Breaking All the Symmetries in Matrix Models Results, Conjectures, and Directions

Pierre Flener and Justin Pearson

Information Technology, Uppsala University, Sweden \{Pierre.Flener, Justin.Pearson\} @it.uu.se

Funded by VR, under grant TFR 221-99-369 and by STINT, under grant IG 2001-067.

Acknowledgements: Alan M. Frisch, Warwick Harvey, APES, and ASTRA.

1. Matrix Models

Example: Sport schedule in Periods \times Weeks \rightarrow Teams \times Teams
for:

- \mid Teams $\mid=n$
- \mid Weeks $\mid=n-1$
- \mid Periods $\mid=n / 2$
such that:
- every team plays every other team once;
- every team plays exactly once per week;
- every team plays at most twice per period.

A solution for $n=8$:

Period 1	Week	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
	0 vs 1	0 vs 2	1 vs 5	2 vs 4	3 vs 6	3 vs 7	4 vs 7
Period 2	2 vs 3	1 vs 7	0 vs 6	5 vs 6	5 vs 7	1 vs 4	0 vs 3
Period 3	4 vs 5	3 vs 5	2 vs 7	0 vs 7	0 vs 4	2 vs 6	1 vs 6
Period 4	6 vs 7	4 vs 6	3 vs 4	1 vs 3	1 vs 2	0 vs 5	2 vs 5

2. Symmetries (in Matrix Models)

| | Week 1 | | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Week 7

The periods, weeks, and teams are indistinguishable, because:
(1) the periods (rows) can be permuted (variable symmetry);
(2) the weeks (columns) can be permuted (variable symmetry);
(3) the teams of any game can be permuted (variable symmetry);
(4) the teams can be permuted (value symmetry);
without affecting the solution status of any assignment.
Definition: A symmetry class (or orbit, in group theory) is an equivalence class of assignments under all the symmetries (including their compositions).

3. Symmetry-Breaking Before Search

Add (lexicographic) ordering constraints so that (ideally) each orbit has exactly one element:
(1) every row is lexicographically smaller than or equal to (denoted $\leq_{l e x}$) the next, if any;
(2) every column is lexicographically smaller than or equal to the next, if any;
(3) the first team of every game has a smaller number than the second team of the game.

When lexicographically ordering along every dimension with indistinguishable indices:

- No orbit is of size 0 .
- However, in general, not all orbits are of size 1, except if all the matrix values are distinct, etc.

Counterexample: symmetric matrices with lexicographically ordered rows and columns:

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] \leftarrow \begin{gathered}
\text { swap rows } 2
\end{gathered} \text { \& } 3 .\left[\begin{array}{lll}
\text { swap columns } 1 & \& & 0
\end{array}\right) \rightarrow\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \leftarrow \begin{array}{|}
\text { swap rows } 1 & \& & 2 \\
\text { swap columns } 2 & \& & 3
\end{array} \rightarrow\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

4. The Crawford et al. Method for Breaking All the Symmetries

Consider a matrix with total row and column symmetry: $\left[\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ x_{4} & x_{5} & x_{6}\end{array}\right]$ Group Sym of 12 symmetries (permutations):

Permutation	Name	Order
$(1,2)(4,5)$	$P_{c 12}$	2
$(2,3)(5,6)$	$P_{c 23}$	2
$(1,4)(2,5)(3,6)$	$P_{r 12}$	2
()	id	1
$(1,6,2,4,3,5)$	P_{δ}	6
$(1,5,3,4,2,6)$	P_{σ}	6
$(1,4)(2,6)(3,5)$	$P_{\alpha 1}$	2
$(1,5)(2,4)(3,6)$	$P_{\alpha 2}$	2
$(1,6)(2,5)(3,4)$	$P_{\alpha 3}$	2
$(1,3)(4,6)$	$P_{c 13}$	2
$(1,2,3)(4,5,6)$	$P_{c 123}$	3
$(1,3,2)(4,6,5)$	$P_{c 132}$	3

Cycle notation: $(1,2,3)(4,5)$ denotes the function $\left\{x_{1} \rightarrow x_{2}, x_{2} \rightarrow x_{3}, x_{3} \rightarrow x_{1}, x_{4} \rightarrow x_{5}, x_{5} \rightarrow x_{4}, x_{6} \rightarrow x_{6}\right\}$.

Illustration

Induced Symmetry-Breaking Constraints (SBCs)

(1) Pick a variable ordering m of the matrix.
(2) Add the constraint $m \leq_{l e x} \sigma(m)$ for each $\sigma \in S y m \backslash\{i d\}$.

Example: Take $m=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ x_{4} & x_{5} & x_{6}\end{array}\right]$
$(1,2)(4,5)$
$(2,3)(5,6)$
$(1,4)(2,5)(3,6)$
(1,6,2,4,3,5)
(1,5,3,4,2,6)
$(1,4)(2,6)(3,5)$
$(1,5)(2,4)(3,6)$
$(1,6)(2,5)(3,4)$
$(1,3)(4,6)$
$(1,2,3)(4,5,6)$
$(1,3,2)(4,6,5)$

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	$\begin{aligned} & \leq_{l e x} \\ & \leq_{l o x} \end{aligned}$
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	
x_{1}	x_{2}	x_{3}	x	x_{5}	x_{6}	
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	
χ_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	≤ 1

x_{2}	x_{1}	x_{3}	x_{5}	x_{4}	x_{6}
x_{1}	x_{3}	x_{2}	x_{4}	x_{6}	x_{5}
x_{4}	x_{5}	x_{6}	x_{1}	x_{2}	x_{3}
x_{6}	x_{4}	x_{5}	x_{3}	x_{1}	x_{2}
x_{5}	x_{6}	x_{4}	x_{2}	x_{3}	x_{1}
x_{4}	x_{6}	x_{5}	x_{1}	x_{3}	x_{2}
x_{5}	x_{4}	x_{6}	x_{2}	x_{1}	x_{3}
x_{6}	x_{5}	x_{4}	x_{3}	x_{2}	x_{1}
x_{3}	x_{2}	x_{1}	x_{6}	x_{5}	x_{4}
x_{2}	x_{3}	x_{1}	x_{5}	x_{6}	x_{4}
x_{3}	x_{1}	x_{2}	x_{6}	x_{4}	x_{5}

5. Improvements, Conjectures, and Directions

Internal Simplifications

Example: $(1,3)(4,6)=(1,3)(2)(4,6)(5)$ induces $\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right] \leq_{\text {lex }}\left[x_{3}, x_{2}, x_{1}, x_{6}, x_{5}, x_{4}\right]$

$$
\begin{aligned}
& \equiv\left(x_{1} \leq x_{3}\right) \wedge\left(x_{1}=x_{3} \rightarrow x_{2} \leq x_{2}\right) \wedge\left(x_{1}=x_{3} \wedge x_{2}=x_{2} \rightarrow x_{3} \leq x_{1}\right) \wedge\left(x_{1}=x_{3} \wedge x_{2}=x_{2} \wedge x_{3}=x_{1} \rightarrow x_{4} \leq x_{6}\right) \wedge \ldots \\
& \equiv\left(x_{1} \leq x_{3}\right) \wedge\left(x_{1}=x_{3} \rightarrow x_{4} \leq x_{6}\right) \wedge \ldots \\
& \equiv\left[x_{1}, x_{4}\right] \leq_{\text {lex }}\left[x_{3}, x_{6}\right]
\end{aligned}
$$

The elements at the positions corresponding to the last indices in each cycle can be deleted!
$(1,2)(4,5)$
$(2,3)(5,6)$
$(1,4)(2,5)(3,6)$
$(1,6,2,4,3,5)$
$(1,5,3,4,2,6)$
$(1,4)(2,6)(3,5)$
$(1,5)(2,4)(3,6)$
$(1,6)(2,5)(3,4)$
$(1,3)(4,6)$
$(1,2,3)(4,5,6)$
$(1,3,2)(4,6,5)$

x_{1}			x_{4}		
	x_{2}			x_{5}	
x_{1}	x_{2}	x_{3}			
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
x_{1}	x_{2}	x_{3}			
x_{1}	x_{2}	x_{3}			
x_{1}	x_{2}	x_{3}			
x_{1}			x_{4}		
x_{1}	x_{2}		x_{4}	x_{5}	
x_{1}	x_{2}		x_{4}	x_{5}	

$\leq_{\text {lex }}$
$\leq_{\text {lex }}$
$\leq_{\text {lex }}$
$\leq_{\text {lex }}$
$\leq_{\text {lex }}$
$\leq_{\text {lex }}$
$\leq_{\text {lex }}$
$\leq_{\text {lex }}$
$\leq_{\text {lex }}$
$\leq_{\text {lex }}$

x_{2}			x_{5}		
	x_{3}			x_{6}	
x_{4}	x_{5}	x_{6}			
x_{6}	x_{4}	x_{5}	x_{3}	x_{1}	
x_{5}	x_{6}	x_{4}	x_{2}	x_{3}	
x_{4}	x_{6}	x_{5}			
x_{5}	x_{4}	x_{6}			
x_{6}	x_{5}	x_{4}			
x_{3}			x_{6}		
x_{2}	x_{3}		x_{5}	x_{6}	
x_{3}	x_{1}		x_{6}	x_{4}	

$\left(c_{12}\right)$
$\left(c_{23}\right)$
$\left(r_{12}\right)$
(δ)
(σ)
$\left(\alpha_{1}\right)$
$\left(\alpha_{2}\right)$
$\left(\alpha_{3}\right)$
$\left(c_{13}\right)$
$\left(c_{123}\right)$
$\left(c_{132}\right)$

Elimination of Logically Implied SBCs

The first two SBCs
$(1,2)(4,5)$
$(2,3)(5,6)$

x_{1}			x_{4}		
	x_{2}			x_{5}	

$\leq_{l e x}$	x_{2}			x_{5}		
$\leq_{l e x}$		x_{3}			x_{6}	

$$
\begin{aligned}
& \left(c_{12}\right) \\
& \left(c_{23}\right)
\end{aligned}
$$

logically imply the last three SBCs

$$
\begin{aligned}
& (1,3)(4,6) \\
& (1,2,3)(4,5,6) \\
& (1,3,2)(4,6,5)
\end{aligned}
$$

x_{1}			x_{4}		
x_{1}	x_{2}		x_{4}	x_{5}	
x_{1}	x_{2}		x_{4}	x_{5}	

$\leq_{\text {lex }}$	x_{3}			x_{6}		
$\leq_{\text {lex }}$	x_{2}	x_{3}		x_{5}	x_{6}	
$\leq_{\text {lex }}$	x_{3}	x_{1}		x_{6}	x_{4}	

which can thus be eliminated:

- The last three SBCs rule out some permutations of the three columns.
- But $c_{12} \wedge c_{23}$ imposes a particular permutation and also rules out those other permutations.

In general:

- An $m \times n$ matrix with total row and column symmetry has $m!\cdot n!$ symmetries.
- There are (at least) $m!-m+n!-n$ logically implied SBCs, due to the transitivity of $\leq_{l e x}$!
- Direction: Try the redundancy detection criteria of ILP, especially [Imbert \& Van Hentenryck].

Contextual Simplifications in δ and σ (due to Frisch and Harvey)
$(1,2)(4,5)$
$(2,3)(5,6)$
$(1,4)(2,5)(3,6)$
$(1,6,2,4,3,5)$
$(1,5,3,4,2,6)$
$(1,4)(2,6)(3,5)$
$(1,5)(2,4)(3,6)$
$(1,6)(2,5)(3,4)$

x_{1}			x_{4}		
	x_{2}			x_{5}	
x_{1}	x_{2}	x_{3}			
x_{1}	x_{2}	x_{3}			
x_{1}	x_{2}	x_{3}	x_{4}		
x_{1}	x_{2}	x_{3}			
x_{1}	x_{2}	x_{3}			
x_{1}	x_{2}	x_{3}			

$\leq_{l e x}$	x_{2}			x_{5}		
$\leq_{l e x}$		x_{3}			x_{6}	
$\leq_{l e x}$	x_{4}	x_{5}	x_{6}			
$\leq_{l e x}$	x_{6}	x_{4}	x_{5}			
$\leq_{l e x}$	x_{5}	x_{6}	x_{4}	x_{2}		
$\leq_{l e x}$	x_{4}	x_{6}	x_{5}			
$\leq_{l e x}$	x_{5}	x_{4}	x_{6}			
$\leq_{l e x}$	x_{6}	x_{5}	x_{4}			

$\left(c_{12}\right)$ (c_{23})
$\left(\alpha_{3}\right)$

Direction: How to mechanise these contextual internal simplifications?

Experimental Results

- Encouraging results even when only using c_{12}, c_{23}, and r_{12} as SBCs, due to the action of the actual problem constraints.
- Nevertheless: When does a polynomial number of SBCs suffice to break all / most symmetries?!

Elimination of Domain-Dependent Implied SBCs

The number of implied SBCs grows as the domain size of the decision variables shrinks!

Domain size		c_{12}	c_{23}	r_{12}	δ	σ	α_{1}	α_{2}	α_{3}
2	Implied SBCs				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Minimum set	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{X}				
	Minimum set	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{X}			\boldsymbol{X}		
3	Implied SBCs				\checkmark		\checkmark	\checkmark	\checkmark
	Minimum set	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{X}			
≥ 4	Implied SBCs								
	Minimum set	\boldsymbol{X}							

Conjecture: For a domain of size 2, it suffices to add the SBCs induced by the order 2 permutations.
Experimentally validated up to 6×6 matrices.
Not true for domains of size 3: the constraint σ is necessary, but its permutation is of order 6 .
Unfortunately, even the number of order 2 permutations is super-polynomial...
Direction: Will elimination of the implied order 2 SBCs leave a polynomial number of SBCs?
Direction: How to characterise the SBCs necessary for each domain size?
Direction: How to characterise the SBCs that break most of the symmetries?

6. Experimental Results

Enumerating all the 3×3 matrices modulo total row and column symmetry, in the absence of any actual problem constraints:

- 35 SBCs;
- 6 implied SBCs, by transitivity of $\leq_{\text {lex }}$;
- 9 further implied SBCs, for domain sizes from 4 to at least 6 , which can all be eliminated.

Run-times in seconds, under GNU Prolog, on a Sun SPARC Ultra station 10:

		with all the 35 constraints	without 15 implied constraints		
		before internal simplifications	after internal simplifications		
domain size $=4$	Boolean $\leq_{\text {lex }}$		11.0"	5.8"	2.1"
(8,240 matrices)	linear $\leq_{l e x}$	8.3"	$4.5 "$	1.6"	
domain size $=5$	Boolean $\leq_{l e x}$	61.0"	31.8"	12.4"	
(57,675 matrices)	linear $\leq_{l e x}$	49.6"	26.7 "	10.0"	
domain size $=6$	Boolean $\leq_{\text {lex }}$	269.0"	139.0"	56.1"	
(289,716 matrices)	linear $\leq_{l e x}$	227.0"	122.6"	46.5"	

