的

Symmetry breaking revisited

Jean-François Puget
ILOG

Outline

- Symmetries in CSP
- Past nodes as nogoods
- Isomorph rejection
- Results
- Future work

Examples

- N queen : 8 symmetries of the square

Symmetries

- Isomorphisms
- 1-1 Mappings (bijections) that preserve problem structure.
- Uniquely defined by how unary decisions are mapped
- $\sigma: x_{i}=a_{i} \quad \rightarrow \quad x_{i}^{\prime}=a_{i}^{\prime}$
- Variables can be permuted
- Values can be permuted
- Both
- Map solutions to solutions
- Potentially large number of isomorph variants
- Map trees search to tree search
- The same failure will be repeated many times

Example

- Alldiff(x, y, z), x, y, z in $\{1,2,3,4\}$
- Variables can be permuted

$$
x=1, y=3, z=2
$$

is isomorph to
$x=1, y=2, z=3$

Past states as nogoods

Focacci\&Milano, Fahle\&al [CP'01]

Avoid generating states isomorph to past states

If $\exists \sigma$ s.t. $S=\sigma\left(S^{\prime}\right), S^{\prime}$ past state then S can be pruned

- State
- Solution,

X Fail

Generalized nogoods

Only look at the roots of left subtrees

Nogood entailment

- Previous work rely on state inclusion
- For each node S, check if there exists σ and nogood S' s.t
$\forall x, \quad($ domain of x in $S) \subseteq \sigma\left(\right.$ domain of x in $\left.S^{\prime}\right)$
- We check if symmetric decisions are entailed :
$\exists \sigma, S \Rightarrow \sigma\left(\wedge_{i} c_{i}\right)$
Where c_{i} are the decisions leading to the nogood S'
- Nogood entailment must be checked at each node, for each nogood.

Decision set as nogoods

Assume 2 nogoods only:
C_{1}
$C_{1} \wedge A \wedge C_{2}$

S is pruned iff

$$
\begin{array}{ll}
\exists \sigma_{1} & S \Rightarrow \sigma_{1}\left(\mathbf{c}_{1}\right) \\
\vee \\
\exists \sigma_{2} & S \Rightarrow \sigma_{2}\left(\neg \mathbf{c}_{1} \wedge A \wedge \mathbf{c}_{2}\right)
\end{array}
$$

Can get rid of negative decisions : S is pruned iff

$$
\begin{aligned}
& \exists \sigma_{1} \quad S \Rightarrow \sigma_{1}\left(\mathbf{c}_{1}\right) \\
& \vee \\
& \exists \sigma_{2} \quad S \Rightarrow \sigma\left(A \wedge \mathbf{c}_{2}\right) \\
& \mathbf{a} \vee(\neg \mathbf{a} \wedge \mathbf{b}) \equiv \mathbf{a} \vee \mathbf{b}
\end{aligned}
$$

Theoretical results

- Symmetry breaking search is complete.
- For each solution of the original problem, it finds a solution isomorph to it.
- Symmetry breaking search is correct .
- It never finds two isomorph solutions.
- The proofs do not depend on the search strategy nor on the constraint propagation algorithm
- Can be used in conjunction with symmetry breaking constraints
- Non DFS, parallel search

Isomorph rejection

- Assume unary decisions
- $\mathrm{x}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}}$
- Entailed decisions

$$
\Delta(\mathrm{S})=\left\{\mathrm{x}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} \quad \mid \operatorname{domain}\left(\mathrm{x}_{\mathrm{i}}\right)=\left\{\mathrm{a}_{\mathrm{i}}\right\} \text { in } \mathrm{S}\right\}
$$

- Isomorphism test is simpler:
$\exists \sigma \quad S \Rightarrow \sigma\left(c_{1} \wedge \ldots \wedge c_{k}\right)$
is equivalent to
$\exists \sigma\left\{\sigma\left(c_{1}\right) \wedge \ldots \wedge \sigma\left(c_{k}\right)\right\} \subseteq \Delta(\mathbf{S})$
- Complexity
- Storage of one nogood is $O(1)$
- Number of nogoods is $\mathrm{O}(\mathrm{nm})$

Isomorph rejection (2)

- For each node, for each nogood for that node, create an auxiliary CSP for computing σ
- Variables correspond to decisions of the nogood
- Values to decisions entailed by the state
- Constraints restrict σ to be a symmetry of the original CSP
- Writing symmetries checking as constraint satisfaction is not trivial for the moment.
- Subgraph ismorphism on our examples
- Symmetries are not listed in advance, they are dynamically discovered

Social Golfer

- Real world problem : 8-4-10 still open
- Smaller instances hard enough
- Evaluation of symmetry breaking search:
- Search for all non isomorph solutions
- Model
- Set variables representing groups of each week.
- Generation week per week
- Best or equal results for

6-5-6, 6-5-7, 7-3-9, 8-3-10, 9-3-11, 10-3-13, 9-4-8,
10-4-9, 8-5-5 9-8-3, 10-8-9, 10-9-3, 10-10-3

Results (more results in the paper)

- Full symmetry breaking (Pentium III 833MHz laptop)

	$5-3-7$	$5-3-4$	$5-4-5$	$5-4-6$
solutions	7	13,933	10	0
time (sec)	25.5	3,603	20.4	4.1

- Partial symmetry breaking
- Only used for the first 3 weeks

	$5-3-7$	$5-3-4$	$5-4-5$	$5-4-6$
solutions	102	353,812	147	0
time (sec)	7.8	105	7.5	3.6

- Order(s) of magnitude faster than previous work

$\operatorname{bibd}(v, b, r, k, \lambda):$ preliminary results

- Simple model

O $v \times b$ matrix of $0-1$ variables
O Sum of each row $=r$
O Sum of each column $=k$
O Inner product of any two row $=\lambda$

- Row by row generation
- Rows can be permuted
- Columns can be permuted
- Finding one solution is often easy
- Solves each instance of [Messeguer\&Torras 99] within a 2 seconds
- Finding all (non isomorph) solutions is harder
- Lex ${ }^{2}$ is quite effective [Flener \& al, CP'02]
- Finds all solutions of small instances within a second

$\operatorname{bibd}(7,7 t, 3 t, 3, t)$ family

- Lex ${ }^{2}+$ symmetry breaking search on first n rows

$\operatorname{bibd}(15,35,7,3,1)$ (> 10^{52} symmetries)

- Lex ${ }^{2}$

Solutions	Nodes	Time (sec)
$32,127,296$	$117,782,182$	75,999

- Lex ${ }^{2}+$ symmetry breaking search

80	76,911	13,721

- Lex ${ }^{2}+$ symmetry breaking on first 10 rows

157,312	412,312	438

Conclusion

- Simple and powerful formalization
- Left children as nogoods
- Correctness and completeness results
- Applies to any search strategy and propagation algorithm
- Non depth first search, parallel search
- $\mathrm{O}(\mathrm{nm})$ space per open node, $\mathrm{O}(\mathrm{nm})$ space for DFS
- Can be used with symmetry breaking constraints
- Improves over SBDD and Cut Generation [CP'01]
- Improves over Lex ${ }^{2}$ on BIBD
- Domain filtering instead of generate and test
- Can be implemented with an auxiliary CSP
- On the golfer, reduces number of nodes, but is 2 times slower

Future work

- Isomorphism test is too costly
- Done at each node, it dominates running time
- Efficient domain specific tests are possible [Barnier \& Brisset CP’02]
- Symmetry definitions
- Isomorphism test could use known symmetries
- Use group generators? [Gent \& al CP’02]
- Combination with SBDS
- Domain filtering
- Other real world problems
- Time tabling, rostering

