PartialSymmetry Breaking

Iain McDonald
Barbara Smith
iain@dcs.st-and.ac.uk

* Curiosity
- What happens when we don't break all the symmetry that exists in a CSP?
- Is it ever quicker to break less symmetry and perform some redundant search?
* Highly symmetric problems

AlienTilesProblem

Initial State

Solution

Goal State

min University of St Andrews 							
27rasker arg en							
0	0	0	0	0	1	0	1
0	0	1	1	0	0	1	1
0	1	0	1	0	0	0	0
2	1			2	1	1	2
0	0	0	0	0	0	0	2
1	0	0	1	0	0	1	1
0	1	0	1	0	1	0	1
1	1	2	2	0	1	1	2

PSEExperiment

* Solve Alien Tiles problem
- Record cpu-time
* Solve again with SBDS
- Pick a symmetry at random
* Repeat with a random subset of symmetries one larger than last time until the problem is solved with all 1,151 symmetries

* Why is one subset of symmetries better than another?
* Can we break all symmetry with just a subset of symmetries?
* Is there a way to find the trough of the curve?

University of St Andrews

 BreakingalSymmetry

 BreakingalSymmetry}

* Cats and Dogs
* Interchangeable cats (3! = 6), interchangeable dogs $(5!=120)$ and symmetries of a square (8)
$-6 \times 120 \times 8=5,760$
* Break all symmetry with 41 functions

GeneralityofPSB

* Group theory / Dominance check
* SBDD
* Dynamic PSB

* Why is one subset of symmetries \downarrow better than another?
* Can we break all symmetry with just a subset of symmetries?
* Is there a way to find the trough of the curve?

Futurework

* First solution
* Find optimum number of symmetries
* Combining PSB with other research - Nu-SBDS

Conclusion

* Thanks to APES research group, CP2002 program committee, reviewers, supervisor, co-author and St Andrews research group...
* Nu-SBDS (and my CV) can be found at http://www.dcs.st-and.ac.uk/~iain/ :o)
* Each board state belongs to an equivalence class. For any given goal state, it may be possible to find a full assignment that maps the initial state, to a state in the same equivalence class as the goal state, that takes less clicks than the previous solution. If so, the full assignment becomes the new solution.
* p players must split up into g groups, to play golf with each other. The golfers must do this for w weeks. Any two golfers can play with each other at most once.
* The example used in this presentation was 12 golfers, 4 groups (of 3) played for 2 weeks.
* 3 cats and 5 dogs must be placed on a 5×5 chess board such that no dog can attack a cat in a queen's move.

* Heuristics not essential for optimization problems or finding all solutions
* Dynamic PSB will be able to find next variable
* For highly symmetric problems, benefit of PSB will far outweigh benefit of dynamic heuristics

