The section and list-item numbers below may be used in feedback from your proofreaders.

A ASTRA Style

1. Each heading has capitalised nouns, verbs, etc.
2. Each “if” has its “, then” and “, else” (note commas).
3. Each “above” and “below” has a \ref to somewhere.
4. There are no words like “simple”, “easy”, “clear”, etc, in order not to belittle less astute readers.
5. There is no elision like in “can’t”, “don’t”, “it’s”, etc. Note that “cannot” is more frequent than “can not”.
6. There is “\(x\), or \(y\), or both” rather than “\(x\) and/or \(y\)”.
7. Each word “Boolean” or “Cartesian” is capitalised.

B Structure

1. The pages are numbered.
2. Each *.1 heading has a counterpart *.2 heading.
3. Each (sub)section except Section 1 is announced with a \ref, and these are the only forward references.
4. Each concept is defined exactly once and typeset with \emph exactly once, namely within its definition and not at a first occurrence that announces the definition.
5. Each abbreviation is introduced before its first use. Ex: \ldots constraint programming (CP) \ldots CP is great.
6. Each numbered floating figure, numbered formula, numbered floating table, etc has at least one \ref, else it is not numbered and, if a float, inlined within the running text at the place where it is to be read.
7. Each float is placed to the top ([t]) or bottom ([b]) of a page, but not to “here” ([h]), as unnumbered inlining is then to be used (see the previous item).
8. Each enumerate list has items whose order matters; otherwise an itemize list is used.

C Grammar

1. Each sentence has a verb.
2. Each subject and verb agree in numbers. Counterexamples: “He have” and “the tests is”.
3. Each definition is for the singular of the concept. Counterexample: For “apes have mothers”, does each ape have one mother or potentially several mothers?
4. All items of a list have the same grammatical form. Counterexample: A stack has three operations: creating an empty stack; push an item to the top of the stack; and the popping of the top item from the stack.

D Vocabulary and Language

1. The noun “system”, often overloaded, is replaced by “application”, “compiler”, “solver”, etc.
2. The noun “user”, often overloaded, is replaced by “customer”, “modeller”, “programmer”, etc.
3. The adjective “certain” is replaced by “some” when probabilities (are suspected by the reader to) play a role in your work. Counterexample: in a certain way.
4. Synonyms are not used alternately in technical writing. It is fine to write “\(x\), also known as \(y\) and \(z\) in the literature”, but then stick to \(x\) throughout the text.
5. The running text, captions of floats, legends of figures, and comments of source code are spellchecked in Oxford English, without you having to know the differences with Cambridge English or North-American English. If you are interested, then note that the English Style Guide of UU (at https://mp.uu.se/c/perm/link?p=138656558) lists the most important differences and has a lot of other valuable advice on how members of UU are supposed to communicate with the outside world.
6. The English quotation marks of “CP”, say, are typed in as ‘ ‘ (those are two grave accents) and ‘ ‘ (those are two apostrophes), respectively. Note that quotation marks often differ between languages: for example, Swedish uses the English closing quotation mark for both opening and closing, giving “CP”.
7. All text is grammar-checked.
E Punctuation

1. Final commas are used in lists of at least three items: Examples: “x, y, and z” and “x, y, or z”.
2. Each Latin for “that is” and “for example” is prefixed and suffixed by commas; i.e., “,” and “; e.g.,”. Note the spelling of the abbreviation “et al.” for “et alii”.
3. Each parenthetical expression is between commas. Example: CP, a great paradigm, is for smart people.
4. Each “which” that(!) cannot be replaced by “that” is preceded by a comma; otherwise it is replaced by “that”. Example: “The set has one item, which is positive” is very different from “The set has one item that is positive”, hence avoid the comma-less “The set has one item which is positive” (which means the same as the version with “that”) as the reader does not know whether you know your punctuation or not!

5. Each footnote pointer follows punctuation, if any. Ex: note no space in “CP is great. \footnote{Yeah}”.

F Spacing and Alignment

1. See Table 1 at page 4 for the numbers of spaces in English before and after many common symbols. These numbers often differ between languages!
2. References and citations use non-breaking spaces and uppercase. Example: see Section~\ref{intro} in~\cite{GCCat}. Use \usepackage{cleveref} or embed \ref in your own reference commands. Ex: you can define \seref{#1} as Section~\ref{#1}.
3. Numbers and units are tied by non-breaking spaces. Example: We generated $\textit{100\$}^{-}\textit{instances}$.
4. Each numeric column in each table is right-aligned. Further, each number in a column of a table is formatted to the same decimal precision, so that the numbers of each column are aligned on the decimal point. Example: Note the 78.90 instead of 78.9 in Table 2 at page 4: due to the right alignment, this enables the visual comparison of the orders of magnitude of the numbers of a column.

G Mathematics and Algorithms

1. See Table 3 at page 4 for the typesetting of symbols.
2. No clause starts with a mathematical object. Example: Replace “... end. \$v\$ denotes ...” by “... end. Variable $\$v\$ denotes ...”.
3. Use \dot rather than * or \times for numeric products.
4. Use \textbf{times} only for Cartesian products and the indication of matrix dimensions.
5. Use $=,$, \neg, \land, \lor, and \textbf{gets} (or $\textbf{colon eqn}$) for equality, negation, conjunction, disjunction, and assignment within mathematics and algorithms, but not programming-language-style obscenities (such as $==$, $!$, $\&\&$, $||$, and $=$).

6. Use $\textbf{mathit{...}}$ for each multi-letter identifier, to avoid typesetting like the products of one-letter ones. Counterexample: \textbf{fm} typesets as fm, which looks like the product of f by m, but $\textbf{mathit{fm}}$ typesets as fm, which does not look like a product.

7. Mathematical objects are separated by running text, and not by punctuation. Example: Replace “in \textbf{SDS}, \textbf{SCS} is” by “in \textbf{SDS}, while \textbf{SCS} is”, clarifying that “D,C” is not a mathematical object in your context.

8. Commands, possibly parametric ones, are defined and used in order to allow quick notation changes in case a notation is not agreed upon yet. Example: Upon

\newcommand{\Cardinality}[1]{\lvert#1\rvert}

the snippet $\textbf{Cardinality}(S)$ typesets the cardinality of set S as $|S|$, with autosizing bars. One can now redefine just the command and recompile in order to typeset all occurrences as $\#S$ instead.

9. There are many useful commands in https://www.it.uu.se/research/group/optimisation/astra.pdf.

H Bibliography

1. The official publications, available from many publishers while on the UU network but not while on Eduroam, were read, rather than preprints at authors’ homepages or elsewhere: preprints often have errors that are not in the official publications.

2. A tool like BibTeX is used with astra.bib (at https://github.com/astra-uu-se/astra-bib) and possibly with your own additional bibliography file, say myBiblio.bib. (If you directly write a list of \texttt{\bibitem} then each key has at least one \texttt{\cite}.)

3. The bibliography items of all types are formatted in a uniform way, say like those in astra.bib. Do not rely on the content at bibliography servers: in particular, many get the issue in the following item wrong.

4. Use \texttt{author} = \{	exttt{LastName, FirstName}\} at least for authors with compound last names, in order to inform BibTeX which part of the name belongs where. Counterexample: author = \{Vincent van Gogh\} compiles into the wrong “V. v. Gogh” and is wrongly sorted under the letter “G”, but author = \{van Gogh, Vincent\} compiles into the correct “V. van Gogh” and is correctly sorted under the letter “v”.

5. Once your additional bibliography file, say myBiblio.bib, is approved, you can make a pull request to https://github.com/astra-uu-se/astra-bib.
I Experiment Design

1. The purpose of the experiments is stated and argued.
2. The hardware and software platform is indicated.
3. Instances that need more than a second are chosen, as there is too much measurement noise when making statistical operations for easier instances.
4. If randomisation is involved (such as in constraint-based local search (CBLS), or in CP with randomised variable or value selection), then every instance is run \(n \geq 10 \) times (ideally \(n \geq 25 \)), and suitable statistical operations are applied. Example: see Table 2.
5. If the starting assignment is randomised (in CBLS), then there are \(n \) starting assignments per instance, rather than \(m \cdot n \), so that all \(m \) models for the same problem start from the same \(n \) assignments.
6. The applied statistical operations are indicated and motivated. For example, statistical operations are often only applied for the successful runs (in CBLS).

J Experiment Reporting

1. The use of colours is encouraged in figures, but the colour names should not be referred to and the colours must be distinguishable on a black-and-white print-out. For instance, upon tracing a first curve as dotted in blue and a second curve as dashed in red, you can refer to the dotted and dashed curves, rather than to the blue and red curves, even though a reader with a colour print-out can also distinguish them as blue and red. Never use green and red within the same figure, as many people cannot distinguish these colours.
2. All results of statistical operations on run times are rounded to a centi-second precision, as anything below that is measurement noise.
3. Run times (in CBLS and CP), iterations (in CBLS), and failures (in CP) are reported, with boldfacing of the best results for each instance, such as in Table 2. There is no need for statistical operations if no randomisation is involved. Notice that a fixed-size font is necessary for boldface digits to take the same space as normal ones: this enables the visual comparison of the orders of magnitude of numbers.
4. An experiment script writes the results directly into files that are imported via `\input{...}` into tables. This allows the re-run of experiments with only re-compilation of the report, but no (manual) re-editing.
Table 1: Spacing rules of English

<table>
<thead>
<tr>
<th>instance</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-q-r</td>
<td>%</td>
<td>median</td>
</tr>
<tr>
<td>1-2-3</td>
<td>80</td>
<td>45.67</td>
</tr>
<tr>
<td>4-5-6</td>
<td>95</td>
<td>56.78</td>
</tr>
</tbody>
</table>

Table 2: Run time (in seconds) for the two models of the XYZ problem. A timeout of \(t \) seconds per instance was set and each instance was run \(n \) times, starting from the same assignments for each model. Column % indicates the percentage of successful runs, for which the median, minimum, maximum, and standard deviation are reported. Numbers in boldface indicate the best results for an instance.

Table 3: The typesetting of elementary mathematics. Note very carefully when italics are used by \LaTeX{} and when not, as well as all the horizontal and vertical spacing performed by \LaTeX{}.

Greek letter Θ, Ω, ϵ

multiplication $m \cdot n$

division $\frac{m}{n}, m \div n$

rounding down $\lfloor n \rfloor$

rounding up $\lceil n \rceil$

binary modulus $m \bmod n$

unary modulus $m \equiv n \mod \ell$

root $\sqrt{n}, \sqrt[3]{n}$

exponentiation, superscript n^{i}

subscript n_{i}

overline \overline{n}

base 2 logarithm $\lg n$

base \(b \) logarithm $\log_{b} n$

binomial $\binom{n}{k}$

sum \[\sum_{i=1}^{n} i \]

numeric comparison \(\leq, <, =, \neq, >, \geq \)

non-numeric comparison $\prec, \nprec, \preceq, \succeq$

extremum $\min, \max, +\infty, \bot, \top$

function $f: A \to B, \circ, \mapsto$

sequence, tuple $\langle a, b, c \rangle$

set membership $\{a, b, c\}, \emptyset, \mathbb{N}$

set comprehension \{i \mid i \leq n \}

set operation \$\cup, \cap, \setminus, \times$

set comparison \subseteq, \neg\in

logic quantifier \forall, \exists\in

logic connective $\land, \lor, \neg, \Rightarrow$

logic \models, \equiv, \vdash

miscellaneous $\&$, $\#$, \approx, \sim

dots \ldots, \ddots

dots (context-sensitive) \ldots

parentheses (autosizing) $\left(\right)$

identifier of > 1 character \$\mathit{identifier}$$

hyphen, n-dash, m-dash, minus $-$, \ldots