
Schema-Guided Synthesis of Constraint Logic Programs

Pierre Flener
Dept of Information Science

Uppsala University
S-75105 Uppsala, Sweden

pf@csd.uu.se

Hamza Zidoum
UAE University
P.O. Box 15551

Al-Ain
United Arab Emirates

Brahim Hnich
Dept of Information Technology

Tampere University of Technology
SF-33101 Tampere

Finland

Abstract

By focusing on the families of assignment and permutation
problems (such as graph colouring andn-Queens), we show
how to adapt D.R. Smith’s KIDS approach for the synthe-
sis of constraint programs (with implicit constraint satis-
faction code thus), rather than applicative Refine programs
with explicit constraint propagation and pruning code. Syn-
thesis is guided by a global search schema and can be
fully automated with little effort, due to some innovative
ideas. CLP(Sets) programs are equivalent in expressiveness
to our input specifications. The synthesised CLP(FD) pro-
grams would be, after optimising transformations, compet-
itive with carefully hand-crafted ones.

1. Introduction

This work is inspired by D.R. Smith’s research on synthe-
sising global search (GS) programs (in the Refine language)
from first-order logic specifications (also in Refine) [12, 13,
14]. The basic idea of GS is to represent and manipulate
sets of candidate solutions. Starting from an initial set that
contains all solutions to the given problem, a GS program
incrementally extracts solutions from a set, splits sets into
subsets, eliminates sets via filters, and cuts sets, until no set
remains to be split.

Instead of synthesising Refine programs, our work con-
centrates on synthesising constraint (logic) programs. Con-
straint Logic Programming (CLP) [8] is a paradigm es-
pecially suited for solving combinatorial problems, thanks
to its double reasoning: symbolic reasoning expresses the
logic properties of the problem, while constraint satisfaction
reasoning (over several computational domains, such as re-
als, booleans, finite domains, sets, ...) uses constraint prop-
agation to keep the search space manageable. We thus only
have to synthesise code that (incrementally) poses the con-
straints, because the actual constraint propagation and prun-
ing are performed by the CLP system.

Search problems can be classified into decision problems,
which consist in finding some correct solution, and optimi-
sation problems, which consist in finding an optimal correct
solution given a cost function, and are thus an extension of
decision problems.

Very few works deal with the synthesis and transforma-
tion of CLP programs. In [9], the possibility of synthesis-
ing steadfast CLP programs is shown, without exhibiting a
synthesis method, though. A manual and informal method
for constructing CLP programs from specifications is given
in [3]. We here outline a completely automatic and formal
method for synthesis, and leave optimising transformations
for future work.

Schema-guided synthesis of CLP programs is also based
on a GS schema. We use particular cases of that general
schema to simultaneously instantiate all its place-holders.
Although we are still working on it, we think that the num-
ber of these particular cases will be small (but probably more
than the seven of KIDS [12, 13, 14]). We here only tackle the
families of assignment and permutation problems.

This paper is organised as follows. Section 2 defines
specifications as inputs to synthesis and discusses their
forms for assignment and permutation problems. Section 3
introduces our GS schema for CLP programs. Section 4 de-
fines particularisations as particular cases of a schema and
exhibits particularisations of our GS schema for assignment
and permutation problems. Section 5 defines when a specifi-
cation reduces to another one, so that a program for the latter
can be re-used towards implementing the former. Section 6
introduces a synthesis method guided by our GS schema.
Section 7 contains benchmarks establishing the viability of
our approach. Section 8 argues why our work is more than
a transposition of Smith’s results from Refine to CLP.

2. Specifications

Specifications are the input to program synthesis. In order to
enable (or facilitate) automated synthesis, such inputs ought
to be formal (though it would then be more adequate to say

that the inputs are programs and that synthesis is compila-
tion [10]). Without loss of generality, we only consider min-
imisation problems.

Definition 2.1 A specification of a program for a relation r
is a first-order logic formula of the form:8X : X : 8Y : Y : 8W :W :Ir(X)! (r(X;Y;W)$ Or(X;Y;W)) (Sr)

where X : X , Y : Y, and W :W are (possibly empty) lists
of sorted variables. Formula Ir is called the input condition,
constraining the input domain X , whereas Or is called the
output condition, describing when some output Y (of costW) is a correct (optimal) solution for input (or problem)X.
Usually Or has the formObjective(X;Y;W) ^minimal(Solution(X;Y);W)
where Solution(X;Y) expresses that Y is a correct solu-
tion to problemX, and Objective(X;Y;W) expresses that
solution Y to problem X has cost W . The specification
primitiveminimal(Solution(X;Y);W) expresses thatW
is the minimal cost of all correct solutions Y (according toSolution) to problem X.

To simplify some formulas, we consider Ir to be part of
the definition of X . Often, we then simply designate speci-
fications by hX ;Y;W; Ori tuples.

We distinguish two families of problems, namely assign-
ment problems and permutation problems.

2.1. Specifications of Assignment Problems

We first consider the family of decision assignment prob-
lems, where a mapping M from a list V into the integer in-
terval 1::W has to be found, satisfying certain constraints.
Their specifications Sdecass take the form hlist(term) �int; list(V � 1::W); Odecassi, with:8hI; Ji; hK;Li 2M :^mi=1Pi(I; J;K; L)! Qi(I; J;K; L) (Odecass)
where the Pi and Qi are formulas. This can be considered
a specification template; others are given below. This cov-
ers many problems, such as graph colouring (see below),
Hamiltonian path, n-Queens, etc.

Example 2.1 Given a map, the graph colouring problem
consists of finding a mapping M from the list R of its re-
gions to a set of colours (numbered 1::C) so that any two
adjacent regions (as indicated in an adjacency list A) have
different colours. Formally:8hR;C;Ai : list(term) � int � list(R � R) :8M : list(R � 1::C) : colouring(hR;C;Ai;M)$8hR1; C1i; hR2; C2i 2M : hR1; R2i 2 A! C1 6= C2

(Sdeccol)
where 2 is a primitive (with the usual meaning).

In optimisationassignment problems, a mappingM from
a list V into the integer interval 1::W has to be found,
satisfying certain constraints and minimising W . Their
specifications Soptass take the form hlist(term); list(V �1::W); int; Ooptassi, with:8hI; Ji; hK;Li 2M :^mi=1Pi(I; J;K; L)! Qi(I; J;K; L)^W = maxfU jh ; U i 2Mg ^minimal(W;V)

(Ooptass)
where the specification primitive max S returns the maxi-
mal element in number set S. This also covers many prob-
lems, such as optimal k-graph colouring, optimal Hamilto-
nian path, etc.

2.2. Specifications of Permutation Problems

We also consider the family of decision permutation prob-
lems, where a permutation S of the interval 1::N has to be
found, satisfying certain constraints. Their specificationsSdecperm take the form hint; list(1::N); Odecpermi, with:perm(N;S) ^ 8V1; V2 : P (V1; V2; S)! Q(V1; V2)

(Odecperm)
where specification primitive perm(U; V) holds iff listV is a permutation of the interval 1::U ; atomic formulaP involves either anyTwo(V1; V2; S; P1; P2) (V1 and V2
occur respectively at positions P1 and P2 in list S), orconsTwo(V1; V2; S) (V1 immediately precedes V2 in listS),
or precTwo(V1; V2; S) (V1 precedes V2 in list S), and Q
is a formula. This covers many problems, such as Hamil-
tonian path, job scheduling, n-Queens, etc. (The big over-
lap with assignment problems happens because permutation
problems essentially are assignment problems with a bijec-
tiveness constraint on the assignment. The corresponding
algorithms will be quite different, though.)

Finally, we consider optimisation permutation problems,
where an optimal permutation S of the interval 1::N has to
be found, satisfying certain constraints and optimisinga cer-
tain cost W of S. Their specifications Soptperm take the formhint; list(1::N); int; Ooptpermi, with:perm(N;S) ^ 8V1; V2 : P (V1; V2; S)! Q(V1; V2)^W = FfEjconsTwo(V1; V2; S) ^Q(V1; V2)g^minimal(W;N)

(Ooptperm)
where function F is either sum or product, with speci-
fication primitive sum S (product S) returning the sum
(product) of all elements in number set S. Formula Q must
have E as a free variable. This also covers many problems,
such as optimal Hamiltonian path (see below), optimal job
scheduling, etc.

Example 2.2 GivenC cities, the optimal Hamiltonianpath
problem consists of finding a permutation H of the inter-
val 1::C that minimises the total distance D of visiting the
cities as ordered in H, given an adjacency list A of tripleshC1; C2; Ei indicating that the distance between adjacent
cities C1 and C2 is E. Formally:8hC;Ai : int � list(1::C � 1::C � int) : 8H : list(1::C) :8D : int : hamPath(hC;Ai;H;D)$ perm(C;H)^ 8C1; C2 : consTwo(C1; C2;H)! hC1; C2; i 2 A^D = sumfEjconsTwo(C1; C2;H)^ hC1; C2; Ei 2 Ag^minimal(D; hC;Ai)

(Soptham)

3. A Global Search Program Schema for CLP

A program schema [4] for a programming methodologyM
(such as divide-and-conquer, generate-and-test, ...) is a
couple hT;Ai, where template T is an open program show-
ing the (problem-independent) data-flow and control-flow
of programs constructed following M , and axioms A con-
strain the (problem-dependent) programs for the open rela-
tions in T such that the overall (closed) program will really
be a program constructed followingM . (An open program
is a program in which at least one non-primitive (relation
or function) symbol, called an open symbol, is undefined; a
closed program is a program without any open symbols.)

We now formalise our global search (GS) schema for
CLP programs. The basic idea is to start from an initialised
descriptor of the search space, to incrementally split that
space into sub-spaces, while declaring the domains of the
involved variables and constraining them to achieve partial
consistency, until no splits are possible and a variablised so-
lution can be extracted. Then a correct (optimal) solution is
generated, by instantiationof the variables in the variablised
solution. Compared to Smith’s GS schema, ours only com-
putes one correct (optimal) solution rather than all, because
this is standard practice in CLP. In any case, all solutions can
easily be obtained in CLP, due to its built-in backtracking.

3.1. The Global Search Template

Our global search template is the open program:r(X;Y;W) initialise(X;D);rgs(X;D; Y);objective(X;Y;W);minof(generate(Y;X);W)rgs(X;D; Y) extract(X;D; Y)rgs(X;D; Y) split(D;X;D0; �);constrain(�;D;X);rgs(X;D0; Y)
(GSopt)

where the open relations are informally specified as follows:� initialise(X;D) iff D is the descriptor of the initial
space of candidate solutions to problem X;� extract(X;D; Y) iff the variablised solution Y to
problem X is directly extracted from descriptor D;� split(D;X;D0; �) iff descriptor D0 describes a sub-
space of D wrt problemX, such thatD0 is obtained by
adding � to descriptor D;� constrain(�;D;X) iff adding � to descriptor D leads
to a descriptor defining a sub-space of D that may con-
tain correct (optimal) solutions to problem X;� objective(X;Y;W) iff arithmetic expressionW is the
cost of correct solution Y to problem X;� generate(Y;X) iff correct (optimal) solution Y to
problem X is enumerated (by instantiations in the ini-
tially variablised solution Y) from the constraint store,
which is an implicit parameter representing X.

The CLP primitive minof(generate(Y;X);W) holds iffW is the minimal cost of all correct solutions Y enumer-
ated by generate for problem X. Formalising these infor-
mal specifications is the role of the axioms, shown below.

For decision problems, GSopt specialises to:r(X;Y) initialise(X;D);rgs(X;D; Y);generate(Y;X)rgs(X;D; Y) extract(X;D; Y)rgs(X;D; Y) split(D;X;D0; �);constrain(�;D;X);rgs(X;D0; Y) (GSdec)
but we (mostly) continue with the general version.

3.2. The Global Search Axioms

Let D be the type of search space descriptors, and � be the
type of the elements of the partial solutionsstored in descrip-
tors. The first axioms are the specifications of the open re-
lations of the GSopt template:8X : X : 8D : D :initialise(X;D) $ Oinit(X;D) (Sinit)8X : X : 8D : D : 8Y : Y :extract(X;D; Y)$ Oextr(X;D; Y) (Sextr)8D;D0 : D : 8X : X : 8� : � :split(D;X;D0; �)$ Osplit(D;X;D0; �) (Ssplit)8� : � : 8D : D : 8X : X :constrain(�;D;X) $ Oconstr(�;D;X) (Sconstr)

8X : X : 8Y : Y : 8W :W :objective(X;Y;W) $ Objective(X;Y;W) (Sobj)8Y : Y : 8X : X :generate(Y;X) $ Solution(X;Y) (Sgen)

The output conditions of some of these specifications are
constrained by the next axioms. The output conditionsof the
other specifications are directly made of parts of the output
conditionOr.

Second, the followingaxiom expresses that all correct so-
lutionsY to problemX are contained in the computed initial
space for X:8X : X : 8Y : Y : Solution(X;Y)!9D : D : Oinit(X;D) ^ satisfies(Y;D) (A1)

where satisfies(Y;D) means that (possibly variablised)
solution Y is in the space described by descriptor D, which
is the case if Y can be extracted after a finite number of ap-
plications of split to D. Formally:8X : X : 8Y : Y : 8D : D :satisfies(Y;D) $ 9k : int : 9D0 : D : 9� : � :splitk(D;X;D0; �) ^Oextr(X;D; Y)where :split0(D;X;D0; �)$ D = D0and; for all k : int :splitk+1(D;X;D0; �)$ 9D00 : D : 9�0 : � :Osplit(D;X;D00; �0) ^ splitk(D00; X;D0; �)

(A2)
Finally, we want to fully exploit CLP features to elimi-

nate spaces from further consideration. Constraint satisfac-
tion can be used to prune off branches of the search tree
that cannot yield solutions. Given a space described by D
and a (possibly still variablised) solution Y to problem X,
if splittingD intoD0 makes D0 contain the solutionY , thenconstrain must succeed. Formally:8X : X : 8Y : Y : 8D;D0 : D : 8� : � :Solution(X;Y) ^Osplit(D;X;D0; �)^ satisfies(Y;D0)! Oconstr(�;D;X) (A3)

Conversely, the contrapositive of A3 shows that ifconstrain fails, then the new space described by D0
(which is D plus �) does not contain any solution to X.
CLP languages contain the SAT decision procedure,
checking whether a constraint store is satisfiable [8].

This last axiom sets up a necessary condition thatconstrain must establish. Given the left-hand side of the
implication, such a condition can be derived using auto-
mated theorem proving (ATP), as shown in [11, 12]. Of
course, we are not interested in too weak such a condition,
such as the trivial solution true, but rather in a stronger one.

However, deriving the absolutely strongest one (which es-
tablishes equivalence rather than implication) is impracti-
cal, because finding it may take too much time or may even
turn out to be beyond current ATP possibilities, and because
such a perfect constrain would be too expensive to evalu-
ate (since it would eliminate all backtracking in the solution
generation). So we should (automatically, if possible) derive
the strongest “possible and reasonable” condition, the crite-
ria for these qualities being rather subjective. Fortunately,
for the families of assignment and permutation problems,
it turns out that this condition can be easily manually pre-
computed (see below) at schema-design time, for any such
problems, in an optimal way, so that no ATP technology is
then necessary at synthesis time!

The derivation of the output condition of constrain de-
pends on its calling context, namely that it is invoked aftersplit: this gives rise to rather effective (namely incremen-
tal) constraint-posingcode [and stands in contrast to Smith’s
calling-context-independent derivation of filters [12, 13]
and cuts [14], which thus may be non-incremental]. (Sen-
tences between [...] are for understanding the differences
with Smith’s work.) Notice that constrain just poses con-
straints on the search space, the actual solutions being enu-
merated by generate once all constraints have been posed,
because we use a constraint language.

3.3. Correctness of the Global Search Schema

Now we define a notionof correctness, and establish that our
GS schema is correct.

Definition 3.1 A closed program Pr for a relation r is to-
tally correct wrt its specification hX ;Y;W; Ori if for allX : X , Y : Y, and W : W we have that Or(X;Y;W)
iff Pr ` r(X;Y;W).

This can be generalised to open programs, the correctness
criterion being then called steadfastness [4].

Theorem 3.1 Given a specification Sr for a relation r, any
closed program GSopt [Pinit [Pextr [Psplit [Pconstr [Pobj [Pgen such that Pinit, Pextr, Psplit, Pconstr, Pobj,Pgen are totally correct wrt Sinit, Sextr, Ssplit, Sconstr,Sobj , Sgen, respectively, and such that the axioms A1 to A3
hold, is totally correct wrt Sr .

Proof. Outline (analogous to [12]):
Let Pr be the first clause of GSopt, and let Prgs be the re-
maining two clauses of GSopt. First, prove that Prgs is
steadfast wrt the specification8X : X : 8D : D : 8Y : Y : rgs(X;D; Y)$satisfies(Y;D) ^ Solution(X;Y) (Srgs)

and the other axioms of the GS schema. Second, prove thatPr is steadfast wrt to Sr and Srgs. 2

4. Schema Particularisations

In theory, one could use the global search (GS) schema in
a way analogous to the way the divide-and-conquer schema
was used in [11, 4] to guide synthesis, namely by following
a strategy of (a) arbitrarily choosing programs for some of
the open relations (satisfying the axioms of course) from a
pool of frequently used such programs, (b) propagating their
concrete specifications across the axioms to set up concrete
specifications for the remaining open relations, (c) calling
a (schema-guided) synthesiser to generate programs from
these specifications, and (d) assembling the overall syn-
thesised program from the template, the chosen programs,
and the generated programs. However, in general this puts
heavy demands on ATP technology, and in particular this
turns out much more difficult for the GS schema than for
the divide-and-conquer one [12]. Fortunately, a very large
percentage of GS programs falls into one of seven families
identified by Smith, each representing a particular case of
the global search schema (in the sense that programs for all
its open relations are adequately chosen in advance), here
called a particularisation. We here investigate the fami-
lies of assignment and permutation problems, other families
enumerating sublists of (given or bounded) length k over a
given list, enumerating sequences over a given list, etc [12].

Definition 4.1 A particularisationof the GS schema is a set
of formulas definingD, �, satisfies, Oinit, Oextr, Osplit,Oconstr, such that axioms A1 to A3 are satisfied.

We now discuss a few sample particularisations.

4.1. Particularisations for Assignment Problems

The formulas below, denoted by P decass , constitute a particu-
larisation of the GS schema for decision assignment prob-
lems. It enumerates mappings from a list V into an interval1::W , where the problem tupleX has the form hV;W; : : :i.
Descriptors take the form hT;M i, and the idea is to gradu-
ally build up the (initially empty) mapping M (represented
as a list of pairs), with a sublist of V as domain and 1::W as
range, such that list T has the elements of V that have not
been mapped to elements in 1::W yet. Formally:D = fhT;M ijT � V ^M 2 list((V n T) � 1::W)g� = fhI; JijI 2 V ^ J 2 1::Wg = V � 1::W8Y : Y : 8D : D : satisfies(Y;D) $ 9M : Y :D = h ;M i ^ 8hI; Ji 2 M : hI; Ji 2 Y8X : X : 8D : D : Oinit(X;D)$ D = hV; []i8X : X : 8D : D : 8Y : Y :Oextr(X;D; Y)$ D = h[]; Y i

8D;D0 : D : 8X : X : 8� : � :Osplit(D;X;D0; �)$ D = h[IjT];M i^ J in 1::W ^ � = hI; Ji ^D0 = hT; [�jM]i8hI; Ji : � : 8M : Y : 8X : X :Oconstr(hI; Ji; h ;M i; X)$ 8hK;Li 2M :^mi=1Pi(I; J;K; L)! Qi(I; J;K; L)
where in is a primitive (with the usual meaning).

Especially notice the definition of Oconstr: oncesatisfies and Osplit had been chosen, and considering thatSolution has the form of Odecass (see Section 2.1), it became
possible for us to hand-derive the indicated Oconstr in a
way satisfying axiom A3. It is indeed as strong a necessary
condition as “possible and reasonable,” as it just poses an
incremental consistency constraint: � = hI; Ji being the
most recently added couple (by split) to the descriptorD, which contains the partial mapping M constructed so
far, it suffices to backward-check whether hI; Ji is con-
sistent with every hK;Li of M . Note that this constraint
is thus nothing but Odecass where the outermost universal
quantification has been stripped away! It is also important
to understand that [as opposed to Smith’s filters and cuts]
no forward constraint needs to be posed (establishing
whether the new partial mapping can possibly be part of
a correct solution), not even for efficiency reasons, due
to the way in which CLP programs work [as opposed to
Refine ones]: solution construction (through generate)
actually only starts in CLP once all constraints have been
posed, and posing any forward constraints would thus be
not only superfluous but also a way of slowing down the
program, because the forward constraints of time t will
become backward constraints at times larger than t and all
constraints would thus have been posed twice. (This does
not prevent CLP from performing forward checks during
solution generation.)

Theorem 4.1 The programs Pinit, Pextr, Psplit, Pconstr,Pgen below, denoted by Cdecass (where the C is for closure,
because it “closes” the open program GSdec), are totally
correct wrt the axioms Sinit, Sextr, Ssplit, Sconstr, Sgen,
respectively, after they have been unfolded wrt satisfies,Oinit, Oextr, Osplit, Oconstr using the particularisationP decass above.Pinit : initialise(X;D) D = hV; []iPextr : extract(; D; Y) D = h[]; Y iPsplit : split(D;X;D0; �) D = h[IjT];M i;J in 1::W;� = hI; Ji;D0 = hT; [�jM]i

Pconstr : constrain(; D;) D = h ; []iconstrain(�;D;X) � = hI; Ji;D = h ; [hK;LijM 0]i;^mi=1Pi(I; J;K; L)! Qi(I; J;K; L);constrain(�; h ;M 0i; X)Pgen : generate(M;) M = []generate(M;) M = [h ; JijM 0];indomain(J);generate(M 0;)
Note that all but the recursive clause for constrain of these
programs are problem-independent. We have thus hand-
synthesised in advance programs for the relations defined
by the particularisation: some of these syntheses were triv-
ial, for the others we used a divide-and-conquer schema for
guidance [11, 4]. Finally, notice that Sdecass (see Section 2.1),P decass , and Cdecass share the free variables V , W , m, Pi, Qi
(which represent the problem to be solved): therefore, if
a problem-dependent substitution for these variables is ap-
plied to Sdecass, then it must also be applied to P decass and Cdecass.
Finding such a substitution is the objective of the notion of
specification reduction, which we examine in Section 5.

For optimisation assignment problems, space reasons
preclude the inclusion of the extended versions of the par-
ticularisation and closure above.

4.2. Particularisations for Permutation Problems

For decision permutation problems, three particularisations
and closures have been designed (one pair for each specifi-
cation type, depending on the primitive used in the P for-
mula), but, for space reasons, we can here only discuss their
optimisation versions.

The formulas below, denoted by P optperm, constitute a par-
ticularisation of the GS schema for optimisation permuta-
tion problems whose specifications use consTwo in formulaP . (Space reasons preclude presenting the other two partic-
ularisations, for permutation problems whose specifications
use precTwo or anyTwo.) It enumerates permutationsS of
the 1::N interval, where the problem tuple X has the formhN; : : :i. Descriptors take the form hS; U i, and the idea is
to gradually build up (from the rear, because in CLP there
is no constant-time way of adding an element to the end of
a list) the (initially empty) permutation S, which is a sublist
of [1::N], such that U is the length of list S. Formally:D = fhS; U ijS � [1::N]^ length(S; U)g� = f�j� 2 1::Ng = 1::N

8Y : Y : 8D : D : satisfies(Y;D) $9S; L : Y : D = hS; i ^ append(L; S; Y)8X : X : 8D : D : Oinit(X;D)$ D = h[]; 0i8X : X : 8D : D : 8Y : Y :Oextr(X;D; Y)$ D = hY;N i ^ alldifferent(Y)8D;D0 : D : 8X : X : 8� : � :Osplit(D;X;D0; �)$ 9S : Y : 9U : int :D = hS; U i ^ � in 1::N ^D0 = h[�jS]; U + 1i8� : � : 8D : D : 8X : X : Oconstr(�;D;X) $D = h[]; 0i _ 9V : 1::N : D = h[V j]; i ^Q(�; V)
where length, append, alldifferent are primitives (with
the usual meanings). Again notice how a strongest “possible
and reasonable” Oconstr could be hand-derived in advance.

Theorem 4.2 The programs Pinit, Pextr, Psplit, Pconstr,Pobj, Pgen below, denoted by Coptperm, are totally correct wrt
the axioms Sinit, Sextr, Ssplit, Sconstr, Sobj , Sgen, respec-
tively, after they have been unfolded wrt satisfies, Oinit,Oextr, Osplit, Oconstr using the particularisation P optperm.Pinit : initialise(; D) D = h[]; 0i;Pextr : extract(X;D; Y) D = hY;N i;alldifferent(Y)Psplit : split(D;X;D0; �) D = hS; U i;� in 1::N;D0 = h[�jS]; U + 1iPconstr : constrain(�;D;X) D = h[V j]; i;Q(�; V)constrain(; D;) D = h[]; 0iPobj : objective(X;Y;W) objective0(Y;X; 0;W)objective0([]; ;W;W) objective0([]; ;W;W) objective0([J; LjY]; X;W;Z) Q(J; L); % E must be free in QNewW = W + E;objective0([LjY]; X;NewW;Z)Pgen : generate(Y;) Y = []generate(Y;) Y = [J jY 0];indomain(J);generate(Y 0;)
All but some clauses for constrain and objective0 are
problem-independent; we have again hand-synthesised in

advance programs for the relations defined by the particular-
isation. Note that Pobj is specific to problems where a sum
has to be minimised (that is, where F = sum). Finally, no-
tice that Soptperm (see Section 2.2), P optperm, and Coptperm share
the free variables N and Q (which represent the problem to
be solved): therefore, if a problem-dependent substitution
for these variables is applied to Soptperm, then it must also be
applied to P optperm and Coptperm.

5. Specification Reduction

Given a specification Sr for which no program has been
written yet, and a specification Sg for which a program Pg
has already been written, we examine the conditions under
which it suffices to invoke Pg in order to (partially) imple-
ment Sr . We then say that Sr reduces to Sg . Basically, this
requires that the set of correct solutions to Sg contains those
to Sr , provided there later is an elimination of the solutions
to Sg that are not solutions to Sr . Formally:

Definition 5.1 A specificationSr = hXr;Yr;Wr; Ori for a
relation r reduces to a specification Sg = hXg;Yg;Wg; Ogi
for r with substitution � if8Xr : Xr : 9Xg : Xg : 8Yr : Yr : 8Wr :Wr :Xr = Xg� ^ Yr = Yg� ^Wr =Wg�^ Or(Xr; Yr;Wr) = Og(Xg ; Yr;Wr)�

Computing such a substitution involves second-order
semi-unification, which is decidable but NP-complete in
general, though linear in the case of higher-order pat-
terns [7], where all predicate variables (such as the Pi andQi) apply to distinct variables only, which is the case here.

Example 5.1 The specification Sdeccol (see Example 2.1) re-
duces to Sdecass (see Section 2.1) with:�1 = fX=hR;C;Ai; V=R; W=C; m=1;P1=�J;K;L;M : hJ; Li 2 A; Q1=�J;K;L;M : K 6= Mg
Note that A is free in the �-term substituted for P1: this is
no problem because hR;C;Ai is substituted forX, which is
universally quantified wherever P1 occurs.

Example 5.2 The specification Soptham (see Example 2.2) re-
duces to Soptperm (see Section 2.2) with:�2 = fX=hC;Ai; N=C; Q=�J;K : hJ;K;Ei 2 A g
Note thatA is free in the �-term substituted forQ: this is no
problem because hC;Ai is substituted for X, which is uni-
versally quantified wherever Q occurs. Also note that, as re-
quired earlier, the summation variableE is free in the�-term
substituted for Q.

6. The Synthesis Method

The synthesis method is apparent now: given a specificationSr , find a substitution� under which it reduces to the generic
specification Sg attached to some particularisationPg of the
global search schema, and then apply � to Pg and to the clo-
sureCg, so as to obtain a (closed) program that correctly im-
plements Sr by taking the GSopt template and Cg�.

For assignment and permutation problems, note how the
elimination of the solutions to Sdecass or Soptperm that are not so-
lutions toSr is performed [without explicitly insertingOr at
the end of the synthesised program, like Smith does]: for in-
stance, Odecass has predicate variables Pi and Qi, which also
appear in P decass (and thus inCdecass) and which become instan-
tiated to the particular conditions inOr , which thus wind up,
as we have seen, in the recursive clause for constrain. [In
Smith’s approach, Odecass is true, and the post-conditionOr
of the particular problem can thus not appear in the search
part of the synthesised code, except maybe in a filter, whose
derivation is however often not fully automatic and which
filter is not necessarily “reasonable.”]

Example 6.1 Given the specification Sdeccol (see Exam-
ple 2.1), the fully automatically synthesised program thus
consists of the GSdec template (see Section 3.1) and the
closureCdecass of Theorem 4.1, where the problem-dependent
recursive clause for constrain is:constrain(�;D; h ; ; Ai) � = hR1; C1i;D = h ; [hR2; C2ijM 0]i;hR1; R2i 2 A! C1 6= C2;constrain(�; h ;M 0i; h ; ; Ai)
by virtue of the substitution �1 (see Example 5.1). We here
use P ! Q to denote not(P);Q, where ; =2 denotes dis-
junction and can easily be implemented by the two clausesP ;Q P and P ;Q Q, using the meta-variable facility
of CLP. The usage of negation-as-failure (denoted by not) is
not dangerous here, because the synthesised program guar-
antees that the thus negated atom is ground at that moment.

Example 6.2 Given the specification Soptham (see Exam-
ple 2.2), the fully automatically synthesised program con-
sists of the GSopt template (see Section 3.1) and the clo-
sure Coptperm of Theorem 4.2, where the problem-dependent
clauses for constrain and objective0 are:constrain(�;D; h ; Ai) D = h[V j]; i;h�; V; i 2 Aobjective0([V1; V2jY]; h ; Ai;W;Z) hV1; V2; Ei 2 A;NewW = W + E;objective0([V2jY]; h ; Ai; NewW;Z)

by virtue of the substitution �2 (see Example 5.2).

7. Benchmarks

In Table 1, we first compare our synthesised CLP programs
(run under clp(FD) [2]) with the (non-CLP) logic program
counterparts (also run under clp(FD)) of KIDS-synthesised
Refine programs (with hand-derived filters). These tests (for
colouring the departmental map of France (DeptMap), for
finding a Hamiltonian path through the countries of Europe
(HamPath), and for solving the 8-Queens problem) show
that at least one order of magnitude is gained in efficiency
by switching from an ordinary symbolic language to a con-
straint one (a comparison with the more recent SpecWare
and P lanWare [14] of Kestrel Institute is underway). We
chose Finite Domains (FD) as constraint domain because of
the well-known high performance of CLP(FD).

DeptMap HamPath 8-Queens

Synth’d CLP(FD) 27,150 ms 50 ms 100 ms
Synth’d LP/Refine overflow 527 ms 3260 ms
Publ’d CLP(FD) [2] 5,230 ms 20 ms 30 ms

Table 1. Benchmarks

Further tests show that our automatically synthesised
CLP(FD) programs are only 3 to 5 times slower than care-
fully hand-crafted, published CLP(FD) programs, which
is encouraging since none of the obvious problem-specific
optimising transformations have been performed yet on our
programs. Since our synthesis is fully automatic, starting
from short and elegant specifications, our approach thus
seems viable.

Our specification language is equivalent in its high ex-
pressiveness with CLP(Sets) programming languages (such
as CLPS [1],Cojunto [6], ...). We thus do not aim at syn-
thesising CLP(Sets) programs, but rather at different ways
of compiling them. Comparing execution times is how-
ever still meaningless because of the prototypical nature of
CLP(Sets) compilers (which normalise the programs into
Prolog programs and add constraint-solvingcode in Prolog).

Comparisons with handwritten non-constraint programs
for performing the same computations have not been made
yet, but we expect such programs to perform somewhere
near handwritten constraint programs (whether CLP or not),
unless they are very naive or super-optimised. Since our
synthesised CLP(FD) programs perform within the same or-
der of magnitude as handwritten CLP(FD) programs (and
thus most non-constraint programs), the crucial difference
may well lie in the time it takes to construct the programs,
and then the benefits of constraint languages in general, as
well as of automated constraint program synthesis (such as
ours) in particular, will kick in.

In Figures 1 and 2, a further comparison is made be-
tween the synthesised CLP(FD) programs and the corre-
sponding synthesised LP programs, for the n-Queens and
graph colouring problems. The minimum one order of mag-
nitude gain confirms that we fully exploit constraint propa-
gation to reduce the search space by cutting off spaces that
do not lead to correct solutions.

8 10 12 14 16
Number of queens

2.0

3.0

4.0

5.0

6.0

lo
g 10

[R
un

tim
e

(m
s)

]

Synthesised LP

Synthesised clp(FD)

Figure 1. n-Queens

10 20 30 40
Number of regions

2.0

3.0

4.0

5.0

6.0

lo
g 10

[R
un

tim
e

(m
s)

]

Synthesised clp(FD)

Synthesised LP

Figure 2. Graph Colouring

8. Conclusion

We outlined how to fully automatically synthesise CLP pro-
grams for assignment and permutation problems (whose
specification templates in Section 2 thus determine the cur-
rent scope of our approach), and we showed that our results
are competitive. We see no reason why we would not be
able to replicate this achievement for the other 5 families of
global search problems identified by Smith [12]. We now
need to investigate how this work scales up to more com-
plexly specified (if not hybrid) search problems.

The synthesised programs are not small (minimum
33 atoms, in a very expressive programming language),
and making them steadfast reusable components for a
programming-in-the-large approach by embedding their
whole development in a framework-based approach [4]
should not be too difficult.

The results presented in this paper are however more than
a simple transcription of the KIDS approach from Refine to
CLP, as they also reflect new ideas. In summary:

� We fully exploited CLP [as opposed to Refine, which
is “only” an ordinary symbolic language], by signifi-
cantly modifying the original GS schema, so that it re-
flects a constrain-and-generate programming method-
ology. We argue for our choice of CLP(FD) as target
language by the fact that it is especially suited for solv-
ing combinatorial problems. Indeed, much of the con-
straint solving machinery that needs to be pushed into
Refine programs, be it at synthesis time or at optimisa-
tion time, is already part of the CLP(FD) language and
is implemented there once and for all in a particularly
efficient way. We thus established that the features of
the target computing environment can be successfully
exploited by a synthesis mechanism.� We introduced the notion of specification template, by
illustrating it on the families of assignment and permu-
tation problems. This has nice effects on the KIDS ap-
proach, as shown below.� As shown for some particularisations, the substitution
under which a specification reduces to a specification
template can be easily computed, so that there is no
need of an automated theorem prover, at synthesis time,
to derive it.� As shown for some particularisations, the derivation
of consistency-constraint-posing code can be calling-
context-dependent [as opposed to filter derivation].
Such code can even be pre-synthesised, for a given
particularisation, so that there is no need of a theorem
prover, at synthesis time, to derive its specification.

This means that synthesis can be fully automatic, without
using any theorem prover, for some families of problems.
There are a lot of opportunities for automatically optimis-
ing the synthesised programs, hopefully bringing them on a
par with hand-crafted programs.

Our work can also be seen as being of methodological
nature: indeed, the identification of problem/specification
families and of efficient corresponding programs is a con-
tribution to constraint logic programming methodology, and
not unlike what is advocated by the patterns community [5]
(except that we aim at full formalisation and automation,
whereas patterns are mostly informal). Moreover, unlike
the top-down decomposition methodology, for instance,
which is solution/program-centered, our methodology is
problem/specification-centered and thus quite useful.

Acknowledgments

We thank Doug Smith for his inspiringpioneering work, and
the anonymous referees for their constructive comments.

References

[1] F. Ambert, B. Legeard, et E. Legros. Programmation
en logique avec contraintes sur ensembles et multi-
ensembles héréditairement finis. Techniques et Sci-
ences Informatiques 15(3):297–328, 1996.

[2] D. Diaz and Ph. Codognet. A minimal extension of
the WAM for clp(FD). In D.S. Warren (ed), Proc. of
ICLP’93, pp. 774–790. The MIT Press, 1993.

[3] Y. Deville and P. Van Hentenryck. Construction of
CLP programs. In D.R. Brough (ed), Logic Program-
ming: New Frontiers, pp. 112–135, Kluwer Academic
Publishers, 1992.

[4] P. Flener, K.-K. Lau, and M. Ornaghi. Correct-schema-
guided synthesis of steadfast programs. In M. Lowry
and Y. Ledru (eds), Proc. of ASE’97, pp. 153–160.
IEEE Computer Society, 1997.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

[6] C. Gervet. Interval propagation to reason about sets:
Definition and implementation of a practical language.
Constraints 1(3):191–244, 1997.

[7] I. Kraan, D. Basin, and A. Bundy. Middle-out rea-
soning for logic program synthesis. D.S. Warren (ed),
Proc. of ICLP’93, pp. 441–455. The MIT Press, 1993.

[8] J. Jaffar and M.J. Maher. Constraint logic program-
ming: A survey. J. of Logic Programming 19–20:503–
582, 1994.

[9] K.-K. Lau and M. Ornaghi. A formal approach to
deductive synthesis of constraint logic programs. In
J.W. Lloyd (ed), Proc. of ILPS’95, pp. 543–557. The
MIT Press, 1995.

[10] B. Le Charlier and P. Flener. Specifications are neces-
sarily informal, or: Some more myths of formal meth-
ods. J. of Systems and Software 40(3):275-296, 1998.

[11] D.R. Smith. Top-down synthesis of divide-and-
conquer algorithms. Artificial Intelligence 27(1):43–
96, 1985.

[12] D.R. Smith. The structure and design of global search
algorithms. TR KES.U.87.12, Kestrel Institute, 1988.

[13] D.R. Smith. KIDS: A semiautomatic program devel-
opment system. IEEE Trans. Software Engineering
16(9):1024–1043, 1990.

[14] D.R. Smith. Towards the synthesis of constraint prop-
agation algorithms. In Y. Deville (ed), Proc. of LOP-
STR’93, pp. 1–9, Springer-Verlag, 1994.

