
Towards Inferring Labelling Heuristisfor CSP Appliation DomainsZeynep K�z�ltan, Pierre Flener, and Brahim HnihComputer Siene Division, Department of Information SieneUppsala University, Box 513, S { 751 20 Uppsala, SwedenfZeynep.Kiziltan, Pierre.Flener, Brahim.Hnihg�dis.uu.seAbstrat. Many real-life problems an be represented as onstraint sat-isfation problems (CSPs) and then be solved using onstraint solvers,in whih labelling heuristis are used to �ne-tune the performane of theunderlying searh algorithm. However, few guidelines have been proposedfor the appliation domains of these heuristis. If a mapping between ap-pliation domains and heuristis is known to the solver, then modellersan | if they wish so | be relieved from �guring out whih heuristito indiate or implement. Instead of inferring the appliation domains of(known) heuristis, we advoate inferring (known or new) heuristis forappliation domains. Our approah is to �rst formalise a CSP appliationdomain as a family of models, so as to exhibit the generi onstraint storefor all models in that family. Seond, family-spei� labelling heuristisare inferred by analysing the interation of a given searh algorithm withthis generi onstraint store. We illustrate our approah on a domain ofsubset problems.1 IntrodutionMany real-life problems are onstraint satisfation problems (CSPs), where ap-propriate values for the variables of the problem have to be found within theirdomains, subjet to some onstraints. Examples are prodution planning subjetto demand and resoure availability, air traÆ ontrol subjet to safety proto-ols, et. Many of these problems an be programmed as onstraint models andthen be solved using onstraint solvers, suh as lp(fd) [2℄ and opl [17℄.Constraint solvers are equipped with a searh algorithm, suh as forward-heking, and labelling heuristis, one of whih is the default. To enhane theperformane of onstraint models, a lot of researh has been made in reent yearsto develop new labelling heuristis, whih onern the hoie of the next variableto branh on during the searh and the hoie of the value to be assigned to thatvariable. These heuristis signi�antly redue the searh spae [15℄.However, little is said about the appliation domains of these heuristis, somodellers �nd it diÆult to deide when to apply a partiular heuristi, andwhen not. Indeed, there is no universally best heuristi for all instanes of allonstraint models (see, e.g., [16℄), unless NP=P. Thus, we are only told thata partiular heuristi was \best" for the partiular instanes used to arry out

some experiments with some partiular models. Therefore, the performane ofheuristis is not only model-dependent but also instane-dependent, i.e., for agiven onstraint model, a heuristi an perform well for some (distributions onthe) instanes, but very poorly on others; this is taken into aount by somegenerators of model-spei� solvers [3, 9, 12℄.Instead of inferring the appliation domains of (known) heuristis, we ad-voate inferring (known or new) heuristis for appliation domains. Obviously,the \smaller" an appliation domain, the \better" its inferrable heuristis. Ourtwo-step approah is to �rst formalise an appliation domain as a family ofCSP models, so as to exhibit the generi onstraint store for all models in thatfamily. Seond, the interation | for a given searh algorithm | between theonstraints in this generi store and the domain propagation during searh isexamined, so as to infer suitable heuristis for any model in that family. Due tothe instane sensitivity of heuristis, the outome of this proess usually is a setof heuristis, rather than a single one. In this paper, we illustrate this approahon a domain of subset problems.If a mapping between appliation domains and heuristis is known to thesolver, then modellers an | if they wish so | be relieved from the proeduralaspet of modelling, namely �guring out whih heuristi to indiate or imple-ment. Foring modellers to deal with this proedural aspet may not only adda hallenging step but also has the disadvantage that they must ommit | atmodelling time | to a single heuristi and thus expose their models to the in-stane sensitivity of heuristis. In ompanion work [7, 11℄, we address the issueof seleting or swithing | at solving time | among the inferred family-spei�heuristis resulting from our approah, aording to the instane to be solved.Our ultimate aim is thus a new generation of more intelligent solvers that allowCSP modellers to onentrate on the delarative aspet of modelling, withoutompromising (muh) on eÆieny.This paper is organised as follows. In Setion 2, we introdue the notion offamily of CSP models as a formalisation of an appliation domain. We illus-trate this with a domain of subset problems and exhibit a generi �nite-domainonstraint store of a family for this domain. Then, in Setion 3, we present ouranalysis of this generi onstraint store, infer two labelling heuristis, and showour initial empirial results. Finally, in Setion 4, we onlude, ompare withrelated work, and disuss diretions for future researh.2 CSP Model FamiliesInformally, an appliation domain is a set of \related" CSPs. For instane, in theSUBSET domain, a given number of elements have to be seleted from a given�nite set suh that any two of them satisfy some onstraint p. In this domain,CSPs are related in the sense that the atual onstraint p di�ers between them.Sample CSPs in this domain are �nding a lique of a given size within a givengraph (where p requires that any two verties of the lique be onneted by anedge of the graph) and �nding an independent subset of a given size among

the verties of a given graph (where p says that any two verties of the subetmust not be onneted by an edge of the graph). Appliation domains of oarsergranularity are sheduling, on�guration, resoure alloation, and so on.For a given onstraint modelling language, a CSP model family is an openCSP model in that language, `open' in the sense that some of its (prediate ortype) symbols are neither primitive to the language nor de�ned in the model. Anatual CSP model is losed, in the sense that all its symbols must be primitiveor de�ned. From a model family, a model an thus be obtained by substitutinglosed types and losed formulas for all its open symbols, and possibly by addingparameters. Model families an be used to formalise appliation domains. Thereare in general several ways of formalising a domain as a model family, in a givenlanguage, namely depending on the hosen data modelling. An instane of aCSP model M is obtained from M by replaing all its formal input parametersby atual values and dropping the universal quanti�ations on these parameters.An instane of a model is thus also a model, albeit without input parameters.Example 2.1. Assume CSPmodels are written in a very expressive, purely delar-ative, typed, set-oriented, �rst-order logi onstraint modelling language, suhas our esra [6, 4℄, whih is designed to be higher-level than even opl [17℄. (Wean automatially ompile [5℄ esra programs into lower-level languages suh asopl.) Sine esra has set variables (unlike opl), the following (sugared versionof an) esra model family is a andidate formalisation of the SUBSET domain:8T; S : set(�) : 8k : int : (subset(T+; k+; S)$ S � T ^ size(S; k) ^8ti; tj : � : (ti 2 S ^ tj 2 S ^ ti 6= tj ! p(ti; tj))) (Subset)where the supersript + designates the input parameters. In words, sets S andT of elements of type � are in the subset=3 relation with integer k i� S is a setof k elements from T , suh that any two distint elements ti and tj of S satisfyonstraint p. The only open symbols are type � and onstraint p, as size, �, 2,and 6= are primitives of esra, with the usual meanings. From the Subset modelfamily, we an obtain the following (sugared) esra model:8V;C : set(int) : 8k : int : 8E : set(int� int) :(liquek(hV +; E+i; k+; C)$ C � V ^ size(C; k) ^8vi; vj : int : (vi 2 C ^ vj 2 C ^ vi 6= vj ! hvi; vji 2 E)) (liquek)It is a model for �nding a lique C of an undireted graph (given through itsinteger vertex set V and edge set E), suh that the lique has k verties.Example 2.2. At a lower level of expressiveness, say when set variables are notavailable (suh as in lp(fd) [2℄ and opl [17℄), the usual representation of anunknown subset S of a given �nite set T (of n elements) is a mapping fromT into Boolean variables (in f0; 1g), that is one oneptually maintains n ou-ples hti; Bii where the (initially non-ground) Boolean Bi expresses whether the(always ground) element ti of T is a member of S or not:18ti : � : ti 2 T ! (Bi $ ti 2 S) (1)1 In formulas, we use atom Bi as an abbreviation for Bi = 1.

This Boolean representation of set variables onsumes more memory than theset-interval representation of onjunto [8℄ and oz [13℄, but both have beenshown to reate the same O(2n) searh spae [8℄.Given this Boolean representation of the sought subset S, restriting its sizeto k an be expressed as the following n-ary onstraint:nXi=1 Bi = k (2)Let us also look at the remaining part of SUBSET , whih requires that anytwo distint elements of the subset S of T must satisfy a onstraint p. Formally(using the sugared esra syntax again, for the sake of symboli reasoning):S � T ^ 8ti; tj : � : ti 2 S ^ tj 2 S ^ ti 6= tj ! p(ti; tj)This implies8ti; tj : � : ti 2 T ^ tj 2 T ^ ti 2 S ^ tj 2 S ^ ti 6= tj ! p(ti; tj)whih is equivalent to8ti; tj : � : ti 2 T ^ tj 2 T ^ ti 6= tj ^ :p(ti; tj)! :(ti 2 S ^ tj 2 S)By (1), this an be rewritten as8ti; tj : � : ti 2 T ^ tj 2 T ^ ti 6= tj ^ :p(ti; tj)! :(Bi ^ Bj) (3)The sugared version of an opl/lp(fd) model family formalising the SUBSETdomain thus onsists of onstraints (2) and (3); we denote it by SubsetB. Forany two distint elements ti and tj of the given set T , with Boolean variables Biand Bj , if p(ti; tj) does not hold, the following binary onstraint arises::(Bi ^ Bj) (4)It is ruial to note that the atual �nite-domain onstraints are thus not interms of p, hene p an be any formula. Therefore, the generi �nite-domainonstraint store for any instane of any model of the SubsetB family is over a setof (only) Boolean variables. It ontains an instane-dependent number of binaryonstraints of the form (4), as well as the (always unique) n-ary onstraint (2).As the set-interval representation of set variables does not allow the de�nitionof some (to us) desirable high-level primitives, suh as universal quanti�ationover elements of non-ground sets, the set variables of esra (see Example 2.1) areompiled [5, 6℄ using the Boolean representation of Example 2.2. In the remainderof this paper, our approah to inferring labelling heuristis from an appliationdomain is illustrated on the SUBSET domain, and we (thus) fous on its Booleanmodelling in the SubsetB family.

3 Inferring Labelling HeuristisIt is known that the order in whih the variables are onsidered for instantia-tion, and the order in whih the values are attempted for assignment to variablesduring searh have a substantial impat on the number of baktraks performedand the time taken by a searh algorithm to solve a CSP model. Deiding onthese orders is the objetive of labelling heuristis. We now infer some labellingheuristis for the SUBSET domain by examining the domain propagation per-formed on the generi onstraint store | for the SubsetB family | by a searhalgorithm during labelling. For the sake of illustration, we here hoose the for-ward heking (FC) algorithm, whih is used in many solvers. It works as follows:Whenever a variable is labelled by a value v, the values of the future variablesthat are inonsistent with v are removed from the domains of these variables.In Setion 3.1, we present our analysis of the obtained generi onstraintstore. Next, in Setion 3.2, we infer some FC labelling heuristis for SubsetBmodels. Finally, in Setion 3.3, we report on our initial experimental results.3.1 Analysis of the Generi Constraint StoreWe analyse the generi onstraint store using the values n (the size of the givenset T , hene the number of Boolean variables involved) and k (the given size ofthe sought subset S). In models of the SubsetB family, eah Boolean variable Biin fB1; : : : ; Bng is at any moment assoiated with the set Vi of still unassignedvariables Bj (where 1 � j � n) that onstrain Bi with a binary onstraint ofthe form (4). A binary onstraint of this form requires that the variables Bi andBj annot simultaneously be assigned 1. Furthermore, the n-ary onstraint (2)restrits all the variables suh that k of them must be assigned 1. Let k0 (resp.k1) be the urrent number of variables that have yet to be assigned 0 (resp. 1).Initially (before the labelling), k0 = n�k and k1 = k. During labelling, the valuesof k0 and k1 derease beause of the assignments and propagation. If either k0 ork1 reahes 0, the propagation aused by the n-ary onstraint fores the other oneto also beome 0. Therefore, at the end (after the labelling), k0 = k1 = 0. Notethat the mathematial variables V1 : : : Vn, k0, k1 are only explanatory devies,but not atually stored and manipulated anywhere.We now monitor the FC propagations triggered by the assignment of values(from f0; 1g) to the Boolean variables. The ordering of the variables and valuesis irrelevant in this analysis: suitable labelling heuristis will be inferred in Se-tion 3.2. When k0 > 0 and k1 > 0, we onsider two ases, namely Case A, theassignment of 0, and Case B, the assignment of 1 to the hosen variable, say Bi.Case A. If Bi is assigned 0, the urrent number of variables that have yet to beassigned 0 is deremented by 1, so k0 beomes k0 � 1. Two sub-ases arise now:{ If k0 = 0 now, then all the k1 yet unassigned variables are assigned 1 duringpropagation due to (only) the n-ary onstraint (2), leading to k1 = 0 also.Now exatly n� k variables have been assigned 0 and k variables have beenassigned 1. However, if there is a binary onstraint of the form (4) between

any two of these k1 variables, then this assignment fails, whih leads tobaktraking. Otherwise, this assignment sueeds.{ If k0 > 0 still, then, for all v 2 Vi, the domain of v remains the same, beausethe assignment of 0 to any variable in a binary onstraint of the form (4)always sueeds without propagation.By the instantiation of a variable by 0, there is thus a possibility of baktrakingonly if k0 reahes 0, beause the assignment may fail.Case B. If Bi is assigned 1, the urrent number of variables that have yet to beassigned 1 is deremented by 1, so k1 beomes k1 � 1. Two sub-ases arise now:{ If k1 = 0 now, then all the k0 yet unassigned variables are assigned 0 duringpropagation due to (only) the n-ary onstraint (2), leading to k0 = 0 also.Now exatly k variables have been assigned 1 and n� k variables have beenassigned 0, without violating any onstraints. Indeed, as seen in Case A, theassignment of 0 to a variable fails only if k0 beomes 0 and there is a binaryonstraint between any two of the k1 variables. However, there are hereno unassigned variables left, as k1 = 0 already. Therefore, this assignmentalways sueeds.{ If k1 > 0 still, then, for all v 2 Vi, the variable v is assigned 0 duringpropagation beause of the binary onstraints of the form (4). Thus, k0beomes k0 � jVij. The new value of k0 now gives rise to the following sub-sub-ase analysis:� If k0 < 0 now, then one of these assignments must fail and immediatebaktraking ours.� If k0 = 0 now, then all the k1 yet unassigned variables are assigned 1during propagation, leading to k1 = 0 also. As seen in Case A, if there isa binary onstraint of the form (4) between any two of these k1 variables,then this assignment fails, whih leads to baktraking. Otherwise, thisassignment sueeds.� If k0 > 0 now, then this assignment sueeds.By the instantiation of a variable by 1, there is thus a possibility of baktrakingonly if k0 reahes 0 �rst. Should k0 beome negative, the assignment fails, andthus an immediate baktraking ours. On the other hand, the assignmentalways sueeds if k1 reahes 0 �rst.It is very important to notie that Case B may inlude Case A. On theother hand, Case A never inludes the general situation of Case B. Therefore,the analysis beame of �nite size and omplete, as there is no ase where it isimpossible to exatly foretell all propagations!3.2 Inferene of HeuristisIn models of the SubsetB family, the assignment | under FC searh | of 0 toa Boolean variable triggers propagation only when k0 reahes 0, and this inde-pendently of the order of the variables being instantiated by 0 so far. Therefore,if the set of variables that will be assigned 0 is not hosen arefully (e.g., when

there are no binary onstraints between them, in whih ase there probablyare binary onstraints between the other variables), baktraking is unavoidableone k0 reahes 0. The only way to avoid baktraking is to hoose the rightset of n� k variables that are assigned 0. However, �nding suh a subset of theBoolean variables is itself a subset problem.The assignment of 1 to a variable is noteworthy beause every assignmentaused by propagation upon k1 = 0 sueeds, so that no baktraking an hap-pen. Also, the order of the variables being assigned 1 is quite important beauseit an signi�antly a�et the derease in k0. Indeed, as seen in Case B, if k1 > 0still, then k0 beomes k0 � jVij. The variable Bi being assigned 1 is assoiatedwith a set Vi (the set of the still unassigned variables that onstrain Bi) thatthus diretly a�ets the derement in k0. If the variables being assigned 1 areordered in a way that they do not ause muh derease in k0, then baktrakingwhen k0 < 0 and any possible baktraking when k0 = 0 are delayed. Baktrak-free assignment is thus guaranteed by allowing k1 to reah 0 �rst. However,baktrak-free assignment is not guaranteed if it is k0 that reahes 0 �rst.We an thus infer the following two labelling heuristis from the previousonsiderations:{ If there is at least one solution, we should instantiate some variables by1, and try to keep eah jVij as small as possible if we want k1 to reah 0�rst (whih leads to baktrak-free assignment). Thus, during FC searh, ifwe hoose a variable that is partiipating in the smallest number of binaryonstraints, then we fore k1 to beome 0 before (or at the same time) as k0does, beause, by this way, we ahieve a small derease in k0. This heuristian be seen as an instane of the sueed-�rst priniple.{ If there is no solution, then it is impossible to reah the state k1 = 0.Searh e�ort an then be saved by foring the searh to reah a state withde�nite baktraking (when k0 < 0) or possible baktraking (when k0 = 0)as soon as possible. Thus, during FC searh, if we hoose a variable that ispartiipating in the largest number of binary onstraints, then we fore k0 tobe negative or to beome 0 before k1 does, beause, by this way, we ahievea big derease in k0. The value ordering is thus irrelevant. This heuristi anbe seen as an instane of the fail-�rst priniple.As it is initially unknown whether there is a solution or not, it is very diÆultto hoose whih of these two heuristis to use in order to guide the searh pro-ess. This paper is only onerned with the inferene of heuristis; the issue ofdeiding when to use whih one, or when to swith between them, is addressedin ompanion work [7, 11℄.Following these onsiderations, we implemented the following stati labellingheuristis, namely in sistus lp(fd) (whih has an FC solver):{ H1s , whih hooses the variable that is onstraining the smallest number ofvariables, and assigns the value 1 �rst.{ H0l (resp. H1l), whih hooses the variable that is onstraining the largestnumber of variables, and assigns the value 0 (resp. 1) �rst.

Being stati, these labelling heuristis hoose a variable that is initially on-straining the smallest/largest number of variables. Note that this implementa-tion of the heuristis is our hoie, but that the heuristis ould be implementedin another way, say by re-ordering the variables at solving-time. Investigationof the superiority or the inferiority of suh dynami variable orderings, whihhoose a variable that is onstraining the smallest/largest number of the future(yet unassigned) variables, to the stati ones is left as future work.3.3 Experiments with the HeuristisExperimental Setting.We measured the ost (in CPU time and in number ofbaktraks) of our heuristis on a very large number of instanes of the modelsof the SubsetB family. These experiments on�rmed the antiipated strengthsand weaknesses of the heuristis, whih are exploited in our ompanion work ondeiding when to use whih heuristi, or when to swith between them [7, 11℄.For binary CSPs, a lass2 of instanes is usually haraterised by a tuplehn;m; p1; p2i, where n is the number of variables, m is the (assumed onstant)domain size for all variables, p1 is the (assumed onstant) onstraint density, andp2 is the (assumed onstant) tightness of the individual onstraints. Experimentsare then onduted by iterating over an interval of instane lasses and generatinga suitably sized sample of random instanes for eah lass. For eah sample, themedian or average solving ost is omputed.However, our generi onstraint store features a non-binary onstraint, so weannot literally apply this haraterisation of instane lasses. In any ase, thelatter has been ritiised [1℄ beause it is unrealisti to have a onstant tightnessp2 for all onstraints, so that many possible instanes an never be generated.For these two reasons, we developed the following haraterisation of instanelasses, whih is spei� to the onsidered family. It is not subjet to any of theritiisms in [1℄, beause it exploits the struture of the generi onstraint store.The generi �nite-domain onstraint store for the SubsetB family is parame-terised by the number n of Boolean variables involved (i.e., the size of the givenset T) and the given size k of the sought subset S, and ontains an instane-dependent number b of binary onstraints of the form (4). The number n ofvariables and the density p1 of the onstraints are kept from the previous har-aterisation, with p1 being bn(n�1)=2 here. The domain size m is dropped, as italways is 2, beause we need only onsider the Boolean domain f0; 1g. Sine theonsidered binary onstraints are of the form :(Bi ^Bj), their tightness alwaysis 3=4 and thus does not beome a parameter. The tightness of the n-ary on-straint however is �nk�=2n, and thus varies with n and k. As we already use n, thesize k beomes the �nal parameter in our haraterisation of instane lasses,whih is thus summarised by the triple hn; p1; ki.For the purpose of this paper, we generated random instanes in a oarseway, by not onsidering all possible values of n up to a given limit. The numbern of variables ranged over the interval 10::120, by inrements of 10. We varied2 A lass (of instanes) is not to be onfused with a family (of CSP models).

the density p1 over the interval 0:1::1, by inrements of 0:1. The values of kranged over the interval 1::n, by inrements of 1. Considering the sizes of theseintervals, the number of our experiments was huge and their exeution was verytime-onsuming. Given more time, instanes generated in a more �ne-grainedway ould be used instead and help to make our (future) results more preise.Our objetive here only is to show the heuristis in ation, but not to providethe most detailed statistis for our ompanion work on deiding when to usewhih heuristi, or when to swith between them [7, 11℄.Rather than only omparing the inferred heuristis to eah other, we alsoompared them to some others. For time reasons, we restrited ourselves to thefollowing two additional heuristis:{ H0s , whih hooses the variable that is onstraining the smallest number ofvariables, and assigns the value 0 �rst.{ Default, the default labelling heuristi of sistus lp(fd), whih labelsthe leftmost variable in the provided sequene of variables, and the domainof the hosen variable is explored in asending order (i.e., 0 �rst in our ase).The heuristi H0s is a natural omplement to the inferred heuristis, and was alsoimplemented in sistus lp(fd). In the absene of a labelling heuristi providedby the modeller, eah solver uses its default heuristi. Sine our experiments wereonduted in sistus lp(fd), its default heuristi had to be used here. (Theexperiments thus have to be repeated for eah FC solver, beause their defaultheuristis hange.)If a ombination of the inferred heuristis beats | on the average over numer-ous instanes of the family | the default heuristi of the solver, then this om-bination an beome a family-spei� and even highly instane-sensitive defaultheuristi of the solver. The determination of suh a ombination is addressed inour ompanion work [7, 11℄. If this idea is repeated for other families, then themodellers an | if they wish so | be relieved from the proedural aspet ofmodelling and even be proteted from the instane sensitivity of their heuristis.Our experiments were made over random instanes (of models) of the on-sidered family for the following reason. Towards using real-life instanes, wewould have had to �rst pik some models within the onsidered family, but wewould then have been unable to justify why these models were piked ratherthan some others. The purpose of our experiments [10℄ was to generate statististhat guide us in our ompanion work [7, 11℄, where we aim at a family-spei�default heuristi for a solver, whih must be able to handle random instanesover that entire family. We do not aim at a heuristi for a spei� model, whihwould have to be able to handle (only) real-life instanes of (only) that model.Experiments. Having thus hosen the intervals and inrements for the param-eters in our haraterisation of an instane lass, we randomly generated manydi�erent instanes and then used the 5 heuristis in order to solve them or provethat they have no solutions. Some of the instanes were obviously too diÆultto solve or disprove within a reasonable amount of time. Consequently, to savetime in our experiments, we used a time-out (of 3,600,000ms) on the CPU time;upon time-out, the urrent number of baktraks was reorded.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 20 30 40 50 60 70 80 90 100

C
P

U
-t

im
e

k

Default
Hs1
Hl0
Hs0
Hl1

(a) p1 = 0:1 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90 100

C
P

U
-t

im
e

k

Default
Hs1
Hl0
Hs0
Hl1

(b) p1 = 0:5Fig. 1. CPU-time (in ms) in terms of k for the 5 heuristis on n = 100In order to analyse the e�ets of eah heuristi on di�erent instanes, we drewvarious harts, for example by keeping n and p1 onstant and plotting the medianosts of the samples for eah k. Figure 1 shows an example of the behavioursof the 5 heuristis in terms of CPU-time on the instanes where n = 100, withp1 = 0:1 and p1 = 0:5, respetively. Figure 2 shows their behaviours in terms ofthe number of baktraks on the same instanes.These �gures do not show that the generated instanes exhibit three veryinteresting regions in terms of k, no matter what n and p1 are: up to somevalue v of k, all instanes have a solution; then, until some other value w of k,some instanes have a solution and some do not; beyond w, all instanes haveno solution. A visible interesting observation is that, without a time-out, thesolving-times for instanes inrease with k until some point, whereupon theyderease. With the heuristis we used, we reorded time-outs in all three ofthe mentioned regions. After taking the median ost of the generated sample ofrandom instanes for eah lass hn; p1; ki, we observed three di�erent zones interms of k: up to some value j in 0::n, the instane with the median ost has asolution; from some other value l in j +1 :: n+1, the instane with the medianost has no solution; in-between, the instane with the median ost timed out.It is in general unknown where j and l are ompared to v and w. The values ofj, l, v, w depend on n and p1.

The position of k relative j and l yields the following analysis of the be-haviours of the heuristis in terms of the CPU-time they take (see Figure 1):{ Over 1::j, the heuristi H1s always �nds a solution, in mostly onstant CPU-time. Default performs the best until k reahes some d in 0::j, where d issmall. However, over d+ 1 :: j, the heuristi H1s outperforms Default. Theheuristis H0l and H1l perform as well as H1s until k reahes some i in 1::j.However, over i+1 :: j, the heuristi H1s outperforms H0l and H1l . HeuristiH0s usually has the worst performane. In onlusion, over 1::j, the heuristiH1s is the best over d + 1 :: j, with 1::d being always a very small interval.The range of k where H1s performs the best varies in size with respet to p1,given n: ompare Figures 1(a) and 1(b).{ Over j +1 :: l� 1, we annot ompare the heuristis beause they all timedout. This an be observed in Figure 1(a) for k in 34::37.{ Over l::n, the heuristi H1s always proves that there is no solution, in de-reasing CPU-time. Heuristi H0s usually has the worst performane. In thisrange, the heuristi H1s is always outperformed by H0l and H1l , and performsas badly as H0s . The heuristis H0l and H1l perform the best until k reahessome i in l::n, whereupon Default outperforms all the others. The range ofk where H0l and H1l , or Default perform the best varies in size with respetto p1, given n: ompare Figures 1(a) and 1(b).The heuristi H1s mostly performs the best when there is an observed solution.This an easily be explained by the fat that it was designed to try and �nd asolution, while assuming there is one. The heuristis H0l and H1l mostly performthe best when there is no observed solution. This is beause they were designedto prove that there is no solution, while assuming there is none. The reason whyDefault sometimes outperforms the other 4 heuristis is that it has no solving-time overhead. Somewhere in j + 1 :: l � 1, a phase transition from the solubleregion to the non-soluble region ours, and all the heuristis failed to eÆientlyhandle these instanes and thus timed out.The position of k relative j and l yields an analysis of the behaviours of theheuristis in terms of the number of baktraks they make (see Figure 2):{ Over 1::j, the heuristi H1s always �nds a solution, mostly in 0 baktraks.Default always performs worse than H1s . The heuristis H0l and H1l initiallyperform as well as H1s , but start baktraking earlier. Heuristi H0s usuallyhas the worst performane. In onlusion, over 1::j, the heuristiH1s is alwaysthe best . The range of k where H1s performs 0 baktraks varies in size withrespet to p1, given n: ompare Figures 2(a) and 2(b).{ Over j +1 :: l� 1, we annot ompare the heuristis beause they all timedout. This an be observed in Figure 2(a) for k in 34::37.{ Over l::n, the heuristi H1s always proves that there is no solution, in dereas-ing numbers of baktraks. Heuristi H0s usually has the worst performane.In this range, the heuristi H1s is always outperformed by H0l and H1l , andperforms as badly as H0s . The heuristis H0l and H1l perform the best untilk reahes some i in l::n, whereupon all the 5 heuristis perform the same

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 20 30 40 50 60 70 80 90 100

B
ac

kt
ra

ck
s

k

Default
Hs1
Hl0
Hs0
Hl1

(a) p1 = 0:1 1

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90 100

B
ac

kt
ra

ck
s

k

Default
Hs1
Hl0
Hs0
Hl1

(b) p1 = 0:5Fig. 2. Number of baktraks in terms of k for the 5 heuristis on n = 100number of baktraks. The range of k where H0l and H1l (resp. all the 5heuristis) perform the best (resp. the same) varies in size with respet top1, given n: ompare Figures 2(a) and 2(b).The heuristi H1s always performs the best in number of baktraks (and mostlywith 0 baktraks) when there is an observed solution, beause it was designedto try and �nd a solution, while assuming there is one. The heuristis H0l andH1l mostly perform the best in number of baktraks when there is no observedsolution. This is beause they were designed to prove that there is no solution,while assuming there is none. Somewhere in j+1 :: l�1, a phase transition fromthe soluble region to the non-soluble region ours, and all the heuristis failedto eÆiently handle these instanes and thus timed out.4 ConlusionLabelling heuristis may lead to a substantial redution of the searh spae whensolving CSP models. However, little is known about the appliation domains ofthe known heuristis. This work follows the all of Tsang et al. for mapping om-binations of algorithms and heuristis to appliation domains [16℄. Rather thaninferring the appliations domains of (known) algorithm/heuristi ombinations,

we here advoate inferring (known or new) algorithm/heuristi ombinations forappliation domains.Our approah is to �rst formalise a CSP appliation domain as a modelfamily, so as to exhibit the generi �nite-domain onstraint store for all modelsin that family. By analysing the interation of an algorithm with this generionstraint store, one an then infer labelling heuristis for that family. Usually,one would at least look for a heuristi that exels at �nding the �rst solution,one that exels at disproving the existene of solutions, and one that detets andhandles the phase transition. We here illustrated this approah on a domain ofsubset problems, as well as on the e�et of labelling heuristis for a �xed searhalgorithm, namely forward heking. We inferred two heuristis for this domain,one for eah of the �rst two kinds.We generate random instanes by iterating over an interval of hn; p1; ki in-stane lasses and generating a suitably sized sample of random instanes foreah lass. For eah sample, if the instanes are omparable (e.g., all the instaneshave a solution), the median ost is omputed; otherwise (e.g., some instaneshave a solution but some do not), we annot judge whih heuristi is the \best"for this sample. We then devise a lookup table, where either the \best" heuris-ti for a given instane lass hn; p1; ki is designated [7℄, or a swithing betweenheuristis is designated beause none of the heuristis is onsidered to be betterthan another one for this lass of instanes [11℄. This swithing an be done bydeploying one of the heuristis �rst, and monitoring the progress so as to swithto the next one in ase of thrashing. This lookup table is then used by a meta-heuristi. If this meta-heuristi beats | on the average over numerous instanesof the family | the default heuristi of the solver, then this meta-heuristi anbeome a family-spei� and even highly instane-sensitive default heuristi ofthe solver. If this is repeated for many appliation domains, then modellers an| if they wish so | be relieved from indiating or implementing a heuristiat modelling-time, whih often is a too early ommitment anyway, due to theinstane-sensitivity of heuristis.In terms of related work, Figure 3 shows the lassial approah to designingheuristis in full lines, whereas the ontribution of our approah is emphasised indashed lines and italiised text. A urved arrow from a full line to a dashed lineindiates our replaement of the full line with the dashed line. We thus replaethe design of a single heuristi for a CSP model in the presene of a solver (i.e.,searh algorithm) with the inferene of a set of heuristis for a model-familyby analysis of the propagation performed by that solver on the family-spei�generi onstraint store during labelling. Also, in our approah, random instanesare generated only for the onsidered family (whih does not neessarily ontainbinary CSPs), rather than for arbitrary (binary) CSPs.Closely related to our work is �rst Minton's multi-ta system [12℄, whihautomatially synthesises an instane-distribution-spei� solver, given a high-level model of some CSP and a set of training instanes. While multi-ta usesa synthesis-time brute-fore approah to generate andidate problem-spei�heuristis from a set of heuristis desribed by a grammar, we propose inferring

Testing

Bounds and Increments

Instances

Instance Generator
Random

Solver

Analysis

Solving Costs

CSP Model (Family

Generic Constraint Store

for Class Parameters

) Dependent

Heuristic Design

Heuristic /
Heuristics

Fig. 3. Contributions to the lassial approah to designing heuristisandidate family-spei� heuristis manually by analytially reasoning aboutthe generi onstraint store of the family. Seond, Sadeh and Fox propose aprobabalisti framework for the job shop sheduling domain so as to apture thesearh spae. Based on this framework, a domain spei� heuristi is derived[14℄. The derived heuristi signi�antly redues the searh spae of the instanesused in the experiments. However, the instane sensitivity of heuristis is nottakled, and only one heuristi is derived for the domain.Our future work inludes investigating the superiority or the inferiority ofdynami variable orderings, whih hoose a variable that is onstraining thesmallest/largest number of the future (yet unassigned) variables, to the hereinvestigated stati variable orderings, whih hoose a variable that is initiallyonstraining the smallest/largest number of variables.We are also planning to investigate other appliation domains, suh as m-subset problems (where a maximum of m subsets of a given set have to be found,subjet to some onstraints), relation problems (where a relation between twogiven sets has to be found, subjet to some onstraints) [4℄, permutation problems(where a sequene representing a permutation of a given set has to be found,subjet to some onstraints) [6℄, and sequening problems (where sequenes ofbounded size over the elements of a given set have to be found, subjet to someonstraints) [6℄, or any ombinations thereof.All results will be built into the ompiler of our esra onstraint modellinglanguage [6, 4℄, whih is more expressive than even opl [17℄. This will help us

to ful�ll our design objetive of also making esra more delarative than opl,without ompromising (muh) on eÆieny.AknowledgementsWe would like to thank Prof. Edward Tsang (University of Essex, UK) and ourolleague Justin Pearson for their invaluable omments. This researh is partlyfunded under grant number 221-99-369 of VR (the Swedish Researh Counil).Referenes1. D. Ahlioptas, L.M. Kirousis, E. Kranakis, D. Krizan, M.S.O. Molloy, and Y.C.Stamatiou. Random onstraint satisfation: A more aurate piture. In: G. Smolka(ed), Pro. of CP'97, pp. 107{120. LNCS 1330. Springer, 1997.2. P. Codognet and D. Diaz. Compiling onstraints in lp(fd). J. of Logi Program-ming 27(3):185{226, 1996.3. T. Ellman, J. Keane, A. Banerjee, and G. Armhold. A transformation system forinterative reformulation of design optimization strategies. Researh in EngineeringDesign 10(1):30{61, 1998.4. P. Flener. Towards relational modelling of ombinatorial optimisation problems.In: Ch. Bessi�ere (ed), Pro. of the IJCAI'01 Workshop on Modelling and SolvingProblems with Constraints, 2001.5. P. Flener and B. Hnih. The syntax and semantis of esra. Evolving internal reportof the astra Team, at http://www.dis.uu.se/�pierref/astra/.6. P. Flener, B. Hnih, and Z. K�z�ltan. Compiling high-level type onstrutors inonstraint programming. In: I.V. Ramakrishnan (ed), Pro. of PADL'01, pp. 229{244. LNCS 1990. Springer, 2001.7. P. Flener, B. Hnih, and Z. K�z�ltan. A meta-heuristi for subset problems. In: I.V.Ramakrishnan (ed), Pro. of PADL'01, pp. 274{287. LNCS 1990. Springer, 2001.8. C. Gervet. Interval propagation to reason about sets: De�nition and implementa-tion of a pratial language. Constraints 1(3):191{244, 1997.9. J.M. Grath and S.A. Chien. Adaptive problem-solving for large sale shedulingproblems: A ase study. J. of Arti�ial Intelligene Researh 4:365{396, 1996.10. J.N. Hooker. Testing heuristis: We have it all wrong. J. of Heuristis 1:33{42,1996.11. Z. K�z�ltan and P. Flener. An adaptive meta-heuristi for subset problems. Sub-mitted for review. Available via http://www.dis.uu.se/�pierref/astra/.12. S. Minton. Automatially on�guring onstraint satisfation programs: A asestudy. Constraints 1(1{2):7{43, 1996.13. T. M�uller. Solving set partitioning problems with onstraint programming. Pro.of PAPPACT'98, pp. 313{332. The Pratial Appliation Company, 1998.14. N.M. Sadeh and M.S. Fox. Variable and value ordering heuristis for the job shopsheduling onstraint satisfation problem. Ari�ial Intelligene 86(1):1{41, 1996.15. E.P.K. Tsang. Foundations of Constraint Satisfation. Aademi Press, 1993.16. E.P.K. Tsang, J.E. Borrett, and A.C.M. Kwan. An attempt to map the perfor-mane of a range of algorithm and heuristi ombinations. Pro. of AISB'95, pp.203{216, 1995. IOS Press.17. P. Van Hentenryk.The opl Optimization Programming Language. The MIT Press,1999.

