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In biology, a phylogenetic tree, or phylogeny, is used to show the 

genealogic relationships of living things. It is a codification of data about 

evolutionary history. The tree of life shows the path evolution took to get to the 

current diversity of life and can help us also to search for the genealogy of 

disparate living organisms.  

In this thesis our aim is to provide a different approach for the 

construction of The Tree of Life. That is, we will propose a constraint 

programming solution to the decision problem of constructing a 

supertree that is compatible with a collection of given phylogenetic 

trees that share some species, which we will encode as constraint satisfaction 

problems. 
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ÖZ 

 

 

 

KISIT PROGRAMLAMA KULLANARAK 

SÜPERAĞAÇ OLUŞTURULMASI 
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Biyolojide filogenetik ağaç, canlılar arası bağlantıları göstermek için 

kullanılır. Evrim tarihi hakkında veri kodlamasıdır. Hayat Ağacı günümüzdeki 

çeşitliliğe ulaşmadaki evrimin izlediği süreci gösterir ve birbirinden tamamen 

farklı yaşayan organizma soylarının araştırılmasında yardımcı olur. 

Bu tezde amaç Hayat Ağacının oluşturulmasında farklı bir yaklaşım 

sunmak. Karar verme problemleri ve optimizasyon problemlerine kısıt koşul 

programlama çözümü öneriyoruz, ki bunu da kısıt koşul sağlama problemleri 

şeklinde kodlayacağız. 
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CHAPTER 1 

 

 

INTRODUCTION 

According to Pennisi today biologists have catalogued about 1.7 

million of species and they estimates of the total number of species ranges 

from 4 to 100 million [1]. With this explosion in the amount of data in 

taxonomy it is no longer possible to analyze and build trees by hand. 

Consequently there is a growing need for new techniques to speed up this 

process accurately. 

In recent years researchers, especially mathematicians, have shown 

much interest in phlogenetic tree construction and proposed new 

approaches in building supertrees. Until now some polynomial time 

algorithms have been proposed. 

In this thesis we are trying to approach this problem using 

constraint programming, which is first proposed by Gent et al. [2]. 

In this chapter we discuss the basic phylogenetic concepts and five 

a short description of constraint programming. 

In Chapter 2 we describe some algorithms used for breaking up the 

tree into triples and forming a tree from these triples. Then we model a 

simple example using OPL (Optimization Programming Language). 
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In the third chapter we extend the model proposed by Gent et al. [2] 

by implementing new constraints for divergence date and nested taxa 

informations. 

 

1.1 Basic Phylogenetic Concepts and Definitions 

1.1.1 Trees 

Since this thesis is about phylogenetic trees, it is therefore 

appropriate to start by defining a tree. 

Trees can be classified as unrooted or rooted phylogenetic trees. An 

unrooted phylogenetic tree or just unrooted tree is an acyclic connected 

graph having no internal vertices of degree two and every leaf having 

different label. The leaves are vertices of degree one (Figure 1.1). 

 

Figure 1.1: Four examples of phylogenetic trees. (1) and (2) are unrooted. (3) and 

(4) are rooted. (2) and (4) are binary. 

 

A rooted tree on tree, on the other hand, is similar to an unrooted 

tree, except it has one internal vertex of degree two, which is called the 

root. The internal vertices of unrooted/rooted (except the root) trees can 
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have degree three or greater. For example a binary phylogenetic tree, is a 

tree having all internal vertices of degree three. Again the only exception is 

the root, which has degree two (Figure 1.2). In a fully resolved binary 

phylogenetic tree with n leaf nodes there are n-1 internal nodes. 

 

 

Figure 1.2: In a binary tree each internal node has degree three with the 

exception of the root which has degree two. 

 

The leaves of the tree represent species. For example let L(T) be the 

set of leaves for tree T. If T the set of trees, then we can say that L(T) is the 

union of the leaf sets of the trees in T. 

In a rooted tree we say that a vertex a is an ancestor of a vertex b, if 

the path from b to the root passes through a. We can also say that b is the 

descendant of a.  

The vertices adjacent to a vertex that are descendants of the vertex 

are called the children of the vertex, and the adjacent vertex that is an 

ancestor is called the parent of that vertex. Sometimes the internal 

vertices of a phylogenetic tree are labelled (section Nested Taxa). 

Rooted phylogenetic trees can be displayed with a vertical axis 

representing the time each branching point occurred. These diagrams are 

called dendograms (Figure 1.3). 
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Figure 1.3: An example of dendogram. 

1.1.2 Subtrees 

Let T be a rooted tree and choose a vertex v in T. If we remove the 

edge between v and the parent of v, say p, we get two connected 

subgraphs. Then let v be the root of the subgraphs containing v, then this 

is called the subtree of T rooted at v. Briefly a subtree T' is a tree whose 

vertices and edges form the subsets of the vertices and edges of a given 

tree T. An example of a subtree is shown in Figure 1.4. 

Figure 1.4: Example of a subtree. 

1.1.3 Rooted Triples and Fans 

For every three leaves a, b, c there are four possible rooted trees 

with leaf set a, b, c.  
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The binary rooted trees on three leaves are called rooted triples and 

((ab)c) (or ab|c) denotes the rooted triple with a pair of leaves a, b 

connected to a third leaf c via the root (Figure 1.5). For a rooted triple 

((ab)c) to fit a rooted tree T, the path from a to b does not share any 

vertices with the path from c to the root. Briefly a rooted triple is a tree 

with three leaves and two internal vertices. 

Figure 1.5: A binary rooted triple ((ab)c). 

Non-binary rooted trees with three leaves are called fan triples. We 

call a fan with k leaves a k-fan. 

 

1.2 Constraint Programming 

1.2.1 A Short Description 

Constraint programming [3][4][5] is an alternative approach to 

programming developed since the mid 1980s. Based on a combination of 

techniques dealing with reasoning and computing, it is now becoming the 

method of choice for modelling many types of optimization problem, in 

particular, those involving heterogeneous constraints and combinatorial 

search. It has been successfully applied in a number of fields including 

molecular biology, electrical engineering, operations research and 

numerical analysis. It has recently been identified by the ACM (Association 

for Computing Machinery) as a strategic directions in computing research 

(http://www.acm.org/pubs/surveys/sdcr/). 

The reason for this interest in constraint programming is simple. 

Early programming languages, such as FORTRAN-66, closely reflected the 

underlying physical architecture of the computer. Since then, the major 

direction of programming language design has been to give the 
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programmer freedom to define objects and procedures which correspond 

to entities and operations in the application domain. Object oriented 

languages, in particular, provide good mechanisms for declaring program 

components which capture the behaviour of entities in a particular 

problem domain. However, traditional programming languages, including 

object oriented languages, provide little support for specifying 

relationships or constraints among programmer-defined entities. It is the 

role of the programmer to explicitly maintain these relationships, and to 

find objects which satisfy them. 

However, for many applications, the important point of the problem 

is to model the relationships and find objects that satisfy them. For this 

reason, since the late 1960’s, there has been interest in programming 

languages which allow the programmer simply to state relationships 

between objects. It is the role of the underlying implementation to ensure 

that these relationships or ‘constraints’ are maintained. Such languages 

are called constraint programming languages. 

1.2.2 How it Works 

Let us begin by defining what a constraint is. We encounter 

constraints in our everyday life and these help us to take decisions. 

Some examples of constraints are: 

- I must feed the cat before going to school. 

- I must take an appointment before going to the dentist. 

- I must have 1 YTL to take the bus in Ankara. 

We can define a combinatorial problem as to search for a certain 

combination of values assigned to variables such that they satisfy a set of 

constraints. In some cases we need an assignment that minimises or 

maximises a certain entity. Such problems are called combinatorial 

optimisation problems. 
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Briefly Constraint Programming is a framework for solving 

combinatorial (optimisation) problems based on constraints. 

A given problem can be specified in many different ways. It is up to 

the user to do this in a correct and effective way. 

In a constraint program at least the following must be 

considered: 

1. Domains (sets of values), e.g. Z, R, {1, 2, 3, 4, 5}, [1, 10), 

{“red”, “green”, “yellow”}.  

2. Variables that range over domains, e.g., x ∈ {1, 2, 3, 4, 

5}  

3. Constraints that define a set of valid combinations of 

values for a set of variables. E.g. the set of valid combinations 

for x < y, where x, y ∈ {1, 2, 3}, is {(1, 2), (1, 3), (2, 3)}. 

 

Example 1: Send More Money 

Assign distinct values to the variables s, e, n, d, m, o, r, y 

such that the equation 

holds. 

Domains: {0, …, 9} 

Variables: s, e, n, d, m, o, r, y ∈ {0, …, 9} 
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Constraints: 

s ≠ e, s ≠ n, s ≠ d, …, y ≠ m, y ≠ o, y ≠ r, 

                 1000 . s + 100 . e + 10 . n + d 

+         1000 . m + 100 . o + 10 . r + e 

=                 1000 . m + 1000 . o + 100 . n + 10 . e + y, 

s ≠ 0, m ≠0 

The above is then a constraint-based model of the 

problem. Here we need to find a solution, i.e., an assignment to 

the variables s, e, n, d, m, o, r, y from the domain {0, …, 9} such 

that all the constraints are satisfied. 

A simple and naïve way of doing this is ordinary search: 

Try all combinations of assignments in some systematic way 

until a satisfying one is found. But this is very inefficient. There 

are 108 such combinations which makes the search tree huge 

(Figure 1.6).

Figure 1.6: A Search Tree for the Send More Money Problem. 

But in a constraint programming framework, the 

constraints are active entities that try to remove values from the 

domains of the variables and thus exclude certain combinations 

automatically, which shrinks the search space by pruning 

branches in the search tree. 
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Example 2: nQueens 

Given is a chess board and 8 queens. We are trying to find 

a way to place the 8 queens on the chess board such that no 

two queens attack each other following the rules of chess. One 

of the possible solutions is presented in Figure 7. 

Figure 1.7:  A solution to the 8Queens problem. 

The problem can be generalized to find a way to place n 

queens on an nxn chess board with the conditions: 

1. No two queens on the same row. 

2. No two queens on the same column. 

3. No two queens on the same NorthWest-SouthEast 

diagonal. 

4. No two queens on the same NorthEast-SouthWest 

diagonal. 

We can model the problem as: 

Let qi denote the row of the queen placed in column i. 

Then the constraints can be stated as follows: 

Variables: q1, …, qn ∈ {1, …, n} 
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Constraints: 

1. For every i ≠ j ∈ {1, …, n} : qi ≠ qj  

2. For every i < j ∈ {1, …, n} : qi – i ≠ qj – j 

3. For every i < j ∈ {1, …, n} : qi + i ≠ qj + j 

Solving the nQueens Problem 

A complete search tree for the generalised nQueens 

problem has nn leaves. (Since we have n variables in our model 

and each variable can take any out of n values.) Again, using 

only naïve search is not practical even for small n. With the 

search space shrinking ability of constraint programming this is 

not a very challenging problem. 

Let us look to the Five-Queens Problem step by step in 

order to view how constraint programming shrinks the search 

space.  

After making one choice the search space shrunk (Figure 

1.8.a) and after making the second choice we’ll have a few 

options to place the other queens (Figure 1.8.b).

Figure 1.8: The search space shrunk after making one choice (a), and 

making the second choice (b). 
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3. OPL Studio (by ILOG) 

The Optimization Programming Language (OPL)[6] 

developed by Pascal Van Hentenryck is a new modelling 

language for combinatorial optimization that simplifies the 

formulation and solution of combinatorial problems. The most 

significant dimension of OPL is the support for constraint 

programming, including sophisticated search specifications, 

logical and higher order constraints, and support for scheduling 

and resource allocation applications. 

OPL Studio (by ILOG) [7] is the development environment 

of OPL. In addition to the traditional "edit, execute, and debug" 

cycle support, it provides automatic visualisations of the 

results, visual tools for debugging and monitoring OPL models 

(i.e., visualizations of the search space).  

In this thesis we used ILOG OPL 3.7 for the construction 

of the supertrees. 
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CHAPTER 2 

 

 

A BASIC MODEL 

2.1 Introduction 

Usually the evolutionary relationship of species in biological studies 

is represented by a rooted tree with labelled leaves where the leaves 

represent the species and the internal vertices represent the ancestors. 

In general our aim is to combine a set of input rooted trees with 

labels at the leaves to get a single supertree with all the labels in the set of 

input trees. Here, according to Ng and Wormald [8], the set of output 

supertrees must “fit” the set of input trees as much as possible. Because 

sometimes in the input trees a leaf can be labelled with several labels. It is 

also possible that some input trees can contain conflicting information. In 

this chapter we will simply consider that each leaf or species is labelled by 

a single label, the labels all being different, and that conflicting 

information in the input trees result in no output supertree.  

To obtain an output supertree, the obtained supertree must be 

compatible with the input trees. That is the topology of each input tree 

must be equivalent to a subtree of the obtained supertree while respecting 

the labelling.  
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In brief, we are given a set of rooted trees with labelled leaves and 

need to find a rooted tree T such that T contains subtrees homomorphic to 

all the given trees.  

To obtain such supertrees we begin by breaking up each input tree 

into a set of triples and fans (using the BreakUp algorithm [8]). We then 

combine all the triples to produce supertrees that are compatible with the 

given set of input trees, of course, if the set is consistent (using the 

OneTree algorithm [8][9]). 

 

2.1.1 Triple representation of a binary tree 

In Figure 2.1 we have three species: a, b and c. Here a and b are 

more closely related to each other than they are to c. In a more specific 

way, we say that the most common ancestor of a and b is greater than the 

most recent common ancestor of a and c (equally b and c). We can notice 

also from the figure that the most recent common ancestor of a and b is 

the furthest internal node from the root, which is the most recent ancestor 

of a and c (equally b and c). We compare most recent common ancestors 

by measuring their distance from the root. That is, 

                               mrca(a, b) > mrca(a, c)  (2.1) 

                      equally mrca(a, b) > mrca(b, c)     (2.2) 

                               mrca(a, c) = mrca(b, c) (2.3) 

Figure 2.1: A binary phylogenetic tree, where species a and b are more 

closely related to each other than they are to species c. This small tree can also be 

represented as the rooted triple ((ab)c). 
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In Figure 2.1 we see that the most recent common ancestor of a 

and b is interior node Y. We can note that mrca(a, b) = Y.  All the relations 

can be written as: 

mrca(a, b) = mrca(b, a) = Y 

mrca(a, c) = mrca(b, c) = X 

We can say that 

mrca(a, b) > mrca(a, c) => Y > X 

mrca(a, b) > mrca(b, c) => Y > X 

In triple notation the binary tree in Figure 2.1 is shown as ((a, b), c). 

This means that 

mrca(a, b) > mrca(a, c) 

mrca(a, b) > mrca(b, c) 

mrca(a, c) = mrca(b, c) 

2.1.2 Supertrees 

Suppose we have a set of k input trees T with different, overlapping 

leaf sets. Let U
k

i
TiLS

1
)(

=
=  (i.e., the set of all species which are in at least 

one of the trees in T). So with a supertree method we take T as input and 

return a supertree with the leaf set S (Figure 2.2). And we will construct 

the possible supertrees using the triples. 

Figure 2.2: Two input trees T1 and T2 and a supertree. 
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In Figure 2.2 we can represent the two trees T1 and T2 as triples, 

that is, ((a,b),c) and ((b,c),d).  

2.1.3 Algorithm Break Up 

The BreakUp algorithm takes as input a tree T and outputs a set of 

rooted triples and fans, lets say G, that define that tree. The algorithm 

finds the deepest interior node v in the tree. Interior node v{a1, a2) has two 

leaf nodes, a1 and a2. BreakUp finds the parent of v{a1, a2), call it node w. 

From w we find the sibling of v, call it node u. From u find any leaf node, 

let’s say a3. BreakUp algorithms then writes out the triple ((a1, a2), a3), 

deletes leaf nodes a1 and a2, and renames interior node v to become the 

new leaf node labeled as a2. The algorithm is then applied to the reduced 

tree and terminates when T is reduced to a triple or less (Figure 2.3). So 

the idea is to start from the top of a branch and trim off a triple or fan as 

appropriate, and then repeat the process. 

 

                
Tree:   (((a2),(a3,a4)),a5) 

Triples:  { ((a1, a2),a3), ((a3, a4),a2), ((a2, a4),a5) } 

Figure 2.3:  The new tree T’ after applying the BreakUp algorithm. The 

new label set A’ = A \ a1 = {a2, a3, a4, a5}.  

In a formal way we can represent the BreakUp algorithm according 

to Ng and Wormald as: 
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BreakUp(A, T, G) 

Input: non-empty set A = {a1, a2,..., an} of labels, tree T  with label set A. 

Output: set G of triples and fans. 

1. If T is a triple or fan then add T to G and return. 

2. Identify among the set of all internal vertices of T a vertex v = v{a1, 

a2), say, that is minimal under the partial ordering ≤. 

3. If deg(v) > 3 then 

add fan ai1 ... aik to G, where ai1 ... aik are the labels of the 

leaves attached to v. 

Let A’ = A \ {ai3 ... aik} and T’ = tree obtained from T by 

deleting the leaves with labels ai3 ... aik. 

else 

identify a label ai3 where v{ai1,a13}  is the immediate successor 

to v and add the triple (a1, a2), a3 to G. Let  A’ = A \ {a1} and 

T’ = tree obtained from T by deleting the leaves with labels ai1 

and ai2, and label the vertex v by ai2. 

4. BreakUp(A’, T, G). 

2.1.4 Algorithm OneTree 

The OneTree algorithm takes as input a set of rooted triples G, 

produced by processing a number of trees with the BreakUp algorithm, 

and a set of species A and outputs a supertree that contains the species in 

A respecting the triples in G.  

The OneTree algorithm constructs the tree if the input set is 

consistent. Inconsistent input will result in the output of the empty tree. 

Thus, the algorithm can be used as a test for consistency. 
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The algorithm starts constructing at the root level and uses the 

input triples and fans to divide the labels into disjoint subsets, where 

labels in the same subset must lie in the same branch attached to the 

root. For example for a triple (ab)c, the labels a and b must be on the 

same branch, whilst for a fan (ab...e), the labels must all be on one branch 

or else each one on a different branch. If there is only one triple in R then 

the tree is defined by that triple. Otherwise the algorithm constructs a 

graph G using R as follows. Construct in G the edges {(a,b) | ((a,b),c) ∈ R ∧  

{a, b, c} ⊆ S}. If G is a single component then the OneTree algorithm 

delivers the empty tree. If not the algorithm creates an internal node, lets 

say v. For each component Si in G we collect in Ri the set of rooted triples 

in R with leaves in Si. OneTree is then called recursively on each pair (Si, 

Ri), and the resultant subtrees are then attached to v. Note that this can 

result in trees having interior nodes with degree greater than three. 

In a formal way we can represent the OneTree algorithm according 

to Ng and Wormald as: 

 

OneTree(G, A, v, T) 

Input: set G of triples and fans, nonempty set A = {a1,…,an} of labels 

containing all labels in G, vertex v. 

Output: tree T with root vertex v. 

1. If n = 1, set T = v with label a1 and return. If n = 2, create T 

by attaching two new vertices to v, label them a1 and a2 and return. 

2. Create sets Si = {ai}, i = 1,…, n. 

3. For each triple (a,b),c, merge the two sets Si and Sj containing 

a and b (if i ≠ j). 

4. repeat 

for any fan F with at least two labels in the same set Si, merge Si 

with all sets Sj containing any label in F. 

until 

 each fan with at least two labels in the same set Si has every 

label in Si. 

5. If there is now only one set Si, set T = 0 and return. 
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6. For each set Si, create a vertex vi, set G’ := the set of triples 

and fans containing only those labels in Si, and call OneTree(G’, Si, 

vi, T’). If T’ = 0, then set T = 0 and return. Otherwise, add T’ and the 

edge vi to T. 

In Figure 2.4 two trees are combined to produce a supertree. First 

the two input trees, with the BreakUp algorithm, are broken up into 

rooted triples. OneTree algorithm takes these rooted triples, transforms 

them into a supertree. In Figure 2.4 we show only one of the nine possible 

supertrees that respect the rooted triples produced. 

Supertree:  (((((a1, a2), a3), a7), (a4, a5)), a6) 

Triples:  {((a2, a7), a6), ((a1, a2), a3), ((a2, a3), a4), 

 ((a4, a5), a3), ((a2, a5), a6)} 

 

Figure 2.4: Applying the OneTree algorithm to two input trees  

((a2, a7), a6) and ((((a1, a2),a3),(a4, a5)), a6) gives us the supertree  

(((((a1, a2),a3), a7),(a4, a5)), a6). 



 19

After having two algorithms, BreakUp algorithm for breaking up the 

input trees to rooted triples and OneTree algorithm for deciding if a 

supertree can be constructed from these rooted triples generated, we need 

an algorithm to find an optimized supertree solution to the selected 

problem. For the optimized supertree solution Semple and Steel [10] and 

more recently Page [11] have proposed some algorithms. For the decision 

and optimisation problem Gent et al. [2] proposed a constraint satisfaction 

programming approach, where they encode the decision and optimisation 

problem as a constraint satisfaction problems [12]. In this thesis we will 

use as base this constraint programming approach. So first we need to 

use the ultrametric matrix method to represent the trees in matrix form to 

operate on. Then we will extract the constraints for generating binary 

tree(s).  

2.1.5 Ultrametric Trees 

An ultrametric tree is a rooted tree where each internal node is 

labeled by a number and has at least two children. In the tree along the 

path from the root to the leaf the labels strictly decrease. 

The ultrametric tree can be represented by a symmetric n x n 

matrix D of real numbers. So each of the leaves of the tree T is labeled by 

a unique row of D and each internal node of T is labeled by one entry from 

D. In the matrix, Di,j is the distance data measure. It can be viewed as the 

length of time since species i and j diverged. We can also say that  Di,j 

represents the label of the most recent common ancestor of i and j. In 

Figure 2.5 we present a symmetric matrix D and its ultrametric tree.
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Figure 2.5: a) A symmetric matrix D. b) An ultrametric tree for matrix D. 

From Figure 2.5.a) we see that the diagonal values are all 0, since 

an existing species doesn’t diverge from itself. If we look at the symmetric 

matrix and ultrametric tree we can see that the most common ancestor of 

A and E is labeled 3 and the most common ancestor of A and C is labeled 

8. As we have said the most recent common ancestor label can be viewed 

as the distance data measure. We can also consider the leaves as species. 

So we can say that the species A and E have diverged say 3 million years 

ago and A and C have diverged 8 million years ago. 

The tree is constructed from the matrix in the following manner: 

In Figure 2.5 consider the row for A. It has distances 0 8 8 5 3 to 

the nodes A, B, C, D, E. Since 8 is the largest label we can say that it is the 

least common ancestor of ‘A’ and there are nodes 5 and 3 on the same 

path as shown in the Figure 2.6. 

Figure 2.6: Construction of an ultametric tree from the matrix (shown in Figure 

2.5). 
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2.1.6 Min-Ultrametric Trees 

The min-ultrametric tree is a rooted tree where we label internal 

nodes according to their depth. Here the root has depth zero, and the 

depth of an internal node is one plus the label of its parent node. In Figure 

2.7 we present a min-ultrametric tree, where the internal nodes are 

labelled with their depth. 

Figure 2.7: A min-ultrametric tree and its matrix, where the internal nodes are 

labelled according to their depth. 

2.2 The Constraint Part 

Having defined some basic tree concept and explained some 

algorithms to form a supertree we can now pass to the constraint part of 

the job. Here we will present a constraint encoding which provides a 

unique representation of trees. Here the basic idea is to encode the depth 

of the most recent common ancestors in the tree. We know that in a fully 

resolved binary phylogenetic tree with n leaf nodes (species) there are n-1 

internal nodes. So we have a symmetric n x n two dimensional array D 

where each variable Di,j takes a value in the range 0 to n-2 and the value 

assigned represent the depth of the most recent common ancestor of leaf 

nodes i and j. Since the matrix is symmetric, Di,j = Dj,i and we set 

arbitrarily the diagonal values to 0 (Di,i = 0).  

To form the matrix from the triples of the form ((a, b), c) we will 

encode the constraint as: 
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triple(a, b, c) ≡ [(Da,c = Db,c)  ∧ (Da,b > Db,c)  ∧ (Da,b > Da,c)]      (2.4) 

This constraint tells us that  

1. The most recent common ancestor of a and c (Da,c) must be equal to 

the most recent common ancestor of b and c (Db,c). 

2. The most recent common ancestor of a and b (Da,b) must be greater 

to the most recent common ancestor of b and c (Db,c). 

3. The most recent common ancestor of a and b (Da,b) must be greater 

to the most recent common ancestor of a and c (Da,c). 

To guarantee that D is a min-ultrametric matrix, we have to encode 

the constraint as: 

∀a ∈ {1.. n – 1}. ∀b ∈ {a + 1..n – 1}. ∀c ∈ {b + 1..n} 

(triple(a, b, c) ∨ triple(b, c, a) ∨ triple(c, a, b))        (2.5) 

This constraint tells us that for every a, b and c, where a, b and c 

are different, there must be a triple ((a, b), c) or ((b, c), a) or ((c, a), b). 

This also tells us that in the variables Da,b, Db,c, and Da,c the 

minimum value must be shared by two of them and not the third one. 

But these two constraints are not enough. We know that the 

internal nodes along the path from the root to the leaf have to increase 

and do not contain any gaps. For example a path 0, 1, 3, 4 is an 

unwanted solution.  Because we have a gap at depth 2. However a 

solution like 0, 1, 2, 3 would be a legal sequence. So we have to insert 

another constraint that will get rid of the solutions which have gaps. For 

example if there is some d where Dc,d = 2, then there have to be some 

values like a and b where Dc,b = 1 and Dc,a = 0. That is the depths let’s say 

from the root to a leaf have to be simply 0, 1, 2, ....  So our new constraint 

is as: 

∀a ∀b [(Da,b = i ∧ i > 0)  →  ∃ c (Da,c = i – 1)     (2.6)
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Using this encoding the number of consistent possible 

instantiations of variables in D is (2n – 2)! / (2n-1(n – 1)!) [13][14]. 

Using the set of triples R and instantiating D we can then start 

constructing the tree. With this encoding we obtain the same results as 

the algorithm OneTree. In order to find all solutions we allow our solving 

procedure to backtrack in the search space whenever it finds a solution, 

and to continue on for the next solution. 

With the constraint written as  

triple(a, b, c) ≡ [(Da,c = Db,c)  ∧ (Da,b > Db,c)  ∧ (Da,b > Da,c)] (2.7) 

we can only find solutions for a binary tree. To generate trees with internal 

nodes having more than two children we can change this constraint to  

fantriple(a, b, c) ≡ [(Da,c = Db,c)  ∧ (Da,b ≥ Db,c)  ∧ (Da,b ≥  Da,c)]   (2.8) 

to allow the fans. 

So far, our constraint model is the same as the one of Gent et al. 

[2]. 

 

2.2.1. A Simple Example 

Let’s solve the simple example of Figure 2.8. 
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Trees: ((a2, a7), a6) 

 ((((a1, a2),a3),(a4, a5)), a6) 

Triples:  {((a2, a7), a6),  

((a1, a2), a3), ((a2, a3), a4), ((a4, a5), a3), ((a2, a5), a6)} 

 
Figure 2.8: Two input trees ((a2, a7), a6) and ((((a1, a2),a3),(a4, a5)), a6). 

 

Here we have two input trees ((a2, a7), a6) and ((((a1, a2),a3), (a4, 

a5)), a6). 

In OPL our encoding is as follows: 

enum Species ...; 

range intNodes 0..card(Species)-2;  

var intNodes D[Species, Species]; 

struct Triple {Species i; Species j; Species k;}; 
{Triple} Triples = ...; 

solve {  
  forall(ordered i, j in Species) 
    D[i, j] = D[j, i]; 

  forall(i in Species)  
    D[i,i]=0; 
   
  forall(ordered i, j in Species)  
    D[i, j] > 0   => sum(k in Species: k<>i) (D[i, k] =  
D[i, j] - 1) > 0; 

  forall (triple in Triples) 
    D[triple.i,triple.j] > D[triple.i,triple.k] =  
   D[triple.j,triple.k]; 
   
  forall (ordered i, j, k in Species) 
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    D[i, j] = D[i, k] < D[j, k] \/ D[i, j] = D[j, k] < D[i, k] \/  
D[i, k] = D[j, k] < D[i, j];  
}; 

display(ordered i,j in Species) D[i,j]; 

and the data file as: 

Species = {a, b, c, d, e, f, g}; 

Triples = { <a, b, c> <d, e, c> <c, b, e> <e, b, f> <a, g, f> 

}; 

In the model, we first declare the 

enumeration, called Species, of leaf species of the given trees; 

as indicated by the "..." annotation, it is to be imported from a 

data file.  Then, we declare the range, called intNodes, of the 

depths of the internal nodes to be 0,...,n-2 where n is the size 

of Species.  Indeed, the most unbalanced phylogenetic tree, namely 

the caterpillar tree, has all its n-1 internal nodes on a path, hence 

the depths 0,...,n-2 suffice to label them. 

The constraint 

forall(ordered i, j  in Species) 
      D[i, j] = D[j, i]; 

is used in order to enforce the symmetry, where the most recent common 

ancestor of species i and j must be the same recent common ancestor of 

species j and i. Also we have to fix Di,i to an abitrary value between 0 and 

n-1. Here we chose 0 by stating 

   forall(i in Species)  
       D[i,i]=0; 
   

The constraint

forall(ordered i,j in Species)
D[i, j] > 1   => sum(k in Species: k<>i) (D[i, k] =  
D[i, j] - 1) > 0; 
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tells that if the most recent common ancestor of species i and j is greater 

than one, then it must have a child one minus of its value. This constraint 

prevent a gap forming along side the branches. 

The constraint 

forall (triple in Triples) 
D[triple.i,triple.j] > D[triple.i,triple.k] = 

D[triple.j,triple.k]; 

says that the matrix must be formed according to every triple listed. 

Where the most recent common ancestor of i, j (Di, j) must be equal to the 

most recent common ancestor of i, k (Di, k) which are less than the most 

common ancestor of j, k (Dj, k). 

The constraint 

forall (ordered i, j, k in Species)
D[i, j] = D[i, k] < D[j, k] \/ D[i, j] =  

D[j, k] < D[i, k] \/ D[i, k] = D[j, k] < D[i, j];  

is a representation of, for the species i, j and k, all being different 

1. The most recent common ancestor of i, j (Di, j) must be equal to 

the most recent common ancestor of i, k (Di, k) which are less 

than the most common ancestor of j, k (Dj, k). 

or 

2. The most recent common ancestor of i, j (Di, j) must be equal to 

the most recent common ancestor of j, k (Dj, k) which are less 

than the most common ancestor of i, k (Di, k). 

or 

3. The most recent common ancestor of i, k (Di, k) must be equal to 

the most recent common ancestor of j, k (Dj, k) which are less 

than the most common ancestor of i, j (Di, j). 

This constraint tells us that for every species i, j and k, where i, j 

and k are different, there must be a triple ((i, j), k) or ((j, k), i) or ((k, i), j). 

This also tells us that in the variables Di, j, Dj, k, and Di, k the 

minimum value must be shared by two of them and not the third one. 
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With this constraint we generate the solutions without fans. After 

searching the solutions we get nine solutions. The solutions are shown in 

Figure 2.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: 13 solutions found after combining the trees in Figure 2.8. 

The constraint 

forall (ordered i, j, k in Species)
D[i, j] = D[i, k] < D[j, k] \/ D[i, j] =  

D[j, k] < D[i, k] \/ D[i, k] = D[j, k] < D[i, j];  

Solution [1] 

D[a1,a2] = 4 
D[a1,a3] = 3 
D[a1,a4] = 2 
D[a1,a5] = 2 
D[a1,a6] = 1 
D[a1,a7] = 2 
D[a2,a3] = 3 
D[a2,a4] = 2 
D[a2,a5] = 2 
D[a2,a6] = 1 
D[a2,a7] = 2 
D[a3,a4] = 2 
D[a3,a5] = 2 
D[a3,a6] = 1 
D[a3,a7] = 2 
D[a4,a5] = 3 
D[a4,a6] = 1 
D[a4,a7] = 3 
D[a5,a6] = 1 
D[a5,a7] = 4 
D[a6,a7] = 1 

Solution [2] 

D[a1,a2] = 4 
D[a1,a3] = 3 
D[a1,a4] = 2 
D[a1,a5] = 2 
D[a1,a6] = 1 
D[a1,a7] = 2 
D[a2,a3] = 3 
D[a2,a4] = 2 
D[a2,a5] = 2 
D[a2,a6] = 1 
D[a2,a7] = 2 
D[a3,a4] = 2 
D[a3,a5] = 2 
D[a3,a6] = 1 
D[a3,a7] = 2 
D[a4,a5] = 3 
D[a4,a6] = 1 
D[a4,a7] = 4 
D[a5,a6] = 1 
D[a5,a7] = 3 
D[a6,a7] = 1 

Solution [3] 

D[a1,a2] = 4 
D[a1,a3] = 3 
D[a1,a4] = 2 
D[a1,a5] = 2 
D[a1,a6] = 1 
D[a1,a7] = 3 
D[a2,a3] = 3 
D[a2,a4] = 2 
D[a2,a5] = 2 
D[a2,a6] = 1 
D[a2,a7] = 3 
D[a3,a4] = 2 
D[a3,a5] = 2 
D[a3,a6] = 1 
D[a3,a7] = 4 
D[a4,a5] = 3 
D[a4,a6] = 1 
D[a4,a7] = 2 
D[a5,a6] = 1 
D[a5,a7] = 2 
D[a6,a7] = 1 

Solution [4] 

D[a1,a2] = 4 
D[a1,a3] = 3 
D[a1,a4] = 2 
D[a1,a5] = 2 
D[a1,a6] = 1 
D[a1,a7] = 4 
D[a2,a3] = 3 
D[a2,a4] = 2 
D[a2,a5] = 2 
D[a2,a6] = 1 
D[a2,a7] = 5 
D[a3,a4] = 2 
D[a3,a5] = 2 
D[a3,a6] = 1 
D[a3,a7] = 3 
D[a4,a5] = 3 
D[a4,a6] = 1 
D[a4,a7] = 2 
D[a5,a6] = 1 
D[a5,a7] = 2 
D[a6,a7] = 1 

Solution [5] 

D[a1,a2] = 4 
D[a1,a3] = 3 
D[a1,a4] = 2 
D[a1,a5] = 2 
D[a1,a6] = 1 
D[a1,a7] = 5 
D[a2,a3] = 3 
D[a2,a4] = 2 
D[a2,a5] = 2 
D[a2,a6] = 1 
D[a2,a7] = 4 
D[a3,a4] = 2 
D[a3,a5] = 2 
D[a3,a6] = 1 
D[a3,a7] = 3 
D[a4,a5] = 3 
D[a4,a6] = 1 
D[a4,a7] = 2 
D[a5,a6] = 1 
D[a5,a7] = 2 
D[a6,a7] = 1 

Solution [6] 

D[a1,a2] = 4 
D[a1,a3] = 3 
D[a1,a4] = 2 
D[a1,a5] = 2 
D[a1,a6] = 1 
D[a1,a7] = 2 
D[a2,a3] = 3 
D[a2,a4] = 2 
D[a2,a5] = 2 
D[a2,a6] = 1 
D[a2,a7] = 2 
D[a3,a4] = 2 
D[a3,a5] = 2 
D[a3,a6] = 1 
D[a3,a7] = 2 
D[a4,a5] = 4 
D[a4,a6] = 1 
D[a4,a7] = 3 
D[a5,a6] = 1 
D[a5,a7] = 3 
D[a6,a7] = 1 

Solution [7] 

D[a1,a2] = 5 
D[a1,a3] = 3 
D[a1,a4] = 2 
D[a1,a5] = 2 
D[a1,a6] = 1 
D[a1,a7] = 4 
D[a2,a3] = 3 
D[a2,a4] = 2 
D[a2,a5] = 2 
D[a2,a6] = 1 
D[a2,a7] = 4 
D[a3,a4] = 2 
D[a3,a5] = 2 
D[a3,a6] = 1 
D[a3,a7] = 3 
D[a4,a5] = 3 
D[a4,a6] = 1 
D[a4,a7] = 2 
D[a5,a6] = 1 
D[a5,a7] = 2 
D[a6,a7] = 1 

Solution [8] 

D[a1,a2] = 5 
D[a1,a3] = 4 
D[a1,a4] = 2 
D[a1,a5] = 2 
D[a1,a6] = 1 
D[a1,a7] = 3 
D[a2,a3] = 4 
D[a2,a4] = 2 
D[a2,a5] = 2 
D[a2,a6] = 1 
D[a2,a7] = 3 
D[a3,a4] = 2 
D[a3,a5] = 2 
D[a3,a6] = 1 
D[a3,a7] = 3 
D[a4,a5] = 3 
D[a4,a6] = 1 
D[a4,a7] = 2 
D[a5,a6] = 1 
D[a5,a7] = 2 
D[a6,a7] = 1 

Solution [9] 

D[a1,a2] = 5 
D[a1,a3] = 4 
D[a1,a4] = 3 
D[a1,a5] = 3 
D[a1,a6] = 1 
D[a1,a7] = 2 
D[a2,a3] = 4 
D[a2,a4] = 3 
D[a2,a5] = 3 
D[a2,a6] = 1 
D[a2,a7] = 2 
D[a3,a4] = 3 
D[a3,a5] = 3 
D[a3,a6] = 1 
D[a3,a7] = 2 
D[a4,a5] = 4 
D[a4,a6] = 1 
D[a4,a7] = 2 
D[a5,a6] = 1 
D[a5,a7] = 2 
D[a6,a7] = 1 
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was for generating binary trees. If we want that this model generates 

solutions comprising supertrees with fans, we should change this 

contstraint to 

forall (ordered i, j, k in Species) 
D[i, j] = D[i, k] <= D[j, k] \/ D[i, j] = D[j, k] <= 

D[i, k] \/ D[i, k] = D[j, k] <= D[i, j];  

where we will get 13 solutions. The four extra solutions with fans are 

shown in Figure 2.10. 

 

 

 

 

 

   
Figure 2.10: The four extra solutions. 

The min-ultrametric tree of Solution 10 with fans is shown in 

Figure 2.11. 

 

 
Figure 2.11:  The matrix of Solution 10 and its min-ultrametric tree. At internal 
node 2 we see that the tree is not bifurcating.

Solution [10] 

D[a1,a2] = 4 
D[a1,a3] = 3 
D[a1,a4] = 2 
D[a1,a5] = 2 
D[a1,a6] = 1 
D[a1,a7] = 2 
D[a2,a3] = 3 
D[a2,a4] = 2 
D[a2,a5] = 2 
D[a2,a6] = 1 
D[a2,a7] = 2 
D[a3,a4] = 2 
D[a3,a5] = 2 
D[a3,a6] = 1 
D[a3,a7] = 2 
D[a4,a5] = 3 
D[a4,a6] = 1 
D[a4,a7] = 2 
D[a5,a6] = 1 
D[a5,a7] = 2 
D[a6,a7] = 1 

Solution [11] 

D[a1,a2] = 4 
D[a1,a3] = 3 
D[a1,a4] = 2 
D[a1,a5] = 2 
D[a1,a6] = 1 
D[a1,a7] = 2 
D[a2,a3] = 3 
D[a2,a4] = 2 
D[a2,a5] = 2 
D[a2,a6] = 1 
D[a2,a7] = 2 
D[a3,a4] = 2 
D[a3,a5] = 2 
D[a3,a6] = 1 
D[a3,a7] = 2 
D[a4,a5] = 3 
D[a4,a6] = 1 
D[a4,a7] = 3 
D[a5,a6] = 1 
D[a5,a7] = 3 
D[a6,a7] = 1 

Solution [12] 

D[a1,a2] = 4 
D[a1,a3] = 3 
D[a1,a4] = 2 
D[a1,a5] = 2 
D[a1,a6] = 1 
D[a1,a7] = 3 
D[a2,a3] = 3 
D[a2,a4] = 2 
D[a2,a5] = 2 
D[a2,a6] = 1 
D[a2,a7] = 3 
D[a3,a4] = 2 
D[a3,a5] = 2 
D[a3,a6] = 1 
D[a3,a7] = 3 
D[a4,a5] = 3 
D[a4,a6] = 1 
D[a4,a7] = 2 
D[a5,a6] = 1 
D[a5,a7] = 2 
D[a6,a7] = 1 

Solution [13] 

D[a1,a2] = 4 
D[a1,a3] = 3 
D[a1,a4] = 2 
D[a1,a5] = 2 
D[a1,a6] = 1 
D[a1,a7] = 4 
D[a2,a3] = 3 
D[a2,a4] = 2 
D[a2,a5] = 2 
D[a2,a6] = 1 
D[a2,a7] = 4 
D[a3,a4] = 2 
D[a3,a5] = 2 
D[a3,a6] = 1 
D[a3,a7] = 3 
D[a4,a5] = 3 
D[a4,a6] = 1 
D[a4,a7] = 2 
D[a5,a6] = 1 
D[a5,a7] = 2 
D[a6,a7] = 1 

 a1 a2 A3 a4 a5 a6 a7

a1 0 4 3 2 2 1 2 

a2 4 0 3 2 2 1 2 

a3 3 3 0 2 2 1 2 

a4 2 2 2 0 3 1 2 

a5 2 2 2 3 0 1 2 

a6 1 1 1 1 1 0 1 

a7 2 2 2 2 2 1 0 
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CHAPTER 3 

 

 

SUPERTREE CONSTRUCTION FOR ANCESTRAL 

DIVERGENCE DATES AND NESTED TAXA 

3.1 Introduction 

Until now we have shown a basic model with min-ultrametric 

supertree construction. In this chapter we will try to show some new 

constraints in order to extend the allowable information that can be used 

for phylogenetic inference. In the first part we will include in the input 

ancestral divergence dates which may be either relative or absolute. For 

example, in this group the input could include information such as 

whether one particular divergence event on one side of a tree occurred 

before or after a divergence event on the other side of the tree, or actual 

time estimates of certain divergence events. In the second part we will deal 

with nested taxa. We will use input rooted trees in which some of the 

interior vertices as well as all of their leaves are labelled, which will allow 

the inclusion of nested taxa in the input. For the description of the 

problems we used Bryant, Semple and Steel’s works [15][16]. 
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3.2 Ancestral Divergence Dates 

3.2.1 Phylogenetic Ranking 

A phylogenetic ranking helps us to arrange the tree’s interior 

vertices according to the order of the speciation events. For example let T 

be a rooted phylogenetic tree. We will create a rank function for this tree 

to arrange the order in the set of interior vertices (all positive integers), call 

it Viv. Here for all v1, v2 ∈ Viv, we say that r(v1) < r(v2) if v2 is a proper 

descendant of v1. We say that the pair (T, r) is a ranked phylogenetic tree. 

So the ranking of the interior vertices of the rooted phylogenetic tree is an 

ordering of the speciation events. An example of a ranked phylogenetic 

tree is illustrated in Figure 3.1. 

Figure 3.1: A ranked phylogenetic tree. 

For example the speciation event of species c and d took place 

before the speciation event of species a and b. Here two different interior 

vertices  ((e, d) and (c, f)) may be assigned the same positive integer which 

means that there is no particular ordering on the associated speciation 

events. 

3.2.2 Ancestral Divergence Dates 

Here we will briefly describe the RANKEDTREE algorithm that 

incorporates relative divergence times developed by Semple et al. [15]. 

Then we will proceed to our constraint programming approach.  
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The RANKEDTREE algorithm is an extension of the BUILD 

approach, developed for other purposes in 1981 [17], which outputs a tree 

precisely if the input collection satisfies a particular compatibility 

criterion. So the RANKEDTREE algorithm takes as input the rooted 

phylogenetic trees as well as the information detailing the order of the 

speciation events that occurred. 

A relative divergence date “div(c, d) predates div(a, b)” tells us that if 

a, b, c, d are leaf labels of T, then the rank assigned to the interior vertex 

of T corresponding to the most recent common ancestor of c and d is less 

than the rank assigned to the interior vertex of T corresponding to the 

most recent common ancestor of a and b.  

If we look at the ranked phylogenetic tree shown in Figure 3.2 we 

can see that it preserves the relative divergence date ‘div(e, b) predates 

div(c, f)’. A collection P of rooted phylogenetic trees and a collection D of 

relative divergence dates are compatible if there is a ranked phylogenetic 

tree T such that the discrete topology of T displays each of the trees in P 

and the ranking of the interior vertices of T preserves all of the relative 

divergence dates in D. 

To illustrate the ranking in a tree let’s take the phylogenetic cat 

family tree example shown in Figure 3.2(a) and (b). Here each species 

name is abbreviated to 3-letters labels and the branch lengths are 

represented by the ranking of the internal vertices (which does not reflect 

the real time). Here we can notice that only the three species ‘LPA’, ‘PON’, 

and ‘CCR’ are present in both trees. A resulting supertree obtained from 

combining these two trees is shown in Figure 3.2(c). 
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Figure 3.2: An application of RANKEDTREE. 

3.2.3 The Constraint Part 

Figure 3.3: Two rooted phylogenetic trees T1 and T2 and the relative divergence 
dates.  

     div(a, e) predates div(c, f)  
and div(a, b)predates div(a, d). 
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In the example of Figure 3.3, we will try to combine these trees with 

their relative divergence time using constraint programming. 

Below is the model (.mod file) and the data (.dat) for Figure 3.3. 

The model file: 

enum Species ...; 

range intNodes 0..card(Species)-2; 

var intNodes D[Species, Species]; 

struct Triple {Species i; Species j; Species k;}; 
{Triple} Triples = ...; 

struct Predate {Species i; Species j; Species k; Species l;}; 
{Predate} Predates = ...; 

solve { 
  forall(ordered i, j in Species) 
    D[i, j] = D[j, i]; 
   
  forall(i in Species) 
    D[i, i] = 0; 
  
  forall(ordered i,j in Species 
     D[i,j]>0 =>  sum(k in Species: k<>i & k<>j)  
    (D[i,k]=D[i,j]-1) > 0  \/ sum(p in Predates: p.k=i \/ p.l=i)  
    (D[p.i,p.j]=D[i,j]-1) > 0 ; 

  forall(triple in Triples) 
    D[triple.i, triple.j] > D[triple.i, triple.k] =  
   D[triple.j, triple.k]; 

  forall(ordered i, j, k in Species) 
    D[i, j] = D[i, k] <  D[j, k] \/ D[i, j] = D[j, k] <   
   D[i, k] \/ D[i, k] = D[j, k] <  D[i, j];  

//  D[i, j] = D[i, k] <= D[j, k] \/ D[i, j] = D[j, k] <=  
// D[i, k] \/ D[i, k] = D[j, k] <= D[i, j];  // with fans 

  forall(predate in Predates) 
    D[predate.i, predate.j] < D[predate.k, predate.l]; 
}; 

search{ 
generate(D); 
  forall(i in Species) 
    forall(j in Species: i<j & not bound(D[i,j])) 
      tryall(k in [dmin(D[i,j])..dmax(D[i,j])]) D[i,j]=k; 
}; 

display(ordered i, j in Species) D[i,j];
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The data file: 

Species = {a, b, c, d, e, f}; 

Triples = {<a, b, c> <c, f, b> <e, d, a>}; 

Predates = { 
   <a, e, c, f> 
   <a, b, a, d> 
} ; 

We can notice that in this example we split the model and the data 

part to two different files. Here our aim is to find a way to represent this 

new problem with a minimum syntactic change. So while holding most of 

our constraints from the the previous example, we have to insert a new 

and simple constraint for this problem. 

In this model we first declared a record Predate consisting of four 

fields i, j, k and l using Predates in the data file with 

struct Predate {Species i; Species j; Species k; Species l;}; 
{Predate} Predates = ...; 

and using a new constraint 

   forall(predate in Predates) 
    D[predate.i, predate.j] < D[predate.k, predate.l]; 

which states that the divergence of species i and j occured before the 

divergence of species k and l. For example from the data file on our 

example, we can say that the divergence of species a and e occured before 

the divergence of species c and f. 

Also in this model we used the constraint 

forall(ordered i,j in Species) 
D[i,j]>0 =>  sum(k in Species: k<>i & k<>j)  
  (D[i,k]=D[i,j]-1) > 0  \/ sum(p in Predates: p.k=i \/ p.l=i) 
  (D[p.i,p.j]=D[i,j]-1) > 0 ; 

in place of  

forall(ordered i,j in Species)  
    D[i, j] > 1   => sum(k in Species: k<>i) (D[i, k] =  
D[i, j] - 1) > 0; 
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With this constraint our intention was again to prevent gap forming 

along the branch. But this time using the predates data. This constraint 

tells that if the most recent common ancestor of species i and j is greater 

than one, then it must have a child one minus of its value or it must have 

a child having one minus the predate value. For example here for the most 

recent common ancestor for the species c and f D[c, f] must be predated by 

the most recent common ancestor of species a and e D[a, e]. So in this 

example if D[b, e] is 2 then D[c, f] cannot be 4. Where this constraint prevent 

any gap along the branch. In other words there are some virtual branches 

forming, and their internal nodes increasing by one along these virtual 

branches (shown in Figure 3.4).

Figure 3.4: Virtual branch forming without losing min-ultrametric properties, 
where div(a, e) predates div(c, f). 

So running this model we find the solution shown in Figure 3.5 

below. 

Figure 3.5: One of the three ranked phylogenetic trees obtained combining the 
trees in Figure 3.3. 

3.2.3 Absolute Divergence Time 

Now let’s go further and insert some absolute divergence time 

bounds to our internal vertices. The divergence time bound for species a 
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and b is a lower or an upper bound denoted by l(a, b) and u(a, b), 

respectively on the unit of time ago that a and b diverged. These species 

can also have both lower and upper bounds, where obviously l(a, b) < u(a, 

b). If there is no upper or lower bound on the divergence time of a and b, 

these will be taken obviously as:  l(a, b) = 0 and u(a, b) = ∞. 

Now let’s return to our example of Figure 3.3 and improve it by 

adding some divergence time bounds as follows: 

l(a, d) = 1 and u(a, d) = 3.5 

l(a, b) = 4 and u(a, b) = 6 

l(c, f) = 3 and u(c, f) = 5 

Below is the model (.mod file) and the data (.dat) for this example. 

The model: 

enum Species=...; 

range intNodes 0..65; 

var intNodes D[Species, Species]; 

struct Triple {Species i; Species j; Species k; }; 
{Triple} Triples =...; 

struct Predate {Species i; Species j; Species k; Species l;}; 
{Predate} Predates =...; 

struct Boundary {Species i; Species j; int k; int l;}; 
{Boundary} Boundaries =...; 

solve { 
  forall(ordered i, j  in Species) 
    D[i, j] = D[j, i]; 

  forall(i in Species)  
    D[i,i]=0; 

  forall (triple in Triples) 
    D[triple.i,triple.j] < D[triple.i,triple.k] =  
   D[triple.j,triple.k]; 

  forall (ordered i, j, k in Species) 
    D[i, j] = D[i, k] > D[j, k] \/ D[i, j] = D[j, k] > D[i, k] \/   
   D[i, k] = D[j, k] > D[i, j];  

  forall (predate in Predates) 
    D[predate.i,predate.j] > D[predate.k,predate.l]; 

  forall(ordered Boundary in Boundaries) 
    Boundary.k <= D[Boundary.i, Boundary.j] <= Boundary.l; 
}; 
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search{ 
generate(D); 
  forall(i in Species) 
    forall(j in Species: i<j & not bound(D[i,j])) 
      tryall(k in [dmin(D[i,j])..dmax(D[i,j])]  
ordered by decreasing k) D[i,j]=k; 
}; 
display(ordered i,j in Species) D[i,j]/10.0; 

The data file: 

Species = {a, b, c, d, e, f}; 

Triples = { <a, b, c> <c, f, b> <e, d, a> }; 

Predates = {  
   <a, e, c, f> 
   <a, b, a, d> 
} ; 

Boundaries = { 
     <a, d, 10, 35> 
     <a, b, 40, 60> 
     <c, f, 30, 50> 
            }; 

The concept in this model, is the same as the previous example, but 

this time we include also a boundary information. To represent this 

information in our model we first declared a record Boundary consisting 

of four fields i, j, k and l using Boundaries in the data file with 

struct Boundary {Species i; Species j; int k; int l;}; 
{Boundary} Boundaries =...; 

and inserted a boundary constraint as: 

    
forall(ordered Boundary in Boundaries)
   Boundary.k <= D[Boundary.i, Boundary.j] <= Boundary.l; 

telling that the most recent common ancestor of species i and j must be 

within the boundary conditions stated in the data file. 

But the tricky part is in the search procedure: 

search{ 
  generate(D); 
  forall(i in Species) 
    forall(j in Species: i<j & not bound(D[i,j])) tryall(k in 
[dmin(D[i,j])..dmax(D[i,j])] ordered by decreasing k) D[i,j]=k; 
}; 
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Here we determined how the search will be, trying from the 

minimum value to maximum value D[i, j]. Using the ‘stepping in model’ 

feature in ILOG OPL studio and also displaying the value of D we are able 

to analyze the boundary values and possible solutions step by step. Below 

in the Figures 3.6 to 3.11 we can see the steps of the value of D while 

searching for a solution. 

 

Figure 3.6:  The assignment of intervals as given by the boundry value. 

 
 

 
 
Figure 3.7: After assigning 3.0 to the internal vertice (c, f) and 3.1 to the internal 
vertices (a, d) and (a, e). 

Figure 3.8: After assigning 4.0 to the internal vertice (a, b) and 4.1 to the internal 
vertice (a, c), (a, f), (b, c) and (b, f). 
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Figure 3.9: After assigning 4.1 to the internal vertice (b, d) and (b, e) and 0 to the 
internal vertice (d, e). 
 

Figure 3.10: After assigning 4.1 to the internal vertice (c, d) and (c, e). 

Figure 3.11: Finding the first solution. 

Here it is important to note that the minimum value of the internal 

vertice can be assigned 0. In which case we say that the divergence has 

just occurred for the species (in this case the internal vertice (d, e)). Also 

we transformed the decimal values  to integers and put the interior vertex 

values to be at most 65. 
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3.3 Nested Taxa 

Until now we saw how to combine collections of rooted phylogenetic 

with overlapping leaf sets into a single rooted phylogenetic tree. But in all 

these collections of rooted phylogenetic tree we didn't see any nested taxa. 

For example, we didn’t take into account examples like “mammals” and 

“domestic cat”. Because the “domestic cat” is nested inside the 

“mammals”, they cannot be represented by two distinct leaves in a single 

rooted phylogenetic tree. But in practice there is a need to insert this 

taxonomic information into the resulting supertree as well. In brief we 

need to find a way to combine rooted trees where the resulting supertree 

displays all nestings shared by all of the input trees. We call the rooted 

tree in which all the leaves as well as some of the interior vertices are 

labelled, semi-labelled trees. Two semi-labelled trees are shown in Figure 

3.12. 

Figure 3.12: Two semi-labelled trees. 

Semple and Daniel [16] [18] proposed two algorithms (SEMI-

LABELLEDBUILD and ANCESTRALBUILD) for combining collections of 

rooted semi-labelled trees following a problem posed by Page [11].  Instead 

of describing these two algorithms we will use constraint programming 

and illustrate the resulting model on the example of Semple et al. [18] 

taken from study S1x6x97c14c42c30 in TreeBASE [19] where the input 

trees describe the evolution of spiders, shown in Figure 3.13. 
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Figure 3.13: An application of nested taxa where the input trees describe the 
evolution of spiders. 

The model file: 

//* Example from the TreeBASE study: S1x6x97c14c42c30 

{string} Species = ...; 

struct Triple { 
   string i; 
   string j; 
   string k; 
   }; 
{Triple} Triples =...; 

struct Polytomy { 
   {string} s; 
}; 

{Polytomy} Polytomies =...; 
struct Ancestor { 
   string anc; 
   string suc; 
   }; 

{Ancestor} Ancestors =...; 

{string} Leaves = Species diff {ancestor.anc | ancestor in 
Ancestors}; 

range intNodes 0..8; 

var intNodes D[Leaves, Leaves]; 

{Triple} Triplets = Triples 
   union {<ancestor.suc,l,m> | ancestor in Ancestors & <k,l,m> in  
Triples : k = ancestor.anc} 
   union {<k,ancestor.suc,m> | ancestor in Ancestors & <k,l,m> in  
Triples : l = ancestor.anc} 
   union {<k,l,ancestor.suc> | ancestor in Ancestors & <k,l,m> in  
Triples : m = ancestor.anc} ; 
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{Triple} Triplettes = Triplets diff {<k,l,m> | <k,l,m> in Triplets  
& <p,q> in Ancestors : k = p \/ l = p \/ m = p }; 

solve { 
   forall(ordered i, j  in Leaves) 
     D[i, j] = D[j, i]; 

   forall(i in Leaves) 
     D[i, i] = 0; 

   forall(ordered i, j in Leaves) 
     D[i, j] > 0   => sum(k in Leaves: k<>i) (D[i, k] =  
    D[i, j] - 1) > 0; 

   forall (triplette in Triplettes) 
     D[triplette.i, triplette.j] > D[triplette.i, triplette.k] =  
    D[triplette.j, triplette.k]; 
        
   forall(ordered i, j, k in Leaves) 
     D[i, j] = D[i, k] <= D[j, k] \/ D[i, j] = D[j, k] <= D[i, k] 
\/  
    D[i, k] = D[j, k] <= D[i, j]; 

   forall (<s> in Polytomies) 
     forall (ordered i, j in s: i <> s.first() \/ j <> 
s.next(s.first())) 
       D[i, j] = D[s.first(), s.next(s.first())]; 
}; 

display(ordered i, j in Leaves) D[i,j]; 

The data file: 

Species = { 
        "Scytodoidea", "Filistatidae", "Amaurobioidea",  
        "Lycosoidea", "Eresidae", "Oecobiidae", "Deinopidae",  
        "Uloboridae", "Araneoidea", "Dictynoidea", 
        "Austrochilidae", "Paleocribellatae", "Gradungulidae",  
        "Araneoclada", "Hypochilidae", "Mygalomorphae",  
        "Liphistiomorphae", "Amblypygi", 

        "Neocribellatae", "Araneomorphae","Orbiculariae",  
        "Opisthothelae", "Araneae", "Arachnida" 
         }; 
Triples = { 
   <"Scytodoidea", "Filistatidae", "Eresidae">  
   <"Amaurobioidea", "Lycosoidea", "Scytodoidea">  
   <"Deinopidae", "Uloboridae", "Araneoidea">  
   <"Deinopidae", "Araneoidea", "Scytodoidea">  
   <"Scytodoidea", "Amaurobioidea", "Araneoidea">  
   <"Scytodoidea", "Dictynoidea", "Austrochilidae">  
   <"Scytodoidea", "Austrochilidae", "Paleocribellatae"> 

   <"Gradungulidae", "Austrochilidae", "Araneoclada">  
   <"Austrochilidae", "Araneoclada", "Hypochilidae"> 
   <"Austrochilidae", "Hypochilidae", "Mygalomorphae">  
   <"Austrochilidae", "Mygalomorphae", "Liphistiomorphae">  
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   <"Austrochilidae", "Liphistiomorphae", "Amblypygi"> 
    
   <"Orbiculariae", "Dictynoidea", "Austrochilidae"> 
   <"Araneomorphae", "Mygalomorphae", "Liphistiomorphae">  
   <"Araneoclada", "Austrochilidae", "Paleocribellatae"> 
   <"Neocribellatae", "Hypochilidae", "Mygalomorphae">  
   <"Araneomorphae", "Mygalomorphae", "Liphistiomorphae">  
   <"Opisthothelae", "Liphistiomorphae", "Amblypygi"> 
   <"Paleocribellatae", "Hypochilidae", "Mygalomorphae"> 
         }; 

Polytomies = { 
  <{"Scytodoidea", "Amaurobioidea", "Eresidae", 
           "Oecobiidae"}> 
  <{"Scytodoidea", "Deinopidae", "Dictynoidea"}> 
             }; 

Ancestors = { 
        <"Orbiculariae", "Araneoidea">  
        <"Orbiculariae", "Uloboridae"> 
        <"Orbiculariae", "Deinopidae"> 
    
        <"Araneoclada", "Scytodoidea">  
        <"Araneoclada", "Filistatidae">  
        <"Araneoclada", "Amaurobioidea">  
        <"Araneoclada", "Lycosoidea">  
        <"Araneoclada", "Eresidae">  
        <"Araneoclada", "Oecobiidae">  
        <"Araneoclada", "Orbiculariae">  
        <"Araneoclada", "Dictynoidea"> 
  
        <"Neocribellatae", "Gradungulidae"> 
        <"Neocribellatae", "Austrochilidae"> 
        <"Neocribellatae", "Araneoclada"> 
    
        <"Araneomorphae", "Neocribellatae">  
        <"Araneomorphae", "Hypochilidae"> 
        <"Araneomorphae", "Paleocribellatae">  
    
   
        <"Opisthothelae", "Mygalomorphae"> 
        <"Opisthothelae", "Araneomorphae"> 

        <"Araneae", "Opisthothelae">  
        <"Araneae", "Liphistiomorphae"> 

        <"Arachnida", "Araneae"> <"Arachnida", "Amblypygi"> 
           } ; 

In this model we declared a Polytomies and Ancestors in the data file 

with  

 struct Polytomy { 
    {string} s; 
 }; 

 {Polytomy} Polytomies =...; 
 struct Ancestor { 
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    string anc; 
    string suc; 
    }; 

and using the constraint 

 forall (<s> in Polytomies) 
      forall (ordered i, j in s: i <> s.first() \/ j <>     
s.next(s.first())) 

        D[i, j] = D[s.first(), s.next(s.first())]; 
 }; 

we stated that the most recent common ancestor for every fan species are 

equal. 

And using the statement  

{string} Leaves = Species diff {ancestor.anc | ancestor in 
Ancestors}; 

we defined the leaves in the supertree by replacing all the ancestors in 

Species by their descendants. 

By stating 

{Triple} Triplets = Triples 
   union {<ancestor.suc,l,m> | ancestor in Ancestors & <k,l,m> in  
Triples : k = ancestor.anc} 
   union {<k,ancestor.suc,m> | ancestor in Ancestors & <k,l,m> in  
Triples : l = ancestor.anc} 
   union {<k,l,ancestor.suc> | ancestor in Ancestors & <k,l,m> in  
Triples : m = ancestor.anc} ; 

we define Triplets by adding the descendants to the ancestors in the 

Triples enumeration and by 

 {Triple} Triplettes = Triplets diff {<k,l,m> | <k,l,m> in 
Triplets & <p,q> in Ancestors : k = p \/ l = p \/ m = p }; 

we define Triplettes by removing the ancestors triples from the

Triplets. 

We determined the internal nodes, from the input trees internal nodes 

depth (by counting the paranthesis in the newick file representations of 

the input trees), to be in the range 0 to 8. 

Since the input trees are semi labelled we can’t directly apply the BreakUp 

algorithm to collect the triples. Instead we can apply a three step process: 
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1. for each given tree T, generate triples using BreakUp on T; 

2. for each given tree T, generate triples using BreakUp on each tree 

obtained from T by cutting all the descendants of some ‘labeled’ 

internal node of T; 

3. if the root of some given tree T is labeled, say N, and is not the root 

of some other given tree T', then generate triples using BreakUp on 

the subtree of T' rooted at the parent of N, where the subtree rooted 

at N has been replaced by T. 

In the first step the triples 

For T1 

 <"Gradungulidae", "Austrochilidae", "Araneoclada">
 <"Austrochilidae", "Araneoclada", "Hypochilidae"> 
    <"Austrochilidae", "Hypochilidae", "Mygalomorphae">  
    <"Austrochilidae", "Mygalomorphae", "Liphistiomorphae">  
    <"Austrochilidae", "Liphistiomorphae", "Amblypygi"> 

and for T2 

    <"Scytodoidea", "Filistatidae", "Eresidae">  
    <"Amaurobioidea", "Lycosoidea", "Scytodoidea"> 
    <"Deinopidae", "Uloboridae", "Araneoidea">  
    <"Deinopidae", "Araneoidea", "Scytodoidea">  
 <"Scytodoidea", "Amaurobioidea", "Araneoidea">  
    <"Scytodoidea", "Dictynoidea", "Austrochilidae">  
    <"Scytodoidea", "Austrochilidae", "Paleocribellatae"> 

are generated. 

On the second step 

For T1 

 <"Neocribellatae", "Hypochilidae", "Mygalomorphae"> 
 <"Araneomorphae", "Mygalomorphae", "Liphistiomorphae"> 
 <"Opisthothelae", "Liphistiomorphae", "Amblypygi">

for T2 

<"Orbiculariae", "Dictynoidea", "Austrochilidae"> 
    <"Araneoclada", "Austrochilidae", "Paleocribellatae"> 
     

On the third step placing “Paleocribellatae” on T2 under 

“Araneomorphae” on T1 we get 

<"Paleocribellatae", "Hypochilidae", "Mygalomorphae"> 
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To generate the ancestor data structure we placed all the species 

under labeled internal node. For example here we didn’t placed all the 

species under “Arachnida”. We just stated  

<"Arachnida", "Araneae"> <"Arachnida", "Amblypygi">

in order to prevent to state all the species under “Araneae”. 

After running the model we get 4 solutions. To generate a graphical 

representation of this 4 possible solutions we first produce ultrametric 

matrix solutions using an OPL script shown below. 

ofile result("matrix.txt");  
Model m("Spiders.mod","Spiders.dat") editMode;  

int k := 0; 
while m.nextSolution() do {  
     k := k + 1; 
     result << "-Solution " << k << "-" <<endl;      
     result << "    " << card(m.Leaves) << endl; 

   forall(i in m.Leaves) {  
      result << i << "         ";       
       
   forall(j in m.Leaves) { 
      if i=j then 
      result << m.D[i,j] << "         " ; 
      else 
        result << 9-m.D[i,j] << "         " ; 
} 
   result  <<  endl;  
}      
   result << endl;  
} 
  result.close(); 

In this script we substracted internal node numbers from nine 

(which is out of the range of internal values) in order to get an ultrametric 

matrix. The output of the script is shown below. 

 

-Solution 1- 
    17 
Scytodoidea   0  2  3  3  3  3  4  4  4  4  5  6  5  6  7  8  9   
Filistatidae   2  0  3  3  3  3  4  4  4  4  5  6  5  6  7  8  9   
Amaurobioidea   3  3  0  2  3  3  4  4  4  4  5  6  5  6  7  8  9   
Lycosoidea   3  3  2  0  3  3  4  4  4  4  5  6  5  6  7  8  9   
Eresidae   3  3  3  3  0  3  4  4  4  4  5  6  5  6  7  8  9   
Oecobiidae   3  3  3  3  3  0  4  4  4  4  5  6  5  6  7  8  9   
Deinopidae   4  4  4  4  4  4  0  2  3  4  5  6  5  6  7  8  9   
Uloboridae   4  4  4  4  4  4  2  0  3  4  5  6  5  6  7  8  9   
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Araneoidea   4  4  4  4  4  4  3  3  0  4  5  6  5  6  7  8  9   
Dictynoidea   4  4  4  4  4  4  4  4  4  0  5  6  5  6  7  8  9   
Austrochilidae   5  5  5  5  5  5  5  5  5  5  0  6  4  6  7  8  9   
Paleocribellatae   6  6  6  6  6  6  6  6  6  6  6  0  6  6  7  8  9   
Gradungulidae   5  5  5  5  5  5  5  5  5  5  4  6  0  6  7  8  9   
Hypochilidae   6  6  6  6  6  6  6  6  6  6  6  6  6  0  7  8  9   
Mygalomorphae   7  7  7  7  7  7  7  7  7  7  7  7  7  7  0  8  9   
Liphistiomorphae   8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  0  9   
Amblypygi   9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  0   

-Solution 2- 
    17 
Scytodoidea   0  2  3  3  3  3  4  4  4  4  5  6  5  6  7  8  9   
Filistatidae   2  0  3  3  3  3  4  4  4  4  5  6  5  6  7  8  9   
Amaurobioidea   3  3  0  2  3  3  4  4  4  4  5  6  5  6  7  8  9   
Lycosoidea   3  3  2  0  3  3  4  4  4  4  5  6  5  6  7  8  9   
Eresidae   3  3  3  3  0  3  4  4  4  4  5  6  5  6  7  8  9   
Oecobiidae   3  3  3  3  3  0  4  4  4  4  5  6  5  6  7  8  9   
Deinopidae   4  4  4  4  4  4  0  2  3  4  5  6  5  6  7  8  9   
Uloboridae   4  4  4  4  4  4  2  0  3  4  5  6  5  6  7  8  9   
Araneoidea   4  4  4  4  4  4  3  3  0  4  5  6  5  6  7  8  9   
Dictynoidea   4  4  4  4  4  4  4  4  4  0  5  6  5  6  7  8  9   
Austrochilidae   5  5  5  5  5  5  5  5  5  5  0  6  4  6  7  8  9   
Paleocribellatae   6  6  6  6  6  6  6  6  6  6  6  0  6  5  7  8  9   
Gradungulidae   5  5  5  5  5  5  5  5  5  5  4  6  0  6  7  8  9   
Hypochilidae   6  6  6  6  6  6  6  6  6  6  6  5  6  0  7  8  9   
Mygalomorphae   7  7  7  7  7  7  7  7  7  7  7  7  7  7  0  8  9   
Liphistiomorphae   8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  0  9   
Amblypygi   9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  0   

-Solution 3- 
    17 
Scytodoidea   0  1  2  2  2  2  3  3  3  3  4  5  4  6  7  8  9   
Filistatidae   1  0  2  2  2  2  3  3  3  3  4  5  4  6  7  8  9   
Amaurobioidea   2  2  0  1  2  2  3  3  3  3  4  5  4  6  7  8  9   
Lycosoidea   2  2  1  0  2  2  3  3  3  3  4  5  4  6  7  8  9   
Eresidae   2  2  2  2  0  2  3  3  3  3  4  5  4  6  7  8  9   
Oecobiidae   2  2  2  2  2  0  3  3  3  3  4  5  4  6  7  8  9   
Deinopidae   3  3  3  3  3  3  0  1  2  3  4  5  4  6  7  8  9   
Uloboridae   3  3  3  3  3  3  1  0  2  3  4  5  4  6  7  8  9   
Araneoidea   3  3  3  3  3  3  2  2  0  3  4  5  4  6  7  8  9   
Dictynoidea   3  3  3  3  3  3  3  3  3  0  4  5  4  6  7  8  9   
Austrochilidae   4  4  4  4  4  4  4  4  4  4  0  5  3  6  7  8  9   
Paleocribellatae   5  5  5  5  5  5  5  5  5  5  5  0  5  6  7  8  9   
Gradungulidae   4  4  4  4  4  4  4  4  4  4  3  5  0  6  7  8  9   
Hypochilidae   6  6  6  6  6  6  6  6  6  6  6  6  6  0  7  8  9   
Mygalomorphae   7  7  7  7  7  7  7  7  7  7  7  7  7  7  0  8  9   
Liphistiomorphae   8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  0  9   
Amblypygi   9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  0   

-Solution 4- 
    17 
Scytodoidea   0  1  2  2  2  2  3  3  3  3  4  6  4  5  7  8  9   
Filistatidae   1  0  2  2  2  2  3  3  3  3  4  6  4  5  7  8  9   
Amaurobioidea   2  2  0  1  2  2  3  3  3  3  4  6  4  5  7  8  9   
Lycosoidea   2  2  1  0  2  2  3  3  3  3  4  6  4  5  7  8  9   
Eresidae   2  2  2  2  0  2  3  3  3  3  4  6  4  5  7  8  9   
Oecobiidae   2  2  2  2  2  0  3  3  3  3  4  6  4  5  7  8  9   
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Deinopidae   3  3  3  3  3  3  0  1  2  3  4  6  4  5  7  8  9   
Uloboridae   3  3  3  3  3  3  1  0  2  3  4  6  4  5  7  8  9   
Araneoidea   3  3  3  3  3  3  2  2  0  3  4  6  4  5  7  8  9   
Dictynoidea   3  3  3  3  3  3  3  3  3  0  4  6  4  5  7  8  9   
Austrochilidae   4  4  4  4  4  4  4  4  4  4  0  6  3  5  7  8  9   
Paleocribellatae   6  6  6  6  6  6  6  6  6  6  6  0  6  6  7  8  9   
Gradungulidae   4  4  4  4  4  4  4  4  4  4  3  6  0  5  7  8  9   
Hypochilidae   5  5  5  5  5  5  5  5  5  5  5  6  5  0  7  8  9   
Mygalomorphae   7  7  7  7  7  7  7  7  7  7  7  7  7  7  0  8  9   
Liphistiomorphae   8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  0  9   
Amblypygi   9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  0   

The number of 17 at the head of the ultrametric matrix, computed 

from 

result << "    " << card(m.Leaves) << endl; 

gives us the number of species, which is required in the input file by 

the tree drawing software PHYLIP [20]. 

Using the first solution matrix on PHYLIP we can generate in 

Newick tree format [21] one of the 4 possible solutions. Finally we use 

TreeView software [22] to generate the final tree shown in Figure 3.14. 

Figure 3.14: One of the four possible supertree solution generated after 
combining the input trees in Figure 3.13. 
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CHAPTER 4 

 

 

CONCLUSIONS 

It has been shown much interest in phylogenetic systematics 

recently. Because it is a method for biologists to reconstruct the pattern of 

events that have led to the distribution and diversity of life. Due to the 

“Tree of Life” initiatives [19] [23], and studies the researchers have tried to 

find some new methods to combine large number of trees to construct 

phylogenies on hundreds, or even thousands of species, where the 

construction of Supertree is one of these methods and in which we tried to 

approach in a different way, using constraint programming. 

The advantages of using constraint programming was the ability 

to model different types of model by adding only one or two new 

constraints and to get every possible solutions.  

It is important to note that all of the models described in this 

thesis provides a solution or no solution. Which means that each 

algorithm either returns a supertree with certain desirable properties 

relative to the input or returns a statement indicating that there is no 

such supertree, which is limiting their use. However this can be 

progressed to some models which will always return a supertree and
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whose input includes information that goes beyond the properties shown 

here.
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