Schema-Guided Synthesis of Constraint L ogic Programs

Pierre Flener Hamza Zidoum Brahim Hnich
Dept of Information Science UAE University Dept of Information Technology
Uppsala University PO. Box 15551 Tampere University of Technology
S-75105 Uppsala, Sweden Al-Ain SF-33101 Tampere
pf@csd.uu.se United Arab Emirates Finland
Abstract Search problemscan beclassified into decision problems,

By focusing on the families of assignment and permutation
problems (such asgraph colouring and n-Queens), we show
how to adapt D.R. Smith’s KiDs approach for the synthe-
sis of constraint programs (with implicit constraint satis-
faction code thus), rather than applicative Refine programs
with explicit constraint propagationand pruning code. Syn-
thesis is guided by a global search schema and can be
fully automated with little effort, due to some innovative
ideas. CLP(Sets) programs are equivalent in expressiveness
to our input specifications. The synthesised CLP(FD) pro-
grams would be, after optimising transformations, compet-
itive with carefully hand-crafted ones.

1. Introduction

Thiswork isinspired by D.R. Smith's research on synthe-
sising global search (GS) programs (in the Refine language)
from first-order logic specifications (also in Refine) [12, 13,
14]. The basic idea of GSis to represent and manipulate
sets of candidate solutions. Starting from an initial set that
contains al solutions to the given problem, a GS program
incrementally extracts solutions from a set, splits sets into
subsets, eliminates sets viafilters, and cuts sets, until no set
remains to be split.

Instead of synthesising Refine programs, our work con-
centrates on synthesising constraint (logic) programs. Con-
straint Logic Programming (CLP) [8] is a paradigm es-
pecialy suited for solving combinatorial problems, thanks
to its double reasoning: symbolic reasoning expresses the
logic propertiesof the problem, whileconstraint satisfaction
reasoning (over several computational domains, such as re-
als, booleans, finitedomains, sets, ...) uses constraint prop-
agation to keep the search space manageable. We thus only
have to synthesise code that (incrementally) poses the con-
straints, because the actual constraint propagation and prun-
ing are performed by the CLP system.

which consist in finding some correct solution, and optimi-
sation problems, which consist in finding an optimal correct
solution given a cost function, and are thus an extension of
decision problems.

Very few works deal with the synthesis and transforma:
tion of CLP programs. In [9], the possibility of synthesis-
ing steadfast CLP programs is shown, without exhibiting a
synthesis method, though. A manua and informal method
for constructing CLP programs from specificationsis given
in[3]. We here outline a completely automatic and formal
method for synthesis, and leave optimising transformations
for futurework.

Schema-guided synthesisof CLP programsisalso based
on a GS schema. We use particular cases of that general
schema to simultaneoudly instantiate all its place-holders.
Although we are till working on it, we think that the num-
ber of these particul ar cases will besmall (but probably more
thantheseven of KIDs[12, 13, 14]). Wehereonly tacklethe
families of assignment and permutation problems.

This paper is organised as follows. Section 2 defines
specifications as inputs to synthesis and discusses their
forms for assignment and permutation problems. Section 3
introduces our GS schema for CLP programs. Section 4 de-
fines particul arisations as particular cases of a schema and
exhibits particul arisations of our GS schema for assignment
and permutation problems. Section 5 defines when a specifi-
cation reduces to another one, so that aprogramfor thelatter
can be re-used towards implementing the former. Section 6
introduces a synthesis method guided by our GS schema.
Section 7 contains benchmarks establishing the viability of
our approach. Section 8 argues why our work is more than
atransposition of Smith’sresults from Refine to CLP.

2. Specifications

Specificationsaretheinput to program synthesis. In order to
enable (or facilitate) automated synthesis, such inputsought
to beformal (though it would then be more adequate to say

that the inputs are programs and that synthesisis compila-
tion[10]). Without | oss of generality, we only consider min-
imisation problems.

Definition 2.1 A specification of aprogram for arelation »
isafirst-order logic formulaof the form:

VX X VY Y. VW : W. (S.)
L(X)— (r(X,Y,IV) = O.(X,Y,W)) "

where X - X, Y : Y, and W : W are (possibly empty) lists
of sorted variables. Formula/, iscalled theinput condition,
congtraining the input domain X', whereas O, iscaled the
output condition, describing when some output ¥ (of cost
W) isacorrect (optimal) solutionfor input (or problem) X.
Usudly O, hasthe form

Objective(X,Y, W) A minimal(Solution(X,Y), W)

where Solution(X,Y") expresses that Y is a correct solu-
tionto problem X, and Objective(X,Y, W) expresses that
solution Y to problem X has cost 1¥/. The specification
primitivemsinimal(Solution(X,Y), W) expressesthat W
isthe minimal cost of al correct solutions Y (according to
Solution) to problem X.

To simplify some formulas, we consider 7, to be part of
the definition of X’. Often, we then simply designate speci-
ficationsby (X', Y, W, O,) tuples.

We distinguish two families of problems, namely assign-
ment problems and permutation problems.

2.1. Specifications of Assignment Problems

We first consider the family of decision assignment prob-
lems, where amapping M fromalist V' into the integer in-
terva 1..WW has to be found, satisfying certain constraints.
Their specifications S4¢¢ take the form (list(term) x

ass

int, list(V x 1.W), 0%¢), with:

ass

VI, J),(K,L) € M.
AL PAIL T K, L) — Qi(I,], K, L)

where the P; and); are formulas. This can be considered
a specification template; others are given below. This cov-
ers many problems, such as graph colouring (see below),
Hamiltonian path, n-Queens, etc.

(Odec

ass

Example2.1 Given a map, the graph colouring problem
consists of finding a mapping M from the list R of itsre-
gionsto a set of colours (numbered 1..C") so that any two
adjacent regions (as indicated in an adjacency list A) have
different colours. Formally:

V(R,C, A) : list(term) x int x list(R X R).
VM :list(R x 1..C) . eolouring({R,C, A), M) —
V(Ri,Ch), (R, Co) € M . (Ry, Ro) € A — C1 # Cy
(Ser

where € isa primitive (with the usual meaning).

In optimi sationassi gnment problems, amapping M from
a list V' into the integer interval 1..1/ has to be found,
satisfying certain constraints and minimising 1. Their
specifications S take the form (list(term), list(V x

L.W), int, O%1), with:
V(I I, (K,Lye M.
AP K, D) — Qi(1, 1, K, L)
AW =maz{U|{_,U) € M} A minimal(W, V)

(49

where the specification primitive maz S returns the maxi-

mal element in number set S. This also covers many prob-

lems, such as optimal k-graph colouring, optimal Hamilto-

nian path, etc.

2.2. Specifications of Permutation Problems

We aso consider the family of decision permutation prob-
lems, where a permutation S' of theinterval 1..N hasto be
found, satisfying certain constraints. Their specifications
Sdec,, taketheform (int, list(1..N), O%,.), with:
perm(N, S) AV, Vs P(Vl, Va, S) — Q(Vl, Vz)

(Operm
where specification primitive perm(U, V') holds ifz‘;‘ list
V' is a permutation of the interval 1..U; atomic formula
P involves either anyTwo(Vl, VQ, S, Pl, Pz) (V1 and Vo
occur respectively at positions P; and P, in list S), or
consTwo(V1, Va2, S) (Vi immediately precedes Vs inlist S),
or precTwo(V1, Va,S) (V1 precedes V> inlist S), and @
isaformula. This covers many problems, such as Hamil-
tonian path, job scheduling, n-Queens, etc. (The big over-
lap with assignment problems happens because permutation
problems essentially are assignment problems with a bijec-
tiveness congtraint on the assignment. The corresponding
algorithmswill be quite different, though.)

Finally, we consider optimisation permutation problems,
where an optimal permutation S of theinterval 1..N hasto
befound, satisfying certain constraintsand optimisinga cer-
tain cost I of S. Their specifications 72}, take the form
(int, list(1..N), int, OgP},,), With:

perm(N, S) AYVL, Vs P(Vl, Va, S) — Q(Vl, Vz)

AW = F{E|consTwo(V1, V2, S) A Q(V1,V2)}
A minimal(W, N)

(OFFm)
where function F' is either sum or product, with speci-
fication primitive sum 8§ (product 8) returning the sum
(product) of al elementsin number set S. Formula @ must
have £’ asafreevariable. Thisaso covers many problems,
such as optimal Hamiltonian path (see below), optimal job
scheduling, etc.

Example2.2 Given C cities, the optimal Hamiltonianpath
problem consists of finding a permutation A of the inter-
va 1..C that minimises the total distance D of visiting the
citiesas ordered in H, given an adjacency list A of triples
(C1, Cq, B} indicating that the distance between adjacent
citiesCy and Cy is £. Formaly:

V{(C, A sint x list(1..C x 1..C' x int) . VH : list(1..C).
VD :int. hamPath({C, A), H, D) — perm(C, H)
AYC,Cy. consTwo(Cp,Ca, H) — (Cy,Cy,) € A

A D = sum{F|consTwo(Cy,Cq, HYAN{C1,Cq, EY € A}

A minimal(D, (C, A))
(Sm)

ham

3. A Global Search Program Schema for CLP

A program schema [4] for a programming methodology M
(such as divide-and-conquer, generate-and-test, ...) is a
couple (7', A}, where template 7" is an open program show-
ing the (problem-independent) data-flow and control-flow
of programs constructed following M, and axioms A con-
strain the (problem-dependent) programs for the open rela-
tionsin 7" such that the overall (closed) program will really
be a program constructed following A . (An open program
is a program in which at least one non-primitive (relation
or function) symbol, called an open symbol, is undefined; a
closed programis a program without any open symbols.)
We now formalise our global search (GS) schema for
CLP programs. The basicideaisto start from an initialised
descriptor of the search space, to incrementally split that
space into sub-spaces, while declaring the domains of the
involved variables and constraining them to achieve partia
consistency, until no splitsare possibleand avariablised so-
[ution can be extracted. Then a correct (optimal) solutionis
generated, by instantiation of the variablesin thevariablised
solution. Compared to Smith’s GS schema, ours only com-
putes one correct (optimal) solution rather than all, because
thisisstandard practicein CLP. Inany case, al solutionscan
easily be obtained in CLP, dueto its built-in backtracking.

3.1. The Glabal Search Template

Our global search template is the open program:

r(X,Y, W) — initialise(X, D),
rgs(X,D,Y),
objective(X, Y, W),
minof(generate(Y, X), W)
rgs(X,D,Y) — extract(X,D,Y)
rgs(X, DY) — split(D, X, D' 8§),

constrain(é, D, X),
rgs(X, DY)
(GSopt)

wherethe open relationsareinformally specified asfollows:

e initialise(X, D) iff D isthe descriptor of the initial
space of candidate solutionsto problem X;

o extract(X, DY) iff the variablised solution Y to
problem X isdirectly extracted from descriptor D;

o split(D, X, D',) iff descriptor D' describes a sub-
space of D wrt problem X, such that D’ is obtained by
adding é to descriptor D;

e constrain(é, D, X) iff adding é to descriptor D leads
to adescriptor defining a sub-space of 1) that may con-
tain correct (optimal) solutionsto problem X;

o objective(X,Y, W) iff arithmeticexpression 17 isthe
cost of correct solutionY” to problem X;

o generate(Y, X) iff correct (optimal) solution Y to
problem X isenumerated (by instantiationsin the ini-
tially variablised solution Y') from the constraint store,
whichisan implicit parameter representing X .

The CLP primitive minof(generate(Y, X), W) holds iff

W is the minimal cost of all correct solutions Y enumer-

ated by generate for problem X. Formalising these infor-

mal specificationsisthe role of the axioms, shown below.
For decision problems, G'S,,; speciaisesto:

initialise(X, D),
rgs(X,D,Y),
generate(Y, X)
extract(X, DY)
split(D, X, D',),
constrain(é, D, X),
rgs(X, DY)

(GSdec)

but we (mostly) continue with the general version.
3.2. The Global Search Axioms

Let D be the type of search space descriptors, and A be the
typeof theelements of the partial solutionsstoredin descrip-
tors. The first axioms are the specifications of the open re-
lations of the G.S,p,, template:

VX X .VD:D. (Sinic)
initialise(X, D) < O4nit(X, D) e
VX : X.VYD:D.VY : Y. (Seotr)
extract(X, D,Y) « O.per(X, DY) e
VD,D' :D.VX : X .V6:A. (Spist)
split(D, X, D', 8) — Oupir(D, X, D', §) Pt

V6. A VD :D. VX X.
(Sconstr)

constrain(é, D, X) — Oconsﬂ‘(éa Da X)

VX X VY Y. VW : W. (Son)
objective(X,Y, W) — Objective(X,Y, W) obj
VY Y. VX .

generate(Y, X) — Solution(X,Y) (Sgen)

The output conditions of some of these specifications are
constrained by the next axioms. Theoutput conditionsof the
other specifications are directly made of parts of the output
condition O,..

Second, thefollowingaxiom expressesthat all correct so-
[utionsY” to problem X are containedin thecomputedinitial
space for X:

VX X .VY 1 Y. Solution(X,Y) — (4,)
3D :D. Oinir(X, D) A satis fies(Y, D) !
where satisfies(Y, D) means that (possibly variablised)
solution Y isin the space described by descriptor D, which
isthecaseif Y can be extracted after afinite number of ap-
plications of split to D. Formaly:

VX X VY : Y. VD :D.
satisfies(Y, D) « 3k :int . 3D : D .38 A.
split* (D, X, D' §) A Opir(X, D, Y)
where :
split®(D, X, D', 6) = D =D’
and, for all k : int :
split* (D, X, D' §) — 3D" : D .38 : A.
Ospiit(D, X, D" 8") A split" (D", X, D', §)
(Az)
Finally, we want to fully exploit CLP features to elimi-
nate spaces from further consideration. Constraint satisfac-
tion can be used to prune off branches of the search tree
that cannot yield solutions. Given a space described by D
and a (possibly still variablised) solution Y to problem X,
if splitting D into D’ makes D' containthe solutionY’, then
constrain must succeed. Formally:

VXX . VY. Y. VD, D :D.Vé:A.
Solution(X,Y) A Ospir(D, X, D', §) (43)
A satisfies(Y, D) — Oconstr(6, D, X)

Conversdly, the contrapositive of As; shows that if
constrain fails, then the new space described by D’
(which is D plus é) does not contain any solution to X.
CLP languages contain the SAT decision procedure,
checking whether a constraint store is satisfiable [8].

This last axiom sets up a necessary condition that
constrain must establish. Given the left-hand side of the
implication, such a condition can be derived using auto-
mated theorem proving (ATP), as shown in [11, 12]. Of
course, we are not interested in too weak such a condition,
such asthetrivia solutionrue, but rather in astronger one.

However, deriving the absolutely strongest one (which es-
tablishes equivalence rather than implication) is impracti-
cal, because finding it may take too much time or may even
turn out to be beyond current ATP possibilities, and because
such a perfect constrain would be too expensive to evalu-
ate (sinceit would eliminate al backtracking in the solution
generation). Soweshould (automatically, if possible) derive
the strongest “possible and reasonable” condition, the crite-
ria for these qualities being rather subjective. Fortunately,
for the families of assignment and permutation problems,
it turns out that this condition can be easily manually pre-
computed (see below) at schema-design time, for any such
problems, in an optimal way, so that no ATP technology is
then necessary at synthesistime!

The derivation of the output condition of constrain de-
pends on its calling context, namely that it isinvoked after
split: this givesrise to rather effective (namely incremen-
tal) constraint-posing code [and standsin contrast to Smith's
calling-context-independent derivation of filters [12, 13]
and cuts [14], which thus may be non-incremental]. (Sen-
tences between [...] are for understanding the differences
with Smith’swork.) Noticethat constrain just poses con-
straints on the search space, the actual solutionsbeing enu-
merated by generate once all constraints have been posed,
because we use a constraint |anguage.

3.3. Correctness of the Global Search Schema

Now we define anotionof correctness, and establishthat our
GS schemais correct.

Definition 3.1 A closed program P, for arelation r isto-
tally correct wrt its specification (X', Y, W, O,} if for dl
X XY Y,andW : Wwehavetha O,(X,Y, W)
iff B Fr(X,Y,).

Thiscan be generali sed to open programs, the correctness
criterion being then called steadfastness[4].

Theorem 3.1 Given aspecification S, for arelation r, any
closed program GSopt U Pinit U Pextr U Psplit U Pconstr U
Pobj U Pgen such that Pinit- Pextr: Psplit: Pconstr- Pobj-
Pgen are tOta”y correct wrt Sinit: Sextr- Ssplit: Sconstr-
Sobjy Sgen, respectively, and such that the axioms A; to Az
hold, istotaly correct wrt S,..

Proof. Outline (analogousto [12]):

Let P, bethefirst clause of G'S,,;, and let P, ,, bethere-
maining two clauses of G'S,p,. First, prove that P, is
steadfast wrt the specification

VX X VD :D.VY :Y.rgs(X, DY) —

satisfies(Y, D) A Solution(X,Y") (Srgs)

and the other axioms of the GS schema. Second, prove that
P, issteadfast wrt to .S, and .S, . a

4. Schema Particularisations

In theory, one could use the global search (GS) schema in
away anal ogous to the way the divide-and-conquer schema
was used in[11, 4] to guide synthesis, namely by following
a strategy of (@) arbitrarily choosing programs for some of
the open relations (satisfying the axioms of course) from a
pool of frequently used such programs, (b) propagating their
concrete specifications across the axioms to set up concrete
specifications for the remaining open relations, (c) calling
a (schema-guided) synthesiser to generate programs from
these specifications, and (d) assembling the overall syn-
thesised program from the template, the chosen programs,
and the generated programs. However, in general this puts
heavy demands on ATP technology, and in particular this
turns out much more difficult for the GS schema than for
the divide-and-conquer one [12]. Fortunately, avery large
percentage of GS programs falls into one of seven families
identified by Smith, each representing a particular case of
the global search schema (in the sense that programs for all
its open relations are adequately chosen in advance), here
called a particularisation. We here investigate the fami-
lies of assignment and permutation problems, other families
enumerating sublists of (given or bounded) length % over a
givenlist, enumerating sequences over agivenlist, etc[12].

Definition 4.1 A particularisationof the GSschemaisaset
of formulas defining D, A, satis fies, Oinity Ocwirs Osplits
Oonstr, SUCh that axioms A, to A5 are satisfied.

We now discuss afew sample particul arisations.
4.1. Particularisationsfor Assignment Problems

The formulas below, denoted by P2, constitute a particu-
larisation of the GS schema for decision assignment prob-
lems. It enumerates mappingsfrom alist V' into an interval
1..W, wherethe problem tuple X hastheform (V, W, ..).
Descriptorstake the form (T, A/}, and the ideaisto gradu-
ally build up the (initially empty) mapping M (represented
asaligt of pairs), withasublist of V asdomainand 1.1V as
range, such that list 7" has the elements of V' that have not
been mapped to elementsin 1..1/ yet. Formally:

D={{T,M)|T CVAME list(V\T) x 1..W)}
A={[LHNIeVAJELW}=Vx1.W

VY 1 Y.YD :D.satisfies(Y,D) — 3IM :).
D={_MYANY(I,J)e M .(I,J)eY
YX i X.¥D:D . Opu(X,D) — D = (V,[])

VX X . VD:D.VY:).
Oextr(XaDaY) HD: <[]’Y>

VYD, D' :D. VX :X.V6:A.
Osplit(DaXaD/a(s) =D= <[I|T]aM>
ANJinl. WA= <I,J>/\D/: <T, [5|M]>

V(LJY:AYM:Y . VX 2 X
Oconstr((,J),(>,)HV<[\, >EM
Pi1,J,K, L) — Qi(I,J.K, L)

where in isa primitive (with the usual meaning).

Especially notice the definition of O.,nsr: ONCE
satis fies and O,p15, had been chosen, and considering that
Solution hastheform of O4¢¢ (see Section 2.1), it became
possible for us to hand-derive the indicated O.ps¢ IN @
way satisfying axiom As. It isindeed as strong a necessary
condition as “possible and reasonable,” as it just poses an
incrementa consistency constraint: 6 = (I, .J) being the
most recently added couple (by split) to the descriptor
D, which contains the partial mapping M constructed so
far, it suffices to backward-check whether (I, .J} is con-
sistent with every (K, L) of M. Note that this constraint
is thus nothing but O4¢¢ where the outermost universa
quantification has been stripped away! It is aso important
to understand that [as opposed to Smith's filters and cuts]
no forward constraint needs to be posed (establishing
whether the new partial mapping can possibly be part of
a correct solution), not even for efficiency reasons, due
to the way in which CLP programs work [as opposed to
Refine ones]: solution construction (through generate)
actually only startsin CLP once all constraints have been
posed, and posing any forward constraints would thus be
not only superfluous but also a way of dowing down the
program, because the forward constraints of time ¢ will
become backward constraints at times larger than ¢ and all
congtraints would thus have been posed twice. (This does
not prevent CLP from performing forward checks during
solution generation.)

Theorem 4.1 The programs Pipi, Pewir, Psptits Peonstr
Py, below, denoted by C'4¢¢ (where the C' is for closure,
because it “closes’ the open program G'Sg..), are totaly
correct wrt the axioms Sinit: Sextr- Ssplit: Sconstr- Sgen:
respectively, after they have been unfolded wrt satis fies,
Oinits Ocwtry Osplits Oconsty USiNG the particularisation

Pdec ahove,

Pinse © initialise(X, D) —
{

Pepir o extract(., DY) —
(

Psplit :

Peonstr : constrain(-, D,) —

AP T K D) — Qi(1, 1, K, L),

Pyen © generate(M, _
M =]
generate(M,) —
M = [(-, J)|M],
indomain(J),
generate(M',)

Notethat al but therecursive clausefor constrain of these
programs are problem-independent. We have thus hand-
synthesised in advance programs for the relations defined
by the particularisation: some of these syntheses were triv-
ia, for the others we used a divide-and-conquer schema for
guidance[11, 4]. Finally, noticethat S?¢¢ (see Section 2.1),

ass

Plec and C¢¢ share the free variables V, W, m, P, Q;
(which represent the problem to be solved): therefore, if
a problem-dependent substitution for these variablesis ap-
pliedto .S%¢, then it must also be applied to P4¢¢ and C'd¢¢.

Finding such a substitution is the objective of the notion of
specification reduction, which we examine in Section 5.

For optimisation assignment problems, space reasons
preclude the inclusion of the extended versions of the par-
ticul arisation and closure above.

4.2. Particularisationsfor Permutation Problems

For decision permutation problems, three particul arisations
and closures have been designed (one pair for each specifi-
cation type, depending on the primitive used in the P for-
mula), but, for space reasons, we can here only discusstheir
optimisation versions.

The formulas below, denoted by P2, congtitutea par-
ticularisation of the GS schema for optimisation permuta-
tion problemswhose specificationsuse consTwo informula
P. (Space reasons preclude presenting the other two partic-
ularisations, for permutation problems whose specifications
useprecTwo or anyTwo.) It enumerates permutations S of
the 1..N interval, where the problem tuple X has the form
(N,...). Descriptors take the form (S, U}, and the ideais
to gradually build up (from the rear, because in CLP there
is no constant-time way of adding an element to the end of
alist) the (initially empty) permutation S, which isasublist
of [1..N],suchthat U isthelength of list S. Formally:

D = {{(S,U)|S C [1..N] A length(S,U)}

A={§6€1.N}=1..N

VY : Y. VD :D.satisfies(Y, D) —
AS,L:Y.D={S,) Aappend(L,S,Y)

VX : X . VD :D.O0pmi(X,D) — D={],0)

VX X . VD:D.VY : Y.
Ocptr(X, DY) = D=(Y,N) Aalldif ferent(Y")

VD,D' :D.VX : X .V6:A.
Ospiir(D, X, D', 6) <35 : Y. 3U :int.
={(S,UyAéinl.NAD = ([8|S,U+1)

V8:A VD :D. VX : X . Oconstr(6, D, X) —
D={10vav:1L.N.D={(V|],)AQ(V)

where length, append, alldif ferent are primitives (with
theusual meanings). Again noticehow astrongest “ possible
and reasonable” O,y s¢» could be hand-derived in advance.

Theorem 4.2 The programs Pznzt: Pextr: Psplit: Pconstr-
P,yj, Pyen below, denoted by C?), , aretotally correct wrt
the axioms Sinit: Sextr- Ssplzt: Sconstr: Sobj- Sgen: respec-
tively, after they have been unfolded wrt satis fies, O;pit,

Ocxtrs Osplit, Oconser USiNG the particularisation PyL .

Pinse o initialise(_, D) —
D ={([],0),
Pepir o extract(X, DY) —
D = (Y, N),
alldif ferent(Y
split(D, X, D', §) —
=(5,U),
(5 in 1..N,
= (511, + 1)
constram(é D, X) —
= (V1L
Q1)
constram(,D,) —
= ([,0)
Py objectwe(X,Y, W) —
objective' (Y, X,0, W)
objective’ ([, ., W, W) —
objective’ ([],-, W, W) —
objective'([J,LIY], X, W, Z) —
Q(J, L), % FE must be free in Q
NewW =W+ E,
objective’([L|Y], X, NewW, Z)
Pyer © generate(Y,) —
Y =[]
generate(Y,) —
=[],
)a

indomain
-)

(
generate(Y'
All but some clauses for constrain and objective’ are
problem-independent; we have again hand-synthesised in

Psplit :

Pconstr :

advance programsfor therelationsdefined by the particul ar-
isation. Notethat P,;; is specific to problemswhere asum
hasto be minimised (that is, where /' = sum). Finaly, no-
tice that S¢Ly,, (see Section 2.2), P2}, and Cp2l,, share
the free variables NV and @ (which represent the problem to
be solved): therefore, if a problem-dependent substitution
for these variablesis applied to 5%, then it must also be

appliedto Pt andCort

perm perm:*
5. Specification Reduction

Given a specification S, for which no program has been
written yet, and a specification .S, for which a program P,
has already been written, we examine the conditions under
which it suffices to invoke 7, in order to (partialy) imple-
ment S,. Wethen say that S, reducesto S,. Basically, this
requiresthat the set of correct solutionsto .S, containsthose
to S, provided there later is an elimination of the solutions
to S, that are not solutionsto .S,. Formally:

Definition 5.1 A specification S, = (X, Y, W,, O,) fora
relation » reducesto aspecification S, = (X, V,, Wy, Oy)
for r with substitution @ if

VX, & 33X, A VY Y YW W,
Xp = X,0A Y0 = V0 AW, = W, 0
/\OT(XT7YT7WT) :Og(XgaYraWr)g

Computing such a substitution involves second-order
semi-unification, which is decidable but NP-complete in
general, though linear in the case of higher-order pat-
terns [7], where al predicate variables (such as the P; and
Q);) apply to distinct variables only, which is the case here.
Example5.1 The specification S (see Example 2.1) re-

col

ducesto S?¢¢ (see Section 2.1) with:

ass

01 = {X/<Ra Ca A)a V/Ra W/Ca m/la
PN K, LM (J,L) € A, Qi/MN, K, L, M. K # M)}

Notethat A isfreeinthe A-term substituted for P;: thisis
no problem because (R, C, A) issubstituted for X', whichis
universally quantified wherever P, occurs.

opt

ham

(see Section 2.2) with:

Example5.2 Thespecification S
ducesto SoP!

perm

0, = {X/(C, A), N/C, Q/\, K . (J,K,E) € A}

(see Example 2.2) re-

Notethat A isfreeinthe A-term substituted for): thisisno
problem because (C, A) is substituted for X, which is uni-
versally quantified wherever Q occurs. Also notethat, asre-
quired earlier, thesummationvariable F isfreeinthe A-term
substituted for Q.

6. The SynthessMethod

The synthesismethod i s apparent now: given aspecification
Sy, find asubstitution# under which it reducesto thegeneric
specification .S, attached to some particularisation P, of the
global search schema, and then apply ¢ to 2, and to the clo-
sure 'y, S0 asto obtaina (closed) program that correctly im-
plements S, by teking the G.S,,; templateand C,6.

For assignment and permutation problems, note how the
elimination of the solutionsto S%¢¢ or S;{jﬁm that are not so-
[utionsto S, isperformed [without explicitly inserting O, at
theend of the synthesi sed program, like Smith does]: for in-
stance, 0%¢¢ has predicate variables P; and @;, which also
appear in P4¢¢ (and thusin C'2¢¢) and which becomeinstan-
tiated to the particul ar conditionsin O,., which thuswind up,
as we have seen, in therecursive clause for constrain. [In
Smith’s approach, O%<¢ istrue, and the post-condition O,
of the particular problem can thus not appear in the search
part of the synthesised code, except maybe in afilter, whose
derivation is however often not fully automatic and which

filter is not necessarily “reasonable.”]

Example6.1 Given the specification S¢¢ (see Exam-
ple 2.1), the fully automatically synthesised program thus
consists of the 'Sy, template (see Section 3.1) and the
closure C'4¢¢ of Theorem 4.1, where the problem-dependent

ass

recursive clause for constrain is

constrain(é, D, {_, , A)) —
§ = (R, Ch),
D = (, [(Ry, Co)|M]),
<R1,R2> cA—C 3& Ch,
constrain(é, (-, M'), {, _, A))

by virtue of the substitution#; (see Example 5.1). We here
use P — (@ to denote not(P); @, where ; /2 denotes dis-
junction and can easily be implemented by the two clauses
P;:Q — Pand P; @ — @, using the meta-variable facility
of CLP. The usage of negation-as-failure (denoted by not) is
not dangerous here, because the synthesised program guar-
antees that the thus negated atom is ground at that moment.

Example6.2 Given the specification Sp?' (see Exam-

ple 2.2), the fully automatically synthesised program con-
sists of the G.5,,; template (see Section 3.1) and the clo-
sure C1,,, of Theorem 4.2, where the problem-dependent

clauses for constrain and objective’ are:

constrain(é, D, (-, A)) —
D =([V|],9),
(6, V,ye A
objective’ ([Vi, Va|Y], (L, A), W, Z) —
<V1, Va, E> €A,
NewW =W+ E,
objective’ ([Va|Y], (-, A), NewW, 7)

by virtue of the substitution §, (see Example 5.2).

7. Benchmarks

In Table 1, wefirst compare our synthesised CLP programs
(run under clp(F D) [2]) with the (non-CLP) logic program
counterparts (also run under c¢/p(F" D)) of KiDs-synthesised
Refine programs (with hand-derivedfilters). These tests(for
colouring the departmental map of France (DeptMap), for
finding a Hamiltonian path through the countries of Europe
(HamPath), and for solving the 8-Queens problem) show
that at least one order of magnitude is gained in efficiency
by switching from an ordinary symbolic language to a con-
straint one (a comparison with the more recent SpeclWare
and PlanWare [14] of Kestrel Ingtituteis underway). We
chose Finite Domains (FD) as constraint domain because of
the well-known high performance of CLP(FD).

| | DeptMap | HamPath | 8-Queens |

Synth’d CLP(FD) 27,150 ms 50 ms 100 ms
Synth’d LP/Refine overflow 527ms | 3260 ms
Publ’d CLP(FD) [2] 5,230 ms 20 ms 30ms

Table 1. Benchmarks

Further tests show that our automatically synthesised
CLP(FD) programs are only 3 to 5 times slower than care-
fully hand-crafted, published CLP(FD) programs, which
is encouraging since none of the obvious problem-specific
optimising transformations have been performed yet on our
programs. Since our synthesisis fully automatic, starting
from short and elegant specifications, our approach thus
seems viable,

Our specification language is equivalent in its high ex-
pressiveness with CLP(Sets) programming languages (such
asCLPS[1],Cojunto6],...). Wethusdo notaim at syn-
thesising CLP(Sets) programs, but rather at different ways
of compiling them. Comparing execution times is how-
ever still meaningless because of the prototypical nature of
CLP(Sets) compilers (which normalise the programs into
Prolog programsand add constraint-solvingcodein Prolog).

Comparisons with handwritten non-constraint programs
for performing the same computations have not been made
yet, but we expect such programs to perform somewhere
near handwritten constraint programs (whether CLP or not),
unless they are very naive or super-optimised. Since our
synthesised CL P(FD) programs perform within the same or-
der of magnitude as handwritten CLP(FD) programs (and
thus most non-constraint programs), the crucia difference
may well liein thetime it takes to construct the programs,
and then the benefits of constraint languages in general, as
well as of automated constraint program synthesis (such as
ours) in particular, will kick in.

log,[Runtime (ms)]

log,,[Runtime (ms)]

In Figures 1 and 2, a further comparison is made be-
tween the synthesised CLP(FD) programs and the corre-
sponding synthesised LP programs, for the »n-Queens and
graph colouring problems. The minimum one order of mag-
nitude gain confirms that we fully exploit constraint propa-
gation to reduce the search space by cutting off spaces that
do not lead to correct solutions.

6.0

5.0

Synthesised LP e
40

3.0

12
Number of queens

14 16

Figure 1. n-Queens

5.0 e ®

4.0

3.0 e
’ B 2oa

Synthesised clp(FD)

30

20 40
Number of regions

Figure 2. Graph Colouring

8. Conclusion

We outlined how to fully automatically synthesise CLP pro-
grams for assignment and permutation problems (whose
specification templates in Section 2 thus determine the cur-
rent scope of our approach), and we showed that our results
are competitive. We see no reason why we would not be
ableto replicate this achievement for the other 5 families of
globa search problems identified by Smith [12]. We now
need to investigate how this work scales up to more com-
plexly specified (if not hybrid) search problems.

The synthesised programs are not small (minimum
33 atoms, in a very expressive programming language),
and making them steadfast reusable components for a
programming-in-the-large approach by embedding their
whole development in a framework-based approach [4]
should not be too difficult.

Theresults presented in thispaper are however morethan
asimple transcription of the KiDs approach from Refine to
CLP, asthey aso reflect new idess. In summary:

o We fully exploited CLP [as opposed to Refine, which
is“only” an ordinary symbolic language], by signifi-
cantly modifying the original GS schema, so that it re-
flects a constrain-and-gener ate programming method-
ology. We argue for our choice of CLP(FD) as target
language by thefact that it isespecially suited for solv-
ing combinatorial problems. Indeed, much of the con-
straint solving machinery that needs to be pushed into
Refine programs, beit at synthesistime or at optimisa
tiontime, isaready part of the CLP(FD) languageand
isimplemented there once and for al in a particularly
efficient way. We thus established that the features of
the target computing environment can be successfully
exploited by a synthesis mechanism.

o Weintroduced the notion of specification template, by
illustrating it on the families of assignment and permu-
tation problems. This has nice effects on the KIDs ap-
proach, as shown bel ow.

¢ As shown for some particul arisations, the substitution
under which a specification reduces to a specification
template can be easily computed, so that there is no
need of an automated theorem prover, at synthesistime,
toderiveit.

e As shown for some particularisations, the derivation
of consistency-constraint-posing code can be caling-
context-dependent [as opposed to filter derivation].
Such code can even be pre-synthesised, for a given
particularisation, so that there is no need of atheorem
prover, a synthesistime, to derive its specification.

This means that synthesis can be fully automatic, without
using any theorem prover, for some families of problems.
There are alot of opportunities for automatically optimis-
ing the synthesi sed programs, hopefully bringing them on a
par with hand-crafted programs.

Our work can also be seen as being of methodological
nature: indeed, the identification of problem/specification
families and of efficient corresponding programs is a con-
tributionto constraint | ogic programming methodol ogy, and
not unlike what is advocated by the patterns community [5]
(except that we aim at full formalisation and automation,
whereas patterns are mostly informal). Moreover, unlike
the top-down decomposition methodology, for instance,
which is solution/program-centered, our methodology is
probl em/specification-centered and thus quite useful.

Acknowledgments

Wethank Doug Smith for hisinspiring pioneeringwork, and
the anonymous referees for their constructive comments.

References

[1] F Ambert, B. Legeard, et E. Legros. Programmation
en logique avec contraintes sur ensembles et multi-
ensembles héréditairement finis. Techniques et Sci-
ences Informatiques 15(3):297—-328, 1996.

[2] D. Diaz and Ph. Codognet. A minima extension of
the WAM for clp(FD). In D.S. Warren (ed), Proc. of
ICLP'93, pp. 774-790. The MIT Press, 1993.

[3] Y. Deville and P. Van Hentenryck. Construction of
CLP programs. In D.R. Brough (ed), Logic Program+
ming: New Frontiers, pp. 112-135, Kluwer Academic
Publishers, 1992.

[4] P.Hener,K.-K. Lau, and M. Ornaghi. Correct-schema-
guided synthesis of steadfast programs. In M. Lowry
and Y. Ledru (eds), Proc. of ASE'97, pp. 153-160.
|EEE Computer Society, 1997.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns; Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

[6] C. Gervet. Interval propagation to reason about sets:
Definitionand implementation of apractical language.
Constraints 1(3):191-244, 1997.

[7] 1. Kraan, D. Basin, and A. Bundy. Middle-out rea-
soning for logic program synthesis. D.S. Warren (ed),
Proc. of ICLP' 93, pp. 441-455. The MIT Press, 1993.

[8] J. Jaffar and M.J. Maher. Constraint logic program-
ming: A survey. J. of Logic Programming 19-20:503—
582, 1994.

[9] K.-K. Lau and M. Ornaghi. A forma approach to
deductive synthesis of constraint logic programs. In
JW. Lloyd (ed), Proc. of ILPS 95, pp. 543-557. The
MIT Press, 1995.

[10] B.Le Charlier and P. Flener. Specifications are neces-
sarily informal, or: Some more myths of formal meth-
ods. J. of Systems and Software 40(3):275-296, 1998.

[11] D.R. Smith. Top-down synthesis of divide-and-
conquer algorithms. Artificial Intelligence 27(1):43—
96, 1985.

[12] D.R. Smith. The structure and design of global search
algorithms. TR KESU.87.12, Kestrel Institute, 1988.

[13] D.R. Smith. KiDs: A semiautomatic program devel-
opment system. |EEE Trans. Software Engineering
16(9):1024-1043, 1990.

[14] D.R. Smith. Towards the synthesis of constraint prop-
agation agorithms. In Y. Deville (ed), Proc. of LOP-
STR 93, pp. 1-9, Springer-Verlag, 1994.

