
A Meta-Heuristic for Subset Decision ProblemsBrahim Hnich, Zeynep K�z�ltan, and Pierre FlenerComputer Science Division, Department of Information ScienceUppsala University, Box 513, S{751 20 Uppsala, SwedenfBrahim.Hnich, Zeynep.K�z�ltan, Pierre.Flenerg@dis.uu.se1 IntroductionConstraint Satisfaction Problems (CSPs) | whereappropriate values for the variables of the problemhave to be found, subject to some constraints | rep-resent many real life problems. Examples are pro-duction planning subject to demand and resourceavailability, air tra�c control subject to safety proto-cols, transportation scheduling subject to initial and�nal location of the goods and the transportationresources, etc. Many of these problems can be ex-pressed as constraint programs and then be solvedusing constraint solvers.Most of the available constraint solvers (clp(FD)[1], opl [13], etc) are equipped with constraint prop-agation algorithms based on consistency techniquessuch as node and arc consistency, plus a search algo-rithm such as forward-checking, and a labeling heuris-tics, one of which is the default. To enhance theperformance of a constraint program, a lot of re-search has been made in recent years to develop newheuristics concerning the choice of the next variableto branch on during the search and the choice of thevalue to be assigned to that variable, giving rise tovariable and value ordering (VVO) heuristics. Theseheuristics signi�cantly reduce the search space [9].However, little is said about the application domainof these heuristics, so programmers �nd it di�cult todecide when to apply a particular heuristic and whennot.The di�culty of mapping the right heuristic to agiven problem is mainly due to two reasons. First,as mentioned by Tsang et al. [10], there is no uni-versally best heuristic for all problems. Thus, we areonly able to learn that a particular heuristic is bestfor the particular benchmarks used by researchers tocarry out their experiments. Second, as noticed byMinton [8], the performance of heuristics is instance-dependent, i.e., for a given problem a heuristic canperform well for some distributions on the instances,but very poorly on other distributions.To understand our terminology, note that thephrase problem class here refers to a whole set ofrelated problems, while the term problem designatesa particular problem (within a class), and the wordinstance is about a particular occurrence of a prob-lem. For example, planning is a problem class, trav-eling salesperson is a problem within that class, and

visiting all nodes of the ercim Working Group onConstraints is an instance of that problem. Much of(constraint) programming research is about pushingresults from the instance level to the problem level ifnot to the problem-class level, so as to get reusablegeneric approaches.We here use constraint solvers as blackboxes, thus�xing the propagation and search algorithms, whiletrying to �nd an appropriate VVO (meta-)heuristicthat performs at least better than the default one.To illustrate our approach, we focus on a particularproblem class, namely subset decision problems. As-suming that we have an initial set H of VVO heuris-tics (including the default one), we take an empiri-cal approach to �nd a meta-heuristic that can decidewhich heuristic in H best suits the instance to besolved. Such a meta-heuristic can then be integratedwithin the constraint solver.This paper is organised as follows. In Section 2,we discuss the class of subset decision problems andshow the generic clp(FD) constraint store that resultsfrom such problems. Then, in Section 3, we presentour empirical approach, show our results, and explainthe usage of our meta-heuristic for subset decisionproblems. Finally, in Section 4, we conclude, com-pare with related work, and discuss our directions forfuture research.2 Subset Decision ProblemsWe assume that CSP models are initially written in avery expressive, purely declarative, typed, �rst-orderset constraint logic programming language, such asour proposal in [3], here called esra, which is beingdesigned to be higher-level than even opl [13]. Usingprogram synthesis techniques such as those in [11, 8,2], we can automatically compile esra programs intolower-level languages such as clp(FD) or opl. Thepurpose of this paper is not to discuss how this canbe done, nor the syntax and semantics of esra.In the class of subset decision problems, a subset Sof a given �nite set T has to be found, such that Ssatis�es an (open) condition g, and an arbitrary twodi�erent elements of S satisfy an (open) conditionp. In esra, we model this as the following (open)1

program: 8T; S : set(int) :subset(T; S)$ S � T ^ g(S) ^8I; J : int : I 2 S ^ J 2 S ^ I 6= J ! p(I; J)(subset)The only open symbols are relations g and p (assum-ing that �, 2, and 6= are primitives of esra, with theusual meanings). This program has as re�nementsprograms for many problems, such as �nding a cliqueof a graph (see below), set covering, knapsack, etc.For example, the (closed) program:8V;C : set(int) : 8E : set(int� int) :clique20(hV;Ei; C)$ C � V ^ size(C; 20) ^8I; J : int : I 2 C ^ J 2 C ^ I 6= J ! hI; Ji 2 E(clique20)is a re�nement of subset, under the substitution:8C : set(int) : g(C)$ size(C; 20)8E : set(int� int) :8I; J : int : p(I; J)$ hI; Ji 2 E (�)assuming that size is another primitive of esra, withthe obvious meaning. It is a program for a particularcase of the clique problem, namely �nding a clique (or:a maximally connected component) of an undirectedgraph (which is given through its vertex set V andits edge set E), such that the size of the clique is 20.At a lower level of expressiveness, subset decisionproblems can be compiled into clp(FD) constraintprograms, say. The chosen representation of a subsetS of a given �nite set T (of n elements) is a map-ping from T into Boolean values (domain variablesin f0; 1g), that is we conceptually maintain n coupleshI; BIi where the (initially non-ground) Boolean BIexpresses whether the (initially ground) element I ofT is a member of S or not:18I : int : I 2 T ! (BI $ I 2 S) (1)This Boolean representation of sets consumes morememory than the set interval representation of Con-junto [6] and oz, but both have been shown to createthe same search space [6]; moreover, the set intervalrepresentation does not allow the de�nition of some(to us) desirable high-level primitives, such as univer-sal quanti�cation over elements of non-ground sets.(Another alternative representation of the subset S,namely as a sequence of k (� n) variables constrainedto be di�erent elements of T , has two disadvantagescompared to ours: �rst, the search space for S thenis much worse, namely O(n!), and second, an explicitloop for k ranging from 0 to n has to be wrappedaround the code.)Given this Boolean representation choice for sets,the formula for the open relation g of subset can eas-ily be re-stated in terms of constraints on Booleanvariables. As shown in [3], it is indeed easy to write1In formulas, we use atom BI as an abbreviation for BI = 1.

constraint-posting clp(FD) programs for 2, �, size,and all other classical set operations. We here payspecial attention to the case where g (also) constrainsthe size of the subset to be a constant, say k. Thiscan be written as the following constraint:nXi=1 Bi = k (2)Let us now look at the remaining part of subset,which expresses that any two di�erent elements ofthe subset S of T must satisfy a condition p:S � T ^ 8I; J : int : I 2 S ^ J 2 S ^ I 6= J ! p(I; J)This statement can be re�ned as follows:8I; J : int : I 2 T ^ J 2 T ^I 2 S ^ J 2 S ^ I 6= J ! p(I; J)which is equivalent to:8I; J : int : I 2 T ^ J 2 T ^ I 6= J ^ :p(I; J)! :(I 2 S ^ J 2 S)By (1), this can be rewritten as:8I; J : int : I 2 T ^ J 2 T ^ I 6= J ^ :p(I; J)! :(BI ^BJ)Thus, for every two distinct elements I and J of T ,with corresponding Boolean variables BI and BJ , ifp(I; J) does not hold, we just need to post the con-straint :(BI ^ BJ).Note that the posted clp(FD) constraints are thusnot in terms of p, hence p can be any esra formulaand our approach works for the whole class of subsetdecision problems. Indeed, the reasoning above wasmade for the (open) subset program rather than fora particular (closed) re�nement such as clique20.Therefore, the clp(FD) constraint store for anysubset decision problem is over a set of Boolean vari-ables and contains an instance-dependent number ofbinary constraints of the form :(BI ^BJ) (if p is nottrue) as well as an optional summation constraint(2) (if g also uses size). All other constraints in g are(currently) ignored in our quest for a meta-heuristic.3 A Meta-Heuristic forSubset Decision ProblemsWe now present our approach for devising a meta-heuristic for the entire class of subset decision prob-lems. On the one hand, as shown in the previous sec-tion, we are able to map all subset decision problemsinto a generic clp(FD) constraint store, dependingon the number n of Boolean variables involved (i.e.,the size of the given set), the optional subset sizek, and the number of binary constraints b. On theother hand, an ever increasing set H of VVO heuris-tics for CSPs is being proposed. Our approach now is2

to �rst measure the run-time of each heuristic, for a�xed clp(FD) solver, on a large number of instanceswith di�erent values for n, k, and b. Then we tryand determine the range (in terms of n, k, and b) forevery heuristic in which it performs best, so as to im-plement a meta-heuristic that always picks the bestheuristic in H for any instance.To illustrate the idea, let us assume that we havetwo heuristics, H1 and H2 say. If we keep n andb constant, we can measure the run-times of bothheuristics for all values of k. The plot in Figure 1suggests the following meta-heuristic:if k 2 1::3 then choose H1if k 2 3::5 then choose H2if k 2 5::n then choose H1However, in our case, the problem is more di�cultbecause we have 3 varying dimensions rather thanjust 1, namely n, k, and b.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6

ru
n

-t
im

e

k

H1
H2

Figure 1: Run-time in terms of k for 2 heuristics.We now introduce our experimental setting and re-sults, and then show how to use those results to devisea meta-heuristic for subset decision problems.3.1 Experimental Setting and ResultsFor the purposes of this paper, we focused on 3 VVOheuristics only, as we would �rst like to show thatthe principle works. More VVO heuristics can easilybe added to the experiments, if given more time. Wealso generated random instances in a coarse way (bynot considering all possible combinations of n, k, andb); again, given more time, instances generated in amore �ne-grained way could be used instead and helpmake our results more precise.We used the following 3 VVO heuristics:

� The default VVO heuristic labels the leftmostvariable in the sequence of variables provided,and the domain of the chosen variable is exploredin ascending order.� The static VVO heuristic pre-orders the vari-ables in ascending order, according to the num-ber of constraints in which a variable is involved,and then labels the variables according to thatorder by assigning the value 1 �rst (recall that weneed only consider the Boolean domain f0; 1g).� The dynamic VVO heuristic is based on the onedescribed by Geelen [4]; however, the variable ishere chosen in a way that maximises the sumof the promises of its values, and it is labeledwith the least promising value. Although thismax-min heuristic is the opposite of the min-maxheuristic advocated by Geelen [4], our experi-ments showed that it performed best for subsetdecision problems, among all the 4 alternativesfor variable and value ordering.The default VVO heuristic does not introduce anyextra overhead. The static one has a pre-processingoverhead, while the dynamic one is the most costlyone, as it incorporates calculations at each labelingstep. We tested the e�ect of these heuristics by usingthe same propagation and search algorithms, namelythe ones of sicstus clp(fd).Instance GenerationAs described in Section 2, the clp(FD) constraintstore for any subset decision problem is over aset of Boolean variables and contains an instance-dependent number of binary constraints as well asan optional summation constraint. For binary CSPs,instances are characterised by a tuple hn;m; p1; p2i[10], where n is the number of variables, m is the(constant) domain size for all variables, p1 is the con-straint density,2 and p2 is the tightness of the indi-vidual constraints.In our experiments, the domain size m is �xed to 2as we need only consider the Boolean domain f0; 1gin subset decision problems. The number n of vari-ables ranged over the interval 10::200, by incrementsof 10. We varied the values of p1 over the interval0:1::1, by increments of 0:1. Since the considered bi-nary constraints are of the form :(BI ^ BJ), theirtightness is always equal to 3=4 and they can thusbe ignored in the computation of p2. Therefore, onlythe summation constraint determines p2; its tight-ness, and therefore the tightness of all the consideredconstraints, is: p2 = �nk�2nInstead of varying the values of p2, we varied thevalues of k, over the interval 1::bn=2c, by increments2Note that p1 = bn(n�1)=2 .3

of 1, as this also leads to an interval of p2 values, sincen ranges over an interval. (In any case, varying p2by a constant increment over the interval 0::1 wouldhave missed out on a lot of values for k. Indeed,when k ranges over the integer interval above, thecorresponding values of p2 do not exhibit a constantincrement within 0::1.) The chosen upper bound ofthe interval for k is su�ciently big because of thesymmetric nature of combinations.Experiments and ResultsHaving thus chosen the intervals (and increments)for the parameters describing the characteristics ofinstances of subset decision problems, we randomlygenerated many di�erent instances and then used the3 chosen heuristics in order to solve them. Notethat not every instance has a solution. Also, someof the instances were obviously too di�cult to solvewithin a reasonable amount of time. Consequently,to save time in our experiments, we used a time-out on the CPU time; hence, our meta-heuristic cancurrently not select the best heuristic for a giveninstance characterisation when all 3 heuristics weretimed out on it. The obtained results are tabulatedas hn; p1; k; t1; t2; t3i tuples, where ti is the CPU timefor heuristic i:n p1 k t1 t2 t3...100 0:2 6 40 970 2030...110 0:2 22 time out 20 1880...130 0:3 18 time out 10250 5150...We can see that indeed no heuristic outperformsall other heuristics, or is outperformed by all otherheuristics. Moreover, the collected run-times lookvery unpredictable and have many outlyers. Thiscon�rms Minton's and Tsang et al.'s results and alsoshows that human intuition breaks down here (espe-cially when dealing with blackbox solvers).In order to analyse the e�ects of each heuristic ondi�erent instances, we drew various charts, for exam-ple by keeping n and p1 constant and plotting therun-times for each k. Figure 2 shows an example ofthe behaviours of the 3 heuristics on the instanceswhere n = 110 and p1 = 0:4.3.2 Usage of the ResultsUsing the obtained table as a lookup table, it isstraightforward to devise a (static) meta-heuristicthat �rst measures the parameters hn; p1; ki of thegiven instance, and then uses the (nearest) cor-responding entry in the table to determine which

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 2 4 6 8 10 12 14

L
o

g
1

0
[r

u
n

-t
im

e
]

k

Default VVO
Static VVO

Dynamic VVO

Figure 2: Run-time in terms of k for the 3 heuristicson n = 110 and p1 = 0:4.heuristic to actually run on this instance. Consid-ering the simplicity of these measures, the (constant)run-time overhead is negligible, especially that itnearly always pays o� anyway. The meta-heuristic(including the table) and the code of all involvedheuristics thus become part of the generated instance-independent program, but it is guaranteed to makethe program run, for any instance, (almost exactly)as fast as the fastest heuristic for that instance.From the results of the empirical study, we canalso conclude the following, regarding subset decisionproblems:� As instances get less constrained [5], the defaultVVO heuristic almost always performs best.� As instances get more constrained, the perfor-mance of the default VVO heuristic degenerates(see Figure 3).� As instances get more constrained, the staticand dynamic VVO heuristics behave much moregracefully, rather than seeing their run-times de-generate (see Figure 3).� Even though it is very costly to calculate the dy-namic VVO heuristic, it sometimes outperformsthe other two heuristics.� For some of the instances, all the heuristics failedto �nd a solution within a reasonable amount oftime.4 ConclusionWe have shown how to map an entire class ofCSPs, namely subset decision problems, to a generic4

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12 14

L
o

g
1

0
[r

u
n

-t
im

e
]

k

Default VVO
Static VVO

Dynamic VVO

Figure 3: Run-time in terms of k for the 3 heuristicsfor n = 100 and p1 = 0:4.clp(FD) constraint store, and we have devised a class-speci�c but problem-independent meta-heuristic thatchooses an instance-speci�c heuristic that is guaran-teed to perform as well as the best considered heuris-tic, for any instance. This work is thus a continua-tion of Tsang et al.'s research [10] on mapping heuris-tics to application domains, and an incorporation ofMinton's and Tsang et al.'s �ndings about the sensi-tivity of heuristics to instance distributions. The keyinsight is to analyse and exploit the form (and num-ber) of the actually posted constraints for a problemclass, rather than considering the constraint store ablack box and looking for optimisation opportunitieselsewhere.The importance and contribution of this work is tohave shown that some form of heuristic, even if \only"a meta-heuristic, and a brute-force one at that, canbe devised for an entire problem class, without re-gard to its problems or their instances. Consideringthe availability and automatic selection by a solver ofsuch a (meta-)heuristic, programmers can be encour-aged to model CSPs as subset problems rather thanin a di�erent way (if the possibility arises at all). In-deed, they then do not have to worry about whichheuristic to choose, nor do they have to implementit, nor do they have to document the resulting pro-gram with a disclaimer stating for which distributionof instances it will run best. All these non-declarativedecisions can thus be taken care of by the solver, leav-ing only the declarative issue of modeling the CSP tothe programmers, thus extending the range and sizeof CSPs that they can handle properly. Further ad-vances along these lines will bring us another stepcloser to the holy grail of programming (for CSPs).

4.1 Related WorkThis work follows the call of Tsang et al. for map-ping combinations of algorithms and heuristics to ap-plication domains [10]. However, we here focused onjust one application domain (or: class of problems),as well as on just the e�ect of VVO heuristics whilekeeping the algorithm constant.Also closely related to our work is Minton'sMulti-TAC system [8], which automatically synthesisesan instance-distribution-speci�c program (i.e., algo-rithm and heuristic) for solving a CSP, given a high-level description thereof and a set of training in-stances (or an instance generator). His motivationalso was that heuristics depend on the distribution ofinstances. However, we di�er from his approach invarious ways:� While the performance ofMulti-TAC's synthe-sised programs is highly dependent on the distri-bution of the given training instances, we advo-cate the o�-line brute-force approach of generat-ing all possible distributions for given problemclasses and analysing them towards the identi�-cation of suitable meta-heuristics.� While Multi-TAC uses a synthesis-time brute-force approach to generate candidate problem-and-instance-distribution-speci�c heuristics, weonly choose our heuristics from already pub-lished ones.� While it is the responsibility of a Multi-TACuser to also provide training instances (or aninstance generator plus the desired distributionparameters) in order to synthesise an instance-distribution-speci�c program, our meta-heuristiccan be pre-computed once and for all, in aproblem-independent way for an entire class ofproblems, and the user thus need not providemore than a high-level problem description.Finally, the work of Smith et al. on the kidsprogram synthesiser and its successors [11, 12] hassome inuence on ours. Their semi-automatic sys-tems excel at generating (sometimes novel) programsfor CSPs, though without any explicit recourse toconstraint programming technology. Indeed, theysynthesise ad hoc code given a high-level descriptionof a CSP and a formal domain theory. By replacingtheir target language with clp(FD), we have been ableto considerably reduce the need for their (computer-assisted) optimisation of the thus synthesised pro-grams [2].4.2 Future WorkOur plans for future work include investigating thepossibility of devising a dynamic meta-heuristic thatchooses a (possibly di�erent) heuristic after each la-beling iteration, based on the current sub-problem,rather than sticking to the same initially chosen static5

heuristic all the way. The hope is that the perfor-mance would increase even more, but this intuitivelylooks unlikely, as many heuristics look deeply aheadand thus only pick up speed after some slow �rst it-erations, so that it would be counter-productive tothen switch to another heuristic that starts all over.However, we have some ideas how to go at this.We will furthermore try to derive an evaluationfunction (by regression analysis) instead of using thefull look-up table. This would not speed up the re-sulting programs, but their size would shrink dra-matically, as the look-up table would not have to betrailed around.Of course, we should also produce instances in amore �ne-grained way (over all hn; p1; ki triples untilsome n) and involve more known heuristics, so as tofurther improve our meta-heuristic. This is just amatter of having the (CPU) time to do so.The here studied class of subset decision problemscan be generalised into the class of k-subset deci-sion problems (where k subsets of a given set have tobe found, subject to some constraints) [7]. Anotherextension is the coverage of (k-)subset optimisationproblems. We expect to address these issues.Finally, we are planning to investigate other classesof problems, namely assignment problems (where amapping between two given sets has to be found,subject to some constraints) [2], permutation prob-lems (where a sequence representing a permutationof a given set has to be found, subject to someconstraints) [2], and sequencing problems (where se-quences of (given or bounded) size over the elementsof a given set have to be found, subject to some con-straints).References[1] Ph. Codognet and D. Diaz. Compiling con-straints in clp(FD). J. of Logic Programming27(3):185{226, 1996.[2] P. Flener, H. Zidoum, and B. Hnich. Schema-guided synthesis of constraint logic programs. InProc. of ASE'98, pp. 168{176. IEEE ComputerSociety Press, 1998.[3] P. Flener, B. Hnich, and Z. K�z�ltan. Towardsschema-guided compilation of set constraint pro-grams. In B. Jayaraman and G. Rossi (eds),Proc. of DPS'99, pp. 59{66. Tech. Rep. 200,Math. Dept., Univ. of Parma, Italy, 1999.[4] P.A. Geelen. Dual viewpoint heuristics for bi-nary constraint satisfaction problems. In Proc.of ECAI'92, pp. 31{35. 1992.[5] I.P. Gent, E. MacIntyre, P. Prosser, B.M. Smith,and T. Walsh. An empirical study of dynamicvariable ordering heuristics for the constraintsatisfaction problem. In Proc. of CP'96, pp. 179{193. The MIT Press, 1996.

[6] C. Gervet. Interval propagation to reason aboutsets: De�nition and implementation of a practi-cal language. Constraints 1(3):191{244, 1997.[7] B. Hnich and Z. K�z�ltan. Generating programsfor k-subsets problems. In P. Alexander (ed),Proc. of the ASE'99 Doctoral Symposium. 1999.[8] S. Minton. Automatically con�guring constraintsatisfaction programs: A case study. Constraints1(1{2):7{43, 1996.[9] E.P.K. Tsang. Foundation of Constraint Satis-faction. Academic Press, 1993.[10] E.P.K. Tsang, J.E. Borret, and A.C.M. Kwan.An attempt to map the performance of a range ofalgorithm and heuristic combinations. In Proc.of AISB'95, pp. 203{216. IOS Press, 1995.[11] D.R. Smith. kids: A semi-automatic programdevelopment system. IEEE Trans. on SoftwareEngineering 16(9):1024{1043, 1990.[12] D.R. Smith. Toward a classi�cation approach todesign. Proc. of AMAST'96, pp. 62{84. LNCS1101. Springer-Verlag, 1996.[13] P. Van Hentenryck. The opl Optimization Pro-gramming Language. The MIT Press, 1999.

6

