Breaking All the Symmetries in Matrix Models Results, Conjectures, and Directions

Pierre Flener and Justin Pearson

Information Technology, Uppsala University, Sweden {Pierre.Flener, Justin.Pearson}@it.uu.se

Funded by VR, under grant TFR 221-99-369 and by STINT, under grant IG 2001-067.

Acknowledgements: Alan M. Frisch, Warwick Harvey, APES, and ASTRA.

1. Matrix Models

Example: Sport schedule in *Periods* \times *Weeks* \rightarrow *Teams* \times *Teams* for:

- |Teams| = n
- |Weeks| = n-1
- |Periods| = n/2

such that:

- every team plays every other team once;
- every team plays exactly once per week;
- every team plays at most twice per period.

A solution for n = 8:

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	0 vs 1	0 vs 2	1 vs 5	2 vs 4	3 vs 6	3 vs 7	4 vs 7
Period 2	2 vs 3	1 vs 7	0 vs 6	5 vs 6	5 vs 7	1 vs 4	0 vs 3
Period 3	4 vs 5	3 vs 5	2 vs 7	0 vs 7	0 vs 4	2 vs 6	1 vs 6
Period 4	6 vs 7	4 vs 6	3 vs 4	1 vs 3	1 vs 2	0 vs 5	2 vs 5

2. Symmetries (in Matrix Models)

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	0 vs 1	0 vs 2	1 vs 5	2 vs 4	3 vs 6	3 vs 7	4 vs 7
Period 2	2 vs 3	1 vs 7	0 vs 6	5 vs 6	5 vs 7	1 vs 4	0 vs 3
Period 3	4 vs 5	3 vs 5	2 vs 7	0 vs 7	0 vs 4	2 vs 6	1 vs 6
Period 4	6 vs 7	4 vs 6	3 vs 4	1 vs 3	1 vs 2	0 vs 5	2 vs 5

The periods, weeks, and teams are *indistinguishable*, because:

- (1) the periods (rows) can be permuted (variable symmetry);
- (2) the weeks (columns) can be permuted (variable symmetry);
- (3) the teams of any game can be permuted (variable symmetry);
- (4) the teams can be permuted (value symmetry);

without affecting the solution status of any assignment.

Definition: A *symmetry class* (or *orbit*, in group theory) is an equivalence class of assignments under *all* the symmetries (including their compositions).

3. Symmetry-Breaking Before Search

Add (*lexicographic*) ordering constraints so that (ideally) each orbit has exactly one element:

- (1) every row is lexicographically smaller than or equal to (denoted \leq_{lex}) the next, if any;
- (2) every column is lexicographically smaller than or equal to the next, if any;
- (3) the first team of every game has a smaller number than the second team of the game.

When lexicographically ordering along every dimension with indistinguishable indices:

- *No* orbit is of size 0.
- However, in general, *not* all orbits are of size 1, except if all the matrix values are distinct, etc.

Counterexample: symmetric matrices with lexicographically ordered rows and columns:

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow \begin{array}{c} swap \ rows \ 2 \ \& \ 3 \\ swap \ columns \ 1 \ \& \ 2 \end{array} \rightarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \leftarrow \begin{array}{c} swap \ rows \ 1 \ \& \ 2 \\ swap \ columns \ 2 \ \& \ 3 \end{array} \rightarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

4. The Crawford *et al*. Method for Breaking All the Symmetries

Consider a matrix with total row and column symmetry:

$$\begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \end{bmatrix}$$

Group *Sym* of 12 symmetries (permutations):

Name	Order
P_{c12}	2
P_{c23}	2
P_{r12}	2
id	1
Ρδ	6
P_{σ}	6
	2
	2
$P_{\alpha 3}$	2
P_{c13}	2
P_{c123}	3
	3
	P_{c12} P_{c23} P_{r12} id P_{δ} P_{σ} $P_{\alpha 1}$ $P_{\alpha 2}$ $P_{\alpha 3}$

Cycle notation: (1,2,3)(4,5) denotes the function $\{x_1 \rightarrow x_2, x_2 \rightarrow x_3, x_3 \rightarrow x_1, x_4 \rightarrow x_5, x_5 \rightarrow x_4, x_6 \rightarrow x_6\}$.

Induced Symmetry-Breaking Constraints (SBCs)

(1) Pick a variable ordering m of the matrix.

(2) Add the constraint $m \leq_{lex} \sigma(m)$ for each $\sigma \in Sym \setminus \{id\}$.

Example: Take $m = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \end{bmatrix}$

(1,2)(4,5)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	\leq_{lex}	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₃	<i>x</i> ₅	<i>x</i> ₄	<i>x</i> ₆	(c_{12})
(2,3)(5,6)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅		\leq_{lex}		<i>x</i> ₃	<i>x</i> ₂	<i>x</i> ₄	<i>x</i> ₆	<i>x</i> ₅	(c_{23})
(1,4)(2,5)(3,6)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅		\leq_{lex}		<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	(r_{12})
(1,6,2,4,3,5)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅		\leq_{lex}		<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₃	<i>x</i> ₁	<i>x</i> ₂	(δ)
(1,5,3,4,2,6)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	\leq_{lex}	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₄	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₁	(σ)
(1,4)(2,6)(3,5)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	\leq_{lex}	<i>x</i> ₄	<i>x</i> ₆	<i>x</i> ₅	<i>x</i> ₁	<i>x</i> ₃	<i>x</i> ₂	(α ₁)
(1,5)(2,4)(3,6)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	\leq_{lex}	<i>x</i> ₅	<i>x</i> ₄	<i>x</i> ₆	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₃	(α ₂)
(1,6)(2,5)(3,4)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	x_6	\leq_{lex}	<i>x</i> ₆	<i>x</i> ₅	<i>x</i> ₄	<i>x</i> ₃	<i>x</i> ₂	<i>x</i> ₁	(α ₃)
(1,3)(4,6)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅		\leq_{lex}		<i>x</i> ₂	<i>x</i> ₁	x_6	<i>x</i> ₅	<i>x</i> ₄	(c_{13})
(1,2,3)(4,5,6)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅		\leq_{lex}		<i>x</i> ₃	<i>x</i> ₁	<i>x</i> ₅	x_6	<i>x</i> ₄	(c_{123})
(1,3,2)(4,6,5)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	x_6	\leq_{lex}	<i>x</i> ₃	<i>x</i> ₁	<i>x</i> ₂	x_6	<i>x</i> ₄	<i>x</i> ₅	(c_{132})

5. Improvements, Conjectures, and Directions

Internal Simplifications

Example: (1,3)(4,6) = (1,3)(2)(4,6)(5) induces $[x_1, x_2, x_3, x_4, x_5, x_6] \le_{lex} [x_3, x_2, x_1, x_6, x_5, x_4]$ $\equiv (x_1 \le x_3) \land (x_1 = x_3 \rightarrow x_2 \le x_2) \land (x_1 = x_3 \land x_2 = x_2 \rightarrow x_3 \le x_1) \land (x_1 = x_3 \land x_2 = x_2 \land x_3 = x_1 \rightarrow x_4 \le x_6) \land \dots$ $\equiv (x_1 \le x_3) \land (x_1 = x_3 \rightarrow x_4 \le x_6) \land \dots$ $\equiv [x_1, x_4] \le_{lex} [x_3, x_6]$

The elements at the positions corresponding to the last indices in each cycle can be deleted!

(1,2)(4,5)	x_1			<i>x</i> ₄		\leq_{lex}	<i>x</i> ₂			<i>x</i> ₅		(c_{12})
(2,3)(5,6)		<i>x</i> ₂			<i>x</i> ₅	\leq_{lex}		<i>x</i> ₃			<i>x</i> ₆	(c_{23})
(1,4)(2,5)(3,6)	x_1	<i>x</i> ₂	<i>x</i> ₃			\leq_{lex}	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆			(r_{12})
(1,6,2,4,3,5)	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	\leq_{lex}	<i>x</i> ₆	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₃	<i>x</i> ₁	(δ)
(1,5,3,4,2,6)	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	\leq_{lex}	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₄	<i>x</i> ₂	<i>x</i> ₃	(σ)
(1,4)(2,6)(3,5)	x_1	<i>x</i> ₂	<i>x</i> ₃			\leq_{lex}	<i>x</i> ₄	<i>x</i> ₆	<i>x</i> ₅			(α_1)
(1,5)(2,4)(3,6)	x_1	<i>x</i> ₂	<i>x</i> ₃			\leq_{lex}	<i>x</i> ₅	<i>x</i> ₄	<i>x</i> ₆			(α_2)
(1,6)(2,5)(3,4)	x_1	<i>x</i> ₂	<i>x</i> ₃			\leq_{lex}	<i>x</i> ₆	<i>x</i> ₅	<i>x</i> ₄			(α_3)
(1,3)(4,6)	x_1			<i>x</i> ₄		\leq_{lex}	<i>x</i> ₃			<i>x</i> ₆		(c_{13})
(1,2,3)(4,5,6)	x_1	<i>x</i> ₂		<i>x</i> ₄	<i>x</i> ₅	\leq_{lex}	<i>x</i> ₂	<i>x</i> ₃		<i>x</i> ₅	<i>x</i> ₆	(c_{123})
(1,3,2)(4,6,5)	x_1	<i>x</i> ₂		<i>x</i> ₄	<i>x</i> ₅	\leq_{lex}	<i>x</i> ₃	<i>x</i> ₁		<i>x</i> ₆	<i>x</i> ₄	(c_{132})

Elimination of Logically Implied SBCs

The first two SBCs

(1,2)(4,5)	<i>x</i> ₁		<i>x</i> ₄		\leq_{lex}	<i>x</i> ₂		<i>x</i> ₅		(c_{12})
(2,3)(5,6)		<i>x</i> ₂		<i>x</i> ₅	\leq_{lex}		<i>x</i> ₃		<i>x</i> ₆	$] (c_{23})$

logically imply the last three SBCs

(1,3)(4,6)	<i>x</i> ₁		X	1	\leq_{lex}	<i>x</i> ₃		x_6		(<i>c</i> ₁₃)
(1,2,3)(4,5,6)	<i>x</i> ₁	<i>x</i> ₂	X	$ x_5 $	\leq_{lex}	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₅	<i>x</i> ₆	(c_{123})
(1,3,2)(4,6,5)	<i>x</i> ₁	<i>x</i> ₂	X_{i}	$ x_5 $	\leq_{lex}	<i>x</i> ₃	<i>x</i> ₁	x_6	<i>x</i> ₄	(c_{132})

which can thus be eliminated:

• The last three SBCs rule out some permutations of the three columns.

• But $c_{12} \wedge c_{23}$ imposes a particular permutation and also rules out those other permutations. In general:

- An $m \times n$ matrix with total row and column symmetry has $m! \cdot n!$ symmetries.
- There are (at least) m! m + n! n logically implied SBCs, due to the transitivity of $\leq_{lex} !$
- Direction: Try the redundancy detection criteria of ILP, especially [Imbert & Van Hentenryck].

(1,2)(4,5)	x_1			<i>x</i> ₄		\leq_{lex}	<i>x</i> ₂			<i>x</i> ₅		
(2,3)(5,6)		<i>x</i> ₂			<i>x</i> ₅	\leq_{lex}		<i>x</i> ₃			<i>x</i> ₆	
(1,4)(2,5)(3,6)	x_1	<i>x</i> ₂	<i>x</i> ₃			\leq_{lex}	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆			
(1,6,2,4,3,5)	x_1	<i>x</i> ₂	<i>x</i> ₃			\leq_{lex}		<i>x</i> ₄	<i>x</i> ₅			
1,5,3,4,2,6)	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄		\leq_{lex}	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₄	<i>x</i> ₂		
(1,4)(2,6)(3,5)	x_1	<i>x</i> ₂	<i>x</i> ₃			\leq_{lex}	<i>x</i> ₄	<i>x</i> ₆	<i>x</i> ₅			
(1,5)(2,4)(3,6)	x_1	<i>x</i> ₂	<i>x</i> ₃			\leq_{lex}	<i>x</i> ₅	<i>x</i> ₄	<i>x</i> ₆			
(1,6)(2,5)(3,4)	x_1	<i>x</i> ₂	<i>x</i> ₃			\leq_{lex}	<i>x</i> ₆	<i>x</i> ₅	x_4			

Contextual Simplifications in δ **and** σ (due to Frisch and Harvey)

Direction: How to mechanise these contextual internal simplifications?

Experimental Results

- Encouraging results even when only using c_{12} , c_{23} , and r_{12} as SBCs, due to the action of the actual problem constraints.
- Nevertheless: When does a *polynomial* number of SBCs suffice to break all / most symmetries?!

Elimination of Domain-Dependent Implied SBCs

The number of implied SBCs grows as the domain size of the decision variables shrinks!

Domain size		<i>c</i> ₁₂	c ₂₃	<i>r</i> ₁₂	δ	σ	α_1	α_2	α ₃
2	Implied SBCs				~	√	 ✓ 	 ✓ 	\checkmark
	Minimum set	×	X	X	×				
	Minimum set	×	X	X			X		
3	Implied SBCs				\checkmark		\checkmark	1	1
	Minimum set	×	X	X	×	X			
≥4	Implied SBCs								
	Minimum set	×	X	X	×	X	X	X	X

Conjecture: *For a domain of size 2, it suffices to add the SBCs induced by the order 2 permutations.* Experimentally validated up to 6 × 6 matrices.

Not true for domains of size 3: the constraint σ is necessary, but its permutation is of order 6.

Unfortunately, even the number of order 2 permutations is super-polynomial...

Direction: Will elimination of the implied order 2 SBCs leave a polynomial number of SBCs?

Direction: How to characterise the SBCs necessary for each domain size?

Direction: How to characterise the SBCs that break most of the symmetries?

6. Experimental Results

Enumerating all the 3×3 matrices modulo total row and column symmetry, in the absence of any actual problem constraints:

- 35 SBCs;
- 6 implied SBCs, by transitivity of \leq_{lex} ;
- 9 further implied SBCs, for domain sizes from 4 to at least 6, which can *all* be eliminated.

Run-times in seconds, under GNU Prolog, on a Sun SPARC Ultra station 10:

			without 15 imp	lied constraints
		with all the	before internal	after internal
		35 constraints	simplifications	simplifications
domain size = 4	Boolean \leq_{lex}	11.0"	5.8"	2.1"
(8,240 matrices)	linear \leq_{lex}	8.3"	4.5"	1.6"
domain size = 5	Boolean \leq_{lex}	61.0"	31.8"	12.4"
(57,675 matrices)	linear \leq_{lex}	49.6"	26.7"	10.0"
domain size = 6	Boolean \leq_{lex}	269.0"	139.0"	56.1"
(289,716 matrices)	linear \leq_{lex}	227.0"	122.6"	46.5"