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Abstract. We have been studying the internal symmetries within an
individual solution of a constraint satisfaction problem [1]. Such inter-
nal symmetries can be compared with solution symmetries which map
between different solutions of the same problem. We show that we can
take advantage of both types of symmetry when solving constraint satis-
faction solutions within two benchmark domains. By identifying internal
symmetries and breaking solution symmetries, we are able to increase
the size of problems which have been solved.

1 Introduction

Symmetry occurs in several different forms. For example, when finding magic
squares (prob019 in CSPLib [2]), we have the solution symmetries that describe
the rotation and reflection of one solution onto another. We can also have internal
symmetries which describe the mappings within each solution [1]. Methods for
identifying and dealing with solution symmetries have been extensively studied.
We can, for instance, post symmetry breaking constraints to eliminate symmetric
solutions [3, 4]. Internal symmetries, on the other hand, have not received as
much attention. However, they can be dealt with in a similar way. We simply add
constraints that limit search to those solutions with a given internal symmetry. In
addition, we can limit search further by only branching on the subset of decisions
that then generate a complete solution. To demonstrate the value of exploiting
such internal symmetries, we report results on two benchmark domains: Van der
Waerden numbers and graceful graphs. Some (but not all) of the results reported
here will first appear in [1].

2 Solution symmetry

A symmetry σ is a bijection on assignments. Given a set of assignments A and
a symmetry σ, we write σ(A) for {σ(a) | a ∈ A}. Similarly, given a set of
symmetries Σ, we write Σ(A) for {σ(a) | a ∈ A,σ ∈ Σ}. A special type of
symmetry, called solution symmetry is a symmetry between the solutions of a
problem. Such a symmetry maps solutions onto solutions. A solution is a set
of assignments that satisfy every constraint in the problem. More formally, a
problem has the solution symmetry σ iff σ of any solution is itself a solution [5].
The set of solution symmetries Σ of a problem forms a group under composition.



We say that two sets of assignments A and B are in the same symmetry class
of Σ iff there exists σ ∈ Σ such that σ(A) = B.

Running example. The magic squares problem is to label a n by n square so
that every row, column and diagonal have the same sum (prob019 in CSPLib
[2]). A normal magic square contains the integers 1 to n2. We model this with
n2 variables where Xi,j = k iff the ith column and jth row is labelled with the
integer k.

“Lo Shu” is an important object in ancient Chinese mathematics. It is the
smallest non-trivial normal magic square and has been known for over four thou-
sand years:

4 9 2
3 5 7
8 1 6

(1)

The magic squares problem has a number of solution symmetries. For exam-
ple, consider the symmetry σd that reflects a solution in the leading diagonal.
This map “Lo Shu” onto a symmetric solution:

6 7 2
1 5 9
8 3 4

(2)

Any other rotation or reflection of the square maps one solution onto another.
The 8 symmetries of the square (the dihedral group of order 8) are thus all
solution symmetries of this problem. In fact, there are only 8 different magic
square of order 3, and all are in the same symmetry class as “Lo Shu”.

To eliminate such solution symmetry, we can, for instance, post symmetry
breaking constraints that rule out symmetric solutions [3, 4, 6–13]. For example,
to eliminate σd, we simply post an inequality constraint to ensure that the top
left corner is smaller than its symmetry, the bottom right corner. This selects
(1) and eliminates (2).

3 Internal symmetry

Symmetries can also be found within individual solutions of a constraint satis-
faction problem. We say that a solution A contains the internal symmetry σ (or
equivalently σ is a internal symmetry within this solution) iff σ(A) = A.

Running example. Consider again “Lo Shu”, the smallest normal magic square.
This contains a simple internal symmetry. To see this, consider the solution sym-
metry σinv that inverts labels, mapping k onto n2+1−k. This solution symmetry
maps “Lo Shu” onto a different (but symmetric) solution. However, if we now



apply the solution symmetry σ180 that rotates the square 180◦, we map back onto
the original solution:

4 9 2
3 5 7
8 1 6

σinv

⇒
⇐
σ180

6 1 8
7 5 3
2 9 4

Consider the composition of these two symmetries: σinv◦σ180. This symmetry
both inverts the labels in the square and rotates the square 180◦. As this symmetry
maps “Lo Shu” onto itself, we see that the solution “Lo Shu” contains the internal
symmetry σinv ◦ σ180.

Note that a solution symmetry is a property of every solution whilst an
internal symmetry is a property of just the given solution.

Running example. Consider the following magic square:

14 11 5 4
1 8 10 15
12 13 3 6
7 2 16 9

This is one of the oldest known magic squares, dating from a 10th century en-
graving on the Parshvanath Jain temple in Khajuraho, India. σinv ◦ σ180 is not
an internal symmetry contained within this solution:

14 11 5 4
1 8 10 15
12 13 3 6
7 2 16 9

⇔
σinv ◦ σ180

8 1 15 10
11 14 4 5
2 7 9 16
13 12 6 3

However, this internal symmetry is found within other order 4 solutions. Con-
sider Albrecht Dürer’s famous magic square:

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

(3)

This appears in his engraving “Melencolia I” of 1514 (as indicated by the two
middle squares of the bottom row). It also plays a role in Dan Brown’s novel
“The Lost Symbol”. The internal symmetry σinv ◦ σ180 is contained within (3):

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

σinv

⇒
⇐
σ180

1 14 15 4
12 7 6 9
8 11 10 5
13 2 3 16



Thus we can conclude that σinv ◦σ180 is an internal symmetry contained within
some but not all solutions of the normal magic squares problem. In fact, 48 out of
the 880 distinct normal magic squares of order 4 contain this internal symmetry.
On the other hand, σinv ◦ σ180 is a solution symmetry of normal magic square
problems of every size.

A solution containing an internal symmetry can often be described by a
subset of assignments and one or more symmetries acting on this subset that
generate a complete set of assignments. Given a set of symmetries Σ, we write
Σ∗ for the closure of Σ. That is, Σ0 = Σ, Σi = {σ1 ◦ σ2 | σ1 ∈ Σ,σ2 ∈ Σi−1},
Σ∗ =

⋃
i Σ

i. Given a solution A, we say the subset B of A and the symmetries
Σ generate A iff A = B ∪Σ∗(B). In this case, we also describe A as containing
the internal symmetries Σ.

Running example. Consider the following magic square:

1 8 12 13
14 11 7 2
15 10 6 3
4 5 9 16

(4)

This contains the internal symmetry σinv ◦ σ180. Half this magic square and
σinv ◦ σ180 generate the whole solution:

1 8 12 13
14 11 7 2
- - - -
- - - -

⇔
σinv ◦ σ180

- - - -
- - - -
15 10 6 3
4 5 9 16

In fact, (4) can be generated from just the first quadrant and two symmetries:
σinv ◦ σ180 and a symmetry τ which constructs a 180◦ rotation of the first quad-
rant in the second quadrant, decrementing those squares on the leading diagonal
and incrementing those on the trailing diagonal (the same symmetry constructs
the third quadrant from the fourth). More precisely, τ makes the following map-
pings:

a b - -
c d - -
- - - -
- - - -

⇒
τ

- - d+1 c-1
- - b-1 a+1
- - - -
- - - -

The example hints at how we can exploit internal symmetries within solu-
tions. We will limit search to a subset of the decision variables that generates
a complete set of assignments and construct the rest of the solution using the
generating symmetries.

4 Theoretical properties

We list some properties of internal symmetries that will be used to help find
solutions.



4.1 Set of internal symmetries within a solution

Like solution symmetries, the internal symmetries within a solution form a group.
A solution A contains a set of internal symmetries Σ (or equivalently Σ are
internal symmetries within the solution) iff A contains σ for every σ ∈ Σ.

Proposition 1. The set of internal symmetries Σ within a solution A form a
group under composition.

The proof of this proposition and all subsequent propositions are given in [1].

4.2 Symmetries within and between solutions

In general, there is no relationship between the solution symmetries of a prob-
lem and the internal symmetries within a solution of that problem. There are
solution symmetries of a problem which are not internal symmetries within any
solution of that problem, and vice versa. The problem Z1 (= Z2 has the solution
symmetry that swaps Z1 with Z2, but no solutions of Z1 (= Z2 contain this
internal symmetry. On the other hand, the solution Z1 = Z2 = 0 of Z1 ≤ Z2

contains the internal symmetry that swaps Z1 and Z2, but this is not a solution
symmetry of Z1 ≤ Z2 (since Z1 = 0, Z2 = 1 is a solution but its symmetry is
not). When all solutions of a problem contain the same internal symmetry, we
can be sure that this is a solution symmetry of the problem itself.

Proposition 2. If all solutions of a problem contain an internal symmetry then
this is a solution symmetry.

By modus tollens, it follows that if σ is not a solution symmetry of a prob-
lem then there exists at least one solution which does not contain the internal
symmetry σ.

4.3 Symmetries of symmetric solutions

We next consider internal symmetries contained within symmetric solutions.
In general, the symmetry of a solution contains the conjugate of any internal
symmetry contained within the original solution.

Proposition 3. If the solution A contains the internal symmetry σ and τ is
any (other) symmetry then τ(A) contains the internal symmetry τ ◦ σ ◦ τ−1.

In the special case that symmetries commute, the symmetry of a solution
contains the same internal symmetries as the original problem. Two symmetries
σ and τ commute iff σ ◦ τ = τ ◦ σ.

Proposition 4. If the solution A contains the internal symmetry σ and τ com-
mutes with σ then τ(A) also contains the internal symmetry σ.



Running example. Consider again “Lo Shu”, the smallest normal magic square.
This solution contains the internal symmetry σinv ◦σ180. This particular symme-
try commutes with any rotation symmetry. For instance, consider the rotation
of “Lo Shu” by 90◦ clockwise:

8 3 4
1 5 9
6 7 2

σinv

⇒
⇐
σ180

2 7 6
9 5 1
4 3 8

This symmetry of “Lo Shu” also contains the internal symmetry σinv ◦ σ180.

4.4 Symmetry breaking

Finally, we consider the compatibility of eliminating symmetric solutions and
focusing search on those solutions that contain particular internal symmetries. In
general, the two techniques are incompatible. Symmetric breaking may eliminate
all those solutions which contain a given internal symmetry.

Running example. Consider the following magic square:

1 4 13 16
14 15 2 3
8 5 12 9
11 10 7 6

(5)

This contains the internal symmetry σv ◦σinv that inverts all values and reflects
the square in the vertical axis:

1 4 13 16
14 15 2 3
8 5 12 9
11 10 7 6

σinv

⇒
⇐
σv

16 13 4 1
3 2 15 14
9 12 5 8
6 7 10 11

Note that this internal symmetry can only occur within magic squares of even
order or of order 1.

Suppose symmetry breaking eliminates all solutions in the same symmetry
class as (5) except for a symmetric solution which is a 90◦ clockwise rotation
of (5). This solution does not contain the internal symmetry σv ◦ σinv. In fact,
this rotation of (5) contains the internal symmetry that inverts all values and
reflects the square in the horizontal axis.

11 8 14 1
10 5 15 4
7 12 2 13
6 9 3 16

⇔
σv ◦ σinv

16 3 9 6
13 2 12 7
4 15 5 10
1 14 8 11



We can identify a special case where symmetry breaking does not change
any internal symmetry within solutions. Suppose symmetry breaking only elim-
inates symmetries which commute with the internal symmetry contained within
a particular solution. In this case, whilst symmetry breaking may eliminate the
given solution, it must leave a symmetric solution containing the given internal
symmetry. Given a set of constraints C with solution symmetries Σ, we say that
a set of symmetry breaking constraints S is sound iff for every solution of C
there exists at least one solution of C ∪ S in the same symmetry class.

Proposition 5. Given a set of constraints C with solution symmetries Σ, a
sound set of symmetry breaking constraints S, and a solution A containing the
internal symmetry σ, if σ commutes with every symmetry in Σ then there exists
a solution of C∪S in the same symmetry class as A also containing the internal
symmetry σ.

Running example. Consider the internal symmetry σinv◦σ180 contained within
some (but not all) normal magic squares. This particular symmetry commutes
with every rotation, reflection and inversion solution symmetry of the problem.
Hence, if there is a solution with the internal symmetry σinv ◦ σ180, this re-
mains true after breaking the rotational, reflection and inversion symmetries.
However, as in the last example, there are internal symmetries contained within
some solutions (like reflection in the vertical axis) which do not commute with
all symmetries of the square.

5 Detecting internal symmetries

Detection of internal symmetries in a class of problems consists of two steps: 1)
selecting a good candidate solution, and 2) finding internal symmetries in that
solution. As we already discussed earlier, an internal symmetry of one solution
may not be an internal symmetry of another solution for the same problem.
Recall in this context Albrecht Dürer’s famous magic square (3) that has internal
symmetry σinv ◦σ180, while most magic squares with the same size don’t. Before
trying to detect internal symmetries, we consider a strategy to select a solution
that is more likely to reveal internal symmetries.

The strategy consists of two parts: 1) determine a good size of the problem to
look at and 2) filtering out solutions. First, consider the problem size. In order to
exploit internal symmetries, internal symmetries observed at a certain size need
also to hold for other sizes. Therefore, it makes sense to select problems of a size
that have only very few (preferably only one) solutions. Yet for most problems,
such as the magic squares, only the smallest problems have few solutions. Un-
fortunately these sizes might be too small to do some proper internal symmetry
detection. However, for some problems, such as Van der Waerden numbers which
we consider in Section 7, the number of solutions decreases while increasing the
size. In those cases a “good” size is much larger.

After selecting the size, we filter out solutions using the following method.
First, we compute the set S consisting of all solutions of the selected size while



applying symmetry breaking. Let set V be the set of variables that describe the
solutions in S. Then we repeat until |S| = 1: Select a variable v ∈ V that is
most frequently assigned the same value in the solutions of S. Remove from S
all solutions that have v assigned to another value and V := V \ {v}.

Running example. Consider the magic squares problem of size 5 × 5. After
symmetry breaking3 (in this case 25 transpositions, 4 rotations, and 2 reflec-
tions), this problem has 144 solutions. In all those solutions, the first element is
placed in the first (top left) entry. After fixing element 1, element 6 occurs most
freqently in the same position. More specifically, it appears in 72 solutions on the
last row in the fourth column. After fixing element 6 to that position, element
11 occurs in 36 of the remaining 72 solutions on second entry of the fourth row.
The next elements to be placed are 16 and 21 and after fixing them, 24 solutions
are left with the following pattern:

1 - - - -
- - 21 - -
- - - - 16
- 11 - - -
- - - 6 -

By repeating the procedure, we will select the following solution:

1 7 13 19 25
14 20 21 2 8
22 3 9 15 16
10 11 17 23 4
18 24 5 6 12

(6)

This solution has an interesting internal symmetry, which will be explained
in the next example.

The last step is to detect internal symmetries in the selected solution. This
step is the hardest to automate. As a general approach we propose the follow-
ing. Construct a set of symmetries Σ that include at least all solutions sym-
metries. Let A be the selected solution. We then use a search program to find
s1, s2, . . . sk ∈ Σ that satisfy s1 ◦ s2 ◦ · · · ◦ sk(A) = A.

Although internal symmetries can be found using this approach – even when
restricted to the solution symmetries – in our experience the most effective in-
ternal symmetries in the selected solution were often found manually.

3 For this example we use the symmetry breaking based on the score function that
is defined on http://www.grogono.com/magic/5x5pan144.php. In short, out of each
symmetry group the one is selected for which the elements in the top left corner
have the smallest elements.



Running example. Consider the magic square we selected. We denote by
σrow(x,y,z) a transposition of the rows such the row 1 is replaced by row x, row
2 by row y and row 3 by row z. An automated search program that only com-
bines solution symmetries to detect internal symmetries can find the following
symmetry σrow(2,3,1) ◦ σ180 ◦ σinv ◦ σrow(3,1,2) :

1 7 13 19 25
14 20 21 2 8
22 3 9 15 16
10 11 17 23 4
18 24 5 6 12

σrow(2,3,1)

⇒
⇐

σrow(3,1,2)

14 20 21 2 8
22 3 9 15 16
1 7 13 19 25
10 11 17 23 4
18 24 5 6 12

σ180

⇒
⇐
σinv

12 6 5 24 18
4 23 17 11 10
25 19 13 7 1
16 15 9 3 22
8 2 21 20 14

However, this is not the most useful internal symmetry that can be observed
in this magic square. A careful look at the filtering procedure above reveals that for
the first five elements i that are fixed, we have i = 1(mod 5). More importantly,
all elements are fixed at a location that is a knight’s move (two left, one up)
from each other. A similar pattern is observable for the first five elements i ∈
{1, . . . , 5}: They are also a knight’s move (two left, one down) from each other.
Combining both patterns gives a construction method for odd magic squares that
is very similar to the Siamese method4: After placing the first element, place the
next element on the entry reachable by a knight’s move (two left, one down). If
the entry is already filled, then place the element in the entry directly right of
the last placed element.

6 Exploiting internal symmetries

Once we have identified an internal symmetry which we conjecture may be con-
tained in solutions of other (perhaps larger) instances of the problem, it is a
simple matter to restrict search of a constraint solver to solutions of this form.
In general, if we want to find solutions containing the internal symmetry σ, we
post symmetry constraints of the form:

Zi = j ⇒ σ(Zi = j)

In addition, we can limit branching decisions to a subset of the decisions variables
that generates a complete set of assignments. This can significantly reduce the
size of the search space. Propagation of the problem and symmetry constraints
may prune the search space even further.

7 Van der Waerden numbers

We illustrate the use of internal symmetries within solutions with two applica-
tions where we have been able to extend the state of the art. In the first, we
4 see http://en.wikipedia.org/wiki/Siamese method



found new lower bound certificates for Van der Waerden numbers. Such num-
bers are an important concept in Ramsey theory. In the second application, we
increased the size of graceful labellings known for a family of graphs. Graceful
labelling has practical applications in areas like communication theory.

The Van der Waerden number, W (k, l) is the smallest integer n such that
if the integers 1 to n are colored with k colors then there are always at least l
integers in arithmetic progression. For instance, W (2, 3) is 9 since the two sets
{1, 4, 5, 8} and {2, 3, 6, 7} contain no arithmetic progression of length 3, but every
partitioning of the integers 1 to 9 into two sets contains an arithmetic progression
of length 3 or more. The certificate that W (2, 3) > 8 can be represented with
the following blocks:

1 2 3 4 5 6 7 8

Finding such certificates can be encoded as a constraint satisfaction problem.
To test if W (k, l) > n, we introduce the Boolean variable xi,j where i ∈ [0, k),
j ∈ [0, n) and constraints that each integer takes one color (

∨
i∈[0,k) xi,j), and

that no row of colors contains an arithmetic progression of length l (xi,a ∧ . . . ∧
xi,a+d(l−2) → ¬xi,a+d(l−1)). This problem has a number of solution symmetries.
For example, we can reverse any certificate and get another symmetric certificate.
We can also permute the colors and get another symmetric certificate:

Individual certificates also often contain internal symmetry. For example, the
second half of the last certificate repeats the first half:

×2

Hence, this certificate contains an internal symmetry that maps xi,j onto xi,j+4 mod 8.
In fact, many known certificates can be generated from some simple sym-

metry operations on just the colors assigned to the first two or three integers.
For instance, the first construction method for Van der Waerden certificates [14]
made use of the observation that the largest possible certificates for the known
numbers W (k, l)5 consist of a repetition of l − 1 times a base pattern. All these
certificates, as well as all best lower bounds, have a base pattern of size m = n

l−1 .
This first method only worked for certificates for which m is prime. An improved
construction method [15] generalises it for non-prime m.

An important concept in both construction methods is the primitive root6
of m denoted by r. Let p be the largest prime factor of m, then r is the smallest
number for which:

ri(mod m) (= rj(mod m) for 1 ≤ i < j < p (7)

5 except for W (3, 3)
6 our use slightly differs from the conventional definition



We identified four internal symmetries:
σ+m: Apply to all elements xi,j := xi,j+m (mod n)

σ+p: Apply to all elements xi,j := xi,j+p (mod m)

σ×r: Apply to all elements xi,j := xi,j×r (mod m)

σ×rt : At least one subset maps onto itself after applying
xi,j := xi,j×rt (mod m) for a t ∈ {1, . . . , k}

Consider the largest known certificate for W (5, 3) which has 170 elements.
For this certificate, m = 85, p = 17, and r = 3. Below the base pattern is shown
the first 85 elements. Notice that for this certificate A, σ+p(A) and σ×r(A) are
also certificates. In fact, after sorting the elements and permuting the subsets,
this certificate is mapped onto itself after applying these symmetries.

18 20 24 26 33 36 38 44 65 66 74 76 79 80 5 13 17
22 30 34 35 37 41 43 50 53 55 61 82 83 6 8 11 12
23 25 28 29 39 47 51 52 54 58 60 67 70 72 78 14 15
31 32 40 42 45 46 56 64 68 69 71 75 77 84 2 4 10
19 21 27 48 49 57 59 62 63 73 81 85 1 3 7 9 16

⇑ σ+p

1 3 7 9 16 19 21 27 48 49 57 59 62 63 73 81 85
5 13 17 18 20 24 26 33 36 38 44 65 66 74 76 79 80
6 8 11 12 22 30 34 35 37 41 43 50 53 55 61 82 83
14 15 23 25 28 29 39 47 51 52 54 58 60 67 70 72 78
2 4 10 31 32 40 42 45 46 56 64 68 69 71 75 77 84

⇓ σ×r

3 9 21 27 48 57 63 81 59 62 1 7 16 19 49 73 85
15 39 51 54 60 72 78 14 23 29 47 25 28 52 58 67 70
18 24 33 36 66 5 17 20 26 38 44 65 74 80 13 76 79
42 45 69 75 84 2 32 56 68 71 77 4 10 31 40 46 64
6 12 30 8 11 35 41 50 53 83 22 34 37 43 55 61 82

Given these symmetries, we can easily construct a complete certificate. We
place the first and last elements (1 and 85) in the first subset and apply σ×r

to generate all elements in this subset. We apply σ+p to partition the elements
{1, . . . , 85}. Finally, we obtain a complete certificate by applying σ+m. We gen-
eralised this into a construction method. To find a larger certificate W (k, l, n),
we test with a constraint solver for increasing n ≡ 0 (mod l − 1) whether a
certificate can be obtained using the following steps:

– break solution symmetry by forcing that the first subset of the partition
maps onto itself after applying σ×rt

– choose t ∈ {1, . . . , k}, q ∈ {1, . . . , m
p }

– place elements q and m in the first subset
– apply the symmetries σ×rt , σ×r, σ+p, and σ+m, to construct a certificate A

with n′ elements
– check with a constraint solver if A lacks an arithmetic progression of length l



Using this method we significantly improved some of the best known lower
bounds7:

– W (3, 7) > 48811. The old bound was 43855.
– W (4, 7) > 420217. The old bound was 393469.

8 Graceful graphs

Our second application of internal symmetries is graceful labelling. A graph with
e edges is called graceful if its vertices can be labelled with the distinct values
{0, . . . , e} in such a way that each edge gets a unique label when it is assigned
the absolute difference of the vertices it connects. Graceful labelling has a wide
range of applications in areas like radio astronomy, cryptography, communication
networks and circuit design.

Whilst various classes of graphs are known
to be graceful [16], there are others where it
is not known but is conjectured that they are
graceful. One such class is the class of double
wheel graphs. The graph DWn consists of
two cycles of size n and a hub connected all
the vertices. The largest double wheel graph
that we have seen graceful labelled in the
literature8has size 10.
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The problem of finding a graceful labelling can be specified using 2n+1 variables
Xi with domain {0, . . . , e}. This problem has 16n2 solution symmetries [17]:

– Rotation of the vertices (n2 symmetries)
– Inversion of the order of the vertices (4 symmetries)
– Swapping of the inner and outer wheel (2 symmetries)
– Inversion of the labels, Xi := 4n − Xi (2 symmetries)

To identify internal symmetries, we generated all graceful labellings for DW4.
This is the smallest double wheel graph with a graceful labelling. We observed
two internal symmetries within the 44 solutions of DW4:

σ4n: In 31 solutions, the hub had label 4n or 0 (σinv).
σ+2: If 1 ≤ Xi ≤ n − 2, then Xi+2 := Xi + 2

Although we observed σ+2, we restrict this internal symmetry to 1 ≤ Xi ≤ n−4
because it proved more effective.

When both symmetries are applied, the computational costs to find a grace-
ful labelling is significantly reduced. Consider DW24. To construct a graceful
labelling, we first assign the hub to value 96 (applying σ4n). Second, we label
the first vertex of the outer wheel with 1 and label the first vertex of the inner
7 see www.st.ewi.tudelft.nl/sat/∼waerden.php
8 see www.comp.leeds.ac.uk/bms/Graceful/



wheel with 2. Third, we apply symmetry σ+2 to label n-1 vertices with the labels
{1, . . . , n−1}. Finally, we use a constraint solver to label the remaining vertices.
Using this method we found the first known graceful labeling for DW24.
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The right table gives the runtime (in
seconds) for our constraint solver to
find graceful labellings of DWn for the
original problem (P ) with and without
symmetry breaking (SB) constraints
[17]. The last column shows the re-
sults when we force internal symme-
tries within solutions. This also breaks
the solution symmetries.

n P P + SB P+σ4n,σ+2

4 0.01 0.01 0.01
8 1.88 0.78 0.1
12 82.12 25.18 0.3
16 1, 608 706.35 4.97
20 21, 980 8, 272 17.25
24 > 36, 000 > 36, 000 157.87

9 Related work

Several forms of symmetry have been identified and exploited in search. For
instance, Brown, Finkelstein and Purdom defined symmetry as a permutation
of the variables leaving the set of solutions invariant [18]. This is a subset of the
solution symmetries. For the propositional calculus, Krishnamurthy was one of
the first to exploit symmetry [19]. He defined symmetry as a permutation of the
variables leaving the set of clauses unchanged. Benhamou and Sais extended this
to a permutation of the literals preserving the set of clauses [20].

The symmetry of individual constraints has also been considered. For ex-
ample, Puget considered permutations of the variables leaving the set of con-
straints invariant [3]. He proved that such symmetry can be eliminated by the



addition of static constraints. Crawford et al. presented the first general method
for constructing static constraints for eliminating solution symmetries [4]. Per-
haps closest to this work is Puget’s symmetry breaking method that considers
symmetries which stabilize the current partial set of assignments [21]. By com-
parison, we consider only those symmetries which stabilize a complete set of
assignments. A stabilizer maps individual assignments onto themselves, whilst
an internal symmetry maps a set of assignments onto the same set (but may
change every individual assignment).

Apart from symmetry, the idea of exploiting regularities in solutions of small
sized problems in order to constrain large sized problems has been studied be-
fore. For instance, streamlining constraints in CP [22] and resolution tunnels in
SAT [23]. In contrast to other work, internal symmetries focuses on a specific
regularity: a mapping of a set of assignments onto itself.

10 Conclusions

We have been studying internal symmetries within a single solution of a con-
straint satisfaction problem [1]. Internal symmetries are properties of an individ-
ual solution. They can be compared with solution symmetries which are proper-
ties of all solutions of a constraint satisfaction problem. Both types of symmetry
can be profitably exploited when solving constraint satisfaction problems. We
illustrated the potential of doing this on two benchmark domains: Van der Waer-
den numbers and graceful graphs. With the first, we improved some of the best
known lower bounds by around 10%. With the second, we more than doubled
the size of the largest known double wheel graph with a graceful labelling from
a wheel of size 10 to a wheel of size 24.
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