:

\[
\begin{align*}
\text{Out} & \quad \Psi \vdash MN \cdot P \xrightarrow{\frac{yN}{|\Psi + MN \leftrightarrow y|}} P \\
& \quad y \# \Psi, M, N, P
\end{align*}
\]

We know that \(a \# MN \cdot P \). Then also \(a \# P \).

Case In this case the transition is derived like:

\[
\begin{align*}
\text{Case} & \quad \Psi \vdash P_i \xrightarrow{\frac{\alpha}{C}} P' \\
& \quad \text{case } \tilde{\varphi} : \tilde{P} \xrightarrow{\frac{\alpha}{C \land |\Psi + \varphi|}} P'
\end{align*}
\]

We know that \(a \# \text{case } \tilde{\varphi} : \tilde{P}, \text{bn}(\alpha) \). Then also \(a \# P_i \). By induction we get that \(a \# P' \).

Com In this case the transition is derived like:

\[
\begin{align*}
\text{Com} & \quad \Psi_Q \otimes \Psi \vdash P \xrightarrow{\frac{\overline{\Psi(v\bar{\alpha})N}}{(\nu b_P)\{\Psi|P \leftrightarrow y\} \land C_P}} P' \\
& \quad \Psi_P \otimes \Psi \vdash Q \xrightarrow{\frac{\overline{\Psi(z(x))}}{(\nu b_Q)\{\Psi|Q \leftrightarrow z\} \land C_Q}} Q' \\
& \quad (\nu a)(P' \mid Q'|x := N] \Psi' = \Psi \otimes \Psi_P \otimes \Psi_Q \\
& \quad \tilde{a} \# Q, \\
& \quad y \# z \\
& \quad \Psi \vdash P \mid Q \xrightarrow{\frac{\tau}{(\nu b_P, b_Q)\{\Psi|P \leftrightarrow M_P \leftrightarrow M_Q\} \land (\nu b_Q)C_Q \land (\nu b_P)C_Q}} (\nu a)(P' \mid Q'|x := N]
\end{align*}
\]

We know that \(a \# P \mid Q \). Let \(p \subseteq \tilde{a} \times (p \cdot \tilde{a}) \) be a permutation such that \(a \# p \cdot \tilde{a} \). By \(\alpha \)-conversion we write the transition from \(P \) as \(\Psi_Q \otimes \Psi \vdash \)
\[
P \xrightarrow{\Psi(\nu p \cdot \tilde{a})P \cdot N} p \cdot P'. \text{ By induction we get that } a \# p \cdot P'. \text{ Let } q \subseteq \{x\} \times (q \cdot \{x\}) \text{ be a permutation such that } a, p \cdot \tilde{a} \# q \cdot x. \text{ By } \alpha\text{-conversion we write the transition from } Q \text{ as } \Psi P \otimes \Psi \xrightarrow{\alpha} \nu \tilde{b} Q \xrightarrow{\tilde{\tau}(q \cdot x)} q \cdot Q'.
\]

By induction we get that \(a \# q \cdot Q\) and that \(p \cdot \tilde{a} \# q \cdot Q\). Since \(a \# p \cdot N\), we also have that \(a \# p \cdot N\). This means that \(a \# (q \cdot Q)[q \cdot x := p \cdot N]\) by one of the requirements on substitution. All together we get that \(a \# (\nu p \cdot \tilde{a})(p \cdot P' | (q \cdot Q)[q \cdot x := p \cdot N])\). By the substitution law for \(\alpha\)-conversion we get that \(a \# (\nu p \cdot \tilde{a})(p \cdot P' | Q'[x := p \cdot N])\). Finally, by \(\alpha\)-converting we get that \(a \# (\nu \tilde{a})(P' | Q'[x := N])\).

Par In this case the transition is derived like

\[
\text{PAR} \quad \Psi \otimes \Psi \gg P \xrightarrow{\alpha} P' \quad \text{bn}(\alpha) \# Q
\]

\[
\text{We know that } a \# P | Q, \text{ bn}(\alpha). \text{ By induction we get that } a \# P'. \text{ Then also } a \# P' | Q.
\]

Scope In this case the transition is derived like

\[
\text{SCOPE} \quad \Psi \gg P \xrightarrow{\alpha} P' \quad b \# \alpha, \Psi
\]

\[
\text{We know that } a \# (\nu b)P, \text{ bn}(\alpha). \text{ Let } p \subseteq \{b\} \times (p \cdot \{b\}) \text{ such that } a \# p \cdot b, p \cdot P, p \cdot \text{bn}(\alpha). \text{ By equivariance the premise is rewritten to } p \cdot \Psi \gg p \cdot P \xrightarrow{\nu \alpha} p \cdot P'. \text{ By induction we get that } a \# p \cdot P'. \text{ Then also } a \# (\nu p \cdot b)(p \cdot P'). \text{ By } \alpha\text{-equivalence we get that } a \# (\nu b)P'.
\]

Open In this case the transition is derived like

\[
\text{OPEN} \quad \Psi \gg (\nu b)P \xrightarrow{\nu \alpha} P' \quad b \in \mathbb{N}(N)
\]

\[
\text{We know that } a \# (\nu b)P, \tilde{a}, b. \text{ This gives us that } a \# P. \text{ By induction we get that } a \# P'.
\]
In this case the transition is derived like

\[
\begin{array}{c}
\Psi \triangleright P \mid P \xrightarrow{\alpha} P' \\
\Psi \triangleright !P \xrightarrow{C} P'
\end{array}
\]

We know that \(a \#!P, \text{bn}(\alpha)\). This gives us that \(a \#P \mid !P\). By induction
we get that \(a \#P'\).

\begin{lemma}
1. If \(\Psi \triangleright P \xrightarrow{\frac{y(x)}{(\nu\tilde{b})[\Psi \vdash M \leftrightarrow y] \land C_P}} P' \land z \# \Psi, P, x\) then \(z \# C_P, P', n((\nu\tilde{b})[\Psi' \vdash M \leftrightarrow y])\)\)

\(\frac{M \leftrightarrow y}{} \) \(\setminus y\).

2. If \(\Psi \triangleright P \xrightarrow{\frac{\frac{y(x)}{(\nu\tilde{b})[\Psi \vdash M \leftrightarrow y] \land C_P}}{\frac{\frac{y(x)}{(\nu\tilde{a})N}}{\Psi \vdash M \leftrightarrow y}} P' \land z \# \Psi, P, \tilde{a} then z \# C_P, P', n((\nu\tilde{b})[\Psi' \vdash M \leftrightarrow y])\)\)

\(\frac{M \leftrightarrow y}{} \) \(\setminus y\).

3. If \(\Psi \triangleright P \xrightarrow{\frac{\frac{y(x)}{(\nu\tilde{a})}}{\Psi \vdash M \leftrightarrow y}} P' \land z \# \Psi, P then z \# C, P'\).
\end{lemma}

\begin{proof}
The proof is by induction on the length of the derivation of the transition.

\begin{in}
In this case the transition is derived like

\[
\begin{array}{c}
\Psi \triangleright M(x) \cdot P \xrightarrow{\frac{y(x)}{(\nu\tilde{b})[\Psi \vdash M \leftrightarrow y]}} P' \land z \# \Psi, M, P, x
\end{array}
\]

We know that \(z \# \Psi, M(x) \cdot P, x\). This immediately gives us that \(z \# P, (\nu\tilde{b})[\Psi' \vdash M \leftrightarrow y] \land y\) \(\setminus y\). Since in this case \(C_P = \text{true}\) also \(z \# C_P\).
\end{in}

\begin{out}
Out This case is similar to In.
\end{out}

\begin{case}
Case We first look at the case where the transition is an input. In this case the transition is derived like

\[
\begin{array}{c}
\Psi \triangleright P_i \xrightarrow{\frac{y(x)}{(\nu\tilde{b})[\Psi \vdash M \leftrightarrow y] \land C'_P}} P'
\end{array}
\]

We know that \(z \# \Psi, \varphi_i, P_i, x\). By induction we get that \(z \# C'_P, P'\), \((\nu\tilde{b})[\Psi' \vdash M \leftrightarrow y] \land y\) \(\setminus y\) which gives us everything we need except \(z \# (\nu\tilde{b})[\Psi' \vdash \varphi_i]\), but this follows from \(z \# \Psi, \varphi_i\).

The cases for output and \(\tau\) are similar.
\end{case}
In this case the transition is derived like

\[
\Psi_Q \otimes \Psi \succ P \xrightarrow{\pi(\nu \tilde{a}) N} P'
\]

\[
\Psi_P \otimes \Psi \succ Q \xrightarrow{\tilde{z}(x)} Q'
\]

We know that \(z \# \Psi, P | Q \). In order to use the induction hypothesis we must have that \(z \# \Psi_Q, \Psi_P \). If this is not the case, it is because \(z \in \tilde{b}_P \) or \(z \in \tilde{b}_Q \). Since \(\tilde{b}_P \# \tilde{b}_Q \) it cannot be in both. We here only consider the case where \(z \in \tilde{b}_Q \). The case where \(z \in \tilde{b}_P \) symmetric, and the case where it is neither is easier. Furthermore we only look at the case where \(z \in \tilde{a} \) since the case where it is not is easier. By Lemma 47 we get that \(z \# Q' \).

Let \(d \) be a fresh name, and let \(p = (z \ d) \). By equivariance we get that

\[
p \cdot \Psi_Q \otimes \Psi \succ P \xrightarrow{\sigma(\nu p \cdot \tilde{a}) p \cdot N} p \cdot P'
\]

and by \(\alpha \)-conversion that

\[
\Psi_P \otimes \Psi \succ Q \xrightarrow{p \cdot \tilde{z}(x)} Q'
\]

By induction we get that \(z \# p \cdot P', p \cdot C_P, C_Q, (\nu \tilde{b}_P) \{ p \cdot \Psi' \vdash p \cdot M_P \leftrightarrow p \cdot y \} \setminus p \cdot y, (\nu p \cdot \tilde{b}_Q) \{ p \cdot \Psi' \vdash p \cdot M_Q \leftrightarrow p \cdot z' \} \setminus p \cdot z' \). This gives us that \(z \# (\nu \tilde{b}_P, p \cdot \tilde{b}_Q) \{ p \cdot \Psi' \vdash p \cdot M_P \leftrightarrow p \cdot M_Q \} \) and by \(\alpha \)-equivalence that \(z \# (\nu \tilde{b}_P, \tilde{b}_Q) \{ p \cdot \Psi' \vdash p \cdot M_P \leftrightarrow M_Q \} \). Since \(z \# p \cdot C_P \) we have that \(z \# (\nu p \cdot \tilde{b}_Q)(p \cdot C_P) \) and by \(\alpha \)-equivalence that \(z \# (\nu \tilde{b}_Q)C_P \). Since \(z \# C_Q \) we get that \(z \# (\nu \tilde{b}_P)C_Q \). We know that \(z \# p \cdot P', Q', x, p \cdot N \) which gives us that \(z \# p \cdot P'|Q'[x := p \cdot N] \), and that \(z \# (\nu p \cdot \tilde{a}) (p \cdot P'|Q'[x := p \cdot N]) \). By \(\alpha \)-conversion we get that \(z \# (\nu \tilde{a}) (P'|Q'[x := N]) \).

Par We first look at the case where the transition is an input. In this case
the transition is derived like

\[
\begin{align*}
\text{PAR} & \quad \Psi \otimes \Psi_Q \triangleright P \quad \frac{y(x)}{(\nu b)[\Psi \vdash y] \land C_P} \quad \rightarrow \quad P' \quad x \# Q \\
\Psi \triangleright P \mid Q & \quad \frac{y(x)}{(\nu b)Q[(\nu b)[\Psi \vdash y] \land (\nu b)Q] \land C_P} \quad \rightarrow \quad P' \mid Q \quad y \# Q
\end{align*}
\]

We assume that \(\tilde{b} \# b_Q \). In order to use the induction hypothesis we must have that \(z \# \Psi_Q \). We look at the more difficult case when \(z \# \Psi_Q \). In this case it is because \(z \in \tilde{b}_Q \) (since \(z \# Q \) but not \(z \# \Psi_Q \)). Let \(d \) be a fresh name and let \(p = (z \ d) \). By Lemma 47 we get that \(z \# P' \). By equivariance we get

\[
\Psi \otimes p \cdot \Psi_Q \triangleright P \quad \frac{py(x)}{(\nu b)[p \cdot \Psi \vdash p \cdot y] \land p \cdot C_P} \quad \rightarrow \quad P'.
\]

By induction we get that \(z \# (\nu \tilde{b})\{p \cdot \Psi' \vdash p \cdot M \leftrightarrow y\} \setminus y, p \cdot C_P \). This gives us that \(z \# (\nu \tilde{b})Q(\nu \tilde{b})\{p \cdot \Psi' \vdash p \cdot M \leftrightarrow y\} \setminus y, (\nu \tilde{b}Q)(p \cdot C_P) \).

By \(\alpha \)-equivalence we get that \(z \# (\nu \tilde{b}Q)Q(\nu \tilde{b})\{p \cdot \Psi' \vdash p \cdot M \leftrightarrow y\} \setminus y, (\nu \tilde{b}Q)(p \cdot C_P) \).

The cases for output and \(\tau \) are similar.

Scope We first look at the case where the transition is an input. In this case the transition is derived like

\[
\begin{align*}
\text{SCOPE} & \quad \Psi \triangleright (\nu b)P \quad \frac{y(x)}{(\nu b)[(\nu b)[\Psi \vdash y] \land (\nu b)P] \land (\nu b)C_P} \quad \rightarrow \quad (\nu b)P' \\
\Psi \triangleright P & \quad \frac{y(x)}{(\nu b)[\Psi \vdash y] \land C_P} \quad \rightarrow \quad P' \quad b \# y(x), \Psi
\end{align*}
\]

We assume that \(\tilde{b} \# z \). In order to use the induction hypothesis we need that \(z \# P \). If this is not the case it is because \(z = b \) and we only consider this more difficult case here. Let \(d \) be a fresh name and let \(p = (z \ d) \). By equivariance we get that

\[
\Psi \triangleright p \cdot P \quad \frac{y(x)}{(\nu b)[p \cdot \Psi \vdash p \cdot M \leftrightarrow y] \land p \cdot C_P} \quad \rightarrow \quad p \cdot P'.
\]

By induction we get that \(z \# (\nu \tilde{b})\{p \cdot \Psi' \vdash p \cdot M \leftrightarrow y\} \setminus y, p \cdot C_P, p \cdot P' \).

This gives us that \(z \# (\nu p \cdot b)\{p \cdot \Psi' \vdash p \cdot M \leftrightarrow y\} \setminus y, (\nu p \cdot b)(p \cdot P' \setminus y, \Psi) \setminus y, p \cdot C_P \).

46
which by \(\alpha\)-equivalence gives us
\[
\{\Psi' \vdash y\} \setminus y, (\nu b)C_P, (\nu b)P'.
\]
The cases for output and \(\tau\) are similar.

Open

\[
\begin{array}{c}
\Psi \triangleright P \quad \Psi \triangleright (\nu a)P \\
\Psi \triangleright P \quad \Psi \triangleright (\nu b)P
\end{array}
\]

We assume that \(\tilde{b}\# z\). By Lemma 47 we get that \(z\# P'\). In order to use the induction hypothesis we need that \(z\# P\). If it is not the case it is because \(z = b\). We only look at this more difficult case here. Let \(d\) be a fresh name and let \(p = (z \ d)\). By equivariance we get that

\[
\Psi \triangleright p \cdot P \quad \Rightarrow \quad P' \quad p \# \tilde{a}, \Psi, y
\]

By induction we get that \(z\# (\nu b)\{p \cdot \Psi' \vdash y\} \setminus y, p \cdot C_P\). This gives us that \(z\# (\nu p \cdot b)(\nu \tilde{b})\{p \cdot \Psi' \vdash y\} \setminus y, (\nu b)(p \cdot C_P)\), which by \(\alpha\)-equivalence gives us \(z\# (\nu b)(\nu \tilde{b})\{\Psi' \vdash y\} \setminus y, (\nu b)C_P\).

Rep We first look at the case where the transition is an input. In this case the transition is derived like

\[
\begin{array}{c}
\Psi \triangleright P | P \quad \Psi \triangleright !P \\
\Psi \triangleright P | !P \quad \Psi \triangleright !P
\end{array}
\]

The desired results follow directly from induction. The cases for output and \(\tau\) are similar.

\[\square\]

Lemma 49 (Fresh names stay fresh). If \(\Psi \triangleright P \Rightarrow P' \land z\# \Psi, P\) then \(z\# C, P'\).

Proof. By induction on the length of the transition.
Base case: In this case we have that $\Psi \triangleright P \xrightarrow{\text{true}} P$. Clearly $z \# \Psi, P, \text{true}$.

Induction step: In this case we have that $\Psi \triangleright P \xrightarrow{\tau} P^\prime$ and $\Psi \triangleright P^\prime \xrightarrow{C} P^\prime\prime$. By Lemma 48 we get that $z \# C, P^\prime\prime$. By induction we get that $z \# C, P^\prime$. From this follows that $z \# C \land C^\prime, P^\prime$.

\[\square \]

Lemma 50.

\[\mathcal{F}(\nu a)P = (\nu \tilde{b}_{(\nu a)P})\Psi_{(\nu a)P} \implies \exists \tilde{b}_P, \Psi_P \text{ such that } \]

\[\mathcal{F}(P) = (\nu \tilde{b}_P)\Psi_P \]

\[\land \tilde{b}_{(\nu a)P} = a\tilde{b}_P \]

\[\land \Psi_{(\nu a)P} = \Psi_P \]

Proof. Just use the definitions involved. \[\square \]

Lemma 51.

\[\mathcal{F}(P \mid Q) = (\nu \tilde{b}_{P \mid Q})\Psi_{P \mid Q} \implies \exists \tilde{b}_P, \tilde{b}_Q, \Psi_P, \Psi_Q \text{ such that } \]

\[\mathcal{F}(P) = (\nu \tilde{b}_P)\Psi_P \]

\[\land \mathcal{F}(Q) = (\nu \tilde{b}_Q)\Psi_Q \]

\[\land \tilde{b}_{P \mid Q} = \tilde{b}_P\tilde{b}_Q \]

\[\land \Psi_{P \mid Q} = \Psi_P \otimes \Psi_Q \]

Proof. Just use the definitions involved. \[\square \]

Lemma 52.

\[\mathcal{F}(P\sigma) = (\nu \tilde{b}_{P\sigma})\Psi_{P\sigma} \implies \exists \Psi_P \text{ s.t. } \]

\[\mathcal{F}(P) = (\nu \tilde{b}_{P\sigma})\Psi_P \]

\[\land \Psi_{P\sigma} = \Psi_{P\sigma} \]

Proof. By induction on the structure of $P\sigma$. \[\square \]

Lemma 53 (Change frame). If $\Psi \triangleright P \xrightarrow{\alpha} P', \Psi \simeq \Psi'$, and $n(\Psi) = n(\Psi')$, then $\Psi' \triangleright P \xrightarrow{\alpha} P'$.

Proof. By induction on the length of the derivation of the transition. \[\square \]
Lemma 54. 1. If $\Psi \triangleright P\sigma \xrightarrow{M(x)} P''$ and $x\#\sigma$ then there exists P' such that $P'\sigma = P''$.

2. If $\Psi \triangleright P\sigma \xrightarrow{\overline{M}(\nu\tilde{a})N''} P''$ and $\tilde{a}\#\sigma$ then there exists P' and N such that $P'\sigma = P''$ and $N\sigma = N''$.

3. If $\Psi \triangleright P\sigma \xrightarrow{\tau} P''$ then there exists P' such that $P'\sigma = P''$.

Proof. In this case the transition is derived like

$$\frac{\Psi \vdash M\sigma \leftrightarrow K}{\Psi \triangleright (M(x) \cdot P')\sigma \xrightarrow{K(x)} P'\sigma}$$

We have directly that $P'' = P'\sigma$.

Out In this case the transition is derived like

$$\frac{\Psi \vdash M\sigma \leftrightarrow K}{\Psi \triangleright (M(N) \cdot P')\sigma \xrightarrow{K(N\sigma)} P'\sigma}$$

We have directly that $P'' = P'\sigma$ and $N'' = N\sigma$.

Case In this case the transition is derived like

$$\frac{\Psi \triangleright P_i\sigma \xrightarrow{\alpha} P'' \quad \Psi \vdash \varphi_i\sigma}{\Psi \triangleright (\text{case } \tilde{\varphi} : \tilde{P})\sigma \xrightarrow{\alpha} P''}$$

By induction there exists P' such that $P'' = P'\sigma$ and if $\alpha = \overline{M}(\nu\tilde{a})N''$ there exists N such that $N'' = N\sigma$.

Com In this case the transition is derived like

$$\frac{\Psi_Q \otimes \Psi \triangleright P\sigma \xrightarrow{\overline{M}(\nu\tilde{a})N''} P'' \quad \Psi \vdash \varphi\sigma}{\Psi \triangleright (P \mid Q)\sigma \xrightarrow{\tau} (\nu\tilde{a})(P'' \mid Q''[x := N''\sigma])}$$

We assume that $x, \tilde{a}\#\sigma$. If they are not, α-convert. By induction there exists Q' such that $Q'' = Q'\sigma$ and similarly that there exists P' and N such that $P'' = P'\sigma$ and $N'' = N\sigma$. In other words, $(\nu\tilde{a})(P'' \mid Q''[x := N'\sigma]) = ((\nu\tilde{a})(P' \mid Q'[x := N]))\sigma$.

49
Par In this case the transition is derived like

\[\begin{align*}
\text{PAR} & : \left(\Psi \otimes \Psi \vdash P \sigma \xrightarrow{\alpha} P'' \right) \\
& \quad \Rightarrow (P \mid Q) \sigma \xrightarrow{\alpha} P'' \mid Q \sigma \\
& \quad \text{bn}(\alpha) \# Q \sigma
\end{align*} \]

By induction there exists \(P' \) such that \(P'' = P' \sigma \), and if \(\alpha = \overline{M} (\nu \tilde{a}) N'' \) there also exists \(N \) such that \(N'' = N \sigma \). In other words, \(P'' \mid Q \sigma = (P' \mid Q) \sigma \).

Scope In this case the transition looks like

\[\begin{align*}
\Psi \vdash ((\nu b) P) \sigma \xrightarrow{\alpha} (\nu b) P''
\end{align*} \]

Let \(a \# \sigma, \Psi, P, \alpha \). Then the \(\alpha \)-equivalent transition

\[\begin{align*}
\Psi \vdash ((\nu a)((a \ b) \cdot P)) \sigma \xrightarrow{\alpha} (\nu a)((a \ b) \cdot P'')
\end{align*} \]

is derived like

\[\begin{align*}
\text{SCOPE} & : \left(\Psi \vdash (a \ b) \cdot P \xrightarrow{\alpha} (a \ b) \cdot P'' \right) \\
& \quad \Rightarrow (\nu a)((a \ b) \cdot P) \xrightarrow{\alpha} (\nu a)((a \ b) \cdot P'') \\
& \quad a \# \alpha, \Psi
\end{align*} \]

By induction there exists \(P' \) such that \((a \ b) \cdot P'' = P' \sigma \). We then have that \((\nu a)((a \ b) \cdot P'') = (\nu a)(P' \sigma) \). Since \(a \# \sigma \) we write this as \((\nu a)(P' \sigma) \), and by \(\alpha \)-converting this is the same as \(\nu b)((a \ b) \cdot P') \sigma \).

Open In this case the transition is derived like

\[\begin{align*}
\text{OPEN} & : \left(\Psi \vdash M((\nu \tilde{a}) N) \xrightarrow{b \# \tilde{a}, \Psi, M} P'' \right) \\
& \quad \Rightarrow ((\nu b) P) \sigma \xrightarrow{\overline{M} (\nu \tilde{a}) N} P'' \\
& \quad b \in \text{n}(N'')
\end{align*} \]

We know that \(\tilde{a} \cup \{ b \} \# \sigma \). By induction there exists \(P' \) and \(N \) such that \(P'' = P' \sigma \) and \(N'' = N \sigma \).

Rep In this case the transition is derived like

\[\begin{align*}
\text{REP} & : \left(\Psi \vdash (P | ! P) \sigma \xrightarrow{\alpha} P'' \right) \\
& \quad \Rightarrow (! P) \sigma \xrightarrow{\alpha} P''
\end{align*} \]

By induction there exists \(P' \) such that \(P'' = P' \sigma \), and if \(\alpha = \overline{M} (\nu \tilde{a}) N'' \) then there also exists \(N \) such that \(N'' = N \sigma \).

\(\square \)
Lemma 55. 1. If $\Psi \triangleright P\sigma \Rightarrow P''$ then there exists P' such that $P'\sigma = P''$.
2. If $\Psi \triangleright P\sigma \triangleright P''$ then there exists P' such that $P'\sigma = P''$.

Proof. The proof is by induction over the length of the transition.

1. **Base case** In this case the transition is $\Psi \triangleright P\sigma \Rightarrow P\sigma$, so it holds trivially.

 Induction step We have that $\Psi \triangleright P\sigma \Rightarrow P''$, $\Psi \triangleright P'' \Rightarrow P''$, and $\Psi \triangleright P'' \Rightarrow P''$. By case 1 we get that there exists P'' such that $P'' = P''\sigma$. Finally by case 1 there exists P' such that $P'\sigma = P''$.

Lemma 56 (Fresh names are fresh in the constraint). If $\Psi \triangleright P \frac{y(x)}{C} P' \land z\#\Psi, P, y$ then $z\#C$.

Proof. The proof is by induction on the length of the derivation of the transition.

In In this case the transition is derived like

$$\Psi \triangleright M(x).P \xrightarrow{\frac{y(x)}{\{\Psi \models M \leftrightarrow y\}}} P \xrightarrow{\frac{y\#\Psi, M, P, x}{}}$$

We know that $z\#\Psi, M(x).P$. This immediately gives us that $z\#\{\Psi \models M \leftrightarrow y\}$.

Case In this case the transition is derived like

$$\Psi \triangleright \text{case } \bar{\varphi} : \bar{P} \xrightarrow{\frac{y(x)}{C \land \{\Psi \models \bar{\varphi}\}} P'} \xrightarrow{\frac{y(x)}{}} P'$$
We know that $z \not\# \Psi, \varphi_i, P, y$. By induction we get that $z \not\# C$ which gives us everything we need except $z \not\# [\Psi \vdash \varphi_i]$, but this follows from $z \not\# \Psi, \varphi_i$.

Par In this case the transition is derived like

$$
\text{Par} \quad \begin{array}{c}
\Psi \otimes \Psi_Q \triangleright P \xrightarrow{y(x)} P' \\
\Psi \triangleright P \downarrow_P Q \xrightarrow{(\nu b)C} P' \downarrow_P Q
\end{array} \quad x \# Q

$$

In order to use the induction hypothesis we must have that $z \not\# \Psi_Q$. We look at the more difficult case when $z \not\# \Psi_Q$. In this case it is because $z \in \bar{b}_Q$ since $z \# Q$. Let d be a fresh name and let $p = (z \cdot d)$. By equivariance we get

$$
\Psi \otimes p \cdot \Psi_Q \triangleright P \xrightarrow{y(p-x)} P' \cdot p \cdot P'.
$$

By induction we get that $z \not\# p \cdot C$. This gives us that $z \not\# (\nu p \cdot \bar{b}_Q)(p \cdot C)$. By α-equivalence we get that $z \not\# (\nu \bar{b}_Q)C$.

Scope In this case the transition is derived like

$$
\text{Scope} \quad \begin{array}{c}
\Psi \triangleright P \xrightarrow{y(x)} P' \\
\Psi \triangleright (\nu b)P \xrightarrow{(\nu b)C} (\nu b)P'
\end{array} \quad b \# y(x), \Psi

$$

In order to use the induction hypothesis we need that $z \not\# P$. If this is not the case it is because $z = b$ and we only consider this more difficult case here. Let d be a fresh name and let $p = (z \cdot d)$. By equivariance we get that

$$
\Psi \triangleright p \cdot P \xrightarrow{y(p-x)} P' \cdot p \cdot P'.
$$

By induction we get that $z \not\# p \cdot C$. This gives us that $z \not\# (\nu p \cdot b)(p \cdot C)$, which by α-equivalence gives us $z \not\# (\nu b)C$.

Rep In this case the transition is derived like

$$
\text{Rep} \quad \begin{array}{c}
\Psi \triangleright P \downarrow !P \xrightarrow{y(x)} P' \\
\Psi \triangleright !P \xrightarrow{C} P'
\end{array}

$$
The desired result follows directly from induction.

\[\square\]

Lemma 57. If \(\forall \sigma, \Psi. (\sigma, \Psi) \models C \Leftrightarrow (\sigma, \Psi) \models D\) then \(\forall \sigma, \Psi. (\sigma, \Psi) \models (\nu a)C \Leftrightarrow (\sigma, \Psi) \models (\nu a)D\)

Proof. Adding a restriction of \(a\) to a constraint amounts to removing the solutions involving \(a\) from the set of all solutions. In this case we remove the same solutions from both \(C\) and \(D\), so the resulting sets of all substitutions will still be equal. \(\square\)

Lemma 58. \(\forall \sigma, \Psi. (\sigma, \Psi) \models (\nu a)(\nu b)C \Leftrightarrow (\sigma, \Psi) \models (\nu b)(\nu a)C\)

Proof. Both \((\nu a)(\nu b)\) and \((\nu b)(\nu a)\) remove the same set of solutions from \(C\). \(\square\)

Lemma 59 (Form of constraint). Let \(\alpha = \overline{y}(\nu \tilde{a})N\) or \(\alpha = y(x)\).

If \(\Psi \triangleright P \xrightarrow{\alpha}{\overline{c}} P', \mathcal{F}(P) = (\nu \tilde{b}_P)\Psi_P, \tilde{b}_P \# \Psi, y, P,\) and \(y \# \Psi, P\) then there exists \(M_P\) and \(C_P\) such that \(C = (\nu \tilde{b}_P){\{\Psi \otimes \Psi_P \vdash M \leftrightarrow y\}} \wedge C_P\) and \(y \# C_P\).

Proof. By induction on the length of the derivation of \(\Psi \triangleright P \xrightarrow{\alpha}{\overline{c}} P'\).

In In this case the transition is derived like

\[
\Psi \triangleright M(x).P \xrightarrow{y(x)} y \# \Psi, M, P, x \quad \text{y \# \Psi, M, P, x}
\]

Here we have that \(\tilde{b}_{M(x).P} = \epsilon, \Psi_{M(x).P} = 1, M_P = M,\) and \(C_P = \text{true}\).

Out In this case the transition is derived like

\[
\Psi \triangleright M.N.P \xrightarrow{\overline{y}N} y \# \Psi, M, N, P
\]

Here we have that \(\tilde{b}_{M.N.P} = \epsilon, \Psi_{M.N.P} = 1, M_P = M,\) and \(C_P = \text{true}\).
Case In this case the transition is derived like

\[
\begin{array}{c}
\Psi \triangleright P_i \xrightarrow{\alpha} P' \\
\Psi \triangleright \text{case } \bar{\varphi} : \vec{P} \xrightarrow{\alpha} P'_{\vec{C}''} \end{array}
\]

Here we have that \bar{b} case $\bar{\varphi} : \vec{P} = \epsilon$, \Psi case $\bar{\varphi} : \vec{P} = 1$. Let $\mathcal{F}(P_i) = (\nu_bP_i)1$ such that $\bar{b}_P \# \Psi, y$. By induction we get that there exists M_P and C_P' such that $C'_P = (\nu_bP_i)\Psi \circ 1 \vdash y \wedge C_P'$ with $y\#C_P'$. In other words, $C = (\nu_bP_i)\Psi \circ 1 \vdash y \wedge C_P' \wedge \{\Psi \vdash \varphi_i\}$. Since $y\#\Psi$, case $\bar{\varphi} : \vec{P}$ we also have that $y\#C_P$ where $C_P = C_P' \wedge \{\Psi \vdash \varphi_i\}$.

Par In this case the transition is derived like

\[
\begin{array}{c}
\Psi \otimes \Psi_Q \triangleright P \xrightarrow{\alpha} P' \\
\Psi \triangleright P \upharpoonright Q \xrightarrow{\alpha} P' \upharpoonright Q \xrightarrow{\alpha = \tau \vee \text{subj}(\alpha) \# Q} bn(\alpha) \# Q
\end{array}
\]

Here $\mathcal{F}(Q) = (\nu_{\tilde{b}_Q})\Psi_Q$ where \tilde{b}_Q is fresh for Ψ, P and α.

We know that $\mathcal{F}(P \upharpoonright Q) = (\nu_{\tilde{b}_P}P \upharpoonright Q)\Psi_P \upharpoonright Q$. By definition we also have that $\mathcal{F}(P \upharpoonright Q) = (\nu_{\tilde{b}_P}P \upharpoonright Q)\Psi_P \upharpoonright \Psi_Q$, where $\tilde{b}_P \# \tilde{b}_Q, \Psi_Q \upharpoonright \Psi_P \# \Psi_P$. We also know that $\tilde{b}_P\tilde{b}_Q \# \Psi, y$. Since $\mathcal{F}(Q) = (\nu_{b_Q})\Psi_Q = (\nu_{\tilde{b}_Q}')\Psi'_Q$, we know that there exists a permutation p such that $p \cdot \tilde{b}_Q = \tilde{b}_Q$ and $p \cdot \Psi'_Q = \Psi_Q$. By equivariance we write the premise in the inference as $\Psi \otimes p \cdot \Psi'_Q \triangleright P \xrightarrow{p \cdot \alpha} p \cdot P'$. By induction we learn that there exists M_P and C_P such that $p \cdot C' = (\nu_bP_i)\Psi \circ p \cdot \Psi_Q \upharpoonright M_P \leftrightarrow y \wedge C_P$.

Closing both sides under restriction of \tilde{b}_Q we get that $\tilde{b}_Q \upharpoonright (p \cdot C') = (\nu_{\tilde{b}_Q'})\upharpoonright (\nu_{\tilde{b}_P'})\Psi \circ p \cdot \Psi'_Q \upharpoonright M_P \leftrightarrow y \wedge (\nu_{\tilde{b}_Q'})\upharpoonright C_P$. (Using Lemma 57).

By α-conversion we write this as $(\nu_{\tilde{b}_Q})C' = (\nu_{\tilde{b}_Q})\upharpoonright (\nu_{\tilde{b}_P'})\Psi \circ (\nu_{\tilde{b}_Q}) \upharpoonright p \cdot M_P \leftrightarrow y \wedge (\nu_{\tilde{b}_Q'})\upharpoonright C_P$. By Lemma 58 we get that $(\nu_{\tilde{b}_Q})C' = (\nu_{\tilde{b}_P})\upharpoonright (\nu_{\tilde{b}_Q})\Psi \circ p \cdot M_P \leftrightarrow y \wedge (\nu_{\tilde{b}_Q'})\upharpoonright C_P$. By induction we know that $y\#C_P$. This implies that $y\#(\nu_{\tilde{b}_Q'})\upharpoonright C_P$.

54
Scope In this case the transition is derived like

\[
\frac{\Psi \triangleright P \quad \alpha \xrightarrow{C'} P'}{\Psi \triangleright (\nu b)P \quad \alpha \xrightarrow{(\nu b)C'} (\nu b)P'}
\]

We know that \(F((\nu b)P) = (\nu b)F(P) = (\nu b)(\nu \bar{b}_P)\Psi_P\) with \(\bar{b}_P \# \Psi, y, (\nu b)P\) and \(y \# \Psi, (\nu b)P\). We then also have that \(\bar{b}_P \# \Psi, y, P\) and \(y \# \Psi, P\).

By induction we get that there exists \(M_P\) and \(C_P\) such that

\[
(\nu \bar{b}_P)(\Psi \otimes \Psi_P \vdash M_P \leftrightarrow y) \wedge C_P \quad \text{with} \quad y \# C_P.
\]

We then have that \((\nu b)C' = (\nu b)(\nu \bar{b}_P)(\Psi \otimes \Psi_P \vdash M_P \leftrightarrow y) \wedge (\nu b)C_P\) with \(y \# (\nu b)C_P\), using Lemma 57.

Open In this case the transition is derived like

\[
\frac{\Psi \triangleright P \quad \frac{\nu (\nu \bar{a})N}{C'} \xrightarrow{\nu (\nu \bar{a} \cup \{b\})N} P'}{\Psi \triangleright (\nu b)P \quad \frac{\nu (\nu \bar{a})N}{(\nu b)C'}}
\]

We know that \(F((\nu b)P) = (\nu b)F(P) = (\nu b)(\nu \bar{b}_P)\Psi_P\) with \(\bar{b}_P \# \Psi, y, (\nu b)P\) and \(y \# \Psi, (\nu b)P\). We then also have that \(\bar{b}_P \# \Psi, y, P\) and \(y \# \Psi, P\).

By induction we get that there exists \(M_P\) and \(C_P\) such that \(C' = (\nu \bar{b}_P)(\Psi \otimes \Psi_P \vdash M_P \leftrightarrow y) \wedge C_P\) with \(y \# C_P\). We then have that \((\nu b)C' = (\nu b)(\nu \bar{b}_P)(\Psi \otimes \Psi_P \vdash M_P \leftrightarrow y) \wedge (\nu b)C_P\) with \(y \# (\nu b)C_P\), using Lemma 57.

Rep In this case the transition is derived like

\[
\frac{\Psi \triangleright P \quad \alpha \xrightarrow{C'} P'}{\Psi \triangleright !P \quad \alpha \xrightarrow{C} P'}
\]

We know that \(F(!P) = 1\) and that \(y \# \Psi, !P\). Let \(F(P) = (\nu \bar{b}_P)1\) with \(\bar{b}_P \# \Psi, y, P\). We also have that \(y \# P\). By induction we get that there exists \(M_P\) and \(C_P\) such that \(C = (\nu \bar{b}_P)(\Psi \otimes 1 \vdash M_P \leftrightarrow y) \wedge C_P\) with \(y \# C_P\).

\(\square\)
Lemma 60 (Object fresh for constraint). If $\Psi \triangleright P \xrightarrow{\frac{y(x)}{C}} P'$ and $x \#\Psi, P, y$ then $x \# C$.

Proof. The proof is by induction on the length of the derivation of the transition.

In In this case the transition is derived like

$$\Psi \triangleright M(x) \cdot P \xrightarrow{\frac{y(x)}{[\Psi \vdash M \leftrightarrow y]}} P$$

We know that $x \# \Psi, M \cdot P, y$. Clearly also $x \# \{\Psi \vdash M \leftrightarrow y\}$.

Case In this case the transition is derived like

$$\Psi \triangleright P, \xrightarrow{\frac{y(x)}{C}} P'$$

We know that $x \# \Psi, \text{case } \tilde{\varphi} : \tilde{P} \xrightarrow{\frac{y(x)}{C \land [\Psi \vdash \varphi_i]}} P'$. Then also $x \# C \land \{\Psi \vdash \varphi_i\}$.

Par In this case the transition is derived like

$$\Psi \triangleright P \cdot Q \xrightarrow{\frac{y(x)}{(\nu \tilde{b}_Q)C}} P' \cdot Q$$

Furthermore we have the side condition that $\tilde{b}_Q \# \Psi, P \cdot Q, y(x)$ (i.e. $x \# \tilde{b}_Q$). We know that $x \# \Psi, P \cdot Q, y$. From $x \# \tilde{b}_Q, Q$ we get that $x \# \Psi_Q$. By induction we get that $x \# C$ and from this follows immediately that $x \# (\nu \tilde{b}_Q)C$.

Scope In this case the transition is derived like

$$\Psi \triangleright \xrightarrow{\frac{y(x)}{(\nu b)C}} (\nu b)P'$$

We know that $x \# \Psi, (\nu b)P, y$ and from $b \# y(x)$ we also know that $x \# P$. By induction we get that $x \# C$ which also gives us that $x \# (\nu b)C$.

56
In this case the transition is derived like

\[
\frac{\Psi \triangleright P \mid !P \xrightarrow{\frac{y(x)}{C}} P'}{\Psi \triangleright !P \xrightarrow{\frac{y(x)}{C}} P'}
\]

In this case \(x\#C\) follows directly from induction.

\[\square\]

Appendix B.1. Proof of Lemma 28

This follows directly from the next lemma. Just set \(\Psi = \mathbf{1}\).

Lemma 61.

1. If \(\Psi \triangleright P \xrightarrow{\frac{y(x)}{C}} P'\) then \(\forall (\sigma, \Psi') \) such that \((\sigma, \Psi') \models C\) and \(x\#\sigma\) we have that \(\Psi' \otimes \Psi \triangleright P\sigma \xrightarrow{\frac{(y(x))\sigma}{C}} P'\sigma\)

2. If \(\Psi \triangleright P \xrightarrow{\frac{\sigma (\nu \hat{a}) N}{C}} P'\) then \(\forall (\sigma, \Psi') \) such that \((\sigma, \Psi') \models C\) and \(\hat{a}\#\sigma\) we have that \(\Psi' \otimes \Psi \triangleright P\sigma \xrightarrow{\frac{(\sigma (\nu \hat{a}) N)\sigma}{C}} P'\sigma\)

3. If \(\Psi \triangleright P \xrightarrow{\frac{\tau}{C}} P'\) then \(\forall (\sigma, \Psi') \) such that \((\sigma, \Psi') \models C\) we have that \(\Psi' \otimes \Psi \triangleright P\sigma \xrightarrow{\frac{\tau}{C}} P'\sigma\)

Proof. By induction on the depth of the inference of \(\Psi \triangleright P \xrightarrow{\frac{\alpha}{C}} P'\).

In In this case the inference looks like

\[
\frac{S-\text{IN}}{\Psi \triangleright M(x). P \xrightarrow{\frac{y(x)}{\{\Psi \vdash M \leftrightarrow y\}}} P}
\]

For all \((\sigma, \Psi')\) such that \((\sigma, \Psi') \models \{\Psi \vdash M \leftrightarrow y\}\) and \(x\#\sigma\) we must find a transition \(\Psi' \otimes \Psi \triangleright (M(x).P)\sigma \xrightarrow{\frac{(y(x))\sigma}{C}} P\sigma\).

Let \((\sigma, \Psi')\) be any solution to \(\{\Psi \vdash M \leftrightarrow y\}\) such that \(x\#\sigma\). Since \(x\#\sigma\) we have that \((M(x).P)\sigma = M\sigma(x).P\sigma\) and that \((y(x))\sigma = y\sigma(x)\). We then do the following derivation:

\[
\frac{C-\text{IN}}{\Psi' \otimes \Psi \vdash M\sigma \leftrightarrow y\sigma}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]

\[
\frac{\Psi' \otimes \Psi \sigma \vdash \emptyset}{\Psi' \otimes \Psi \sigma \vdash \emptyset}
\]
Out In this case the inference looks like

\[
\begin{align*}
\text{S-OUT} & \quad \Psi \vdash M.N.P \quad \xrightarrow{\{\Psi \vdash \Psi \leftrightarrow y\}} \quad y\#\Psi, M, N, P \\
\end{align*}
\]

For all \((\sigma, \Psi')\) such that \((\sigma, \Psi') \models \{\Psi \vdash M \leftrightarrow y\}\) we must find a transition \(\Psi' \otimes \Psi \sigma \vdash (M.N.P)\sigma \xrightarrow{\{\Psi \vdash \Psi \leftrightarrow y\}} P\sigma\). This transition can be derived with

\[
\begin{align*}
\text{OUT} & \quad \Psi' \otimes \Psi \sigma \vdash M\sigma \leftrightarrow y\sigma \\
\Psi' \otimes \Psi \sigma & \vdash (M.N.P)\sigma \xrightarrow{\{\Psi \vdash \Psi \leftrightarrow y\}} P\sigma
\end{align*}
\]

Case In this case the inference looks like

\[
\begin{align*}
\text{S-CASE} & \quad \Psi \vdash P_i \quad \xrightarrow{\alpha} \quad P' \\
\Psi & \vdash \text{case } \bar{\varphi} : \bar{P} \xrightarrow{\alpha} \bar{P}' \\
\end{align*}
\]

For all \((\sigma, \Psi')\) such that \((\sigma, \Psi') \models C \land \{\Psi \vdash \varphi_i\}\) we must find a transition \(\Psi' \otimes \Psi \sigma \vdash (\text{case } \bar{\varphi} : \bar{P})\sigma \xrightarrow{\alpha} P'\sigma\).

\(\alpha = y(x)\) In this case we have that \(x\#\sigma\). Let \((\sigma, \Psi')\) be any solution to \(C \land \{\Psi \vdash \varphi_i\}\). We then have that \(\Psi' \otimes \Psi \sigma \vdash \varphi_i\sigma\) and that \((\sigma, \Psi')\) is also a solution to \(C\). By induction we get that \(\Psi' \otimes \Psi \sigma \vdash P_i\sigma \xrightarrow{\alpha} P'\sigma\).

\(\alpha = \gamma (\nu \tilde{a})N\) Exactly as the case for input, but replace \(x\) with \(\tilde{a}\).

\(\alpha = \tau\) Exactly as the case for input, but without the freshness condition on \(x\).

We can now do the following derivation:

\[
\begin{align*}
\text{C-CASE} & \quad \Psi' \otimes \Psi \sigma \vdash P_i\sigma \quad \xrightarrow{\alpha} \quad P'\sigma \\
\Psi' \otimes \Psi \sigma & \vdash \varphi_i\sigma \\
\Psi' \otimes \Psi \sigma \vdash \text{(case } \bar{\varphi} : \bar{P})\sigma & \xrightarrow{\alpha} \quad P'\sigma
\end{align*}
\]

58
In this case the inference looks like

$$\Psi \otimes \Psi_Q \triangleright P \quad \frac{\Psi_{(\nu\phi)N}}{(\nu\eta_b)_{\Psi'' \rightarrow M_P \leftrightarrow y} \land C_P} \rightarrow P'$$

$$\Psi \otimes \Psi_P \triangleright Q \quad \frac{\xi(x)}{(\nu\eta_b)_{\Psi'' \rightarrow M_Q \leftrightarrow z} \land C_Q} \rightarrow Q'$$

S-Com

$$\Psi \triangleright P \mid Q \quad \frac{\Psi_{(\nu\eta_b)_{\Psi'' \rightarrow M_Q \leftrightarrow z} \land C_Q}}{(\nu\eta_b)_{\Psi'' \rightarrow M_Q \leftrightarrow z} \land C_Q} \rightarrow (\nu\rho)(P' \mid Q')$$

Here $F(P) = (\nu\eta_b)\Psi_P$ and $F(Q) = (\nu\eta_b)\Psi_Q$. We are only interested in showing correspondence for all $(-, -')$ such that $(\sigma, \Psi') \models (\nu\eta_b)\Psi'' \rightarrow M_P \leftrightarrow M_Q \land (\nu\eta_b)C_P \land (\nu\eta_b)C_Q$. This gives us that $\eta_b, \eta_q \# (-, -')$. We can assume that $y, z \# \sigma, \Psi', C_P, C_Q$. If that is not the case we can use Lemma 45 to find subjects for which it is true. We further assume that $\eta, \theta \# (-, -')$ (bound names are fresh).

By Lemma 46 we get that $(\sigma \cdot [y := M_Q\sigma], \Psi') \models (\nu\eta_b)\Psi'' \rightarrow M_P \leftrightarrow y \land C_P$ and that $(\sigma \cdot [z := M_P\sigma], \Psi') \models (\nu\eta_b)\Psi'' \rightarrow M_Q \leftrightarrow z \land C_Q$.

By induction we know that $\Psi \otimes \Psi_Q \triangleright P \quad \frac{\Psi_{(\nu\phi)N}}{(\nu\eta_b)_{\Psi'' \rightarrow M_P \leftrightarrow y} \land C_P} \rightarrow P'$ can for all (σ', Ψ''') such that $(\sigma', \Psi''') \models (\nu\eta_b)\Psi'' \rightarrow M_P \leftrightarrow y \land C_P$ be matched by $\Psi'' \otimes \Psi_Q \sigma' \triangleright P\sigma' \quad \frac{\Psi_{(\nu\phi)N}}{(\nu\eta_b)_{\Psi'' \rightarrow M_Q \leftrightarrow z} \land C_Q} \rightarrow P'\sigma'$. This is in particular true for $(\sigma \cdot [y := M_Q\sigma], \Psi')$.

Similarly by induction we know that $\Psi \otimes \Psi_P \triangleright Q \quad \frac{\xi(x)}{(\nu\eta_b)_{\Psi'' \rightarrow M_Q \leftrightarrow z} \land C_Q} \rightarrow Q'$ can for all (σ', Ψ''') such that $(\sigma', \Psi''') \models (\nu\eta_b)\Psi'' \rightarrow M_Q \leftrightarrow z \land C_Q$ be matched by $\Psi'' \otimes \Psi_Q \triangleright Q\sigma' \quad \frac{\xi(x)}{(\nu\eta_b)_{\Psi'' \rightarrow M_Q \leftrightarrow z} \land C_Q} \rightarrow Q'\sigma'$. This is in particular true for $(\sigma \cdot [z := M_P\sigma], \Psi')$.

We know that $(\sigma, \Psi') \models (\nu\eta_b)\Psi'' \rightarrow M_P \leftrightarrow M_Q \land (\nu\eta_b)C_P \land (\nu\eta_b)C_Q$, and from this follows that $\Psi\otimes\Psi_Q \triangleright M_P\sigma \leftrightarrow M_Q\sigma$.

We now do the following derivation (remember that y and z are fresh)
for basically everything but themselves):

\[
\begin{array}{c}
\Psi' \otimes \Psi \sigma \otimes \Psi Q \sigma \triangleright P \sigma \xrightarrow{M_{Q \sigma}(\nu \tilde{a})N_{\sigma}} P \sigma \\
\Psi' \otimes \Psi \sigma \otimes \Psi P \sigma \triangleright Q \sigma \xrightarrow{M_{P \sigma}(x)} Q' \sigma \\
\Psi' \otimes \Psi \sigma \otimes \Psi P \sigma \otimes \Psi Q \sigma \vdash M_{P \sigma} \leftrightarrow M_{Q \sigma} \\
\Psi' \otimes \Psi \sigma \triangleright P \sigma | Q \sigma \xrightarrow{\tau} (\nu \tilde{a})(P' \sigma | Q' \sigma[x := N_{\sigma}])
\end{array}
\]

Since \(\tilde{a}, x \# \sigma\) we have that \((\nu \tilde{a})(P' \sigma | Q' \sigma[x := N_{\sigma}]) = (\nu \tilde{a})(P' | Q'[x := N])_{\sigma}\).

Par In this case the inference looks like

\[
\begin{array}{c}
\Psi \otimes \Psi Q \sigma \triangleright P \xrightarrow{\alpha} P' \\
\Psi \triangleright P | Q \xrightarrow{\alpha} P' | Q
\end{array}
\]

and we have that \(F(Q) = (\nu \tilde{b}_Q) \Psi_Q\).

\(\alpha = y(x)\) We can assume that \(y \# \Psi, P, \tilde{b}_Q, \Psi_Q\) (if not, use Lemma 45 to find another subject). Let \((\sigma, \Psi')\) be any solution to \((\nu \tilde{b}_P)C\), and assume that \(x \# \sigma, P | Q\). By induction we get that \(\Psi \otimes \Psi Q \sigma \triangleright P \xrightarrow{\alpha} P'\).

\(\alpha = \bar{y}(\nu \tilde{a})N\) Exactly as the case for input, but replace \(x\) with \(\tilde{a}\).

\(\alpha = \tau\) By induction we get that \(\Psi \otimes \Psi Q \sigma \triangleright P \xrightarrow{\alpha} P'\) has a matching transition \(\Psi' \otimes \Psi \sigma \otimes \Psi Q \sigma \vdash P \sigma \xrightarrow{\alpha} P' \sigma\).

We can then do the following concrete inference:

\[
\begin{array}{c}
\Psi' \otimes \Psi \sigma \otimes \Psi Q \sigma \triangleright P \sigma \xrightarrow{\alpha} P' \sigma \\
\Psi' \otimes \Psi \sigma \triangleright P \sigma | Q \sigma \xrightarrow{\alpha} P' \sigma | Q_{\sigma}
\end{array}
\]

\(\Psi \triangleright (\nu a)P \xrightarrow{\alpha} (\nu a)P'\)

Scope In this case the inference looks like

\[
\begin{array}{c}
\Psi \triangleright P \xrightarrow{\alpha} P'
\end{array}
\]
\(\alpha = y(x) \) We can assume that \(y \# \Psi, (v_0 a) P, x \) (if not, use lemma Lemma 45 to find a new subject). We further assume that \(a \# x \) (bound names are distinct). We are only interested in showing correspondence for \((\sigma, \Psi')\) such that \((\sigma, \Psi') \models (v_0 a) C\) where \(x \# \sigma \). Here we assume \(a \# \sigma, \Psi' \) (bound names are fresh). By Lemma 44 we then also have that \((\sigma, \Psi') \models C\).

By induction we get that \(\Psi \triangleright P \xrightarrow{\alpha} P' \) has a corresponding transition \(\Psi' \otimes \Psi_{\sigma} \triangleright P_{\sigma} \xrightarrow{\alpha_{\sigma}} P'_{\sigma} \).

\(\alpha = y(\tilde{a}) N \) Exactly as the case for input, but replace \(x \) with \(\tilde{a} \).

\(\alpha = \tau \) We are only interested in showing correspondence for \((\sigma, \Psi')\) such that \((\sigma, \Psi') \models (v_0 a) C\). Here we assume \(a \# \sigma, \Psi' \) (bound names are fresh). By Lemma 44 we then also have that \((\sigma, \Psi') \models C\).

By induction we get that \(\Psi \triangleright P \xrightarrow{\alpha} P' \) has a corresponding transition \(\Psi' \otimes \Psi_{\sigma} \triangleright P_{\sigma} \xrightarrow{\alpha_{\sigma}} P'_{\sigma} \).

We can then do the following concrete inference:

\[
\text{C-Scope} \quad \frac{\Psi' \otimes \Psi_{\sigma} \triangleright P_{\sigma} \xrightarrow{\alpha_{\sigma}} P'_{\sigma}}{\Psi \triangleright (v_0)(P_{\sigma}) \xrightarrow{\alpha_{\sigma}} (v_0)(P'_{\sigma})}
\]

Since \(a \# \sigma \) we have that \((v_0)(P_{\sigma}) = ((v_0)P)_{\sigma} \) and \((v_0)(P'_{\sigma}) = ((v_0)P)_{\sigma}\).

\textbf{Open} In this case the inference looks like

\[
\text{S-Open} \quad \frac{\Psi \triangleright P \xrightarrow{\overline{y}(\tilde{a}) N} P'}{\Psi \triangleright (v_0)a P \xrightarrow{\overline{y}(\tilde{a}) N(a)_{(v_0)C}} P'}
\]

We can assume that \(y \# \Psi, P, \tilde{a}, a \) (if not, use Lemma 45 to find another subject). We are only interested in showing correspondence for \((\sigma, \Psi')\) such that \((\sigma, \Psi') \models (v_0 a) C\). Since \((\sigma, \Psi') \models (v_0 a) C\) we also have that \((\sigma, \Psi') \models C\).

By induction we get that \(\Psi \triangleright P \xrightarrow{\overline{y}(\tilde{a}) N} P' \) has a corresponding transition \(\Psi' \otimes \Psi_{\sigma} \triangleright P_{\sigma} \xrightarrow{\overline{y}(\tilde{a}) N_{\sigma}} P'_{\sigma} \). We can then do the following concrete inference, assuming \(a \# \sigma \) (bound names are fresh):
Appendix B.2. Proof of Lemma 29

Proof. 1. The proof is by induction on the length of the transition.

Base case: In this case the transition is \(P \xrightarrow{\text{true}} P \). By Definition 17 (weak transition) we have that \(\Psi \triangleright P \sigma \Rightarrow P \sigma \).

Induction step: In this case we have that \(P \xrightarrow{\alpha} P'' \) and \(P'' \xrightarrow{C''} P' \).

By Lemma 28(3) we get that \(\Psi \triangleright P \sigma \xrightarrow{\alpha} P'' \sigma \) and by induction that \(\Psi \triangleright P'' \sigma \Rightarrow P' \sigma \). By Definition 17 (weak transitions) we finally get that \(\Psi \triangleright P \sigma \Rightarrow P' \sigma \).

2. We have that \(P \xrightarrow{C'''} P''', P'' \xrightarrow{y(x)} P''' \), and \(P''' \xrightarrow{C'''} P' \). Since \(x \# P \) we get by Lemma 49 that \(x \# C''' \), and consequently that \((\sigma, \Psi) \models C''' \). Then by (1) we get that \(\Psi \triangleright P \sigma \Rightarrow P'' \sigma \). Since \(x \# P''', y \) we get by Lemma 48 that \(x \# C''', which consequently gives us that \((\sigma, \Psi) \models C''' \).
By Lemma 28(1) we get that $\Psi \Rightarrow P''\sigma \overset{y(x)}{\Rightarrow} P''\sigma$. Since $(\sigma \cdot [x := L], \Psi) \models C''''$ we get by (1) that $\Psi \Rightarrow P''\sigma \cdot [x := L] \Rightarrow P'\sigma \cdot [x := L]$.

3. By Definition 21 (weak symbolic transitions) we have that $P \Rightarrow P''$, $P'' \overset{\Psi (\bar{\nu} := N)}{\Rightarrow} P''$, and $P'' \overset{\Psi [y := M]}{\Rightarrow} P'\sigma$. Finally by Definition 17 (weak transitions) we get that $\Psi \Rightarrow P'' \overset{\Psi [y := M]}{\Rightarrow} P'\sigma$.

4. By Definition 21 (weak symbolic transitions) we have that $P \Rightarrow P''$, $P'' \overset{\tau}{\Rightarrow} P''$, and $P'' \overset{\Psi [y := M]}{\Rightarrow} P'\sigma$. Finally by Definition 17 (weak transitions) we get that $\Psi \Rightarrow P'' \overset{\tau}{\Rightarrow} P''\sigma$.

\square

Appendix B.3. Proof of Lemma 30

We use the following lemma:

Lemma 62.

1. If $\Psi \otimes \Psi \sigma \Rightarrow P \overset{M(x)}{\Rightarrow} P'\sigma$, $y \# \Psi, P, x, \sigma$, where $x \# \sigma, P$ then $\exists C \cdot \Psi \Rightarrow P \overset{y(x)}{\Rightarrow} P'$ and $(\sigma[y := M], \Psi') \models C$.

2. If $\Psi \otimes \Psi \sigma \Rightarrow P \overset{M(\bar{\nu} := N_\sigma)}{\Rightarrow} P'\sigma$, $y \# \Psi, P, \bar{\nu}, \sigma$, and $\bar{\nu} \# \sigma, P$ then $\exists C \cdot \Psi \Rightarrow P \overset{y(\bar{\nu} := N_\sigma)}{\Rightarrow} P'$ and $(\sigma[y := M], \Psi') \models C$.

3. If $\Psi \otimes \Psi \sigma \Rightarrow P \overset{\tau}{\Rightarrow} P'\sigma$ and then $\exists C \cdot \Psi \Rightarrow P \overset{\tau}{\Rightarrow} P'$ and $(\sigma, \Psi') \models C$.

Proof. By induction on the depth of the inference of $\Psi \otimes \Psi \sigma \Rightarrow P \overset{\tau}{\Rightarrow} P'\sigma$.

In this case the inference looks like

\[
\frac{\Psi \otimes \Psi \sigma + M'\sigma \leftrightarrow M}{\Psi' \otimes \Psi \sigma \Rightarrow (M'(x).P)\sigma \overset{M(x)}{\Rightarrow} P\sigma}
\]

We know that $y \# \Psi, M'(x).P, x, \sigma$ and that $x \# \sigma, M'(x).P$.

63
We do the following derivation:

\[\begin{array}{c}
\text{S-IN} \\
\Psi \triangleright M'(x).P \xrightarrow{|y(x)|} y \# \Psi, M', P, x
\end{array} \]

Since \(\Psi' \otimes \Psi \sigma \vdash M' \sigma \leftrightarrow M \) we have that \((\sigma[y := M], \Psi') \models \{\Psi \vdash M' \leftrightarrow y\} \).

Out In this case the inference looks like

\[\begin{array}{c}
\text{OUT} \\
\Psi' \otimes \Psi \sigma \vdash M' \sigma \leftrightarrow M \\
\Psi' \otimes \Psi \sigma \triangleright (M' N . P) \sigma \xrightarrow{\overline{M} N \sigma} P \sigma
\end{array} \]

We know that \(y \# \Psi, M', N, P \). We must find a constraint \(C \) such that \(\Psi \triangleright M' N . P \xrightarrow{\overline{M} N \sigma} P \sigma \) and \((\sigma[y := M], \Psi') \models C \). We derive such a transition with

\[\begin{array}{c}
\text{S-OUT} \\
\Psi \triangleright M' N . P \xrightarrow{\overline{M} N \sigma} P \sigma
\end{array} \]

Since \(\Psi' \otimes \Psi \sigma \vdash M' \sigma \leftrightarrow M \) we have that \((\sigma[y := M], \Psi') \models \{\Psi \vdash M' \leftrightarrow y\} \).

Case In this case the inference looks like

\[\begin{array}{c}
\text{C-CASE} \\
\Psi' \otimes \Psi \sigma \triangleright P_i \sigma \xrightarrow{\alpha} P' \sigma \\
\Psi' \otimes \Psi \sigma \triangleright \text{(case} \; \bar{\varphi} : \bar{\bar{P}}) \sigma \xrightarrow{\alpha} P' \sigma
\end{array} \]

\(\alpha = \overline{M}(x) \) Since \(y \# \text{case} \; \bar{\varphi} : \bar{\bar{P}} \) we have in particular that \(y \# \varphi_i, P_i \). By induction we know that \(\Psi' \otimes \Psi \sigma \triangleright P_i \sigma \xrightarrow{\alpha} P' \sigma \) has a matching transition \(\Psi \triangleright P_i \xrightarrow{|y(x)|} P' \) such that \((\sigma[y := M], \Psi') \models C \).

Since \(\Psi' \otimes \Psi \sigma \vdash \varphi_i \sigma \) we have that \((\sigma, \Psi') \models \{\Psi \vdash \varphi_i\} \), and since \(y \# \Psi, \varphi_i \) we also have that \((\sigma[y := M], \Psi') \models \{\Psi \vdash \varphi_i\} \). Together this gives us that \((\sigma[y := M], \Psi') \models C \wedge \{\Psi \vdash \varphi_i\} \).

\(\alpha = \overline{M}(\nu\bar{a})N \) Exactly as the case for input, but replace \(x \) with \(\bar{a} \).
\[\alpha = \tau \]

By induction we know that \(\Psi' \otimes \Psi_\sigma \triangleright P_\sigma \leadsto P' \sigma \) has a matching transition \(\Psi \triangleright P_i \leadsto P' \) such that \((\sigma, \Psi') \models C \). We also have that \((\sigma, \Psi') \models \{ \Psi \vdash \varphi_i \} \). Together this gives us that \((\sigma, \Psi') \models C \land \{ \Psi \vdash \varphi_i \} \). We can then do the following derivation:

\[
\begin{array}{l}
\Psi \triangleright P_i \xrightarrow{\alpha} C \xrightarrow{\alpha} P' \\
\Psi \triangleright \text{case} \tilde{\varphi} : \tilde{P} \xrightarrow{\alpha} C \otimes \{ \Psi \vdash \varphi_i \}
\end{array}
\]

Com In this case the inference looks like

\[
\begin{array}{l}
\Psi' \otimes \Psi_\sigma \otimes \Psi_\sigma \triangleright P_\sigma \xrightarrow{\mathcal{M}(\nu \tilde{a}) \eta_\sigma} P' \sigma \\
\Psi' \otimes \Psi_\sigma \otimes \Psi_\sigma \otimes \Psi_\sigma \triangleright Q_\sigma \xrightarrow{K(x)} Q' \sigma \\
\Psi' \otimes \Psi_\sigma \otimes \Psi_\sigma \otimes \Psi_\sigma \triangleright M : K \xrightarrow{\tilde{a} \# \sigma} Q_\sigma
\end{array}
\]

Here \(\mathcal{F}(P_\sigma) = (\nu \tilde{b}_{P_\sigma}) \Psi_{P_\sigma} \) and \(\mathcal{F}(Q_\sigma) = (\nu \tilde{b}_{Q_\sigma}) \Psi_{Q_\sigma} \). We know that \(\tilde{b}_{P_\sigma} \# \Psi' \otimes \Psi_\sigma, P_\sigma, Q_\sigma, \tilde{b}_{Q_\sigma} \) and \(\tilde{b}_{Q_\sigma} \# \Psi' \otimes \Psi_\sigma, P_\sigma, Q_\sigma, \tilde{b}_{P_\sigma}, P \). We assume that \(\tilde{a} \# \tilde{b}_{Q_\sigma} \) and \(x \# \tilde{b}_{P_\sigma} \). Let \(y, z \# \ldots \).

By Lemma 47 we also have that \(\tilde{b}_{Q_\sigma} \# P' \sigma \). Let \(p \subseteq \tilde{b}_{Q_\sigma} \times (p \cdot \tilde{b}_{Q_\sigma}) \) such that \(p \cdot \tilde{b}_{Q_\sigma} \# \ldots \). By equivariance the premise can be written as

\[
\Psi' \otimes \Psi_\sigma \otimes p \cdot \Psi_{Q_\sigma} \triangleright P_\sigma \xrightarrow{\mathcal{M}(\nu \tilde{a}) \eta_\sigma} P' \sigma.
\]

By \(\alpha \)-conversion we have that \(\mathcal{F}(Q_\sigma) = (\nu p \cdot \tilde{b}_{Q_\sigma}) \Psi_{Q_\sigma} \), and by Lemma 52 we get that there exists \(\Psi_Q \) such that \(\mathcal{F}(Q) = (\nu p \cdot \tilde{b}_{Q_\sigma}) \Psi_Q \) and \(p \cdot \Psi_{Q_\sigma} = \Psi_Q \sigma \). We can then write the transition in the premise as

\[
\Psi' \otimes \Psi_\sigma \otimes \Psi_{Q_\sigma} \triangleright P_\sigma \xrightarrow{\mathcal{M}(\nu \tilde{a}) \eta_\sigma} P' \sigma.
\]

Since \(y \# p \cdot \tilde{b}_{Q_\sigma}, Q \) we get that \(y \# p \cdot \Psi_{Q_\sigma} \), and consequently that \(y \# p \cdot \Psi_{Q_\sigma} \). Together with \(y \# \sigma \) this gives us that \(y \# \Psi_Q \).

We now have everything we need to use the induction hypothesis. By induction we know that \(\Psi' \otimes \Psi_\sigma \otimes \Psi_{Q_\sigma} \triangleright P_\sigma \xrightarrow{\mathcal{M}(\nu \tilde{a}) \eta_\sigma} P' \sigma \) has
a matching transition \(\Psi \otimes \Psi_Q \triangleright P \xrightarrow{\Psi(y)} \Psi' \otimes \Psi_P \xrightarrow{\Psi(y)} P' \) such that \(\sigma[y := p \cdot M], \Psi' \models C \).

We do a similar reasoning for the other premise: By Lemma 47 we also have that \(\tilde{b}_{P_\sigma} \equiv Q_\sigma \). Let \(q \subseteq \tilde{b}_{P_\sigma} \times (q \cdot \tilde{b}_{P_\sigma}) \) such that \(q \cdot \tilde{b}_{P_\sigma} \equiv \ldots \). By equivariance the premise can be written as

\[
\Psi' \otimes \Psi_P \otimes q \cdot \Psi_{P_\sigma} \triangleright Q_\sigma \xrightarrow{q \cdot \Psi_P} Q' \sigma.
\]

By \(\alpha \)-conversion we have that \(F(P_\sigma) = (\nu \Psi_P) \Psi_P \), and by Lemma 52 we get that there exists \(\Psi_P \) such that \(F(P_\sigma) = (\nu \Psi_P) \Psi_P \) and \(q \cdot \Psi_P = \Psi_{P_\sigma} \). We can then write the transition in the premise as

\[
\Psi' \otimes \Psi_P \otimes q \cdot \Psi_{P_\sigma} \triangleright Q_\sigma \xrightarrow{q \cdot \Psi_P} Q' \sigma.
\]

Since \(z \equiv p \cdot \tilde{b}_{P_\sigma} \), \(P_\sigma \) we get that \(z \equiv q \cdot \Psi_P \), and consequently that \(z \equiv q \cdot \Psi_P \). Together with \(z \equiv \Psi_P \) this gives us that \(z \equiv \Psi_P \).

We now have everything we need to use the induction hypothesis. By induction we know that \(\Psi' \otimes \Psi_P \otimes q \cdot \Psi_{P_\sigma} \triangleright Q_\sigma \xrightarrow{q \cdot \Psi_P} Q' \sigma \) has a matching transition \(\Psi \otimes \Psi_P \triangleright Q_\sigma \xrightarrow{q \cdot \Psi_P} Q' \sigma \).

From \(\Psi \otimes \Psi_Q \triangleright P \xrightarrow{\Psi(y)} P' \), we get that \(C = (\nu \Psi_P) \Psi_P \), and Lemma 59 we get that \(C = (\nu \Psi_P) \Psi_P \) for some \(M_\sigma \) and \(C_\sigma \) such that \(y \equiv C_\sigma \). Similarly we get that \(C' = (\nu \Psi_P) \Psi_P \) for some \(M_\sigma \) and \(C_\sigma \) where \(z \equiv C_\sigma \).

In other words we have that

\[
(\sigma[y := p \cdot M], \Psi') \models (\nu \Psi_P) \Psi_P \}
\]

and that

\[
(\sigma[z := q \cdot K], \Psi') \models (\nu \Psi_P) \Psi_P \}
\]

From the definition of solution we then get that

\[
\Psi' \otimes \Psi_P \otimes q \cdot \Psi_{P_\sigma} \triangleright M_\sigma \Leftrightarrow p \cdot M \text{ and that}
\]

\[
\Psi' \otimes \Psi_P \otimes q \cdot \Psi_{P_\sigma} \triangleright q \cdot K.
\]
We also have that \(\Psi' \otimes \Psi \sigma \otimes \Psi_{P \sigma} \otimes \Psi_{Q \sigma} \vdash M \leftrightarrow K \). Equivariance gives us that \(\Psi' \otimes \Psi \sigma \otimes \Psi_{P \sigma} \otimes \Psi_{Q \sigma} \vdash p \cdot M \leftrightarrow q \cdot K \) which together with the above gives us that \(\Psi' \otimes \Psi \sigma \otimes \Psi_{P \sigma} \otimes \Psi_{Q \sigma} \vdash M_{P \sigma} \leftrightarrow M_{Q \sigma} \), or in other words that \((\sigma, \Psi') \models (\nu q \cdot \tilde{b}_P \cdot p \cdot \tilde{b}_Q) \{ (\Psi \otimes \Psi_{P \sigma} \otimes \Psi_{Q \sigma} \vdash M_{P \sigma} \leftrightarrow M_{Q \sigma}) \} \land C_{P} \land C_{Q} \) (since \(y \# C_{P} \) and \(z \# C_{Q} \)).

We can then do the following inference:

\[
\begin{align*}
\Psi \otimes \Psi_{Q} & \triangleright P \\
\Psi \otimes \Psi_{P} & \triangleright Q \\
\Psi \triangleright P \mid Q & \triangleright (P \mid Q') \quad (\nu \tilde{a}) \rightarrow (P' \mid Q')
\end{align*}
\]

Par In this case the inference looks like

\[
\begin{align*}
\text{C-PAR} & \quad \Psi' \otimes \Psi \sigma \otimes \Psi_{Q \sigma} \triangleright P \sigma \quad \overset{\alpha}{\rightarrow} \quad P' \sigma \\
& \quad \Psi' \otimes \Psi \sigma \triangleright (P \mid Q) \sigma \quad \overset{\alpha}{\rightarrow} \quad (P' \mid Q) \sigma
\end{align*}
\]

where \(F(Q \sigma) = (\nu \tilde{b}_{Q \sigma}) \Psi_{Q \sigma} \).

\(\alpha = M(x) \) We know that \(\tilde{b}_{Q \sigma} \# \Psi', \Psi \sigma, P \sigma, y(x) \). By Lemma 47 we also have that \(\tilde{b}_{Q \sigma} \# P' \sigma \). Let \(p \subseteq \tilde{b}_{Q \sigma} \times (p \cdot \tilde{b}_{Q \sigma}) \) such that \(p \cdot \tilde{b}_{Q \sigma} \ldots \).

By equivariance the premise can be written as

\[
\Psi' \otimes \Psi \sigma \otimes p \cdot \Psi_{Q \sigma} \triangleright P \sigma \quad \overset{\alpha}{\rightarrow} \quad P' \sigma.
\]

By \(\alpha \)-conversion we have that \(F(Q \sigma) = (\nu p \cdot \tilde{b}_{Q \sigma}) \Psi_{Q \sigma} \), and by Lemma 52 we get that there exists \(\Psi_{Q} \) such that \(F(Q) = (\nu p \cdot \tilde{b}_{Q \sigma}) \Psi_{Q} \) and \(p \cdot \Psi_{Q} \sigma = \Psi_{Q \sigma} \). We can then write the transition in the premise as

\[
\Psi' \otimes \Psi \sigma \otimes Q \sigma \triangleright P \sigma \quad \overset{\alpha}{\rightarrow} \quad P' \sigma.
\]

Since \(y \# p \cdot \tilde{b}_{Q \sigma}, Q \) we get that \(y \# p \cdot \Psi_{Q \sigma} \), and consequently that \(y \# p \cdot \Psi_{Q} \sigma \). Together with \(y \# \sigma \) this gives us that \(y \# \Psi_{Q} \).

We now have everything we need to use the induction hypothesis.

By induction we know that \(\Psi' \otimes \Psi \sigma \otimes Q \sigma \triangleright P \sigma \quad \overset{\alpha}{\rightarrow} \quad P' \sigma \) has
a matching transition $\Psi \otimes \Psi_Q \triangleright P \xrightarrow{\frac{y(x)}{C}} P'$ such that $(\sigma[y := M], \Psi') \models C$.

We can then do the following symbolic inference:

$$\begin{align*}
S-\text{PAR} & \\
\Psi \otimes \Psi_Q \triangleright P & \xrightarrow{\frac{y(x)}{C}} P' \\
\Psi & \triangleright P | Q \xrightarrow{\frac{y(x)}{(\nu p \cdot \tilde{b}_{Q\sigma})C}} P' | Q
\end{align*}$$

Since we have that $p \cdot \tilde{b}_{Q\sigma} \# \sigma, \Psi', M, y$ and $(\sigma[y := M], \Psi') \models C$ we also have that $(\sigma[y := M], \Psi') \models (\nu p \cdot \tilde{b}_{Q\sigma})C$.

$$\alpha = \overline{M} (\nu \tilde{a})N$$

We know that $\tilde{b}_{Q\sigma} \# \Psi', \Psi, \sigma, \overline{M} (\nu \tilde{a})N$. By Lemma 47 we also have that $\tilde{b}_{Q\sigma} \# P'\sigma$. Let $p \subseteq \tilde{b}_{Q\sigma} \times (p \cdot \tilde{b}_{Q\sigma})$ such that $p \cdot \tilde{b}_{Q\sigma} \# \ldots$. By equivariance the premise can be written as

$$\Psi' \otimes \Psi \sigma \otimes p \cdot \Psi_{Q\sigma} \triangleright P \sigma \xrightarrow{\alpha} P' \sigma.$$

By α-conversion we have that $\mathcal{F}(Q\sigma) = (\nu p \cdot \tilde{b}_{Q\sigma})p \cdot \Psi_{Q\sigma}$, and by Lemma 52 we get that there exists Ψ_Q such that $\mathcal{F}(Q) = (\nu p \cdot \tilde{b}_{Q\sigma})\Psi_Q$ and $p \cdot \Psi_{Q\sigma} = \Psi_{Q\sigma}$. We can then write the transition in the premise as

$$\Psi' \otimes \Psi \sigma \otimes \Psi_{Q\sigma} \triangleright P \sigma \xrightarrow{\alpha} P' \sigma.$$

Since $y \# p \cdot \tilde{b}_{Q\sigma}, Q$ we get that $y \# p \cdot \Psi_{Q\sigma}$, and consequently that $y \# p \cdot \Psi_{Q\sigma}$. Together with $y \# \sigma$ this gives us that $y \# \Psi_Q$.

We now have everything we need to use the induction hypothesis. By induction we know that $\Psi' \otimes \Psi \sigma \otimes \Psi_{Q\sigma} \triangleright P \sigma \xrightarrow{\alpha} P' \sigma$ has a matching transition $\Psi \otimes \Psi_Q \triangleright P \xrightarrow{\frac{\overline{\nu \tilde{a}}N}{C}} P'$ such that $(\sigma[y := M], \Psi') \models C$.

We can then do the following symbolic inference:

$$\begin{align*}
S-\text{PAR} & \\
\Psi \otimes \Psi_Q \triangleright P & \xrightarrow{\frac{\overline{\nu \tilde{a}}N}{C}} P' \\
\Psi & \triangleright P | Q \xrightarrow{\frac{\overline{\nu \tilde{a}}N}{(\nu p \cdot \tilde{b}_{Q\sigma})C}} P' | Q
\end{align*}$$
Since we have that \(p \cdot \tilde{b}_{Q^\sigma} \# \sigma, \Psi', M, y \) and \((\sigma[y := M], \Psi') \models C\) we also have that \((\sigma[y := M], \Psi') \models (\nu p \cdot \tilde{b}_{Q^\sigma})C\).

\(\alpha = \tau\) Like the case for input, but without the discussion about \(x\) and \(y\).

Scope In this case the transition is

\[
\Psi' \otimes \Psi \sigma \triangleright ((\nu a)P)\sigma \xrightarrow{\alpha} ((\nu a)P')\sigma
\]

Let \(b\) be a sufficiently fresh name, and let \(p = (a \ b)\). By applying the substitution and using \(\alpha\)-conversion to avoid capture, this transition is equivalent to

\[
\Psi' \otimes \Psi \sigma \triangleright (\nu b)((p \cdot P)\sigma) \xrightarrow{\alpha} (\nu b)((p \cdot P')\sigma)
\]

This transition is inferred like

\[
\text{C-Scope} \quad \frac{\Psi' \otimes \Psi \sigma \triangleright (p \cdot P)\sigma \xrightarrow{\alpha} (p \cdot P')\sigma \quad b\#\alpha, \Psi' \otimes \Psi \sigma}{\Psi' \otimes \Psi \sigma \triangleright (\nu b)((p \cdot P)\sigma) \xrightarrow{\alpha} (\nu b)((p \cdot P')\sigma)}
\]

\(\alpha = M(x)\) We know that \(y\#\Psi, (\nu a)P, x, x\#\sigma, (\nu a)P\). Since \(y\#(\nu b)(p \cdot P)\) and \(b\#y\) we have that \(y\#p \cdot P\), and similarly we get that \(x\#p \cdot P\). By induction we have that \(\Psi' \otimes \Psi \sigma \triangleright (p \cdot P)\sigma \xrightarrow{\alpha} (p \cdot P')\sigma\) has a matching transition \(\Psi \triangleright p \cdot P \xrightarrow{y(x)} C \quad p \cdot P'\) such that \((\sigma[y := M], \Psi') \models C\).

We then do the following symbolic inference:

\[
\text{S-Scope} \quad \frac{\Psi \triangleright p \cdot P \xrightarrow{\alpha} C \quad p \cdot P' \quad b\#\alpha, \Psi}{\Psi \triangleright (\nu b)(p \cdot P) \xrightarrow{\alpha} (\nu b)((p \cdot P')\sigma)}
\]

Since \((\sigma[y := M], \Psi') \models C\) and \(b\#\sigma, \Psi', y, M\) we also have that \((\sigma[y := M], \Psi') \models (\nu b)C\).

By \(\alpha\)-converting the final transition we get that

\[
\Psi \triangleright (\nu a)(P) \xrightarrow{\alpha} (\nu a)(P')
\]
\[\alpha = \bar{M} (\nu \bar{a}) N \] Same as for input, but replace \(x \) with \(\bar{a} \).

\[\alpha = \tau \] Same as for input, but without the discussion about \(x \) and \(y \).

Open In this case the transition looks like

\[
((\nu a)) P \sigma \xrightarrow{M (\nu \bar{a} \cup \{ a \}) N \sigma} P' \sigma
\]

Let \(b \) be a sufficiently fresh name, and let \(p = (a \ b) \). By applying the substitution and using \(\alpha \)-conversion to avoid capture, this transition is equivalent to

\[
(\nu b)(p \cdot P) \sigma \xrightarrow{M (\nu \bar{a} \cup \{ b \})(p \cdot N) \sigma} (p \cdot P') \sigma
\]

This transition is inferred like

\[
\text{C-Open} \quad \Psi' \otimes \Psi \sigma \triangleright (p \cdot P) \sigma \xrightarrow{M (\nu \bar{a})(p \cdot N) \sigma} (p \cdot P') \sigma \quad b \in n((p \cdot N) \sigma) \quad b \not\equiv \bar{a}, \Psi, \sigma, M
\]

We know that \(y \not\equiv \Psi, (\nu a) P, x, x \not\equiv \sigma, (\nu a) P \). Since \(y \not\equiv (\nu b)(p \cdot P) \) and \(b \not\equiv y \) we have that \(y \not\equiv p \cdot P \), and similarly we get that \(x \not\equiv p \cdot P \).

By induction we have that \(\Psi' \otimes \Psi \sigma \triangleright (p \cdot P) \sigma \xrightarrow{M (\nu \bar{a})(p \cdot N) \sigma} (p \cdot P') \sigma \) has a matching transition \(\Psi \triangleright p \cdot P \xrightarrow{\bar{y}(\nu \bar{a})(p \cdot N) \sigma} c \) \(p \cdot P' \) such that \((\sigma[y := M], \Psi') \models C \).

We then infer:

\[
\text{S-Open} \quad \Psi \triangleright p \cdot P \xrightarrow{\bar{y}(\nu \bar{a})(p \cdot N) \sigma} p \cdot P' \quad b \in n(p \cdot N) \quad b \not\equiv \bar{a}, \Psi, y
\]

Since \(b \not\equiv \sigma, \Psi', M, y \) and we have that \((\sigma[y := M], \Psi') \models C \) we also have that \((\sigma[y := M], \Psi') \models (\nu b)C \).

By \(\alpha \)-converting the final transition we get:

\[
\Psi \triangleright (\nu a) P \xrightarrow{(\nu \bar{a}) \cup \{ a \})(p \cdot N) \sigma} (p \cdot P') \sigma
\]
In this case the inference looks like

\[
\begin{align*}
\text{Rep} & \quad \Psi' \otimes \Psi \sigma \triangleright P \sigma \mid \! P \sigma \xrightarrow{\alpha} P' \sigma \\
\text{Rep} & \quad \Psi' \otimes \Psi \sigma \triangleright \! P \sigma \xrightarrow{\alpha} P' \sigma
\end{align*}
\]

\[\alpha = \overline{M(x)}\] We have that \(y \# \Psi, \! P, x\), which gives us that \(y \# \Psi, P, \! P, x\).

By induction we get that \(\Psi \triangleright P \mid \! P \xrightarrow{\alpha} P'\) and that \((\sigma[y := M], \Psi') \models C\). Let \(\alpha_s = y(x)\).

\[\alpha = \overline{M(v\bar{a})N}\] Like the case for input, but replace \(x\) with \(\bar{a}\).

\[\alpha = \tau\] Like the case for input, but without the discussion about \(x\) and \(y\).

We do the following derivation

\[
\begin{align*}
\text{Rep} & \quad \Psi \triangleright P \mid \! P \xrightarrow{\alpha_s \tau} P'' \\
\text{Rep} & \quad \Psi \triangleright \! P \xrightarrow{\alpha_s \tau} P''
\end{align*}
\]

Lemma 30 is then proven by using Lemma 53 to get that \(\Psi \otimes 1\sigma \triangleright P \sigma \xrightarrow{\overline{M(x)}} P' \sigma\) and we can then use Lemma 62 to get the desired result.

Appendix B.4. Proof of Lemma 31

Proof.
1. The proof is by induction on the length of the transition.

Base case: In this case we have that \(\Psi \triangleright P \sigma \Rightarrow P \sigma\). By Definition 21 (weak symbolic transitions) we have that \(P \xrightarrow{\text{true}} P\). Clearly \((\sigma, \Psi) \models \text{true}\).

Induction step: In this case we have that \(\Psi \triangleright P \sigma \xrightarrow{\tau} P'' \sigma\) and \(\Psi \triangleright P'' \sigma \Rightarrow P' \sigma\). By Lemma 30 we get that there exists \(C'\) such that \(P \xrightarrow{\tau} P''\) and \((\sigma, \Psi) \models C'\). By induction we get that there exists \(C''\) such that \(P'' \xrightarrow{C} P'\) and \((\sigma, \Psi) \models C''\). By Definition 21 we get that \(P \xrightarrow{C} P'\) where \(C = C' \land C''\). Clearly \((\sigma, \Psi) \models C\).
2. By case 1 we get that there exists C' such that $P \xrightarrow{C'} P''$ and $(\sigma, \Psi) \models C'$, and by Lemma 49 we get that $y \# C', P''$.

By Lemma 27 we get that $(y(x))\sigma = (y(x))\sigma'[y := M]$. Since $\sigma'[y := M]$ is interference free we have that $y \# \sigma'$ and that $\text{dom}(\sigma') \# y$. Using this and requirements on substitution we have that $(y(x))\sigma'[y := M] = M(x)\sigma'$. By Lemma 30 we get that there exists C'' such that $P'' \xrightarrow{y(x)} \xrightarrow{C''} P'''$ and $(\sigma'[y := M], \Psi) \models C''$, i.e. $(\sigma, \Psi) \models C''$.

By case 1 that there exists C''' such that $P''' \xrightarrow{C''} P'$ and $(\sigma, \Psi) \models C'''$. In other words $(\sigma, \Psi) \models C' \land C'' \land C'''$. Let $C = C' \land C'' \land C'''$. We then have that $P \xrightarrow{y(x)} \xrightarrow{C} P'$.

3. By definition $\Psi \triangleright P\sigma \xrightarrow{\overline{(y\nu\alpha)N}\sigma} P''\sigma$ means that

$$\Psi \triangleright P\sigma \Rightarrow P'',$$

$$\Psi \triangleright P'' \xrightarrow{\overline{(y\nu\alpha)N}\sigma} P''' \text{ and }$$

$$\Psi \triangleright P''' \Rightarrow P''\sigma.$$

By Lemma 55 the first transition can be written as $\Psi \triangleright P\sigma \Rightarrow P'''\sigma$ for some P'''. By case 1 we get that there exists C' such that $P \xrightarrow{C'} P''$ and $(\sigma, \Psi) \models C'$, and by Lemma 49 we get that $y \# C', P'''$.

By Lemma 27 we get that $(\overline{y\nu\alpha}N)\sigma = (\overline{y\nu\alpha}N)\sigma'[y := M]$. Since $\sigma'[y := M]$ is interference free we have that $y \# \sigma'$ and that $\text{dom}(\sigma') \# y$. Using this and requirements on substitution we have that $(\overline{y\nu\alpha}N)\sigma'[y := M] = (\overline{M(\nu\alpha)}N)\sigma'$. Similarly we get that $P'' = P'''\sigma'$, and can thus write the second transition as

$$\Psi \triangleright P'''\sigma' \xrightarrow{(\overline{M(\nu\alpha)}N)\sigma'} P'''.'$$

By Lemma 54 this can be rewritten to

$$\Psi \triangleright P'''\sigma' \xrightarrow{(\overline{M(\nu\alpha)}N)\sigma'} P'''\sigma'.$$

By Lemma 30 we get that there exists C'' such that $P''' \xrightarrow{\overline{y\nu\alpha}N} P''''$ and $(\sigma'[y := M], \Psi) \models C''$, i.e. $(\sigma, \Psi) \models C''$, and by Lemma 47 we get that $y \# P'''$. We then have that $P''''\sigma' = P'''\sigma'[y := M] = P'''\sigma$. The third transition can then be written

$$\Psi \triangleright P'''\sigma \Rightarrow P''\sigma.$$
By case 1 that there exists C''' such that $P'''' \xrightarrow{C'''} P'$ and $(\sigma, \Psi) \models C'''$. In other words $(\sigma, \Psi) \models C' \land C'' \land C'''$. Let $C = C' \land C'' \land C'''$. We then have that $P \xrightarrow{\Psi(\nu a) N \sigma} C'''$.

4. By definition $\Psi \triangleright P\sigma \xrightarrow{\tau} P'\sigma$ means that

\[\Psi \triangleright P\sigma \Rightarrow P'', \]
\[\Psi \triangleright P'' \xrightarrow{\tau} P''' \text{, and} \]
\[\Psi \triangleright P''' \Rightarrow P'\sigma \]

By Lemma 55 the first transition can be written as $\Psi \triangleright P\sigma \Rightarrow P''''\sigma$ for some P''''. By case 1 we get that there exists C' such that $P \xrightarrow{C'} P''''$ and $(\sigma, \Psi) \models C'$.

We write the second transition as

\[\Psi \triangleright P''''\sigma \xrightarrow{\tau} P''''. \]

By Lemma 54 this can be rewritten to

\[\Psi \triangleright P''''\sigma \xrightarrow{\tau} P''''\sigma. \]

for some P''''. By Lemma 30 we get that there exists C'' such that $P'''' \xrightarrow{C''} P'''''$ and $(\sigma, \Psi) \models C''$. The third transition can be written

\[\Psi \triangleright P'''''\sigma \Rightarrow P'\sigma. \]

By case 1 that there exists C''' such that $P''''' \xrightarrow{C'''} P'$ and $(\sigma, \Psi) \models C'''$. In other words $(\sigma, \Psi) \models C' \land C'' \land C'''$. Let $C = C' \land C'' \land C'''$. We then have that $P \xrightarrow{C} P'$.

\[\square \]

Appendix B.5. Proof of Theorem 32:

Proof. We must show that \mathcal{R} is a concrete bisimulation. Let $\mathcal{R}(\Psi, P\sigma, Q\sigma)$ for some C such that $(\sigma, \Psi) \models C$.

Static equivalence From $(C, P, Q) \in \mathcal{S}$ and definition 15 we have that $\Psi \otimes \mathcal{F}(P)\sigma \simeq \Psi \otimes \mathcal{F}(Q)\sigma$.

73
Symmetry} Follows immediately since S is symmetric.

Extension of arbitrary assertion By Lemma 43 we get that $\forall \Psi'. (\Psi \otimes \Psi', P\sigma, Q\sigma) \in R$.

Simulation

1. Suppose that $\Psi \triangleright P\sigma \xrightarrow{M(x)} P''$ with $x \# P, \sigma, C, M$. By Lemma 54 we get that there exists P' such that $P'' = P'\sigma$. Let $y\# \Psi, P, P', Q, x, \sigma, M, C$. By Lemma 30 we get that there exists C_P such that $P \xrightarrow{y(x)} P'$ and $(\sigma[y := M], \Psi) \models C_P$. By Lemma 60 we learn that $x\# C_P$. We then also have that $(\sigma[y := M][x := L], \Psi) \models C_P$ for any L. Since $S(C, P, Q)$ we know that there exists a set of constraints \hat{C} such that $C \cap C_P \iff \bigvee \hat{C}$ and for each $C' \in \hat{C}$ there is a transition $Q \xrightarrow{y(x)} Q'$ such that $C' \Rightarrow C_Q$, and $S(C', P', Q')$. Since $C \cap C_P \iff \bigvee \hat{C}$ we know that $(\sigma[y := M][x := L]) \models C'$ and from $C' \Rightarrow C_Q$ we get that $(\sigma[y := M][x := L]) \models C_Q$. By Lemma 28 we know that there is a transition

$$\Psi \triangleright Q\sigma[y := M] \xrightarrow{(y(x))\sigma[y := M]} Q'\sigma[y := M].$$

By Lemma 48 we have that $y\# Q'$. Finally, since $S(C', P', Q')$ and $(\sigma[y := M][x := L], \Psi) \models C'$ it follows that $R(\Psi, P'\sigma[y := M][x := L], Q'\sigma[y := M][x := L]),$ and because of the freshness conditions on y this is the same as $R(\Psi, P'\sigma[x := L], Q'\sigma[x := L])$

2. Suppose that $\Psi \triangleright P\sigma \xrightarrow{M(\bar{a})\sigma} P''$ with $\bar{a}\# \sigma, P, Q$. By Lemma 54 we get that there exists P' such that $P'' = P'\sigma$. Let $y\# \Psi, P, P', Q, \bar{a}, \sigma, M, C$. By Lemma 30 we get that $1 \triangleright P \xrightarrow{\bar{a}(\bar{a})\sigma} P'$, for some C_P, such that $(\sigma[y := M], \Psi) \models C_P$. Since $S(C, P, Q)$ we know that there exists a set of constraints \hat{C} such that $C \cap C_P \land \{\bar{a}\# P, Q\} \iff \bigvee \hat{C}$ and for each $C' \in \hat{C}$ there is a transition $Q \xrightarrow{\bar{a}(\bar{a})\sigma} Q'$ such that $C' \Rightarrow C_Q$, and $S(C', P', Q')$. By Lemma 48 we get that $y\# Q'$. Since $C \cap C_P \iff \bigvee \hat{C}$ we know that $(\sigma[y := M]) \models C'$ and from $C' \Rightarrow C_Q$ we get that $(\sigma[y := M]) \models C_Q$. By Lemma 28 we know that there is a transition

$$\Psi \triangleright Q\sigma[y := M] \xrightarrow{(\bar{a}(\bar{a})\sigma)\sigma[y := M]} Q'\sigma[y := M],$$

74
Since $y \neq \overline{a}, \Psi, Q, Q'$ this transition is simplified to

$$\Psi \triangleright Q\sigma \xrightarrow{M(\nu\overline{a})N'} Q'\sigma,$$

Finally, since $S(C', P', Q')$ and $(\sigma[y := M], \Psi) \models C'$ it follows that $R(\Psi, P'\sigma y := M, Q'\sigma y := M)$, and because of the freshness conditions on y this is the same as $R(\Psi, P'\sigma, Q'\sigma)$.

3. Suppose that $\Psi \triangleright P\sigma \xrightarrow{r} P''$. By Lemma 54 we get that there exists P' such that $P'\sigma = P''$. In other words we have that $\Psi \triangleright P\sigma \xrightarrow{r} P'\sigma$.

By Lemma 30 we get that $1 \triangleright P \xrightarrow{r_{C_P}} P'$, for some C_P such that $(\sigma, \Psi) \models C_P$. Since $(C, P, Q) \in S$ we know that there exists a set of constraints \widehat{C} such that $C \land C_P \iff \bigvee \widehat{C}$ and for each $C' \in \widehat{C}$ there is a transition $Q \xrightarrow{C_Q} Q'$ such that $C' \Rightarrow C_Q$ and $(C', P', Q') \in S$. We then have that $(\sigma, \Psi) \models C_Q$. By Lemma 28 we know that there is a transition $\Psi \triangleright Q\sigma \xrightarrow{r} Q'\sigma$.

Finally, since $(C', P', Q') \in S$ and $(\sigma, \Psi) \models C'$ it follows that $(\Psi, P''\sigma, Q'\sigma) \in R$.

\[\square\]

Appendix B.6. Proof of Theorem 33

Proof. Assume $(P, Q) \in S_C$ for some C.

Static equivalence From the construction of S_C we know that for all σ, Ψ such that $(\sigma, \Psi) \models C$ we have that $\Psi \mathcal{F}(P\sigma) \simeq \Psi \mathcal{F}(Q\sigma)$ (since $(\Psi, P\sigma, Q\sigma) \in R$), which directly gives us that $P \simeq_C Q$.

Symmetry Follows immediately since \mathcal{R} is symmetric.

Simulation 1. Suppose $1 \triangleright P \xrightarrow{y(x)} P', x \neq P, C, C_P$ and $y \neq C, \Psi, P, Q, x$.

We must find a set \widehat{C} such that $C \land C_P \iff \bigvee \widehat{C}$ and for each $C' \in \widehat{C}$ there must exist Q' and C_Q such that $1 \triangleright Q \xrightarrow{y(x)} Q'$ such that $C' \Rightarrow C_Q$, and $(C', P', Q') \in S$.

Let $\widehat{Q'} = \{ Q' : Q \xrightarrow{y(x)} Q' \}$ and for each $Q' \in \widehat{Q'}$ let $D_{Q'}$ be a constraint that satisfies $(\sigma, \Psi) \models D_{Q'}$ if and only if $(\Psi, P'\sigma, Q'\sigma) \in \mathcal{R}$. Let $\widehat{C} = \{ C_{Q'} \land D_{Q'} \land C \land C_P : Q' \in \widehat{Q'} \}$.
We first check that $C \land C' \Rightarrow \bigvee \widehat{C}$, i.e. that $(\sigma, \Psi) \models C \land C' \Rightarrow (\sigma, \Psi) \models C'$ for some $C' \in \widehat{C}$.

Let (σ', Ψ') be any solution pair such that $(\sigma', \Psi') \models C \land C'$. By Lemma 27 there is an equivalent solution of form $(\sigma''[x := L], \Psi')$ such that $x \# \sigma''$. In particular we have that $(\sigma''[x := L], \Psi') \models C$. Since $x \# C, C'$ we also have that $(\sigma'', \Psi') \models C'$. From the construction of \mathcal{S} it then follows that $(\Psi', P\sigma'', Q\sigma'') \in \mathcal{R}$. We also have that $(\sigma'', \Psi') \models C'$ so we get that $\Psi' \triangleright P\sigma'' \xrightarrow{(y(x))\sigma''} P'\sigma''$ (by Lemma 28). From Definition 11 we learn that there for all L' there exists Q'' such that

$$\Psi \triangleright Q\sigma'' \xrightarrow{(y(x))\sigma''} Q'', \text{ and}$$

$$\mathcal{R}(\Psi, P'\sigma''[x := L'], Q''[x := L'])$$

By Lemma 54 we get that there exists Q' such that $Q'' = Q'\sigma''$, so we get that

$$\Psi \triangleright Q\sigma'' \xrightarrow{(y(x))\sigma''} Q'\sigma'', \text{ and}$$

$$\mathcal{R}(\Psi, P'\sigma''[x := L'], Q'\sigma''[x := L']).$$

This means that $(\sigma''[x := L'], \Psi') \models D_{Q'}$. Since this holds for all L' it holds in particular for L so we get that $(\sigma''[x := L], \Psi') \models D_{Q'}$, or in other words $(\sigma', \Psi') \models D_{Q'}$. By Lemma 30 we get that $1 \triangleright Q \xrightarrow{y(x)} C_{Q'}$ with $(\sigma', \Psi') \models C_{Q'}$. In other words we have that

$$(\sigma', \Psi') \models C \land C' \Rightarrow (\sigma', \Psi') \models C'$$

for some $C' \in \widehat{C}$.

That $\bigvee \widehat{C} \Rightarrow C \land C'$ is trivial since the conjunct $C \land C'$ is part of each disjunct of \widehat{C}.

That $C' \Rightarrow C_{Q'}$ is trivial since $C' = C_{Q'} \land D_{Q'} \land C \land C'$.

From the construction of C' we have that $\mathcal{S}(C', P', Q')$. (Since $(\sigma', \Psi') \models C' \Rightarrow \mathcal{R}(\Psi', P'\sigma', Q'\sigma')$.)

2. Suppose $1 \triangleright P \xrightarrow{\overline{y}(\nu\overline{a})}_N \quad {C_P} \quad P', y\#\Psi, P, Q, \overline{a}$ and $\overline{a}\#P, Q$. We must find a set \widehat{C} such that $C \land C' \land \{\overline{a}\#P, Q\} \Leftrightarrow \bigvee \widehat{C}$ and for each $C' \in \widehat{C}$ there must exist a transition $1 \triangleright Q \xrightarrow{\overline{y}(\nu\overline{a})}_N \quad {C_Q} \quad Q'$ such that $C' \Rightarrow C_Q \land \{N = N'\}$, and $(C', P', Q') \in \mathcal{S}$.

76
Let \(\widehat{Q} = \{Q' : Q \xrightarrow{r} Q' \} \) and for each \(Q' \in \widehat{Q} \) let \(D_{Q'} \) be a constraint that satisfies \((\sigma, \Psi) \models D_{Q'} \) if and only if \((\Psi, P'\sigma, Q'\sigma) \in \mathcal{R} \). Let \(\widehat{C} = \{D_{Q'} \land C_{Q'} \land \{N = N'\} \land C \land C_P \land \{\overline{a}#P, Q\} : Q' \in \widehat{Q}\}. \)

We first check that \(C \land C_P \land \{\overline{a}#P, Q\} \Rightarrow \widehat{C} \), i.e. that \((\sigma, \Psi) \models C \land C_P \land \{\overline{a}#P, Q\} \Rightarrow (\sigma, \Psi) \models C' \) for some \(C' \in \widehat{C} \).

Let \((\sigma', \Psi') \) be any substitution pair such that \((\sigma', \Psi') \models C \land C_P \land \{\overline{a}#P, Q\} \). In particular we have that \((\sigma', \Psi') \models C \). From the construction of \(\mathcal{S} \) it then follows that \((\Psi', P\sigma', Q\sigma') \in \mathcal{R} \). We also have that \((\sigma', \Psi') \models C_P \) so we get that \(\Psi' \triangleright P\sigma' \xrightarrow{r} (\Psi (\overline{a}#N)^{\sigma'})^{P'} \). This transition can be matched by \(\Psi \triangleright Q\sigma' \xrightarrow{r} Q'' \) such that \(N\sigma' = N'\sigma' \). By Lemma 54 there exists \(Q' \) such that \(Q'' = Q'\sigma \). This means that \((\sigma', \Psi') \models D_{Q'} \).

By Lemma 30 we get that \(1 \triangleright Q \xrightarrow{r} Q' \) with \((\sigma', \Psi') \models C_{Q'} \).

In other words we have that \((\sigma', \Psi') \models C \land C_P \land \{\overline{a}#P, Q\} \Rightarrow (\sigma', \Psi') \models C' \) for some \(C' \in \widehat{C} \).

That \(\bigvee \widehat{C} \Rightarrow C \land C_P \land \{\overline{a}#P, Q\} \) is trivial since the conjunct \(C \land C_P \land \{\overline{a}#P, Q\} \) is part of each disjunct of \(\widehat{C} \).

That \(C' \Rightarrow C_{Q'} \land \{N = N'\} \) is trivial since \(C' = D_{Q'} \land C_{Q'} \land \{N = N'\} \land C \land C_P \land \{\overline{a}#P, Q\} \).

From the construction of \(C' \) we have that \((C', P', Q') \in \mathcal{S} \).

3. Suppose \(1 \triangleright P \xrightarrow{r} P' \). We must find a set \(\widehat{C} \) such that \(C \land C_P \leftrightarrow \bigvee \widehat{C} \) and for each \(C' \in \widehat{C} \) there must exist a transition \(1 \triangleright Q \xrightarrow{r} Q' \) such that \(C' \Rightarrow Q' \), and \((C', P', Q') \in \mathcal{S} \).

Let \(\widehat{Q} = \{Q' : Q \xrightarrow{r} Q' \} \) and for each \(Q' \in \widehat{Q} \) let \(D_{Q'} \) be a constraint that satisfies \((\sigma, \Psi) \models D_{Q'} \) if and only if \((\Psi, P'\sigma, Q'\sigma) \in \mathcal{R} \). Let \(\widehat{C} = \{D_{Q'} \land C_{Q'} \land C \land C_P : Q' \in \widehat{Q}\} \).

We first check that \(C \land C_P \Rightarrow \bigvee \widehat{C} \), i.e. that \((\sigma, \Psi) \models C \land C_P \Rightarrow (\sigma, \Psi) \models C' \) for some \(C' \in \widehat{C} \).

Let \((\sigma', \Psi') \) be any substitution pair such that \((\sigma', \Psi') \models C \land C_P \). In particular we have that \((\sigma', \Psi') \models C \). From the construction of \(\mathcal{S} \) it then follows that \((\Psi', P\sigma', Q\sigma') \in \mathcal{R} \). We also have that \((\sigma', \Psi') \models C_P \) so we get that \(\Psi' \triangleright P\sigma' \xrightarrow{r} P'\sigma' \) (by Lemma 28).
This transition can be matched by $\Psi' \triangleright Q\sigma' \xrightarrow{T} Q''$, and by Lemma 54 there exists Q' such that $Q'' = Q'\sigma'$. This means that $(\sigma', \Psi') \models D_{Q'}$. By Lemma 30 we get that $1 \triangleright Q \xrightarrow{T} C_{Q'}$ with $(\sigma', \Psi') \models C_{Q'}$. In other words we have that $(\sigma', \Psi') \models C \land C_P \Rightarrow (\sigma', \Psi') \models C'$ for some $C' \in \hat{C}$.

That $\bigvee \hat{C} \Rightarrow C \land C_P$ is trivial since the conjunct $C \land C_P$ is part of each disjunct of \hat{C}.

That $C' \Rightarrow C_{Q'}$ is trivial since $C' = D_{Q'} \land C_{Q'}' \land C \land C_P$.

From the construction of C' we have that $(C', P', Q') \in S$.

\[\square\]

Appendix B.7. Proof of Theorem 35

\textbf{Proof.} We must show that \mathcal{R} is a weak bisimulation. Let $\mathcal{R}(\Psi, P\sigma, Q\sigma)$ for some C such that $(\sigma, \Psi) \models C$.

Weak static implication Since $S(C, P, Q)$ we know that there exists a set of constraints \hat{C} such that $C \Leftrightarrow \bigvee \hat{C}$ and for each $C' \in \hat{C}$ there exists Q' and C_Q such that $Q \xrightarrow{T} C_Q, C' \Rightarrow C_Q, P \leq C' Q'$, and $S(C', P, Q')$.

We then have that $(\sigma, \Psi) \models C_Q$. By Lemma 29 we know that there is a transition $\Psi \triangleright Q\sigma \Rightarrow Q'\sigma$.

Finally, since $S(C', P, Q')$ and $(\sigma, \Psi) \models C'$ it follows that $\mathcal{R}(\Psi, P\sigma, Q'\sigma)$.

Symmetry Follows immediately since S is symmetric.

Extension of arbitrary assertion By Lemma 43 we get that $\forall \Psi'. \mathcal{R}(\Psi \otimes \Psi', P\sigma, Q\sigma)$.

Weak simulation 1. Suppose that $\Psi \triangleright P\sigma \xrightarrow{M(x)} P''$ with $x \not\models P\sigma, C, M$. By Lemma 54 we get that there exists P' such that $P'' = P'\sigma$. Let $y \not\models \Psi, P, P', Q, x, \sigma, M, C$. By Lemma 30 we get that there exists C_P such that $P \xrightarrow{y(x)} C_P$ with $(\sigma[y := M], \Psi) \models C_P$.

By Lemma 60 we learn that $x \not\models C_P$. We then also have that $(\sigma[y := M][x := L], \Psi) \models C_P$ for any L. Since $S(C, P, Q)$ we know that there exists a set of constraints \hat{C} such that $C \land C_P \Leftrightarrow \bigvee \hat{C}$ and for each $C' \in \hat{C}$ there is a transition $Q \xrightarrow{T} C_Q$ such that $C' \Rightarrow C_Q$, and $S(C', P', Q')$. This means that there exists
2. Suppose that \(\Psi \) and because of the freshness conditions on \(R \) we get that there exists a set of constraints \(Q \) such that \(Q \xrightarrow{\Psi} Q'' \), \(Q'' \xrightarrow{y(x)} Q'' \), and \(Q'' \xrightarrow{C_Q''} Q' \), where \(C_Q = C_Q' \land C_Q'' \land C_Q''' \). By Lemmas 48 and 49 we get that \(y \# Q'', Q''' \), \(Q' \). Since \(C \land C_P \Leftrightarrow \vee \hat{C} \) we know that \((\sigma[y := M][x := L]) \models C' \) and from \(C' \Rightarrow C_Q \) we get that \((\sigma[y := M][x := L]) \models C_Q \). By Lemma 29 we know that there are transitions

\[
\Psi \triangleright Q\sigma[y := M] \Rightarrow Q''\sigma[y := M],
\]

\[
\Psi \triangleright Q''\sigma[y := M] \xrightarrow{(y(x))\sigma[y := M]} Q''\sigma[y := M], \quad \text{and}
\]

\[
\Psi \triangleright Q''\sigma[y := M][x := L] \Rightarrow Q'\sigma[y := M][x := L].
\]

Since \(y \# \Psi, Q, Q'', Q', Q' \) these transitions are simplified to

\[
\Psi \triangleright Q\sigma \Rightarrow Q''\sigma,
\]

\[
\Psi \triangleright Q''\sigma \xrightarrow{M(x)} Q''\sigma, \quad \text{and}
\]

\[
\Psi \triangleright Q''\sigma[x := L] \Rightarrow Q'\sigma[x := L].
\]

Finally, since \(S(C', P', Q') \) and \((\sigma[y := M][x := L], \Psi) \models C' \) it follows that \(R(\Psi, P\sigma[y := M][x := L], Q'\sigma[y := M][x := L]) \), and because of the freshness conditions on \(y \) this is the same as \(R(\Psi, P\sigma[x := L], Q'\sigma[x := L]) \)

2. Suppose that \(\Psi \triangleright P\sigma \xrightarrow{M(\bar{a}\bar{\bar{a}})N} P'' \) with \(\bar{a} \# P, Q, P, Q \). By Lemma 54 we get that there exists \(P' \) such that \(P'' = P'\sigma \). Let \(y \# \Psi, P, P', Q, \bar{a}, \sigma, M, C \). By Lemma 30 we get that 1 \(\triangleright P \xrightarrow{\bar{a}(\bar{a}\bar{\bar{a}})N} P', \) for some \(C_P \), such that \((\sigma[y := M], \Psi) \models C_P \). Since \(S(C, P, Q) \) we know that there exists a set of constraints \(\hat{C} \) such that \(C \land C_P \land \{\bar{a} \# P, Q\} \Leftrightarrow \vee \hat{C} \) and for each \(C' \in \hat{C} \) there is a transition \(Q \xrightarrow{\bar{a}(\bar{a}\bar{\bar{a}})N} Q' \) such that \(C' \Rightarrow C_Q \land \{N = N'\} \), and \(S(C', P', Q') \). This means that there exists \(Q''', Q'', C'_Q, C''_Q, C'''_Q \) such that \(Q \Rightarrow Q''' \), \(Q'' \xrightarrow{\bar{a}(\bar{a}\bar{\bar{a}})N} Q'' \), and \(Q''' \Rightarrow Q' \), where \(C_Q = C_Q' \land C_Q'' \land C_Q''' \). By Lemmas 48 and 49 we get that \(y \# Q'', Q'', Q' \). Since \(C \land C_P \land \{\bar{a} \# P, Q\} \Leftrightarrow \vee \hat{C} \)
we know that \((\sigma[y := M]) \models C'\) and from \(C' \Rightarrow C_Q \land \{(N = N')\}\)
we get that \((\sigma[y := M]) \models C_Q\) and \((\sigma[y := M]) \models \{N = N'\}\).
By Lemma 29 we know that there is a transition
\[
\Psi \triangleright Q\sigma[y := M] \xrightarrow{(\overline{(v\overline{a})N'})\sigma[y := M]} Q'\sigma[y := M],
\]
Since \(y \neq \overline{a}\), \(\Psi, Q, Q'\) this transition is simplified to
\[
\Psi \triangleright Q\sigma \xrightarrow{\overline{(v\overline{a})N}} Q'\sigma,
\]
Finally, since \(S(C', P', Q')\) and \((\sigma[y := M], \Psi) \models C'\) it follows that \(\mathcal{R}(\Psi, P'\sigma[y := M], Q'\sigma[y := M])\), and because of the freshness
conditions on \(y\) this is the same as \(\mathcal{R}(\Psi, P'\sigma, Q'\sigma)\)
3. Suppose that \(\Psi \triangleright P\sigma \xrightarrow{\tau} P''\). By Lemma 54 we get that there exists \(P'\) such that \(P'\sigma = P''\). In other words we have that
\[
\Psi \triangleright P\sigma \xrightarrow{\tau} P'\sigma.
\]
By Lemma 30 we get that \(1 \triangleright P \xrightarrow{\tau} C_P\), for some \(C_P\) such that \((\sigma, \Psi) \models C_P\). Since \((C, P, Q) \in S\) we know that there exists a set of constraints \(\tilde{C}\) such that \(C \land C_P \iff \bigvee \tilde{C}\) and for each \(C' \in \tilde{C}\) there is a transition \(Q \xrightarrow{C_Q} Q'\) such that \(C' \Rightarrow C_Q\) and
\((C', P', Q') \in S\). We then have that \((\sigma, \Psi) \models C_Q\). By Lemma 29 we know that there is a transition \(\Psi \triangleright Q\sigma \Rightarrow Q'\sigma\).
Finally, since \((C', P', Q') \in S\) and \((\sigma, \Psi) \models C'\) it follows that \((\Psi, P'\sigma, Q'\sigma) \in \mathcal{R}\).

\(\square\)

Appendix B.8. Proof of Theorem 36

Proof. Assume \((C, P, Q) \in S\) for some \(C\).

Weak static implication We know that \(\Psi \triangleright Q\sigma \iff Q'\sigma, P\sigma \leq\psi Q'\sigma\),
and \((\Psi, P\sigma, Q'\sigma) \in \mathcal{R}\).

We must find a set \(\tilde{C}\) such that \(C \iff \bigvee \tilde{C}\) and for each \(C' \in \tilde{C}\) there
must exist a transition \(1 \triangleright Q \xrightarrow{C_Q} Q'\) such that \(C' \Rightarrow C_Q, P \leq_C Q',\)
and \((C', P, Q') \in S\).
Let $\tilde{Q}' = \{Q' : Q \xrightarrow{C_{Q'}} Q'\}$ and for each $Q' \in \tilde{Q}'$ let $D_{Q'}$ be a constraint that satisfies $(\sigma, \Psi) \models D_{Q'}$ if and only if $(\Psi, P\sigma, Q'\sigma) \in \mathcal{R}$ and $P\sigma \leq \Psi Q'\sigma$. Let $\tilde{C} = \{D_{Q'} \land C_{Q'} \land C : Q' \in \tilde{Q}'\}$.

We first check that $C \Rightarrow \bigvee \tilde{C}$, i.e. that $(\sigma, \Psi) \models C \Rightarrow (\sigma, \Psi) \models C'$ for some $C' \in \tilde{C}$.

Let (σ', Ψ') be any substitution pair such that $(\sigma', \Psi') \models C$. From the construction of \mathcal{S} it then follows that $(\Psi', P\sigma', Q'\sigma') \in \mathcal{R}$. This gives us that $\Psi' \triangleright Q'\sigma' \Rightarrow Q''$, and by Lemma 55 there exists Q' such that $Q'' = Q'\sigma'$. This means that $(\sigma', \Psi') \models D_{Q'}$. By Lemma 31 we get that $1 \triangleright Q \xrightarrow{C_{Q'}} Q'$ with $(\sigma', \Psi') \models C_{Q'}$. In other words we have that $(\sigma', \Psi') \models C \Rightarrow (\sigma', \Psi') \models C'$ for some $C' \in \tilde{C}$.

That $\bigvee \tilde{C} \Rightarrow C$ is trivial since C is part of each disjunct of \tilde{C}.

That $C' \Rightarrow C_{Q'}$ is trivial since $C' = D_{Q'} \land C_{Q'} \land C$.

From the construction of C' we have that $P \leq_{C'} Q'$ and $(C', P, Q') \in \mathcal{S}$.

Symmetry Follows immediately since \mathcal{R} is symmetric.

Simulation

1. Suppose $1 \triangleright P \xrightarrow{y(x)} P', x\#P, Q, C, C_P$ and $y\#C, \Psi, P, Q, x$.

We must find a set \tilde{C} such that $C \land C_P \Leftrightarrow \bigvee \tilde{C}$ and for each $C' \in \tilde{C}$ there must exist Q' and C_Q such that $1 \triangleright Q \xrightarrow{y(x)} Q'$ such that $C' \Rightarrow C_Q$, and $(C', P', Q') \in \mathcal{S}$.

Let $\tilde{Q}' = \{Q' : Q \xrightarrow{y(x)} Q'\}$ and for each $Q' \in \tilde{Q}'$ let $D_{Q'}$ be a constraint that satisfies $(\sigma, \Psi) \models D_{Q'}$ if and only if $(\Psi, P'\sigma, Q'\sigma) \in \mathcal{R}$. Let $\tilde{C} = \{C_{Q'} \land D_{Q'} \land C \land C_P : Q' \in \tilde{Q}'\}$.

We first check that $C \land C_P \Rightarrow \bigvee \tilde{C}$, i.e. that $(\sigma, \Psi) \models C \land C_P \Rightarrow (\sigma, \Psi) \models C'$ for some $C' \in \tilde{C}$.

Let (σ', Ψ') be any solution pair such that $(\sigma', \Psi') \models C \land C_P$. By Lemma 27 there is an equivalent solution of form $(\sigma''[x := L], \Psi')$ such that $x\#\sigma''$. In particular we have that $(\sigma''[x := L], \Psi') \models C$. Since $x\#C, C_P$ we also have that $(\sigma'', \Psi') \models C$. From the construction of \mathcal{S} it then follows that $(\Psi, P\sigma'', Q\sigma'') \in \mathcal{R}$. We also have that $(\sigma'', \Psi') \models C_P$ so we get that $\Psi' \triangleright P\sigma'' \xrightarrow{y(x)} P'\sigma''$.
(by Lemma 28). From Definition 18 we learn that there exists Q''_a such that for all L' there exists Q'_a, Q''_a such that

$$\Psi \triangleright Q'' \Rightarrow Q''_a,$$

$$\Psi \triangleright Q''_a \xrightarrow{(y(x))\sigma''} Q''_a,$$

$$\Psi \triangleright Q''_a[x := L'] \Rightarrow Q'_a,$$

and

$$\mathcal{R} (\Psi, P \sigma''[x := L'], Q'_a)$$

By Lemma 55 we get that there exists Q''' such that $Q''' = Q'' \sigma''$, so we get that

$$\Psi \triangleright Q \sigma'' \Rightarrow Q'' \sigma'',$$

and similarly by Lemma 54 we get that there exists Q'' such that

$$\Psi \triangleright Q'' \sigma'[x := L'] \Rightarrow Q'_a.$$

By Lemma 55 we get that there exist Q' such that

$$\Psi \triangleright Q'' \sigma'[x := L'] \Rightarrow Q' \sigma''[x := L']$$

and

$$\mathcal{R} (\Psi, P \sigma''[x := L'], Q' \sigma''[x := L'])$$

This means that $(\sigma''[x := L'], \Psi') \models D_{Q'}$. Since this holds for all L' it holds in particular for L so we get that $(\sigma''[x := L], \Psi') \models D_{Q'}$, or in other words $(\sigma', \Psi') \models D_{Q'}$. By Lemma 31 we get that

$$1 \triangleright Q \xrightarrow{(y(x))\sigma} Q'$$

with $(\sigma', \Psi') \models C_{Q'}$. In other words we have that

$$(\sigma', \Psi') \models C \land C_P \Rightarrow (\sigma', \Psi') \models C'$$

for some $C' \in \widehat{C}$.

That $\bigvee \widehat{C} \Rightarrow C \land C_P$ is trivial since the conjunct $C \land C_P$ is part of each disjunct of \widehat{C}.

That $C' \Rightarrow C_{Q'}$ is trivial since $C' = C_{Q'} \land D_{Q'} \land C \land C_P$.

From the construction of C' we have that $S(C', P', Q')$. (Since $(\sigma', \Psi') \models C' \Rightarrow \mathcal{R} (\Psi', P \sigma', Q' \sigma')$.)

2. Suppose $1 \triangleright P \xrightarrow{(y(\tilde{a}))N} P', y \# \Psi, P, Q, \tilde{a}$ and $\tilde{a} \# P, Q$. We must find a set \widehat{C} such that $C \land C_P \land \{\tilde{a} \# P, Q\} \leftrightarrow \bigvee \widehat{C}$ and for each
3. Suppose $C' \in \hat{C}$ there must exist a transition $1 \triangleright Q \xrightarrow{\bar{y}(a\bar{a})N'}_{C_Q} Q'$ such that $C' \Rightarrow C_Q \land \{N = N'\}$, and $(C' \land \{\bar{a}\#P, Q\}, P', Q') \in S$.

Let $\hat{Q}' = \{Q' : Q \xrightarrow{\bar{y}(a\bar{a})N'}_{C_{Q'}} Q'\}$ and for each $Q' \in \hat{Q}'$ let $D_{Q'}$ be a constraint that satisfies $(\sigma, \Psi) \models D_{Q'}$ if and only if $(\Psi, P'\sigma, Q'\sigma) \in \mathcal{R}$. Let $\hat{C} = \{D_{Q'} \land C_{Q'} \land \{N = N'\} \land C \land C_P \land \{\bar{a}\#P, Q\} : Q' \in \hat{Q}'\}$.

We first check that $C' \land C_P \land \{\bar{a}\#P, Q\} \Rightarrow \bigvee \hat{C}$, i.e. that $(\sigma, \Psi) \models C' \land C_P \land \{\bar{a}\#P, Q\} \Rightarrow C' \land C' \in \hat{C}$.

Let (σ', Ψ') be any substitution pair such that $(\sigma', \Psi') \models C' \land C_P \land \{\bar{a}\#P, Q\}$. In particular we have that $(\sigma', \Psi') \models C$. From the construction of \mathcal{S} it then follows that $(\Psi', P\sigma', Q\sigma') \in \mathcal{R}$. We also have that $(\sigma', \Psi') \models C_P$ so we get that $\Psi' \triangleright P\sigma' \xrightarrow{(\bar{y}(a\bar{a})N')\sigma'} P'\sigma'$ (by Lemma 28). This transition can be matched by $\Psi' \triangleright Q' \xrightarrow{\bar{y}(a\bar{a})N'}_{C_{Q'}} Q''$ such that $N\sigma' = N'\sigma'$. By Lemma 55 there exists Q' such that $Q'' = Q'\sigma$. This means that $(\sigma', \Psi') \models D_{Q'}$.

By Lemma 31 we get that $1 \triangleright Q \xrightarrow{\bar{y}(a\bar{a})N'}_{C_{Q'}} Q'$ with $(\sigma', \Psi') \models C_{Q'}$.

In other words we have that $(\sigma', \Psi') \models C' \land C_P \land \{\bar{a}\#P, Q\} \Rightarrow (\sigma', \Psi') \models C'$ for some $C' \in \hat{C}$.

That $\bigvee \hat{C} \Rightarrow C' \land C_P \land \{\bar{a}\#P, Q\}$ is trivial since the conjunct $C' \land C_P \land \{\bar{a}\#P, Q\}$ is part of each disjunct of \hat{C}.

That $C' \Rightarrow C_{Q'} \land \{N = N'\}$ is trivial since $C' = D_{Q'} \land C_{Q'} \land \{N = N'\} \land C \land C_P \land \{\bar{a}\#P, Q\}$.

From the construction of C' we have that $(C', P', Q') \in S$.

3. Suppose $1 \triangleright P \xrightarrow{\bar{z}} P'$. We must find a set \hat{C} such that $C' \land C_P \leftrightarrow \bigvee \hat{C}$ and for each $C' \in \hat{C}$ there must exist a transition $1 \triangleright Q \xrightarrow{\bar{y}(a\bar{a})N'}_{C_Q} Q'$ such that $C' \Rightarrow C_Q$, and $(C', P', Q') \in S$.

Let $\hat{Q}' = \{Q' : Q \xrightarrow{\bar{y}(a\bar{a})N'}_{C_{Q'}} Q'\}$ and for each $Q' \in \hat{Q}'$ let $D_{Q'}$ be a constraint that satisfies $(\sigma, \Psi) \models D_{Q'}$ if and only if $(\Psi, P'\sigma, Q'\sigma) \in \mathcal{R}$. Let $\hat{C} = \{D_{Q'} \land C_{Q'} \land C \land C_P : Q' \in \hat{Q}'\}$.

We first check that $C' \land C_P \Rightarrow \bigvee \hat{C}$, i.e. that $(\sigma, \Psi) \models C' \land C_P \Rightarrow (\sigma, \Psi) \models C'$ for some $C' \in \hat{C}$.

Let (σ', Ψ') be any substitution pair such that $(\sigma', \Psi') \models C' \land C_P$.
In particular we have that \((\sigma', \Psi') \models C\). From the construction of \(S\) it then follows that \((\Psi', P\sigma', Q\sigma') \in \mathcal{R}\). We also have that \((\sigma', \Psi') \models C_P\) so we get that \(\Psi' \triangleright P\sigma' \xrightarrow{\tau} P'\sigma'\) (by Lemma 28). This transition can be matched by \(\Psi' \triangleright Q\sigma' \xrightarrow{} Q''\), and by Lemma 55 there exists \(Q'\) such that \(Q'' = Q'\sigma'\). This means that \((\sigma', \Psi') \models D_{Q'}\). By Lemma 31 we get that \(1 \triangleright Q \xrightarrow{\sim} Q'\) with \((\sigma', \Psi') \models C_Q'\). In other words we have that \((\sigma', \Psi') \models C \land C_P \Rightarrow (\sigma', \Psi') \models C'\) for some \(C' \in \hat{C}\).

That \(\land \hat{C} \Rightarrow C \land C_P\) is trivial since the conjunct \(C \land C_P\) is part of each disjunct of \(\hat{C}\).

That \(C' \Rightarrow C_Q\) is trivial since \(C' = D_{Q'} \land C_{Q'} \land C \land C_P\).

From the construction of \(C'\) we have that \((C', P', Q') \in S\).

\(\square\)

Appendix B.9. Proof of Theorem 37

Proof. We must show that \(\mathcal{R}\) is a weak congruence. Let \(\mathcal{R}(\Psi, P\sigma, Q\sigma)\) for some \(C\) such that \((\sigma, \Psi) \models C\).

It follows from Theorem 35 that \(P\sigma \approx_\Psi Q\sigma\).

Suppose that \(\Psi \triangleright P\sigma \xrightarrow{\tau} P''\). By Lemma 54 we get that there exists \(P'\) such that \(P'\sigma = P''\). In other words we have that \(\Psi \triangleright P\sigma \xrightarrow{\tau} P'\sigma\).

By Lemma 30 we get that \(1 \triangleright P \xrightarrow{\sim} P'\), for some \(C_P\) such that \((\sigma, \Psi) \models C_P\). Since \((C, P, Q) \in S\) we know that there exists a set of constraints \(\hat{C}\) such that \(C \land C_P \Rightarrow \hat{C}\) and for each \(C'' \in \hat{C}\) there is a transition \(Q \xrightarrow{\tau} Q'\) such that \(C' \Rightarrow C_Q\) and \((C', P', Q') \in S\). We then have that \((\sigma, \Psi) \models C_Q\).

By Lemma 29 we know that there is a transition \(\Psi \triangleright Q\sigma \xrightarrow{\sim} Q'\sigma\).

Finally, since \(P' \approx_\Psi Q'\) and \((\sigma, \Psi) \models C''\) it follows from Theorem 35 that \(P'\sigma \approx_\Psi Q'\sigma\).

\(\square\)

Appendix B.10. Proof of Theorem 38

Proof. Assume \((C, P, Q) \in S\) for some \(C\). That \(P \approx_\Psi Q\) follows from Theorem 36.
Suppose $1 \rhd P \xrightarrow{\tau}_{C_P} P'$. We must find a set \hat{C} such that $C \land C_P \Rightarrow \bigvee \hat{C}$ and for each $C' \in \hat{C}$ there must exist a transition $1 \rhd Q \xrightarrow{\tau}_{C_Q} Q'$ such that $C' \Rightarrow C_Q$, and $(C', P', Q') \in S$.

Let $Q' = \{Q' : Q \xrightarrow{\tau}_{C_Q'} Q'\}$ and for each $Q' \in \hat{Q}$ let $D_{C_Q'}$ be a constraint that satisfies $(\sigma, \Psi) \models D_{C_Q'}$ if and only if $P' \sigma \approx_{\Psi} Q' \sigma$. Let $\hat{C} = \{D_{C_Q'} \land C_{Q'} : Q' \in \hat{Q}\}$.

We first check that $C \land C_P \Rightarrow \bigvee \hat{C}$, i.e. that $(\sigma, \Psi) \models C \land C_P \Rightarrow (\sigma, \Psi) \models C'$ for some $C' \in \hat{C}$.

Let (σ', Ψ') be any substitution pair such that $(\sigma', \Psi') \models C \land C_P$. In particular we have that $(\sigma', \Psi') \models C$. From the construction of S it then follows that $(\Psi, P' \sigma', Q' \sigma') \in R$. We also have that $(\sigma', \Psi') \models C_P$ so we get that $1 \rhd Q \xrightarrow{\tau}_{C_{Q'}} Q'$ with $(\sigma', \Psi') \models D_{C_{Q'}}$. In other words we have that $(\sigma', \Psi') \models C \land C_P \Rightarrow (\sigma', \Psi') \models C'$ for some $C' \in \hat{C}$.

That $C' \Rightarrow C_{Q'}$ is trivial since $C' = D_{C_{Q'}} \land C_{Q'}$.

From the construction of C' we have that $P' \sigma' \approx_{\Psi'} Q' \sigma'$ and from Theorem 36 we get that $P' \approx_{\sigma', C_{Q'}} Q'$.

\[
\square
\]

Appendix C. Proofs for the algorithm

We now present the invariant we will show to hold during the execution of the algorithm. It can be seen as an approximation of bisimulation with respect to the pairs of nodes currently being visited.

Definition 63 (Approximation of bisimulation). Let $B(P_0, Q_0, W, T)$ mean that the following condition is satisfied:

If $T(P, Q) = C$ then:

- there exists \hat{C} such that $C \Leftrightarrow \bigvee \hat{C}$ and for each $C' \in \hat{C}$ there exist Q', C_Q such that
 - $Q \xrightarrow{\tau}_{C_Q} Q'$,
- \(C' \Rightarrow C_Q \),
- \(P \leq_{C'} Q' \),
- \((P, Q') \notin \{(P_0, Q_0)\} \cup W \) implies \((P, Q') \in \text{dom}(T)\), and
- \((P, Q') \in \text{dom}(T)\) and \((P, Q') \notin W \) implies \(C' \Rightarrow T(P, Q') \)

- if \(P \xrightarrow{C_P} P' \) then there exists \(\hat{C} \) such that \(C \land C_P \Leftrightarrow \bigvee \hat{C} \) and for each \(C' \in \hat{C} \) there exist \(Q', C_Q \) such that
 - \(Q \xrightarrow{C_Q} Q' \),
 - \(C' \Rightarrow C_Q \),
 - \((P', Q') \notin \{(P_0, Q_0)\} \cup W \) implies \((P', Q') \in \text{dom}(T)\), and
 - \((P', Q') \in \text{dom}(T)\) and \((P', Q') \notin W \) implies \(C' \Rightarrow T(P', Q') \)

- if \(P \xrightarrow{y(x)} C_P \) \(P' \), \(x \# P, Q, C, C_P, y \), and \(y \# P, Q, C \) then there exists \(\hat{C} \) such that \(C \land C_P \Leftrightarrow \bigvee \hat{C} \) and for each \(C' \in \hat{C} \) there exist \(Q', C_Q \) such that
 - \(Q \xrightarrow{C_Q} Q' \),
 - \(C' \Rightarrow C_Q \),
 - \((P', Q') \notin \{(P_0, Q_0)\} \cup W \) implies \((P', Q') \in \text{dom}(T)\), and
 - \((P', Q') \in \text{dom}(T)\) and \((P', Q') \notin W \) implies \(C' \Rightarrow T(P', Q') \)

- if \(P \xrightarrow{\bar{y}(\bar{a})N} C_P \) \(P' \), \(\bar{a} \# P, Q, C, C_P, y \), and \(y \# P, Q, C \) then there exists \(\hat{C} \) such that \(C \land C_P \land \{\bar{a} \# P, Q\} \Leftrightarrow \bigvee \hat{C} \) and for each \(C' \in \hat{C} \) there exist \(Q', C_Q \) such that
 - \(Q \xrightarrow{\bar{y}(\bar{a})N} Q' \),
 - \(C' \Rightarrow C_Q \land \{N = N'\} \),
 - \((P', Q') \notin \{(P_0, Q_0)\} \cup W \) implies \((P', Q') \in \text{dom}(T)\), and
 - \((P', Q') \in \text{dom}(T)\) and \((P', Q') \notin W \) implies \(C' \Rightarrow T(P', Q') \)
Intuitively the condition means that T is a bisimulation with respect to the pairs of agents currently being compared, W. If $W = \emptyset$ and $(P_0, Q_0) \in \text{dom}(T)$ we have that $P \approx_{T(P_0, Q_0)} Q$.

The next lemma states that the union of two approximations of bisimulation is a bisimulation:

Lemma 64. If $\text{dom}(T_1) \cap \text{dom}(T_2) = \emptyset$ then $B(P, Q, W, T_1) \land B(P, Q, W, T_2)$ implies $B(P, Q, W, T_1 \cup T_2)$.

Proof. Straightforward from Definition 63. \qed

The following condition holds if the function close called with P, Q, C, W returns the pair (C_m, T), and it maintains the invariant that T is an approximation of bisimulation with respect to W.

Definition 65. Let $\text{close}(P, Q, C, W, C_m, T)$ mean that the following condition is satisfied:

1. $W \cap \text{dom}(T) = \emptyset$ and either $(P, Q) \in W$ and $C_m = \text{true}$, or $(P, Q) \in \text{dom}(T)$ and $T(P, Q) = C \land C_m$.
2. $B(P, Q, W, T)$.

Let $\text{bisim}(P, Q, C_m, T) = \text{close}(P, Q, \text{true}, \emptyset, C_m, T)$.

The next condition is the converse of Definition 65. It holds if the functions match-\ast called with P, Q, C, W return the pair (C_m, T), and they maintain the invariant that T is an approximation of bisimulation with respect to W.

Definition 66. 1. Let $\text{matchstimp}(P, Q, C, W, C_m, T)$ mean that the following condition is satisfied:

(a) $W \cap \text{dom}(T) = \emptyset$, $(P, Q) \notin W$, and $(P, Q) \notin \text{dom}(T)$.
(b) $B(P, Q, W, T)$.
(c) There exists \tilde{C} such that $C \land C_m \Leftrightarrow \bigvee \tilde{C}$ and for each $C' \in \tilde{C}$ there exist Q' and C_Q such that

• $Q \Rightarrow_{C_Q} Q'$,
• $C' \Rightarrow C_Q$,
• $P \leq_{C'} Q'$,
• $(P, Q') \notin \{(P, Q)\} \cup W$ implies $(P, Q') \in \text{dom}(T)$, and
4. Let `\(\text{matchout}(P, Q, C, W, C_m, T) \)` mean that the following condition is satisfied:
 a. \(W \cap \text{dom}(T) = \emptyset \), \((P, Q) \notin W \), and \((P, Q) \notin \text{dom}(T) \).
 b. \(\mathcal{B}(P, Q, W, T) \).
 c. If \(P \xrightarrow{\gamma} P' \) then there exists \(\tilde{C} \) such that \(C \land C_m \land C_P \Rightarrow \bigvee \tilde{C} \)
 and for each \(C' \in \tilde{C} \) there exist \(Q' \) and \(C_Q \) such that
 - \(Q \xrightarrow{\gamma} Q' \),
 - \(C' \Rightarrow C_Q \),
 - \((P', Q') \notin \{(P, Q)\} \cup W \) implies \((P', Q') \in \text{dom}(T) \), and
 - \((P', Q') \in \text{dom}(T) \land (P', Q') \notin W \) implies \(C' \Rightarrow T(P', Q') \).

3. Let `\(\text{matchin}(P, Q, C, W, C_m, T) \)` mean that the following condition is satisfied:
 a. \(W \cap \text{dom}(T) = \emptyset \), \((P, Q) \notin W \), and \((P, Q) \notin \text{dom}(T) \).
 b. \(\mathcal{B}(P, Q, W, T) \).
 c. If \(P \xrightarrow{y(x)} P' \), \(x \neq P, Q, C, C_m, C_P, y \), and \(y \neq P, Q, C, C_m \) then
 there exists \(\tilde{C} \) such that \(C \land C_m \land C_P \Rightarrow \bigvee \tilde{C} \) and for each \(C' \in \tilde{C} \) there exist \(Q' \) and \(C_Q \) such that
 - \(Q \xrightarrow{y(x)} Q' \),
 - \(C' \Rightarrow C_Q \),
 - \((P', Q') \notin \{(P, Q)\} \cup W \) implies \((P', Q') \in \text{dom}(T) \), and
 - \((P', Q') \in \text{dom}(T) \land (P', Q') \notin W \) implies \(C' \Rightarrow T(P', Q') \).

4. Let `\(\text{matchtau}(P, Q, C, W, C_m, T) \)` mean that the following condition is satisfied:
 a. \(W \cap \text{dom}(T) = \emptyset \), \((P, Q) \notin W \), and \((P, Q) \notin \text{dom}(T) \).
 b. \(\mathcal{B}(P, Q, W, T) \).
 c. If \(P \xrightarrow{\gamma} P' \), \(\bar{a} \neq P, Q, C, C_m, C_P, y \), and \(y \neq P, Q, C, C_m \) then
 there exists \(\tilde{C} \) such that \(C \land C_m \land C_P \land \{\bar{a} \neq P, Q\} \Rightarrow \bigvee \tilde{C} \) and for each \(C' \in \tilde{C} \) there exist \(Q' \) and \(C_Q \) such that
 - \(Q \xrightarrow{\gamma} Q' \),
 - \(C' \Rightarrow C_Q \land \{N = N'\} \),
• \((P', Q') \notin \{(P, Q)\} \cup W\) implies \((P', Q') \in \text{dom}(T)\), and
• \((P', Q') \in \text{dom}(T) \land (P', Q') \notin W\) implies \(C' \Rightarrow T(P', Q')\).

The next lemma states that the condition from Definition 65 holds if the conditions from Definition 66 hold, when they are instantiated according to the algorithm.

Lemma 67. If \(\text{matchstimp}(P, Q, C, W, C_1, T_1)\), \(\text{matchtau}(P, Q, C, W, C_2, T_2)\), \(\text{matchin}(P, Q, C, W, C_3, T_3)\), and \(\text{matchout}(P, Q, C, W, C_4, T_4)\) then \(\text{close}(P, Q, C, W, C_m, T)\)

where \(C_m = C_1 \land C_2 \land C_3 \land C_4\), and \(T = T_1 \cup T_2 \cup T_3 \cup T_4 \cup \{(P, Q) \Rightarrow C \land C_m\}\).

Proof. Clause 1 from Definition 65 is trivial. The remaining clause is \(\mathcal{B}(P, Q, W, T)\).
By Lemma 64 it is sufficient to check the case where \(T(P, Q) = C \land C_m\), and this follows from clauses 1c, 2c, 3c, and 4c of Definition 66. \(\Box\)

The next lemma is the converse of Lemma 67. It states that the conditions from Definition 66 hold if the condition from Definition 65 holds, when they are instantiated according to the algorithm.

Lemma 68. Suppose \((P, Q) \notin W\).

1. If \(\text{close}(P, Q', C \land C_{Qi}, \{(P, Q)\} \cup W, C_i, T_i)\) for all \(Q \xrightarrow{C_{Qi}} Q'_i\) then
\(\text{matchstimp}(P, Q, C, W, C_m, T)\) where \(C_m = \text{true} \Rightarrow \bigvee_i C_{Qi} \land C_i \land (C_i \land C_{Qi}) \Rightarrow \mathcal{F}(P) \leq \mathcal{F}(Q'_i))\) and \(T = \bigcup_i T_i\).
2. If \(\text{close}(P'_i, Q'_j, C \land C_{Pi} \land C_{Qj}, \{(P, Q)\} \cup W, C_{ij}, T_{ij})\) for all \(P \xrightarrow{C_{Pi}} P'_i\) and \(Q \xrightarrow{C_{Qj}} Q'_j\) then \(\text{matchtau}(P, Q, C, W, C_m, T)\) where \(C_m = \bigwedge_i (C_{Pi} \Rightarrow \bigvee_j C_{Qj} \land C_{ij})\) and \(T = \bigcup_{ij} T_{ij}\).
3. If \(\text{close}(P'_i, Q'_j, C \land C_{Pi} \land C_{Qj}, \{(P, Q)\} \cup W, C_{ij}, T_{ij})\) for all \(P \xrightarrow{y(x) \in C_{Pi}} P'_i\), such that \(y \# P, Q, C\) and \(\bar{a} \# P, Q, C, C_{Pi}, y, C_{Qj}, Q'_j\), such that \(y = z\) and \(\bar{a} = \bar{c}\), then \(\text{matchout}(P, Q, C, W, C_m, T)\) where \(C_m = \bigwedge_i (C_{Pi} \land \{\bar{a} \# P, Q\}) \Rightarrow \bigvee_j C_{Qj} \land \{N = N'\} \land C_{ij}\) and \(T = \bigcup_{ij} T_{ij}\).
4. If \(\text{close}(P'_i, Q'_j, C \land C_{Pi} \land C_{Qj}, \{(P, Q)\} \cup W, C_{ij}, T_{ij})\) for all \(P \xrightarrow{y(x) \in C_{Pi}} P'_i\), such that \(y \# P, Q, C\) and \(x \# P, Q, C, C_{Pi}, y, C_{Qj}, Q'_j\), such that \(y = z\) and \(x = x'\) then \(\text{matchin}(P, Q, C, W, C_m, T)\) where \(C_m = \bigwedge_i (C_{Pi} \Rightarrow \bigvee_j C_{Qj} \land C_{ij})\) and \(T = \bigcup_{ij} T_{ij}\).
Proof. 1. Clause 1a of Definition 66 follows directly from Clause 1 of Definition 65. To show Clause 1b, i.e. $B(P,Q,W,T)$ we assume that $T(P',Q') = C'$ for some P', Q', and C'. Since $T = \bigcup_i T_i$ we have that $T_i(P',Q') = C'$ for some i. By close$(P,Q_i',C \land C_{Qi},\{(P,Q)\} \cup W,C_i,T_i)$ and Clause 2 of Definition 65 we have that $B(P,Q_i',\{(P,Q)\} \cup W,T_i)$. Then there exists \hat{C} such that $C' \iff \bigvee C$ and for each $C'' \in \hat{C}$ there exist Q'', C_Q such that

- $Q' \xrightarrow{C_Q} Q''$,
- $C'' \Rightarrow C_Q$,
- $P' \leq C''$, Q'',
- $(P',Q'') \notin \{(P,Q)\} \cup W$ implies $(P',Q'') \in dom(T_i)$, and
- $(P',Q'') \in dom(T_i)$ and $(P',Q'') \notin \{(P,Q)\} \cup W$ implies $C'' \Rightarrow T_i(P',Q'')$

We need to show

$$(P',Q'') \notin \{(P,Q)\} \cup W \text{ implies } (P',Q'') \in dom(T), \text{ and } (C.1)$$

$$(P',Q'') \in dom(T) \text{ and } (P',Q'') \notin W \text{ implies } C'' \Rightarrow T(P',Q''). \text{ (C.2)}$$

For (C.1), assume that $(P',Q'') \notin \{(P,Q)\} \cup W$. We only need to consider the case where $(P',Q'') = (P,Q'_i)$ and $(P,Q'_i) \notin \{(P,Q)\} \cup W$. In this case by Definition 65.1 we have that $(P,Q'_i) \in dom(T_i) \subseteq dom(T)$. For (C.2), assume that $(P',Q'') \in dom(T)$ and $(P',Q'') \notin W$. From $(P',Q') \in dom(T_i)$ and the assumption that the graphs are recursive trees we get that $(P',Q'') \in dom(T_i)$. From Definition 65.1 we have that $\{(P,Q)\} \cup W \cap dom(T_i) = \emptyset$ so $(P',Q'') \notin \{(P,Q)\} \cup W$, and this implies $C'' \Rightarrow T_i(P',Q'') = T(P',Q'')$.

The final condition is 1c of Definition 66. Let $\hat{C} = \{C \land C_{Qi} \land C_i \land (C_{Qi} \land C_i \Rightarrow P \leq Q'_i) : Q \xrightarrow{C_{Qi}} Q'_i\}$. Then $C \land C_m \iff \bigvee \hat{C}$ and each $C' = C \land C_{Qi} \land C_i \land (C_{Qi} \land C_i \Rightarrow P \leq Q'_i) \in \hat{C}$ has the move $Q \xrightarrow{C_{Qi}} Q'_i$ associated with it. Clearly $C'' \Rightarrow C_{Qi}$ and $C'' \Rightarrow P \leq C'$, Q'_i. Each move $Q \xrightarrow{C_{Qi}} Q'_i$ satisfies $(P,Q'_i) \notin \{(P,Q)\} \cup W$ implies $(P,Q'_i) \in dom(T_i) \subseteq dom(T)$ (by Definition 65.1). Furthermore, if $(P,Q'_i) \in dom(T) \land (P,Q'_i) \notin W$ then $(P,Q'_i) \neq (P,Q)$ and therefore
\((P, Q') \notin \{(P, Q)\} \cup W\). By Definition 65.1 we get that \(T_i(P, Q') = C'\) and this implies \(C' \Rightarrow T_i(P, Q') = T(P, Q')\).

2. Similar to the first case.
3. Similar to the first case.
4. Similar to the first case.

\(\Box\)

Appendix C.1. Proof of soundness of the algorithm

Proof. From \(\text{bisim}(P, Q) = (C, T)\) we have \(\text{bisim}(P, Q, C, T)\), i.e. \(\text{close}(P, Q, \text{true}, \emptyset, C, T)\). Definition 65.1 gives us \((P, Q) \in \text{dom}(T)\) and \(T(P, Q) = C_m\). Together with Definition 65.2, i.e. \(\mathcal{B}(P, Q, \emptyset, T)\) we get that \(T\) is a symbolic bisimulation for \(P \approx_{C_m} Q\).

\(\Box\)

Appendix C.2. Proof of completeness of the algorithm

Let \(T_P\) be the symbolic transition tree associated with \(P\) and let \(T_Q\) be the symbolic transition tree for \(Q\). We show if \(P \approx_C Q\), \(C \Rightarrow C'\) and \(\text{close}(P, Q, C', W, C_m, T)\) then \(C \Rightarrow C_m\). The proof is by induction on the size of \(T_P \times T_Q \setminus W\), i.e. the set of unvisited pairs of agents in the algorithm.

The base case is when \(W = T_P \times T_Q\). In this case, by Definition 65.1, we have that \(C_m = \text{true}\), so trivially \(C \Rightarrow \text{true}\).

Otherwise we have that \(C_m = C_{\text{stimp}} \wedge C'_{\text{stimp}} \wedge C_C \wedge C' \wedge C_{\text{out}} \wedge C'_{\text{out}} \wedge C_i \wedge C'_{\text{in}}\). We must establish \(C \Rightarrow C_s\) and \(C \Rightarrow C'_s\) where \(* \in \{\text{stimp}, \tau, \text{out}, \text{in}\}\).

As an example consider \(C \Rightarrow C_{\text{stimp}}\). \(C_{\text{stimp}}\) is computed by \(\text{match-stimp}(P, Q, C, W)\), and thus we have transitions \(Q \overset{C_m}{\Rightarrow} Q'_i\) and \(\text{close}(P, Q', C \wedge C'_i, W \cup \{(P, Q), C_i, T_i\})\). Here \(C_{\text{stimp}} = \text{true} \Rightarrow \bigvee_i C_{Qi} \wedge C_i \wedge (C_i \land C_{Qi} \Rightarrow F(P) \leq F(Q'_i))\).

Since \(P \approx_C Q\) we use the definition of weak symbolic bisimulation to find a set of constraints, \(\tilde{C}\), such that \(C \Leftrightarrow \bigvee \tilde{C}\). Then, for each \(C'' \in \tilde{C}\) we have that \(Q \overset{C_m}{\Rightarrow} Q'_i, C'' \Rightarrow C_{Qi}, F(P) \leq C'' \Rightarrow F(Q'_i)\) (i.e. \(C'' \Rightarrow F(P) \leq F(Q'_i)\)) and \(P \approx_{C''} Q'_i\). Since \(C \Rightarrow \bigvee \tilde{C}\) we also have \(C'' \Rightarrow C \wedge C_{Qi}\). By induction we then get that \(C'' \Rightarrow C_i\). Since \(C''\) is an arbitrary element of \(\tilde{C}\) we have that \(\bigvee \tilde{C} \Rightarrow \bigvee_i C_{Qi} \wedge C_i \wedge F(P) \leq F(Q'_i)\). The right hand side is rewritten to \(\bigvee_i C_{Qi} \wedge C_i \wedge (C_{Qi} \wedge C_i \Rightarrow F(P) \leq F(Q'_i))\). Since \(C \Rightarrow \bigvee \tilde{C}\), \(C \Rightarrow \bigvee_i C_{Qi} \wedge C_i \wedge (C_{Qi} \wedge C_i \Rightarrow F(P) \leq F(Q'_i))\), which is what we set out to prove.

The other cases are proved in a similar fashion.

91