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Abstract

Constraints over variable sequences are ubiquitous and many
of their propagators have been inspired by dynamic program-
ming (DP). We propose a conceptual framework for design-
ing such propagators: pruning rules, in a functional notation,
are refined upon the application of transformation operators
to a DP-style formulation of a constraint; a representation of
the (tuple) variable domains is picked; and a control of the
pruning rules is picked.

1 Introduction
Many combinatorial problems have constraints over variable
sequences. A lot of propagators inspired by dynamic pro-
gramming (DP) techniques have been proposed for either
specific such constraints (e.g., KNAPSACK (Trick 2003),
SPREAD and DEVIATION (Pesant 2011)) or, more often,
families of constraints that can be expressed in a generic
way (e.g., AUTOMATON (Beldiceanu, Carlsson, and Pe-
tit 2004), REGULAR (Pesant 2004), COST-REGULAR (De-
massey, Pesant, and Rousseau 2006), SLIDE (Bessiere et al.
2008), SEQBIN (Petit, Beldiceanu, and Lorca 2011; Kat-
sirelos, Narodytska, and Walsh 2012), COST-MDD (Gange,
Stuckey, and Van Hentenryck 2013), and REGULARCOUNT
(Beldiceanu et al. 2014)). Although their propagators look
very different from each other, many of them are derived
from a few common abstract recipes.

In this paper, we show that such propagator design
recipes can be made explicit and encoded in a compact
manner. Our main contribution is a conceptual frame-
work for designing propagators on variable sequences
(Sections 2 and 6). It offers operators for the stepwise
refinement of pruning rules starting from a formulation of
the constraint (Section 4), choices for the representation
of the variable domains (Section 5), and choices for the
control of the set of pruning rules (Section 6). We illustrate
our framework using published propagators (Section 3)
and alternative new ones (Section 7). In Section 8, we
conclude and outline future work. The supplemental
material refered to in the body of the text can be found at
http://www.it.uu.se/research/group/astra
/publications/AAAI14-DP-Appendix.pdf.
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2 A Propagator Design Framework
We consider global constraints that can be formulated in DP
style as a conjunction of the following constraints:

PF(A1
0 · · ·Aa0 , F 1 · · ·F f ) (CF)

Pi(A
1
i · · ·Aai , B1

i · · ·Bbi , A1
i−1 · · ·Aai−1) i ∈ 1..n (Ci)

PL(A1
n · · ·Aan, L1 · · ·L`) (CL)

where
• A1

i · · ·Aai are variables, for i in 0..n, called link variables
as they appear in two constraints.
• B1

i · · ·Bbi are variables, for i in 1..n, called local vari-
ables as they appear in only one constraint Ci.
• F 1 · · ·F f are variables appearing only in constraint CF.
• L1 · · ·L` are variables appearing only in constraint CL.
• PF, PL, and the Pi are predicate symbols.
We call this a DP formulation. Many constraints have DP
formulations, including all those mentioned in Section 1.
Example 1. DEVIATION(X1 · · ·Xn,m,D) holds iff the av-
erage of variables X1 · · ·Xn is the integer m and the sum
of their deviations from m is variable D (i.e.,

∑n
i=1Xi =

m · n ∧
∑n
i=1 |Xi −m| = D). A DP formulation is:

S0 = 0 ∧D0 = 0 (CF)(
Si = Si−1 +Xi ∧

Di = Di−1 + |Xi −m|

)
i ∈ 1..n (Ci)

Sn = m · n ∧Dn = D (CL)

where variables Si andDi are introduced to represent partial
sums and partial deviations. The link variables are the Si
and Di (so a = 2), the local variables are the Xi (so b = 1),
there is no variable appearing only in CF (so f = 0), and D
is the only variable appearing only in CL (so ` = 1).

After presenting a generic propagator for DP formula-
tions, we discuss its axes of parametrisation.

Generic Propagator
A direct implementation of a DP formulation can miss prun-
ing if a > 1 because the underlying constraint network is
then not Berge-acyclic (Beeri et al. 1983). The bundling of
the link variables would make the network Berge-acyclic.



Depending on the representation of the domains of the re-
sulting tuple variables and the implementation of the indi-
vidual constraints, domain consistency can then be achieved.

Our generic propagator thus assumes the usage of tuple
variables. A tuple variable is a variable whose domain is
a set of tuples (see Section 5 for further details). After in-
troducing a tuple variable Ai for each i in 0..n to represent
the tuple A1

i · · ·Aai of link variables, we reformulate the DP
formulation using the tuple variables instead of the variables
they represent. Additional constraints, denoted by CAi , link
each tuple variable with its link variables.
Example 2. For DEVIATION (see Example 1), introducing a
tuple variable SDi for Si andDi gives the new formulation:

SD0 = 〈0, 0〉 (CF)
SDi = SDi−1 + 〈Xi, |Xi −m|〉 i ∈ 1..n (Ci)

SDn = 〈m · n,D〉 (CL)
SDi = 〈Si, Di〉 i ∈ 0..n (CAi

)
where + and = are lifted to tuples in a component-wise man-
ner, and 〈v, w〉 builds a tuple composed of v and w.

The generic propagator is a set of generic pruning rules:
for each constraint c in a DP formulation and for each vari-
able v appearing in c, prune the domain of v based on c and
the current domains of the other variables appearing in c.

Design of Propagators
The generic propagator can be specialised along three
largely orthogonal axes:
• The set of pruning rules.
• The representation of the domains of the tuple variables.
• The control of the set of pruning rules.
We propose a framework to describe and design propagators
through variation along those three axes.

To express a pruning rule in a high-level fashion, we in-
troduce the function smap o filter(f, φ, T ), which filters a
tuple set T according to a condition φ and then maps it to an-
other set using a function f , which takes a tuple and returns
a tuple set: smap o filter(f, φ, T ) = ∪t∈T∧φ(t)f(t). (The
‘o’ in the function name stands for the ‘◦’ of function com-
position of the set mapping f and the tuple filter φ.) This
function can express many pruning rules. In Section 4 we
introduce transformation operators for the stepwise refine-
ment of pruning rules starting from a DP formulation of a
constraint.

In Section 5, we bring together some existing representa-
tions of tuple variables, and propose a notation to combine
them, thereby making explicit their design space.

The design space for the control of the set of pruning rules
is very large. In Section 6, we focus on three very common
approaches.

3 The Design of Published Propagators
All published propagators mentioned in Section 1 can be de-
signed within our framework. Before discussing the frame-
work in detail in Sections 4 to 6, we illustrate it by two ex-
amples. For ease of exposition, all notation has been sim-
plified for the needs of these examples: the full syntax and

semantics of the tuple operators are given in the online sup-
plemental material, as are the full examples wherever they
have been abridged or simplified.
Example 3. For DEVIATION(X1 · · ·Xn,m,D), introduced
in Example 1, a propagator aiming at domain consistency in
O(n2du) time is given by (Pesant 2011), where d is the size
of the largest domain of the Xi, denoted dom(Xi), and u is
the size of the union of these domains.

The domain of a link tuple variable SDi (from the DP for-
mulation introduced in Example 2) is represented as a map-
ping from values of the partial sum Si to intervals of values
for the partial deviation Di. We write this mapping E → I,
where E denotes an extensional representation (all values
of Si are used), and I denotes an interval representation
(for each value of Si only the bounds of Di are maintained):
see Section 5 for details. The propagator is incremental and
stateful through the use of a layered graph.

The pruning of SDi based onCi is given by (Pesant 2011)
using a recurrence relation (we omit the base cases):

`(i, si) = min
xi∈dom(Xi)

(`(i− 1, si − xi) + |xi −m|)

u(i, si) = max
xi∈dom(Xi)

(u(i− 1, si − xi) + |xi −m|)

for i ∈ 1..n and si ∈ dom(Si), where `(i, si) and u(i, si)
are lower and upper bounds on the value ofDi when Si takes
value si. We can express this pruning in our framework as a
function of the current domains of the variables involved in
Ci and returning the new domain of SDi:

smap o filter(
λ 〈xi, si−1〉 . {si−1 + xi} ×

(ρsi−1
(SDi−1) + {|xi −m|}),

λt . true,
dom(Xi)× π1(SDi−1))

where λv . b is an anonymous function with argument v and
body b, while πj(Y) is the projection of the domain of tuple
variable Y onto its jth component (i.e., {tj | 〈t1 · · · tk〉 ∈
dom(Y)}), and ρt(Y) is the selection of second compo-
nents paired up with t as first component in the domain of the
2-tuple variable Y (i.e., {t2 | 〈t, t2〉 ∈ dom(Y)}). Hence,
the function above can be described as taking all pairs com-
posed of a value xi in dom(Xi) and a value si−1 appear-
ing as first component in dom(SDi−1), and returning all the
pairs composed of si−1 + xi and di−1 + |xi −m| for each
value di−1 paired with si−1 in dom(SDi−1).

We now show how to obtain this pruning rule in stepwise
fashion in our framework. All transformation operators are
explained in Section 4. Instantiation from the definition of
constraint Ci in the DP formulation of Example 2 gives:

smap o filter(
λ 〈xi, sdi, sdi−1〉 . {sdi},
λ 〈xi, sdi, sdi−1〉 . sdi = sdi−1 + 〈xi, |xi −m|〉 ,
dom(Xi)× dom(SDi)× dom(SDi−1))

This rule is inefficient, as it iterates over all tuples in the
Cartesian product of the domains. The functionalisation of
SDi replaces all occurrences of sdi by its functional defini-
tion and removes dom(SDi) from the Cartesian product:



smap o filter(
λ 〈xi, sdi−1〉 . {sdi−1 + 〈xi, |xi −m|〉},
λt . true,
dom(Xi)× dom(SDi−1))

The embedding of the second component of SDi−1 (rep-
resenting Di−1) introduces an inner smap o filter expres-
sion that iterates over ρsi−1

(SDi−1) for each value si−1 in
π1(SDi−1)); also, it projects the outer Cartesian product:

smap o filter(
λ 〈xi, si−1〉 . {si−1 + xi} ×

smap o filter(
λ 〈di−1〉 . {di−1 + |xi −m|},
λt . true,
ρsi−1

(SDi−1)),

λt . true,
dom(Xi)× π1(SDi−1))

The setification of the second component of SDi−1 replaces
all occurrences of di−1 by the set ρsi−1

(SDi−1), assuming a
pointwise lifting of value operations to set operations; also,
it removes that set from the inner Cartesian product:

smap o filter(
λ 〈xi, si−1〉 . {si−1 + xi} ×

smap o filter(
λ 〈〉 . ρsi−1

(SDi−1) + {|xi −m|},
λt . true,
〈〉),

λt . true,
dom(Xi)× π1(SDi−1))

Simplification of the inner smap o filter yields the rule of
(Pesant 2011) above. Similarly, pruning rules are refined for
the other variables of Ci and the other constraints of the DP
formulation. None of these transformations are specific to
DEVIATION, and they can be used for other constraints.
Example 4. SEQBIN(X0 · · ·Xn, S,B,D) holds iff S is the
number of times the binary constraint B holds for pairs of
successive variables in the sequence X0 · · ·Xn (i.e., S =∑n
i=1 [B(Xi−1, Xi)], where [γ] is 1 if constraint γ holds

and 0 otherwise) and the binary constraint D holds for
all pairs of successive variables (i.e., ∧ni=1D(Xi−1, Xi)).
Through appropriate instantiation of B and D, constraints
such as INCREASINGNVALUES and CHANGE (Beldiceanu
et al. 2007) can be formulated using SEQBIN. After intro-
duction of partial sum variables Si, a DP formulation is:

S0 = 0 (CF)(
Si = Si−1 + [B(Xi−1, Xi)] ∧

D(Xi−1, Xi)

)
i ∈ 1..n (Ci)

Sn = S (CL)

The link variables are the Xi and Si (so a = 2) and there is
no local variable (so b = 0). For using the framework, we
introduce a tuple variable XSi for each pair of Xi and Si.

This constraint was introduced by (Petit, Beldiceanu, and
Lorca 2011) with a propagator based on an E → I rep-
resentation of the link tuple variables. (Katsirelos, Narodyt-
ska, and Walsh 2012) argue this representation is insufficient

to achieve domain consistency, and prove that by replacing
the intervals (I) by another representation, namely i-zipper
sets (denoted by Z), one achieves domain consistency. We
denote this second representation by E → Z . Except for
the domain representations, both papers use the same non-
incremental stateless propagator. For conciseness, we only
show how to refine one pruning rule, namely for the link tu-
ple variable XSi based on the definition of constraint Ci in
the DP formulation: the refinement is similar or even simpler
for the other variables and constraints. Instantiation from
the definition of Ci gives:

smap o filter(
λ 〈〈xi−1, si−1〉 , 〈xi, si〉〉 . {〈xi, si〉},
λ 〈〈xi−1, si−1〉 , 〈xi, si〉〉 . si = si−1 + [B(xi−1, xi)]

∧ D(xi−1, xi),
dom(XSi−1)× dom(XSi))

The functionalisation of the second component of XSi (rep-
resenting Si) replaces all occurrences of si by its definition,
which functionally depends on other values, and projects
onto the first component of the Cartesian product:

smap o filter(
λ 〈〈xi−1, si−1〉 , xi〉 . {〈xi, si−1 + [B(xi−1, xi)]〉},
λ 〈〈xi−1, si−1〉 , xi〉 . D(xi−1, xi),
dom(XSi−1)× π1(XSi))

To avoid iterating over all domain values of the second com-
ponent of XSi−1 (representing Si−1), its embedding and
setification give, after simplification:

smap o filter(
λ 〈xi−1, xi〉 . {xi}×

(ρxi−1
(XSi−1) + {[B(xi−1, xi)]}),

λ 〈xi−1, xi〉 . D(xi−1, xi),
π1(XSi−1)× π1(XSi))

which is exactly the rule described by (Petit, Beldiceanu,
and Lorca 2011; Katsirelos, Narodytska, and Walsh 2012).

When d is the size of the largest domain of the Xi, the
published propagators take O(nd2) time, and, if B is row
convex, O(nd) time by computing some intermediate data
structures. Future work includes incorporating such a prop-
erty in the design of a propagator.

4 The Refinement of Pruning Rules
We introduced in Section 2 the smap o filter function to
express in a high-level way the pruning rules of the generic
propagator. As exemplified in Section 3, it is possible to
refine pruning rules from the DP formulation of a constraint
using a small set of transformation operators, defined next.

The instantiation operator generates, from the definition
of a constraint P (Y1, . . . , Yp) in a DP formulation, a pruning
rule smap o filter(f, φ, T ) for pruning a variable Yj based
on P , with j ∈ 1..p: the tuple set T is the Cartesian product
of the domains of Y1, . . . , Yp; the filter φ tests if a tuple sat-
isfies P ; and f maps a tuple to a singleton containing its jth

component. This is written:



smap o filter(
λ 〈y1, . . . , yp〉 . {yj},
λ 〈y1, . . . , yp〉 . P (y1, . . . , yp),
dom(Y1)× · · · × dom(Yp))

Examples of instantiation are given in Section 3.
The pruning rule for Yj generated by the instantiation op-

erator is in general inefficient: the aim of the remaining
transformation operators is to reduce the time complexity
of a pruning rule smap o filter(f, φ, T ) by reducing the ar-
ity of its Cartesian product T . These operators target some
variable Yk, with k not necessarily equal to j.

The functionalisation operator exploits a functional de-
pendency of (a component of) a (tuple) variable Yk on
other variables in a pruning rule smap o filter(f, φ, T ) for
P (Y1, . . . , Yp), with k ∈ 1..p, by dropping the iteration over
dom(Yk). The kth component of the argument tuple of map-
ping f and filter φ is replaced by its functional definition,
and Cartesian product T is projected accordingly. For exam-
ple, the functionalisation of V at position k = 1 transforms

smap o filter(λ 〈v, w〉 . {v},
λ 〈v, w〉 . v = 5 · w, dom(V )× dom(W ))

into

smap o filter(λ 〈w〉 . {5 · w}, λt . true, dom(W ))

using the functional dependency of V on W .
The setification operator removes the domain of (a com-

ponent of) a (tuple) variable Yk from the Cartesian product
T of a pruning rule smap o filter(f, φ, T ), and replaces the
kth component of the argument tuple of mapping f and fil-
ter φ by dom(Yk). Operations on values are lifted pointwise
to operations on sets: this enables the use of efficient imple-
mentations of operations for specific representations of tuple
variables (see Section 5). For example, the setification of W
at position k = 2 transforms

smap o filter(λ 〈v, w〉 . {v + w},
λ 〈v, w〉 . v ≤ w, dom(V )× dom(W ))

into

smap o filter(λ 〈v〉 . {v}+ dom(W ),
λ 〈v〉 . v ≤ dom(W ), dom(V ))

The meaning of v ≤ dom(W ) is that v is at most some
element of dom(W ) (i.e., ∃w ∈ W . v ≤ w): this can
be simplified (using operators mentioned below) into v ≤
max(dom(W )).

The embedding operator splits (a component of) a (tu-
ple) variable off the Cartesian product T of a pruning rule
smap o filter(f, φ, T ), by moving it to a new smap o filter
expression inside the definition of the mapping f . The rest
of T is kept to generate the tuples. This operator is used to
avoid projecting a tuple variable onto its Cartesian product
when applying other operators, typically setification. For
instance, if a tuple variable V has two components, then
its domain can be split into two parts: the first component
stays in T , which becomes π1(V); the second component is
moved to an inner smap o filter expression with Cartesian

product ρv(V), where v is the first component of the argu-
ment tuple of mapping f and filter φ. Examples are given in
Section 3.

Other transformation operators can be necessary to apply
the previous ones. For instance, the order of operands in
a commutative operation can be inverted, or a formula can
be rewritten to define some variable by a functional depen-
dency. Also, tuples and tuple sets can be separated into their
components, or isolated values can be grouped into a tuple.
Finally, simplification operators may be applied on expres-
sions, including the replacement of a smap o filter expres-
sion by an equivalent one. For space reasons, such transfor-
mation operators are listed in the supplemental material.

We make no claims that these operators are complete, but
it is significant that for many constraints it is possible to re-
fine efficient pruning rules using the operators listed above.

5 The Representation of Tuple Variables
We now bring together some existing representations of
tuple variables, and propose a notation to combine them,
thereby making explicit their design space.

A (k-)tuple is a finite sequence 〈v1, . . . , vk〉 of k elements
vi, called components; the tuple has arity k. A tuple variable
is a variable whose domain is a set of tuples of a given arity.

We consider that the domains of conventional variables
are subsets of Z, hence the domain of a k-tuple variable is a
subset of Zk. A binary operation⊕ is lifted component-wise
from integers to tuples (i.e., 〈v1, . . . , vk〉 ⊕ 〈w1, . . . , wk〉 =
〈v1 ⊕ w1, . . . , vk ⊕ wk〉), and pointwise from tuples to sets
of tuples (i.e., S ⊕ T = {s ⊕ t | s ∈ S ∧ t ∈ T}).
Two tuples are equal if they are component-wise equal (i.e.,
〈v1, . . . , vk〉 = 〈w1, . . . , wk〉 ≡ v1 = w1 ∧ · · · ∧ vk = wk).
We denote πi(T ) the projection of a k-tuple set T onto its
ith component, with i ∈ 1..k (i.e., {ti | 〈t1, . . . , tk〉 ∈ T}).

Maintaining extensionally the set of tuples is one way to
represent the domain of a tuple variable. Other represen-
tations may be used, either because they are sufficient to
represent faithfully the domain, or because one is satisfied
with the tradeoff between speed and consistency achievable
by an over-approximation of the domain. Upon giving some
terminology for the well-studied base case of 1-tuple vari-
ables, that is conventional integer variables, it suffices here
to study 2-tuple variables as an instance of k-tuple variables.

A 1-tuple variable has a set of integers as domain. The
extensional representation, denoted E , may use a bit vector,
a list of intervals, a sparse set, etc. Compact representations
take constant space, and all operations on them can be per-
formed in constant time. However, they cannot represent all
sets in an exact manner and often over-approximate them.
Examples are the interval representation, denoted I, where
only the upper and lower bounds of the set are maintained,
the i-zipper representation, denoted Z (Katsirelos, Narodyt-
ska, and Walsh 2012), and the congruence representation,
denoted C (Leconte and Berstel 2006).

A 2-tuple variable has a set of integer pairs as domain.
The extensional representation, denoted 2E , may use a bit
matrix, a list of pairs, etc.

The projection representation possibly over-approximates
a pair set S by the Cartesian product π1(S)× π2(S), where



〈r〉 ::= E extensional representation for 1-tuples
| kE extensional representation for k-tuples
| I interval representation for 1-tuples
| Z i-zipper set representation for 1-tuples
| C congruence representation for 1-tuples
| kO octagon representation for k-tuples
| kM MDD representation for k-tuples
| 〈r〉 × 〈r〉 projection representation for k-tuples
| 〈r〉k projection representation for k-tuples
| [k]E → 〈r〉 mapping representation for k-tuples

Figure 1: Design space for representing tuple variables

each of the two projections can in turn use any of the repre-
sentations of sets. If X and Y are representations of 1-tuple
variables, then we denote such a representation by X × Y .
For example, if both components are represented by inter-
vals (I ), then the representation for a 2-tuple variable is de-
noted by I × I, or I2.

The mapping representation, encountered in Examples 3
and 4, possibly over-approximates a pair set S by mapping
each value of one component to the set of values of the other
component (i.e., either every v in π1(S) is mapped to the set
of values ρv(S) = {w | 〈v, w〉 ∈ S}, or vice-versa). This
representation is asymmetric with respect to the two com-
ponents of the pair: the mapped component must be repre-
sented extensionally (E), while the other component can be
represented by any representation X . We denote such a rep-
resentation by E → X . For example, E → I uses intervals.

The polyhedron representation maintains a convex poly-
hedron, representing a convex envelope of points in a plane.
An instance is the octagon representation (Truchet, Pelleau,
and Benhamou 2010), denoted 2O for 2-tuple variables.

The MDD representation, denoted 2M for 2-tuple vari-
ables, adapts the bounded-width multivalued decision dia-
grams of (Hoda, van Hoeve, and Hooker 2010) to work with
only two variables and not the whole set of variables.

The generalisation from sets of pairs (k = 2) to sets of
k-tuples with k > 2 is straightforward and omitted here
for space reasons. Previous work on k-tuple variables has
considered only the projection representation Ek, for in-
stance (Quimper and Walsh 2005; Michel and Van Henten-
ryck 2012), and the extensional representation kE , for in-
stance (Bessiere et al. 2008). There are however many other
possibilities between those two extremes.

The grammar in Figure 1 summarises the choices of tuple
variable representations. Other representations are studied
in the field of abstract interpretation, but have not yet been
used for constraint programming solvers, to the best of our
knowledge. Additional base cases can be added to our gram-
mar as they appear.

6 Rule Control and Design Methodology
Before introducing a propagator design methodology en-
abled by our framework, we briefly discuss three commonly
used ways to implement the control of the pruning rules in a
constraint programming solver.

A decomposition uses several propagators, typically one
per constraint in the DP formulation. Their details must in
turn be given (but are often left open in the literature).

A single propagator can implement all the pruning rules
and apply them in a specific order. In our case, one can apply
first a forward phase to prune for the Ai tuple link variables,
then a backward phase for those variables, and finally prune
for all other variables. Two extremes are usually consid-
ered. The first is a non-incremental propagator, where no
data structure is maintained between two calls to the propa-
gator. The second is an incremental propagator, for which
both the domains and all supports are maintained in the form
of a layered graph. This graph is based on ideas from dy-
namic programming and was first introduced in constraint
programming for the KNAPSACK constraint (Trick 2003).

The control of the propagator includes also the possibil-
ity of a preprocessing phase and of the combination of sev-
eral pruning rules in one. Although this can be described
within our framework, and is indeed used for DEVIATION
and SEQBIN, we do not present this here for lack of space.

Our framework enables a methodology for propagator de-
sign, composed of the following steps. First, the considered
constraint is written as a DP formulation. Then, tuple vari-
ables are introduced in the DP formulation to bundle the link
variables. Last, in no particular order, a domain representa-
tion for the tuple variables is chosen, the pruning rules are re-
fined, and a control of the pruning rules is picked. The three
parametrisation axes are almost orthogonal to each other:
one can consider each of them in turn and then combine
them freely, with the possibility of designing propagators
with various properties (see below). This freedom helps one
consider useful combinations that might not be considered
otherwise. However, it is also possible to consider combina-
tions that make little sense: our framework offers a method-
ology, but we do not aim at replacing the creativity one can
use in the design of propagators. Guiding principles can be
stated, but this is beyond the scope of this paper; note for
instance that the stepwise refinements of pruning rules in
Examples 3 and 4 followed the same abstract recipe.

Further, it is possible to compare tuple variable domain
representations and pruning rules under partial orders. For
two domain representations X and Y , we say that X is
stronger than Y if X can represent in exact fashion all sets
that Y can represent. For two pruning rules r1 and r2, we
say that r1 is stronger than r2 if, for each possible domain,
r1 computes a (not necessarily strict) subset of the set pro-
duced by r2. Examples are given in Section 7.

7 The Design of New Propagators

To show that our framework can be used to design quickly
new propagators, we now study the design of propaga-
tors for the LONGESTPLATEAU(X0 · · ·Xn, L) constraint,
which holds iff L is the length of the longest plateau (se-
quence of identical elements) within X0 · · ·Xn. This con-
straint is called LONGEST CHANGE(L,X0 · · ·Xn,=) by



Table 1: Domain representations for LONGESTPLATEAU
Pruning strength (n-d; in %)

Domains Complexity 5-2 5-30 20-2 20-30
3E O(nd2m2) 100 100 100 100

E → E2 O(nd2m) 90 52 88 89
E → 2O O(nd2) 94 68 86 90
E → I2 O(nd2) 85 52 81 89
DC without tuple var. 62 21 45 3
infeasible inst. (in %) 21 10 20 17
additional inst. (in %) 35 117 37 126

(Beldiceanu et al. 2007). A possible DP formulation is:

K0 = 1 ∧M0 = 1 (CF)
if Xi = Xi−1
thenKi = Ki−1 + 1 ∧Mi = Mi−1
elseKi = 1 ∧Mi = max(Mi−1,Ki−1)

i ∈ 1..n (Ci)

L = max(Mn,Kn) (CL)

where the new variables Ki and Mi represent the lengths of
the current plateau and the currently longest plateau. The
link variables are the Xi, Ki, and Mi (so a = 3 and b = 0)
and we bundle them into 3-tuple variables XKMi.

This constraint is useful in rostering, but has no published
propagator. It can be handled by SLIDE (with domain rep-
resentation 3E for XKMi) and AUTOMATON (with domain
representation E3), both implemented by decomposition.

With our framework, we can easily consider other domain
representations and controls. We compare the representa-
tions 3E , E → E2, E → 2O, and E → I2. We only use
one control, namely a non-incremental propagator. We re-
fine only one pruning rule set, given in the supplemental
material; e.g., the rule to prune XKMi based on Ci is ob-
tained by instantiation from the definition of Ci, functional-
isation of Ki and Mi, embedding and setification of Ki−1
andMi−1, and grouping ofKi−1 andMi−1 into a pair inside
the max operator, so as to enable the use of an implementa-
tion of max that is specific to each representation.

The complexity of a call to each propagator is given in the
second column of Table 1, where d is the size of the largest
domain of the Xi, and m is the maximum value in the do-
main of L. Those complexities correspond to a direct imple-
mentation of the rules. However, it is possible to decrease
them by a factor of d by exploiting the row convexity prop-
erty, as done for SEQBIN by (Petit, Beldiceanu, and Lorca
2011; Katsirelos, Narodytska, and Walsh 2012).

One can establish theoretically, for any 3-tuple variable,
that 3E is stronger than all other representations, and that
E → E2 and E → 2O are incomparable but stronger than
E → I2. Experimentally, for LONGESTPLATEAU, we com-
pare the pruning strengths (independently of search) of these
representations with the best that can be achieved without tu-
ple variables, corresponding to ensuring domain consistency
(DC) of each Ci with an E3 representation. For several il-
lustrative combinations of n and d, we randomly sample all
possible domains for the Xi and L variables. The results are
reported in Table 1, by giving the average reduction of the

product of the domain sizes with respect to the maximum
possible reduction (obtained by global domain consistency).
We only consider instances where some pruning is possible.
The last line of Table 1 reports the percentage of additional
instances that were generated to produce 10,000 prunable
ones. The penultimate line reports the percentage of infeasi-
ble instances. All propagators, except the one without tuple
variables, were able to recognise all the infeasible instances.

From Table 1, it is clear that using tuple variables is very
beneficial. The E → 2O representation seems to present the
best compromise between time complexity and pruning on
this random sampling. On a structured benchmark, the inter-
action between pruning strength and search is complicated
and orthogonal to the purpose of this section: the important
point here is that, using our framework, it is easy to design
several propagators and compare their performance.

8 Conclusion and Future Work
We presented a framework for designing propagators operat-
ing on variable sequences. Many published propagators are
indeed close enough to each other that they can be described
as instances of a generic propagator, based on dynamic pro-
gramming principles. In particular, we showed that one can
describe very concisely the pruning rules and the representa-
tion of the introduced tuple variables. We also showed how
one can refine these pruning rules from a formulation of the
constraint using a few transformation operators.

As there are many choices for the pruning rules, the repre-
sentation of tuple variables, and the control of a propagator,
our framework presents several advantages. It offers a com-
mon language for describing the differences and commonal-
ities between propagators. It is possible to explore concep-
tually and systematically the alternative choices when de-
riving a propagator. The implementation of propagators is
simplified: the solver-specific code for tuple variable rep-
resentations and pruning rule control can be shared among
many constraints; once those have been written, the imple-
mentation phase is reduced to the translation of the pruning
rules into solver-specific code.

Our framework is conceptual and solver independent. A
tool for our framework would make it possible to (semi-)au-
tomate the development of propagators. One could then gen-
erate alternative propagators and benchmark them, as done,
e.g., by (Akgun et al. 2013) for choosing among alternative
models of a class of problems. Even without tool support,
our framework enables a methodology of propagator design;
this is useful, as illustrated in Section 7.

The proposed framework can benefit from many improve-
ments. While we offered a language for the representations
of the tuple variables and pruning rules, there is still a lot to
do to achieve a more precise characterisation of the control
of a propagator, as done, e.g., by (Régin 2005) for arc con-
sistency algorithms. Properties, such as the time and space
complexities, can be computed from the description of the
designed propagators. Other properties, such as idempo-
tency and the achievement of domain consistency, cannot be
inferred from such a description and often require complex
proofs anyway. Properties of the considered constraint, such
as monotonicity or row convexity, can also be exploited.
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